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The notion of gentle spaces, introduced by Jaffard, describes what would be an “ideal” function space to work with wavelet
coefficients. It is basedmainly on the separability, the existence of bases, the homogeneity, and the 𝛾-stability.We prove that real and
complex interpolation spaces between two gentle spaces are also gentle. This shows the relevance and the stability of this notion.
We deduce that Lorentz spaces 𝐿𝑝,𝑞 and𝐻𝑝,𝑞 spaces are gentle. Further, an application to nonlinear approximation is presented.

1. Introduction

Interpolation is a powerful technique for proving continuity
of linear operators. Let us recall some basic notions con-
cerning interpolation between Banach spaces. Let𝑋0 and𝑋1

be two Banach spaces. We say that (𝑋0, 𝑋1) is a compatible
couple if𝑋0 and𝑋1 are continuously embedded in a common
Hausdorff topological vector spaceH (we write𝑋𝑖 󳨅→ 𝐻 for
𝑖 = 0, 1).

Let (𝑋0, 𝑋1) be a compatible couple. Then 𝑋0 ∩ 𝑋1 and
𝑋0 + 𝑋1 are Banach spaces under the norms

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑋0∩𝑋1

= max {󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑋0

,
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑋1

} ,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑋0+𝑋1

= inf {󵄩󵄩󵄩󵄩𝑓0
󵄩󵄩󵄩󵄩𝑋0

+
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝑋1
: 𝑓 = 𝑓0 + 𝑓1} ,

(1)

where the infimum extends over all representations 𝑓 = 𝑓0 +

𝑓1 of 𝑓 with 𝑓0 ∈ 𝑋0 and 𝑓1 ∈ 𝑋1.
If (𝑋0, 𝑋1) is a compatible couple, then a Banach space𝑋

is said to be an intermediate space between𝑋0 and𝑋1 if𝑋 is
continuously embedded between𝑋0 ∩ 𝑋1 and𝑋0 + 𝑋1.

Let (𝑌0, 𝑌1) be a second compatible couple. A linear
operator 𝑇 defined on 𝑋0 + 𝑋1 and taking values in 𝑌0 + 𝑌1

is said to be admissible with respect to couples (𝑋0, 𝑋1) and
(𝑌0, 𝑌1) if, for each 𝑖 = 0, 1, the restriction of 𝑇 to 𝑋𝑖 is a
linear continuous operator from𝑋𝑖 into 𝑌𝑖 (if𝑋𝑖 = 𝑌𝑖, then 𝑇
is said to be admissible with respect to (𝑋0, 𝑋1)). One looks

for intermediate spaces 𝑋 and 𝑌 of the couples (𝑋0, 𝑋1) and
(𝑌0, 𝑌1), respectively, such that every admissible operator 𝑇
maps 𝑋 into 𝑌. The pair (𝑋, 𝑌) is called interpolation pair
relative to (𝑋0, 𝑋1) and (𝑌0, 𝑌1). If 𝑋𝑖 = 𝑌𝑖 for 𝑖 = 0, 1 and
𝑋 = 𝑌, then 𝑋 is called an interpolation space between 𝑋0

and𝑋1.
Note that 𝑋0, 𝑋1, 𝑋0 ∩ 𝑋1, and 𝑋0 + 𝑋1 are examples of

interpolation spaces between𝑋0 and𝑋1. Other examples can
be constructed by several methods.

In 1926, Riesz found the first interpolation method for
(𝐿

𝑝
(𝑑𝜇), 𝐿

𝑞
(𝑑𝜇)). A generalized version was given by Thorin

in 1939/1948 and is known as the ConvexityTheorem of Riesz
andThorin or the Riesz-Thorin interpolation theorem.There
are many extensions of this theorem. In this connection,
we mention the Marcinkiewicz interpolation theorem (in
1939) which extends the Riesz-Thorin interpolation theorem
to couples of weak 𝐿

𝑝-spaces and which was proved by
Zygmund in 1956. In 1958, Stein and Weiss generalized the
method for couples (𝐿𝑝(𝑑𝜇), 𝐿𝑞(𝑑])) with different measures
𝜇 and ]. At the end of 1958, Lions gave the first proof of the
interpolation theorem for quadratic interpolation between
Hilbert spaces. Since then several authors have introduced
and developed different interpolation methods for couples
of general Banach spaces. We mention here essentially two
methods: the real interpolation method introduced by Lions
and Peetre and the complex method developed by Lions,
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Calderón, and Krejn. In general, these methods lead to
different interpolation spaces. Let us quote the example of
usual complex spaces 𝐿𝑝 = 𝐿

𝑝
(R𝑑

) of 𝑝-integrable functions
and homogeneous Bessel-potential spaces 𝑊̇𝑠,𝑝

= 𝑊̇
𝑠,𝑝
(R𝑑

).
If we denote by (𝑋0, 𝑋1)[𝜃] and (𝑋0, 𝑋1)𝜃,𝑞, with 0 < 𝜃 <

1, the interpolation spaces obtained, respectively, by the
complex and the real method, then we have (see for instance
[1])

(i) (𝐿𝑝0 , 𝐿𝑝1)[𝜃] = 𝐿
𝑝, 1 ≤ 𝑝0, 𝑝1 ≤ ∞ and 1/𝑝 = ((1 −

𝜃)/𝑝0) + (𝜃/𝑝1).

(ii) (𝐿𝑝0 , 𝐿𝑝1)𝜃,𝑞 = 𝐿
𝑝,𝑞, 1 ≤ 𝑝0, 𝑝1 ≤ ∞, 1/𝑝 = ((1 −

𝜃)/𝑝0) + (𝜃/𝑝1) and 𝑝0 < 𝑞 ≤ ∞.

(iii) (𝑊̇𝑠,𝑝0 , 𝑊̇
𝑠,𝑝1)𝜃,𝑝 = 𝑊̇

𝑠,𝑝, 𝑠 ∈ R, 1 ≤ 𝑝0, 𝑝1 ≤ ∞ and
(1/𝑝) = ((1 − 𝜃)/𝑝0) + (𝜃/𝑝1).

(iv) (𝑊̇𝑠0 ,𝑝, 𝑊̇
𝑠1 ,𝑝)𝜃,𝑞 = 𝐵̇

𝑠,𝑞

𝑝 , 𝑠0 ̸= 𝑠1, 𝑠 = (1 − 𝜃)𝑠0 + 𝜃𝑠1 and
1 ≤ 𝑝, 𝑞 ≤ ∞.

(v) (𝑊̇𝑠0 ,𝑝0 , 𝑊̇
𝑠1 ,𝑝1)[𝜃] = 𝑊̇

𝑠,𝑝, 𝑠0 ̸= 𝑠1, 𝑠 = (1 − 𝜃)𝑠0 + 𝜃𝑠1

and (1/𝑝) = ((1 − 𝜃)/𝑝0) + (𝜃/𝑝1).

Here, 𝐿𝑝,𝑞 = 𝐿
𝑝,𝑞
(R𝑑

) and 𝐵̇
𝑠,𝑞

𝑝 = 𝐵̇
𝑠,𝑞

𝑝 (R𝑑
) are,

respectively, Lorentz and homogenous Besov spaces (see [1–
3]).The spaces 𝐿𝑝(R𝑑

) for 1 < 𝑝 < ∞, 𝑊̇𝑠,𝑝
(R𝑑

)where 𝑠 ∈ R

and 1 < 𝑝 < ∞, and 𝐵̇
𝑠,𝑞

𝑝 (R𝑑
) with 𝑠 ∈ R and 0 < 𝑝, 𝑞 ≤

∞ are gentle spaces (see [4]). Nonetheless, inhomogeneous
Besov spaces𝐵𝑠,𝑞𝑝 (R𝑑

) are not gentle because the homogeneity
property (the second requirement in Definition 1) is not
verified. Recall that

𝐵
𝑠,𝑞

𝑝
(R

𝑑
) = 𝐿

𝑝
(R

𝑑
) + 𝐵̇

𝑠,𝑞

𝑝
(R

𝑑
) if 𝑠 < 0, 1 ≤ 𝑝, 𝑞 ≤ ∞,

𝐵
𝑠,𝑞

𝑝
(R

𝑑
) = 𝐿

𝑝
(R

𝑑
) ∩ 𝐵̇

𝑠,𝑞

𝑝
(R

𝑑
) if 𝑠 > 0, 1 ≤ 𝑝, 𝑞 ≤ ∞.

(2)

This means that the interpolation space between two gentle
spaces is not always gentle (recall that, above, we said that
𝑋0, 𝑋1, 𝑋0 ∩ 𝑋1, and 𝑋0 + 𝑋1 are examples of interpolation
spaces between 𝑋0 and 𝑋1). However, in the third section of
this paper, we will prove that gentleness is stable by real and
complex interpolation methods. In the next section, we give
all the necessary recalls concerning these methods.

The notion of gentleness was introduced by Jaffard [5]. It
describes what would be an “ideal” function space to work
with wavelet coefficients, in “any” wavelet basis. This is the
case for Sobolev spaces in PDEs (see [6, 7] for instance),
and for Besov spaces in statistics, see [8]. Moreover, many
signals and images are stored, denoised, or transmitted by
their wavelet coefficients (see [9]). One often needs to obtain
local or global information on signals or images by conditions
bearing on the moduli of their wavelet coefficients. These
conditions should be independent of the chosen wavelet
basis.

Gentleness is based mainly on separability, exis-
tence of bases, homogeneity, and 𝛾-stability; let S(R𝑑

) be

the Schwartz space of all complex valued rapidly decreasing
𝐶
∞ functions on R𝑑. Set

S∞ (R
𝑑
) = {𝑓 ∈ S (R

𝑑
) : ∫

R𝑑
𝑥
𝛽
𝑓 (𝑥) 𝑑𝑥 = 0 ∀𝛽 ∈ N

𝑑
} ,

(3)

(where 𝑥𝛽 = 𝑥
𝛽1
1
⋅ ⋅ ⋅ 𝑥

𝛽𝑑

𝑑
for all 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ R𝑑 and all

𝛽 = (𝛽1, . . . , 𝛽𝑑) ∈ N𝑑). ByS󸀠

∞
(R𝑑

) we denote its topological
dual (also called the space of tempered distributions modulo
polynomials).

Definition 1. Let𝐻 ∈ R. A function space 𝐸 is gentle of order
𝐻 if we have the following.

(i) 𝐸 is a Banach or a quasi-Banach space of distributions.
(ii) 𝐸 is homogeneous of order 𝐻; that is, there exists a

constant 𝐶 > 0 such that for all 𝑓 ∈ 𝐸, all 𝑎 ∈ R𝑑 and
all 𝑟 > 0

󵄩󵄩󵄩󵄩𝜏𝑎𝑓
󵄩󵄩󵄩󵄩𝐸 ≤ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐸,

󵄩󵄩󵄩󵄩ℎ𝑟𝑓
󵄩󵄩󵄩󵄩𝐸 ≤ 𝐶𝑟

𝐻󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐸,

(4)

where 𝜏𝑎 and ℎ𝑟 are the shift and the dilation operators
defined by

𝜏𝑎𝑓 (𝑥) = 𝑓 (𝑥 − 𝑎) , ℎ𝑟𝑓 (𝑥) = 𝑓 (𝑟𝑥) . (5)

(iii) S∞(R
𝑑
) 󳨅→ 𝐸 󳨅→ S󸀠

∞
(R𝑑

).

(iv) If 𝐸 is separable, then S∞(R
𝑑
) is dense in 𝐸, and if

𝐸 is the dual of a separable space 𝐹, then S∞(R
𝑑
) is

dense in 𝐹.
(v) There exists 𝛾 > 0 such that 𝐸 is 𝛾-stable.

The first requirement is explained in the following def-
inition introduced by Bourdaud in [10]. Denote by D󸀠

(R𝑑
)

the dual space of the space of all complex valued compactly
supported 𝐶∞ functions on R𝑑.

Definition 2. A Banach (resp., quasi-Banach) space of distri-
butions is a vector subspace 𝐸 of D󸀠

(R𝑑
) endowed with a

complete norm (resp., quasi-norm) such that the embedding
𝐸 󳨅→ D󸀠

(R𝑑
) is continuous.

Recall that a quasi-Banach space is a complete topological
vector space endowed with a quasi-norm. A quasi-norm (see
[1] page 59) satisfies the requirements of a norm except for
the triangular inequality which is replaced by the weaker
condition

∃𝐶 > 0; ∀𝑥, 𝑦 ∈ 𝐸,

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩𝐸 ≤ 𝐶 (‖𝑥‖𝐸 +

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝐸) .

(6)

We say that ‖ ⋅ ‖𝐸 is a 𝑝-norm where 0 < 𝑝 ≤ 1 if in addition

∀𝑥, 𝑦 ∈ 𝐸,
󵄩󵄩󵄩󵄩𝑥 + 𝑦

󵄩󵄩󵄩󵄩
𝑝

𝐸
≤ ‖𝑥‖

𝑝

𝐸
+
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
𝑝

𝐸
. (7)

Note that a quasi-norm is always equivalent to a 𝑝-norm
(see [11]). The real Hardy spaces 𝐻𝑝

(R𝑑
) and Besov spaces

𝐵̇
𝑠,𝑝

𝑝 (R𝑑
), with 𝑠 ∈ R and 0 < 𝑝 < 1, are quasi-Banach spaces.
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We should point out that the definitions of intermediate
and interpolation spaces carry over without change for a
compatible couple of quasi-Banach spaces (see [12–14]).

In the second requirement in Definition 1, the shift
invariance implies that the definition of pointwise regularity
introduced by Jaffard in [5] (which describes how the norm
of 𝑓 (properly renormalized by substracting a polynomial)
behaves in small neighbourhoods of a given point 𝑥0) is the
same at every point, and the dilation invariance is implicit in
pointwise regularity through scaling invariance.This require-
ment and the third one imply that Meyer-Lemarié wavelets
[15] belong to 𝐸 since they are obtained by translations
and dyadic dilations of a basic function (mother wavelet) in
S∞(R

𝑑
).

The fourth requirement shows that wavelet bases are
either unconditional bases or unconditional ∗-weak bases
of gentle spaces. Examples of nonseparable spaces for which
wavelets are ∗-weak bases include homogeneous Hölder
spaces 𝐶̇

𝑠
(R𝑑

) and, more generally, homogeneous Besov
spaces 𝐵̇𝑠,𝑞𝑝 (R𝑑

) with 𝑝 = ∞ or 𝑞 = ∞.
The last requirement implies that the characterization of

gentle space by wavelet coefficients does not depend on the
particular 𝑟-smooth wavelet basis (see [15]) which is chosen
for 𝛾 < 𝑟; let M𝛾 be the space of infinite matrices 𝑀(𝜆, 𝜆

󸀠
)

indexed by dyadic cubes 𝜆 = 𝑘2
−𝑗
+[0, 2

−𝑗
[
𝑑 and 𝜆󸀠 = 𝑘

󸀠
2
−𝑗
󸀠

+

[0, 2
−𝑗
󸀠

[
𝑑 (where 𝑗, 𝑗󸀠 ∈ Z and 𝑘, 𝑘󸀠 ∈ Z𝑑) and satisfying

∃𝐶 > 0 : ∀ (𝜆, 𝜆
󸀠
)

󵄨󵄨󵄨󵄨󵄨
𝑀 (𝜆, 𝜆

󸀠
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶𝜔𝛾 (𝜆, 𝜆

󸀠
) , (8)

where

𝜔𝛾 (𝜆, 𝜆
󸀠
)

=
2
−((𝑑/2)+𝛾)|𝑗−𝑗

󸀠
|

(1 + (𝑗 − 𝑗󸀠)
2
) (1 + 2inf{𝑗,𝑗

󸀠}
󵄨󵄨󵄨󵄨󵄨
𝑘2−𝑗 − 𝑘󸀠2−𝑗

󸀠 󵄨󵄨󵄨󵄨󵄨
)
𝑑+𝛾

(9)

(here | ⋅ | denotes the Euclidean norm). Meyer proved that
M𝛾 is algebra. Besides, he defined O𝑝(M𝛾) as the algebra of
bounded operators on 𝐿2(R𝑑

)whose matrices on a 𝑟-smooth
wavelet basis (for a 𝑟 > 𝛾) belong toM𝛾 and showed that this
definition does not depend on the chosen wavelet basis. In
particular, we can use compactly supported wavelet bases.

Definition 3. Let 𝛾 > 0. A Banach or a quasi-Banach space
of distributions 𝐸 is 𝛾-stable if the operators of O𝑝(M𝛾) are
continuous on 𝐸.

In [16], we extended the notion of gentle spaces to include
anisotropic homogeneous Besov spaces.

In the fourth section of this paper, we will apply our
results to exhibit new examples of gentle spaces, namely,
Lorentz spaces 𝐿𝑝,𝑞 (see [2]) and 𝐻

𝑝,𝑞 spaces (see [17]). We
will also prove that if the Jackson and Bernstein inequalities
are valid, then “nonlinear approximation space” as defined
in [18] associated to a gentle space is gentle. Note that
there are different types of nonlinear approximations. The 𝑛-
term approximation is one of the dominant types. We can
mention, for example, approximation by splines with 𝑛 free

knots or by rational functions of degree 𝑛; see DeVore and
Popov [19]. Approximation by a linear combination with 𝑛-
term of 𝜑-function was developed by DeVore et al. in [20].
A generalization of 𝑛-term approximation (called restricted
approximation) by a linear combination of compactly sup-
ported biorthogonal wavelets was presented by Cohen et
al. in [21]. In this paper, we consider approximation by a
linear combination of Lemarié-Meyer wavelets as was done
by Kyriazis in [18]. This form of approximation occurs in
several applications including image processing, statistical
estimation, and numerical solutions of differential equations.

2. Real and Complex Interpolation Methods

Originally, real and complex interpolation methods were
developed for Banach spaces.The extension of real interpola-
tion for quasi-Banach spaces causes no serious problem (see
[12, 13, 22]). However, for the complexmethod the situation is
quite different (see [23–25]). Let us recall briefly some basic
definitions and notations related to these two methods. For
more details see [1, 12, 13, 22, 26–28].

Definition 4. Let (𝑋0, 𝑋1) be a compatible couple of Banach
or quasi-Banach spaces.

(1) The𝐾-functional is defined for each 𝑓 ∈ 𝑋0 +𝑋1 and
𝑡 > 0 by

𝐾(𝑓, 𝑡) = 𝐾 (𝑓, 𝑡, 𝑋0, 𝑋1)

= inf {󵄩󵄩󵄩󵄩𝑓0
󵄩󵄩󵄩󵄩𝑋0

+ 𝑡
󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝑋1
: 𝑓 = 𝑓0 + 𝑓1} ,

(10)

where the infimum extends over all representations
𝑓 = 𝑓0 + 𝑓1 of 𝑓 with 𝑓0 ∈ 𝑋0 and 𝑓1 ∈ 𝑋1.

(2) The 𝐽-functional is defined for each 𝑓 ∈ 𝑋0 ∩ 𝑋1 and
𝑡 > 0 by

𝐽 (𝑓, 𝑡) = 𝐽 (𝑓, 𝑡, 𝑋0, 𝑋1) = max {󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑋0

, 𝑡
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑋1

} . (11)

The𝐾-functional and 𝐽-functional, introduced By Peetre,
are nonnegative concave and increasing functions.

Definition 5. Let (𝑋0, 𝑋1) be a compatible couple of Banach
or quasi-Banach spaces.

(1) Let 0 < 𝜃 < 1 and 0 < 𝑞 < ∞ or let 0 ≤ 𝜃 ≤ 1

and 𝑞 = ∞. The space (𝑋0, 𝑋1)𝜃,𝑞,𝐾 consists of all
𝑓 ∈ 𝑋0 + 𝑋1 such that

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝜃,𝑞,𝐾

:=

{{{

{{{

{

(∫

∞

0

(𝑡
−𝜃
𝐾(𝑓, 𝑡))

𝑞 𝑑𝑡

𝑡
)

1/𝑞

, 0 < 𝜃 < 1, 0 < 𝑞 < ∞,

sup
𝑡>0

𝑡
−𝜃
𝐾(𝑓, 𝑡) , 0 ≤ 𝜃 ≤ 1, 𝑞 = ∞

(12)

is finite.
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(2) Let 0 < 𝜃 < 1 and 0 < 𝑞 ≤ ∞. The space
(𝑋0, 𝑋1)𝜃,𝑞,𝐽 consists of all 𝑓 ∈ 𝑋0 + 𝑋1 that are
represented by Bochner-integral

𝑓 = ∫

∞

0

𝑢 (𝑠)
𝑑𝑠

𝑠
, (13)

where 𝑢 ismeasurable with values in𝑋0∩𝑋1 and such
that

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝜃,𝑞,𝐽

:= inf
{{{

{{{

{

(∫

∞

0

(𝑠
−𝜃
𝐽 (𝑢 (𝑠) , 𝑠))

𝑞 𝑑𝑠

𝑠
)

1/𝑞

, 𝑞 < ∞,

sup
𝑠>0

𝑠
−𝜃
𝐽 (𝑢 (𝑠) , 𝑠) , 𝑞 = ∞

(14)

is finite, where the infimum is taken over all represen-
tations (13) of 𝑓.

Remark 6. There is a discrete representation of the space
(𝑋0, 𝑋1)𝜃,𝑞,𝐽 (see [1]); in fact 𝑓 ∈ (𝑋0, 𝑋1)𝜃,𝑞,𝐽 if and only if
there exists a sequence (𝑢])]∈Z in𝑋0 ∩ 𝑋1 such that

𝑓 = ∑

]∈Z
𝑢], (15)

(∑

]∈Z
(2

−]𝜃
𝐽 (𝑢], 2

]
))

𝑞

)

1/𝑞

< ∞, if 𝑞 < ∞ (16)

or

sup
]∈Z

2
−]𝜃

𝐽 (𝑢], 2
]
) < ∞, if 𝑞 = ∞. (17)

Moreover,
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝜃,𝑞,𝐽 is equivalent to

inf
{{{{

{{{{

{

(∑

]∈Z
(2

−]𝜃
𝐽 (𝑢], 2

]
))

𝑞

)

1/𝑞

, 𝑞 < ∞,

sup
]∈Z

2
−]𝜃

𝐽 (𝑢], 2
]
) , 𝑞 = ∞,

(18)

where the infimum extends over all sequences (𝑢])]∈Z satis-
fying (15).

The following result is given in [1] (see also [29]).

Theorem 7. Let (𝑋0, 𝑋1) be a compatible couple of Banach
(resp., quasi-Banach) spaces. Then, spaces (𝑋0, 𝑋1)𝜃,𝑞,𝐾, with
0 < 𝜃 < 1 and 0 < 𝑞 < ∞ or 0 ≤ 𝜃 ≤ 1 and 𝑞 = ∞, and
(𝑋0, 𝑋1)𝜃,𝑞,𝐽, with 0 < 𝜃 < 1 and 0 < 𝑞 ≤ ∞, equipped,
respectively, by the norms (resp., quasi-norms) (12) and (14)
are Banach (resp., quasi-Banach) spaces and are interpolation
spaces between𝑋0 and 𝑋1.

Furthermore, if 0 < 𝜃 < 1 and 0 < 𝑞 ≤ ∞, then
(𝑋0, 𝑋1)𝜃,𝑞,𝐾 = (𝑋0, 𝑋1)𝜃,𝑞,𝐽 with equivalence of norms (resp.,
quasi-norms).

Real interpolation method means either the 𝐾- or 𝐽-
method. We will write (𝑋0, 𝑋1)𝜃,𝑞 instead of (𝑋0, 𝑋1)𝜃,𝑞,𝐾 or

(𝑋0, 𝑋1)𝜃,𝑞,𝐽, if 0 < 𝜃 < 1. If 𝜃 = 0 or 1 and 𝑞 = ∞,
then (𝑋0, 𝑋1)𝜃,𝑞 denotes (𝑋0, 𝑋1)𝜃,𝑞,𝐾. By ‖ ⋅ ‖𝜃,𝑞 we denote
the norm or quasi-norm on (𝑋0, 𝑋1)𝜃,𝑞 depending whether
this space is Banach or quasi-Banach.

In the complex case, we will first restrict ourselves to
Banach spaces. There are two interpolation spaces whose
norms are equivalent under some conditions. Set

𝑆 ={𝑧 ∈ C, 0 ≤ R (𝑧) ≤ 1} , 𝑆0 ={𝑧 ∈ C, 0 < R (𝑧) < 1} .

(19)

Let (𝑋0, 𝑋1) be a compatible couple of Banach spaces. We
denote by F the space of all functions 𝑓 : 𝑆 → 𝑋0 + 𝑋1

that are bounded, continuous on 𝑆, and analytic on 𝑆0, such
that functions 𝑡 󳨃→ 𝑓(𝑘 + 𝑖𝑡), 𝑘 = 0, 1, from R into 𝑋𝑘, are
continuous and tend to zero as |𝑡| → ∞.

ByGwedenote the space of all functions𝑔 : 𝑆 → 𝑋0+𝑋1

that are continuous on 𝑆 and analytic on 𝑆0, satisfying
󵄩󵄩󵄩󵄩𝑔 (𝑧)

󵄩󵄩󵄩󵄩𝑋0+𝑋1
≤ 𝐶 (1 + |𝑧|) (20)

such that 𝑔(𝑘 + 𝑖𝑡1) − 𝑔(𝑘 + 𝑖𝑡2) has values in𝑋𝑘, 𝑘 = 0, 1, for
any −∞ < 𝑡1 < 𝑡2 < ∞.

SpacesF andG provided, respectively, with

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩F := max{sup

𝑡∈R

󵄩󵄩󵄩󵄩𝑓(𝑖𝑡)
󵄩󵄩󵄩󵄩𝑋0

, sup
𝑡∈R

󵄩󵄩󵄩󵄩𝑓(1 + 𝑖𝑡)
󵄩󵄩󵄩󵄩𝑋1

} , (21)

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩G := max{ sup

𝑡1 , 𝑡2∈R

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑔 (𝑖𝑡1) − 𝑔 (𝑖𝑡2)

𝑡1 − 𝑡2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑋0

,

sup
𝑡1 , 𝑡2∈R

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑔 (1 + 𝑖𝑡1) − 𝑔 (1 + 𝑖𝑡2)

𝑡1 − 𝑡2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑋1

}

(22)

are Banach spaces.

Definition 8. Let (𝑋0, 𝑋1) be a compatible couple of Banach
spaces. For all 0 ≤ 𝜃 ≤ 1 (resp. 0 < 𝜃 < 1) we define
(𝑋0, 𝑋1)[𝜃] (resp., (𝑋0, 𝑋1)

[𝜃]) as the space of all 𝑥 ∈ 𝑋0 + 𝑋1

such that 𝑥 = 𝑓(𝜃) (resp., 𝑥 = 𝑔
󸀠
(𝜃)) for some 𝑓 ∈ F (resp.,

𝑔 ∈ G).

Theorem 9. Let (𝑋0, 𝑋1) be a compatible couple of Banach
spaces. Then, spaces (𝑋0, 𝑋1)[𝜃], where 0 ≤ 𝜃 ≤ 1 and
(𝑋0, 𝑋1)

[𝜃], where 0 < 𝜃 < 1, equipped respectively with

‖𝑥‖[𝜃] := inf {󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩F : 𝑓 (𝜃) = 𝑥, 𝑓 ∈ F} , (23)

‖𝑥‖
[𝜃]

:= inf {󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩G : 𝑔

󸀠
(𝜃) = 𝑥, 𝑔 ∈ G} (24)

are Banach spaces and are interpolation spaces between𝑋0 and
𝑋1.

Remark 10. We have (𝑋0, 𝑋1)[𝜃] ⊂ (𝑋0, 𝑋1)
[𝜃]. In general,

(𝑋0, 𝑋1)[𝜃] and (𝑋0, 𝑋1)
[𝜃] are not equal. However, if either

𝑋0 or 𝑋1 is reflexive and if 0 < 𝜃 < 1, then (𝑋0, 𝑋1)[𝜃] =

(𝑋0, 𝑋1)
[𝜃] and ‖𝑥‖[𝜃] = ‖𝑥‖[𝜃], for all 𝑥 ∈ 𝑋0 + 𝑋1.

The extension of this method to quasi-Banach spaces is
not routine; one cannot use duality as was done for Banach
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spaces.Theduality theorem is not true in general in the quasi-
Banach case, and the maximum principle fails for functions
taking values in a quasi-Banach space (see [30]).

There are several possible ways to define complex inter-
polation spaces. For example, in [23] complex interpolation
was defined in the framework of Fourier analysis, while in
[24] complex interpolation was defined as in the Banach
setting but by adding in ‖𝑓‖F (which was given in (21)) a
third term sup

𝑧∈𝑆0
‖𝑓(𝑧)‖

𝑋0+𝑋1
. In [25], the authors described

a new approach to interpolate by the complex method some
quasi-Banach spaces; let𝐴(𝑆) be the space of all scalar valued
functions𝑓 continuous and bounded on 𝑆 and analytic on 𝑆0.
Let (𝑋0, 𝑋1) be a compatible couple of quasi-Banach spaces.
Denote byA(𝑋0, 𝑋1) the collection of all functions𝑓 that can
be written as a finite sum 𝑓(𝑧) = ∑𝑘 𝑓𝑘(𝑧)𝑎𝑘 where 𝑓𝑘 ∈ 𝐴(𝑆)
and 𝑎𝑘 ∈ 𝑋0 ∩ 𝑋1. We put

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩A(𝑋0 , 𝑋1)

:= max{sup
𝑡∈R

󵄩󵄩󵄩󵄩𝑓 (𝑖𝑡)
󵄩󵄩󵄩󵄩𝑋0

, sup
𝑡∈R

󵄩󵄩󵄩󵄩𝑓 (1 + 𝑖𝑡)
󵄩󵄩󵄩󵄩𝑋1

} ,

(25)

and for all 𝑥 ∈ 𝑋0 ∩ 𝑋1 and 0 < 𝜃 < 1 let

‖𝑥‖𝜃 := inf {󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩A(𝑋0 , 𝑋1)

: 𝑓 (𝜃) = 𝑥, 𝑓 ∈ A (𝑋0, 𝑋1)} .

(26)

This functional is a semi-quasi-norm. Let

𝑁 = {𝑥 ∈ 𝑋0 ∩ 𝑋1 : ‖𝑥‖𝜃 = 0} ; (27)

then, ((𝑋0∩𝑋1)/𝑁, ‖ ⋅ ‖𝜃) is a quasi-normed space.We define
[𝑋0, 𝑋1]𝜃 as the completion of ((𝑋0∩𝑋1)/𝑁, ‖ ⋅ ‖𝜃) (see [31]).

3. Real and Complex Interpolation between
Gentle Spaces

Assume that 𝐸0 and 𝐸1 are two gentle spaces. Let 𝐸 be an
interpolation space between them. Then, 𝐸 is a Banach or a
quasi-Banach space of distributions and S∞(R

𝑑
) 󳨅→ 𝐸 󳨅→

S󸀠

∞
(R𝑑

).
On the other hand, there exist two constants 𝛾0 > 0 and

𝛾1 > 0 such that 𝐸𝑖 is 𝛾𝑖-stable, 𝑖 = 0, 1. Set 𝛾 = min{𝛾0, 𝛾1}.
If 𝑇 ∈ O𝑝(M𝛾), then 𝑇 ∈ O𝑝(M𝛾𝑖

). So 𝑇 is continuous on 𝐸𝑖
and therefore continuous on 𝐸. Thus, 𝐸 is 𝛾-stable.

We will now prove the homogeneity property.

Proposition 11. Let𝐸0 and𝐸1 be two gentle spaces of order𝐻0

and𝐻1, respectively. Then, spaces

(1) (𝐸0, 𝐸1)𝜃,𝑞, with 0 < 𝜃 < 1 and 1 ≤ 𝑞 < ∞ or 0 ≤ 𝜃 ≤ 1

and 𝑞 = ∞,
(2) (𝐸0, 𝐸1)[𝜃], with 0 ≤ 𝜃 ≤ 1 (in the Banach setting),

(3) (𝐸0, 𝐸1)
[𝜃], with 0 < 𝜃 < 1 (in the Banach setting),

(4) [𝐸0, 𝐸1]𝜃, with 0 < 𝜃 < 1 (in the quasi-Banach setting)

are homogeneous spaces of order (1 − 𝜃)𝐻0 + 𝜃𝐻1.

Proof. (1) Let 0 < 𝜃 < 1 and 0 < 𝑞 < ∞ or let 0 ≤ 𝜃 ≤ 1 and
𝑞 = ∞. Let 𝑓 ∈ (𝐸0, 𝐸1)𝜃,𝑞, 𝑓0 ∈ 𝐸0, and 𝑓1 ∈ 𝐸1 such that

𝑓 = 𝑓0 + 𝑓1. Let 𝑡 > 0. From the homogeneity of 𝐸0 and 𝐸1
we get

𝐾(𝜏𝑎 (𝑓) , 𝑡) ≤
󵄩󵄩󵄩󵄩𝜏𝑎 (𝑓0)

󵄩󵄩󵄩󵄩𝐸0
+ 𝑡

󵄩󵄩󵄩󵄩𝜏𝑎 (𝑓1)
󵄩󵄩󵄩󵄩𝐸1

≤ 𝐶 (
󵄩󵄩󵄩󵄩𝑓0

󵄩󵄩󵄩󵄩𝐸0
+ 𝑡

󵄩󵄩󵄩󵄩𝑓1
󵄩󵄩󵄩󵄩𝐸1

) ,

𝐾 (ℎ𝑟 (𝑓) , 𝑡) ≤
󵄩󵄩󵄩󵄩ℎ𝑟 (𝑓0)

󵄩󵄩󵄩󵄩𝐸0
+ 𝑡

󵄩󵄩󵄩󵄩ℎ𝑟 (𝑓1)
󵄩󵄩󵄩󵄩𝐸1

≤ 𝐶𝑟
𝐻0 (

󵄩󵄩󵄩󵄩𝑓0
󵄩󵄩󵄩󵄩𝐸0

+ 𝑡𝑟
𝐻1−𝐻0󵄩󵄩󵄩󵄩𝑓1

󵄩󵄩󵄩󵄩𝐸1
) .

(28)

By taking the infimum over all such decompositions 𝑓 =

𝑓0 + 𝑓1 of 𝑓, we obtain

𝐾(𝜏𝑎 (𝑓) , 𝑡) ≤ 𝐶𝐾 (𝑓, 𝑡) so 󵄩󵄩󵄩󵄩𝜏𝑎 (𝑓)
󵄩󵄩󵄩󵄩𝜃,𝑞 ≤ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝜃,𝑞,

𝐾 (ℎ𝑟 (𝑓) , 𝑡) ≤ 𝐶𝑟
𝐻0𝐾(𝑓, 𝑡𝑟

𝐻1−𝐻0) .

(29)

(i) If 0 < 𝜃 < 1 and 0 < 𝑞 < ∞, then

󵄩󵄩󵄩󵄩ℎ𝑟 (𝑓)
󵄩󵄩󵄩󵄩𝜃,𝑞 = (∫

∞

0

(𝑡
−𝜃
𝐾(ℎ𝑟 (𝑓) , 𝑡))

𝑞 𝑑𝑡

𝑡
)

1/𝑞

≤ 𝐶𝑟
𝐻0(∫

∞

0

(𝑡
−𝜃
𝐾(𝑓, 𝑡𝑟

𝐻1−𝐻0))
𝑞 𝑑𝑡

𝑡
)

1/𝑞

.

(30)

It follows, by a simple change of variable, that

󵄩󵄩󵄩󵄩ℎ𝑟 (𝑓)
󵄩󵄩󵄩󵄩𝜃,𝑞 ≤ 𝐶𝑟

𝐻0𝑟
−𝜃(𝐻0−𝐻1)(∫

∞

0

(𝑡
−𝜃
𝐾(𝑓, 𝑡))

𝑞 𝑑𝑡

𝑡
)

1/𝑞

= 𝐶𝑟
(1−𝜃)𝐻0+𝜃𝐻1󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝜃,𝑞.

(31)

(i) If 0 ≤ 𝜃 ≤ 1 and 𝑞 = ∞, we obtain

󵄩󵄩󵄩󵄩ℎ𝑟(𝑓)
󵄩󵄩󵄩󵄩𝜃,𝑞 = sup

𝑡>0

𝑡
−𝜃
𝐾(ℎ𝑟 (𝑓) , 𝑡) ≤ 𝐶𝑟

(1−𝜃)𝐻0+𝜃𝐻1󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝜃,𝑞.

(32)

Therefore, the space (𝐸0, 𝐸1)𝜃,𝑞 is homogeneous of order
(1 − 𝜃)𝐻0 + 𝜃𝐻1.

(2) Now, let 𝑓 ∈ (𝐸0, 𝐸1)[𝜃]; there exists 𝑔 ∈ F such that
𝑓 = 𝑔(𝜃). Clearly

𝜏𝑎 (𝑔 (𝑧)) (𝑥)= 𝑔 (𝑧) (𝑥 − 𝑎) , ℎ𝑟 (𝑔 (𝑧)) (𝑥)= 𝑔 (𝑧) (𝑟𝑥) .

(33)

Thus, 𝑧 󳨃→ 𝜏𝑎(𝑔(𝑧)) and 𝑧 󳨃→ ℎ𝑟(𝑔(𝑧)) are analytic
functions.

From (23), (21), and the homogeneity of𝐸0 and𝐸1, we can
easily see that

󵄩󵄩󵄩󵄩𝜏𝑎(𝑓)
󵄩󵄩󵄩󵄩[𝜃] ≤ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩[𝜃]. (34)

Put

𝐹 (𝑧) = 𝑟
(𝑧−1)𝐻0𝑟

−𝑧𝐻1ℎ𝑟 (𝑔 (𝑧)) . (35)
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Therefore,

ℎ𝑟 (𝑓) = 𝑟
(1−𝜃)𝐻0+𝜃𝐻1𝐹 (𝜃) . (36)

Hence,
󵄩󵄩󵄩󵄩ℎ𝑟 (𝑓)

󵄩󵄩󵄩󵄩[𝜃] ≤ 𝑟
(1−𝜃)𝐻0+𝜃𝐻1‖𝐹‖F

= 𝑟
(1−𝜃)𝐻0+𝜃𝐻1 max{sup

𝑡∈R

‖𝐹 (𝑖𝑡)‖𝐸0
,

sup
𝑡∈R

‖𝐹 (1 + 𝑖𝑡)‖𝐸1
} .

(37)

It follows from (35) and the homogeneity of 𝐸0 and 𝐸1 that

‖𝐹 (𝑖𝑡)‖𝐸0
= 𝑟

−𝐻0󵄩󵄩󵄩󵄩ℎ𝑟 (𝑔 (𝑖𝑡))
󵄩󵄩󵄩󵄩𝐸0

≤ 𝐶
󵄩󵄩󵄩󵄩𝑔 (𝑖𝑡)

󵄩󵄩󵄩󵄩𝐸0
,

‖𝐹(1 + 𝑖𝑡)‖𝐸1
= 𝑟

−𝐻1󵄩󵄩󵄩󵄩ℎ𝑟 (𝑔 (1 + 𝑖𝑡))
󵄩󵄩󵄩󵄩𝐸1

≤ 𝐶
󵄩󵄩󵄩󵄩𝑔(1 + 𝑖𝑡)

󵄩󵄩󵄩󵄩𝐸1
.

(38)

This implies that

‖𝐹‖F ≤ 𝐶
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩F,

󵄩󵄩󵄩󵄩ℎ𝑟 (𝑓)
󵄩󵄩󵄩󵄩[𝜃] ≤ 𝐶𝑟

(1−𝜃)𝐻0+𝜃𝐻1󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩F. (39)

Taking the infimum over all 𝑔 ∈ F such that 𝑔(𝜃) = 𝑓, we
obtain

󵄩󵄩󵄩󵄩ℎ𝑟(𝑓)
󵄩󵄩󵄩󵄩[𝜃] ≤ 𝐶𝑟

(1−𝜃)𝐻0+𝜃𝐻1󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩[𝜃]. (40)

(3) If 𝑓 ∈ (𝐸0, 𝐸1)
[𝜃], then there exists 𝑔 ∈ G such

that 𝑓 = 𝑔
󸀠
(𝜃). So as previously 𝑧 → 𝜏𝑎(𝑔(𝑧)) and 𝑧 →

ℎ𝑟(𝑔(𝑧)) are analytic functions. Clearly, from (24), (22), and
the homogeneity of 𝐸0 and 𝐸1, we have

󵄩󵄩󵄩󵄩𝜏𝑎 (𝑓)
󵄩󵄩󵄩󵄩
[𝜃]

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
[𝜃]
. (41)

Set

𝐺 (𝑧) = ∫

𝑧

0

𝑟
(𝜂−1)𝐻0𝑟

−𝜂𝐻1ℎ𝑟 (𝑔
󸀠
(𝜂)) 𝑑𝜂. (42)

Hence,

𝐺
󸀠
(𝜃) = 𝑟

(𝜃−1)𝐻0𝑟
−𝜃𝐻1ℎ𝑟 (𝑓) . (43)

Thus,

󵄩󵄩󵄩󵄩ℎ𝑟 (𝑓)
󵄩󵄩󵄩󵄩
[𝜃]

≤ 𝑟
(1−𝜃)𝐻0+𝜃𝐻1‖𝐺‖G. (44)

Let −∞ < 𝑡1 < 𝑡2 < ∞. From (42) and the fact that 𝐸0 is
homogeneous of order𝐻0, we get

󵄩󵄩󵄩󵄩𝐺 (𝑖𝑡1) − 𝐺 (𝑖𝑡2)
󵄩󵄩󵄩󵄩𝐸0

≤ 𝑟
−𝐻0 ∫

𝑡2

𝑡1

󵄩󵄩󵄩󵄩󵄩
ℎ𝑟 (𝑔

󸀠
(𝑖𝑡))

󵄩󵄩󵄩󵄩󵄩𝐸0
𝑑𝑡

≤ 𝐶∫

𝑡2

𝑡1

󵄩󵄩󵄩󵄩󵄩
𝑔
󸀠
(𝑖𝑡)

󵄩󵄩󵄩󵄩󵄩𝐸0
𝑑𝑡

≤ 𝐶
󵄩󵄩󵄩󵄩𝑔 (𝑖𝑡2) − 𝑔 (𝑖𝑡1)

󵄩󵄩󵄩󵄩𝐸0
.

(45)

Similarly
󵄩󵄩󵄩󵄩𝐺 (1 + 𝑖𝑡1) − 𝐺 (1 + 𝑖𝑡2)

󵄩󵄩󵄩󵄩𝐸1
≤ 𝐶

󵄩󵄩󵄩󵄩𝑔 (1 + 𝑖𝑡2) − 𝑔 (1 + 𝑖𝑡1)
󵄩󵄩󵄩󵄩𝐸1

.

(46)

Therefore,

‖𝐺‖G ≤ 𝐶
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩G, so 󵄩󵄩󵄩󵄩ℎ𝑟 (𝑓)

󵄩󵄩󵄩󵄩
[𝜃]

≤ 𝐶𝑟
(1−𝜃)𝐻0+𝜃𝐻1󵄩󵄩󵄩󵄩𝑔

󵄩󵄩󵄩󵄩G.

(47)

By taking the infimum over all 𝑔 ∈ G such that 𝑔󸀠(𝜃) = 𝑓, we
obtain

󵄩󵄩󵄩󵄩ℎ𝑟(𝑓)
󵄩󵄩󵄩󵄩
[𝜃]

≤ 𝐶𝑟
(1−𝜃)𝐻0+𝜃𝐻1󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩
[𝜃]
. (48)

(4)Now, let 𝑓 ∈ [𝐸0, 𝐸1]𝜃.There exists a sequence (𝑓𝑛)𝑛 ∈
(𝐸0 ∩ 𝐸1)/𝑁 such that ‖𝑓 − 𝑓𝑛‖𝜃 → 0. Let 𝑔 ∈ A(𝐸0, 𝐸1)

such that 𝑔(𝜃) = 𝑓−𝑓𝑛 and 𝑔 is written as a finite sum 𝑔(𝑧) =

∑𝑘 𝑔𝑘(𝑧)𝑎𝑘 where 𝑔𝑘 ∈ 𝐴(𝑆) and 𝑎𝑘 ∈ 𝐸0 ∩ 𝐸1. We define

𝜏𝑎 (𝑔 (𝑧)) = ∑

𝑘

𝜏𝑎 (𝑔𝑘 (𝑧)) 𝑎𝑘,

ℎ𝑟 (𝑔 (𝑧)) = ∑

𝑘

ℎ𝑟 (𝑔𝑘 (𝑧)) 𝑎𝑘,

(49)

where

𝜏𝑎 (𝑔𝑘 (𝑧)) (𝑥) = 𝑔𝑘 (𝑧) (𝑥 − 𝑎) ,

ℎ𝑟 (𝑔𝑘 (𝑧)) (𝑥) = 𝑔𝑘 (𝑧) (𝑟𝑥) ,

(50)

and 𝑧 󳨃→ 𝜏𝑎(𝑔𝑘(𝑧)) and 𝑧 󳨃→ ℎ𝑟(𝑔𝑘(𝑧)) are analytic functions.
By arguing similarly as in (𝐸0, 𝐸1)[𝜃], by taking 𝑓−𝑓𝑛 instead
of 𝑓, we get the desired result.

Let us now prove the density property.

Proposition 12. If 𝑞 < ∞, then S∞(R
𝑑
) is dense in

(𝐸0, 𝐸1)𝜃,𝑞.

Proof. Since 𝑞 < ∞, then 𝐸0 ∩ 𝐸1 is dense in (𝐸0, 𝐸1)𝜃,𝑞 (see
e.g., [1]).Therefore it suffices to prove that every function𝑓 ∈

𝐸0 ∩ 𝐸1 can be approached by a sequence (𝑓𝑛)𝑛∈N ∈ S∞(R
𝑑
)

in (𝐸0, 𝐸1)𝜃,𝑞. The assumption 𝑞 < ∞ implies that 0 < 𝜃 < 1,
so by the equivalence between real interpolation spaces we
will prove this approach in (𝐸0, 𝐸1)𝜃,𝑞,𝐽.

On the other hand, since𝐸0 and𝐸1 are gentle spaces, then
wavelets are either unconditional bases or unconditional ∗-
weak bases, depending on the separability of these spaces.
Using the 𝛾-stability, we can take Lemarié-Meyer wavelet
basis; let 𝜓0 and 𝜓

1 be, respectively, the Lemarié-Meyer
[32] father and mother wavelets; that is, 𝜓0 and 𝜓

1 are
in the Schwartz class such that all moments of 𝜓1 vanish,
∫
R
𝜓
0
(𝑥)𝑑𝑥 = 1, and the collection of the union of (𝜓0

(⋅ −

𝑘))𝑘∈Z and (2𝑗/2𝜓1
(2

𝑗
⋅ −𝑘))𝑗∈N,𝑘∈Z is an orthonormal basis of

𝐿
2
(R). Let𝑉 be the set of nonzero vertices of the unit cube in

R𝑑, for each vertex V = (V1, . . . , V𝑑) ∈ 𝑉 we set

𝜓
V
(𝑥) := 𝜓

V1 (𝑥1) ⋅ ⋅ ⋅ 𝜓
V𝑑 (𝑥𝑑) , 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ R

𝑑
,

(51)
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and we define

𝜓
V
𝜆
(𝑥) := 2

𝑑𝑗/2
𝜓
V
(2

𝑗
𝑥 − 𝑘) , (52)

indexed by dyadic cube 𝜆 = 2
−𝑗
[𝑘, 𝑘 + 1], where 𝑘 ∈ Z𝑑 and

𝑗 ∈ Z. Denote by Λ (resp., Λ 𝑗) the set of all dyadic cubes
(resp., dyadic cubes at scale 𝑗). Then, the collection

{𝜓
V
𝜆
: 𝜆 ∈ Λ, V ∈ 𝑉} (53)

is an orthonormal basis of 𝐿2(R𝑑
). Thus any function 𝑓 ∈

𝐿
2
(R𝑑

) can be written as

𝑓 = ∑

𝜆∈Λ

∑

V∈𝑉
𝑐
V
𝜆
𝜓
V
𝜆
, where 𝑐V

𝜆
= ⟨𝑓, 𝜓

V
𝜆
⟩ . (54)

Let 𝑓 ∈ 𝐸0 ∩ 𝐸1. Put 𝑓𝑗 = ∑𝜆∈Λ 𝑗
∑V∈𝑉 𝑐

V
𝜆
𝜓
V
𝜆
; then, (𝑓𝑗)𝑗∈Z

belongs to S∞(R
𝑑
), so to 𝐸0 ∩ 𝐸1 and 𝑓 = ∑𝑗∈Z 𝑓𝑗. Since

𝐸0 ∩ 𝐸1 ⊂ (𝐸0, 𝐸1)𝜃,𝑞,𝐽, we therefore obtain from (15) and (16)
that

(∑

𝑗∈Z

(2
−𝑗𝜃

𝐽 (𝑓𝑗, 2
𝑗
))

𝑞

)

1/𝑞

< ∞. (55)

Set now

𝑓𝑛 =

𝑛

∑

𝑗=−𝑛

𝑓𝑗. (56)

It follows from (18) that

󵄩󵄩󵄩󵄩𝑓 − 𝑓𝑛
󵄩󵄩󵄩󵄩𝜃,𝑞,𝐽 ≤ ( ∑

|𝑗|>𝑛

(2
−𝑗𝜃

𝐽 (𝑓𝑗, 2
𝑗
))

𝑞

)

1/𝑞

, (57)

which tends to 0 as 𝑛 tends to infinity.

Proposition 13. Suppose that S∞(R
𝑑
) is dense in 𝐸0 and in

𝐸1.

(1) Assume that 𝐸0 and 𝐸1 are Banach spaces. Then

(a) if 0 ≤ 𝜃 ≤ 1, thenS∞(R
𝑑
) is dense in (𝐸0, 𝐸1)[𝜃].

(b) if 0 < 𝜃 < 1, then S∞(R
𝑑
) dense in (𝐸0, 𝐸1)

[𝜃].

(2) Assume that 𝐸0 and 𝐸1 are quasi-Banach spaces. Then
S∞(R

𝑑
) is dense in [𝐸0, 𝐸1]𝜃, where 0 < 𝜃 < 1.

Proof . Let 𝑓 ∈ (𝐸0, 𝐸1)[𝜃]. There exists 𝑔 ∈ F such that 𝑓 =

𝑔(𝜃).
Since S∞(R

𝑑
) is dense in both 𝐸0 and 𝐸1, then, for all

𝜀 > 0, there exist two functions 𝑔0 and 𝑔1 in S∞(R
𝑑
) such

that for all 𝑡 ∈ R,

󵄩󵄩󵄩󵄩𝑔(𝑖𝑡) − 𝑔0
󵄩󵄩󵄩󵄩𝐸0

≤ 𝜀,
󵄩󵄩󵄩󵄩𝑔(1 + 𝑖𝑡) − 𝑔1

󵄩󵄩󵄩󵄩𝐸1
≤ 𝜀. (58)

Let𝐻 ∈ F such that𝐻 takes values in S∞(R
𝑑
),𝐻(𝑖𝑡) = 𝑔0,

and 𝐻(1 + 𝑖𝑡) = 𝑔1 for all 𝑡 ∈ R. Put ℎ = 𝐻(𝜃). Thus, from
(23), (21), and (58), we obtain

󵄩󵄩󵄩󵄩𝑓 − ℎ
󵄩󵄩󵄩󵄩[𝜃] ≤

󵄩󵄩󵄩󵄩𝑔 − 𝐻
󵄩󵄩󵄩󵄩F ≤ 𝜀. (59)

Since ℎ ∈ S∞(R
𝑑
), then this implies the density of S∞(R

𝑑
)

in (𝐸0, 𝐸1)[𝜃].
Now let 𝑓 ∈ (𝐸0, 𝐸1)

[𝜃]. Arguing similarly as previously
but by replacingF byG, 𝑔 by 𝑔󸀠, and (58) by

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑔 (𝑖𝑡1) − 𝑔 (𝑖𝑡2)

𝑡1 − 𝑡2

− 𝑔0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐸0

≤ 𝜀,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑔 (1 + 𝑖𝑡1) − 𝑔 (1 + 𝑖𝑡2)

𝑡1 − 𝑡2

− 𝑔1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐸1

≤ 𝜀.

(60)

Taking𝐻 ∈ G such that𝐻 takes values in S∞(R
𝑑
),𝐻(𝑖𝑡) =

𝑡𝑔0 and 𝐻(1 + 𝑖𝑡) = 𝑡𝑔1 for all 𝑡 ∈ R. To finish the proof, it
suffices to put ℎ = 𝐻

󸀠
(𝜃).

For the proof of the density of S∞(R
𝑑
) in [𝐸0, 𝐸1]𝜃, we

argue similarly as in (𝐸0, 𝐸1)[𝜃] by taking 𝑓 − 𝑓𝑛 instead
of 𝑓, where (𝑓𝑛)𝑛 is a sequence in (𝐸0 ∩ 𝐸1)/𝑁 such that
‖𝑓 − 𝑓𝑛‖𝜃 → 0.

Consequence. Suppose that S∞(R
𝑑
) is dense in both 𝑋0 and

𝑋1, where 𝑋
󸀠

𝑖
= 𝐸𝑖, with 𝑖 = 0, 1. Let 0 < 𝜃 < 1. It follows

from the previous proposition that S∞(R
𝑑
) is dense in both

(𝑋0, 𝑋1)[𝜃] and (𝑋0, 𝑋1)
[𝜃]. On the other hand, since

S∞ (R
𝑑
) 󳨅→ 𝑋0 ∩ 𝑋1 󳨅→ 𝑋𝑖, 𝑖 = 0, 1, (61)

then 𝑋0 ∩ 𝑋1 is dense in 𝑋𝑖, 𝑖 = 0, 1. From the duality
theorem (see [1]), it follows that

(𝑋0, 𝑋1)
󸀠

[𝜃]
= (𝑋

󸀠

0
, 𝑋

󸀠

1
)
[𝜃]

= (𝐸0, 𝐸1)
[𝜃]
,

((𝑋0, 𝑋1)
[𝜃]
)
󸀠

= (𝑋0, 𝑋1)
󸀠

[𝜃]
.

(62)

Furthermore, if either 𝐸0 or 𝐸1 is reflexive (then either𝑋0 or
𝑋1 is reflexive), then

(𝑋0, 𝑋1)
󸀠

[𝜃]
= (𝐸0, 𝐸1)[𝜃],

((𝑋0, 𝑋1)
[𝜃]
)
󸀠

= (𝑋
󸀠

0
, 𝑋

󸀠

1
)
[𝜃]

= (𝐸0, 𝐸1)
[𝜃]
.

(63)

4. Applications

As a first application we show that Lorentz spaces 𝐿𝑝,𝑞 =

𝐿
𝑝,𝑞
(R𝑑

) are gentle. This follows from the fact that 𝐿𝑝,𝑞 =

(𝐿
𝑝0 , 𝐿

𝑝1)𝜃,𝑞 (see [1]), where 0 < 𝜃 < 1, 1 < 𝑝0, 𝑝1 < ∞,
(1/𝑝) = ((1 − 𝜃)/𝑝0) + (𝜃/𝑝1) and 𝑝0 < 𝑞 ≤ ∞ and
𝐿
𝑝0 = 𝐿

𝑝0(R𝑑
) and 𝐿𝑝1 = 𝐿

𝑝1(R𝑑
) (where 1 < 𝑝0, 𝑝1 < ∞)

are gentle spaces (see [4]).
In the second application, we consider the real

interpolation between Hardy spaces 𝐻𝑝0 = 𝐻
𝑝0(R𝑑

) and
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BMO = BMO(R𝑑
) spaces. In [4], we investigated the

gentleness property of some functional spaces and we proved
the stability of this property by duality. We also proved that
homogeneous Lizorkin-Triebel spaces 𝐹̇

𝑠,𝑞

𝑝 (R𝑑
) (see [33]),

where 𝑠 ∈ R, 0 < 𝑝 < ∞ and 0 < 𝑞 ≤ ∞ are gentle spaces.
In particular, 𝐻𝑝

(R𝑑
) = 𝐹̇

0,2

𝑝
(R𝑑

), where 0 < 𝑝 ≤ 1 are
gentle. As a consequence, since BMO is the topological dual
of 𝐻1, then BMO is gentle. In [34], it was shown that, for
0 < 𝜃 < 1, 0 < 𝑞 ≤ ∞, 0 < 𝑝0 < 1, and 𝑝 = 𝑝0/1 − 𝜃,
(𝐻

𝑝0 ,BMO)𝜃,𝑞 = 𝐻
𝑝,𝑞, where 𝐻𝑝,𝑞

= 𝐻
𝑝,𝑞
(R𝑑

) is the space
of all tempered distributions 𝑓 on R𝑑 such that

sup
𝑡>0

𝑡
−𝑑 󵄨󵄨󵄨󵄨𝜙𝑡 ∗ 𝑓

󵄨󵄨󵄨󵄨 ∈ 𝐿
𝑝,𝑞
, (64)

where 𝜙𝑡(𝑥) = 𝜙(𝑥/𝑡) and 𝜙 is a smooth function with
∫
R𝑑
𝜙(𝑥) 𝑑𝑥 ̸= 0 (see [17]). Consequently 𝐻

𝑝,𝑞 are gentle
spaces. Note that𝐻𝑝,𝑞

= 𝐻
𝑝 for 𝑝 = 𝑞.

Our last application refers to some nonlinear approxi-
mation spaces introduced in [18]. Take the Lemarié-Meyer
orthonormal basis (53). Let Σ𝑛 be the set of all functions

𝑆 = ∑

𝜆∈Λ(𝑛)

𝐴𝜆 (𝑆) , (65)

where 𝐴𝜆(𝑆) = ∑V∈𝑉 𝑐
V
𝜆
𝜓
V
𝜆
and Λ(𝑛) is a subset of Λ with

cardinality ♯Λ(𝑛) ≤ 𝑛. For a given distribution 𝑓 and any
quasi-normed subspace𝑋 ⊂ S󸀠

∞
(R𝑑

), we define

𝜎𝑛 (𝑓,𝑋) := inf
𝑆∈Σ𝑛

󵄩󵄩󵄩󵄩𝑓 − 𝑆
󵄩󵄩󵄩󵄩𝑋. (66)

For 0 < 𝑞 ≤ ∞ and 𝛼 > 0, we define the approximation class
A𝛼

𝑞
(𝑋) as the set of all 𝑓 ∈ S󸀠

∞
(R𝑑

) such that

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨A𝛼
𝑞
(𝑋)

=

{{{{

{{{{

{

(∑

𝑗∈Z

(2
𝑗𝛼
𝜎2𝑗 (𝑓,𝑋))

𝑞

)

1/𝑞

, 0 < 𝑞 < ∞,

sup
𝑗∈Z

2
𝑗𝛼
𝜎2𝑗 (𝑓,𝑋) , 𝑞 = ∞,

(67)

is finite.
In [18], Kyriazis proved that if𝑋 and 𝑌 are quasi-normed

spaces that verify, for some 𝑟 > 0, Jackson inequality
(for all 𝑓 ∈ 𝑌, 𝜎𝑛(𝑓,𝑋) ≤ 𝐶𝑛

−𝑟/𝑑
‖𝑓‖

𝑌
) and Bernstein

inequality (for all 𝑆 ∈ Σ𝑛, ‖𝑆‖𝑌 ≤ 𝐶𝑛
𝑟/𝑑
‖𝑆‖𝑋), then for each

0 < 𝛼 < 𝑟 and 0 < 𝑞 ≤ ∞

A
𝛼/𝑑

𝑞
(𝑋) = (𝑋, 𝑌)𝛼/𝑟,𝑞. (68)

This result was also proved in [21], where Cohen et al. have
used compactly supported biorthogonal wavelets, and in [35],
by DeVore and Lorentz, where 𝑌 is embedded in𝑋.

In the literature complete characterizations are known for
the cases 𝑋 = 𝐻

𝑝, 0 < 𝑝 < ∞; 𝑋 = 𝐵̇
0,𝑝

𝑝 , 0 < 𝑝 < ∞; and
𝑋 = 𝐹̇

𝛽,𝑡

𝑝 , 𝛽 ∈ R, 0 < 𝑝 < ∞, and 0 < 𝑡 ≤ ∞. DeVore et al.
have shown, in [20], that for any 0 < 𝛼 < 𝑠 and any 0 < 𝑞 ≤ ∞

A
𝛼/𝑑

𝑞
(𝐻

𝑝
) = (𝐻

𝑝
, 𝐵̇

𝑠,𝜏

𝜏
)
𝛼/𝑠,𝑞

,
1

𝜏
=
𝑠

𝑑
+
1

𝑝
. (69)

This result was proved by simpler techniques in [21], where
the authors proved also that for any 0 < 𝛼 < 𝑠 and any 0 <

𝑞 ≤ ∞

A
𝛼/𝑑

𝑞
(𝐵̇

0,𝑝

𝑝
) = (𝐵̇

0,𝑝

𝑝
, 𝐵̇

𝑠,𝜏

𝜏
)
𝛼/𝑠, 𝑞

(70)

and for any 𝛼 > 0 and any 0 < 𝑞 ≤ ∞

A
𝛼/𝑑

𝑞
(𝐻

𝑝
) = A

𝛼/𝑑

𝑞
(𝐵̇

0,𝑝

𝑝
) . (71)

Approximation in 𝐹̇
𝛽,𝑡

𝑝 was investigated in [18]. More pre-
cisely, it has been shown that, for every 0 < 𝑝 < ∞, 0 <

𝑞, 𝑡 ≤ ∞, 𝛼 > 0, and 𝛽 ∈ R,

A
𝛼/𝑑

𝑞
(𝐹̇

𝛽,𝑡

𝑝
) = (𝐹̇

𝛽,𝑡

𝑝
, 𝐵̇

𝛾,𝜏

𝜏
)
𝛼/(𝛾−𝛽), 𝑞

, (72)

where 𝛼 < 𝛾 − 𝛽 and 1/𝜏 = 𝛾 − 𝛽/𝑑 + 1/𝑝.
Since 𝐻

𝑝, 𝐵̇0,𝑝𝑝 , and 𝐹̇
𝛽,𝑡

𝑝 are gentle spaces, then their
approximation spaces (which are real interpolation spaces)
are also gentle. Moreover, the pairs (𝐻𝑝

, 𝐵̇
𝑠,𝜏

𝜏
), (𝐵̇0,𝑝𝑝 , 𝐵̇

𝑠,𝜏

𝜏
), and

(𝐹̇
𝛽,𝑡

𝑝 , 𝐵̇
𝛾,𝜏

𝜏
), under the above conditions on all parameters 𝑝,

𝑞, 𝑠, 𝑡, 𝜏, and 𝛾, verify the Jackson and Bernstein inequalities.
More generally, we deduce that if 𝑋 and 𝑌 are gentle spaces
and if the Jackson and Bernstein inequalities are valid, then
the approximation space is also gentle.

In [18, 21], the authors restricted themselves to particular
wavelets. They remarked that all of their theorems hold
in more generality. Using our result, this remark is now
confirmed using the gentleness stability by real interpolation.
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[5] S. Jaffard, “Wavelet techniques for pointwise regularity,”Annales
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