Hindawi Publishing Corporation
Abstract and Applied Analysis

Volume 2014, Article ID 801531, 9 pages
http://dx.doi.org/10.1155/2014/801531

Research Article
Interpolation of Gentle Spaces

Mourad Ben Slimane' and Hnia Ben Braiek?

! Department of Mathematics, College of Sciences, King Saud University, PO. Box 2455, Riyadh 11451, Saudi Arabia
2 Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Recherche Equations aux Dérivées

Partielles et Applications, 2092 Tunis, Tunisia

Correspondence should be addressed to Mourad Ben Slimane; mbenslimane@ksu.edu.sa

Received 1 November 2013; Revised 21 February 2014; Accepted 28 February 2014; Published 6 May 2014

Academic Editor: Paul W. Eloe

Copyright © 2014 M. Ben Slimane and H. Ben Braiek. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

The notion of gentle spaces, introduced by Jaffard, describes what would be an “ideal” function space to work with wavelet
coeflicients. It is based mainly on the separability, the existence of bases, the homogeneity, and the y-stability. We prove that real and
complex interpolation spaces between two gentle spaces are also gentle. This shows the relevance and the stability of this notion.
We deduce that Lorentz spaces L and H?? spaces are gentle. Further, an application to nonlinear approximation is presented.

1. Introduction

Interpolation is a powerful technique for proving continuity
of linear operators. Let us recall some basic notions con-
cerning interpolation between Banach spaces. Let X and X
be two Banach spaces. We say that (X, X,) is a compatible
couple if X and X, are continuously embedded in a common
Hausdorft topological vector space # (we write X; < H for
i=0,1).

Let (X,, X,) be a compatible couple. Then X, N X, and
X, + X, are Banach spaces under the norms

| lox, = max {lf - 1f 1, }
||f||xo+x1 = inf‘{"fo“x0 + ”fl"xl tf=Jfot fl} >

where the infimum extends over all representations f = f; +
f1 of fwith f; € X;and f; € X;.

If (X, X,) is a compatible couple, then a Banach space X
is said to be an intermediate space between X, and X if X is
continuously embedded between X, N X, and X, + X,.

Let (Y,,Y;) be a second compatible couple. A linear
operator T defined on X + X, and taking values in Y; + Y;
is said to be admissible with respect to couples (X, X;) and
(Y, Y,) if, for each i = 0,1, the restriction of T' to X; is a
linear continuous operator from X; into Y; (if X; = Y;, then T
is said to be admissible with respect to (X, X;)). One looks

@

for intermediate spaces X and Y of the couples (X, X;) and
(Y,, Y,), respectively, such that every admissible operator T
maps X into Y. The pair (X,Y) is called interpolation pair
relative to (X, X;) and (Y,,Y)). If X; = Y; fori = 0,1 and
X =Y, then X is called an interpolation space between X,
and X;.

Note that X, X, X, N X;, and X, + X, are examples of
interpolation spaces between X, and X,. Other examples can
be constructed by several methods.

In 1926, Riesz found the first interpolation method for
(LP(du), LU(du)). A generalized version was given by Thorin
in 1939/1948 and is known as the Convexity Theorem of Riesz
and Thorin or the Riesz-Thorin interpolation theorem. There
are many extensions of this theorem. In this connection,
we mention the Marcinkiewicz interpolation theorem (in
1939) which extends the Riesz-Thorin interpolation theorem
to couples of weak Lf-spaces and which was proved by
Zygmund in 1956. In 1958, Stein and Weiss generalized the
method for couples (Lf(du), L9(dv)) with different measures
p and v. At the end of 1958, Lions gave the first proof of the
interpolation theorem for quadratic interpolation between
Hilbert spaces. Since then several authors have introduced
and developed different interpolation methods for couples
of general Banach spaces. We mention here essentially two
methods: the real interpolation method introduced by Lions
and Peetre and the complex method developed by Lions,
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Calder6n, and Krejn. In general, these methods lead to
different interpolation spaces. Let us quote the example of
usual complex spaces L? = LP(R?) of p-integrable functions
and homogeneous Bessel-potential spaces W™ = W*? (R%).
If we denote by (X, X;)jg and (X, X;)g4 with 0 < 0 <
1, the interpolation spaces obtained, respectively, by the
complex and the real method, then we have (see for instance

(1])

(i) (LPo, L) gy = LP, 1< py, py <00 and 1/p = ((1-
0)/py) + (8/py).

(i) (L2, LP)g, = LP2, 1 < py, py < 00, 1/p = ((1 -
0)/py) + (0/p;) and p, < q < co.

(iii) (WP, WoPr)g , = WP, s € R, 1 < py, p; <00 and
(1/p) = (1 = 6)/py) + (0] py).

(iv) (WP, WSI’P)G’q = B;q, So#51,8 = (1-0)sy +0s; and
1<p,g<o00.

(v) (WP, WPy = WP, sg#5s;,s = (1 - 0)sg + 05,
and (1/p) = ((1 - 6)/p,) + 6/ py)-

Here, LP1 = [P9(R?) and B;’q B;q(Rd) are,
respectively, Lorentz and homogenous Besov spaces (see [1-
3]). The spaces LP(R?) for 1 < p < 0o, W (RY) where s € R
and1 < p < oo, andB;q(Rd) withs € Rand 0 < p,q <
oo are gentle spaces (see [4]). Nonetheless, inhomogeneous
Besov spaces B;q(le) are not gentle because the homogeneity
property (the second requirement in Definition 1) is not
verified. Recall that

B (R) =1 (R) B (RY) s <015 pa s oo

B (&%) 7 () 0 (&) > 01 < pg s oo
)

This means that the interpolation space between two gentle
spaces is not always gentle (recall that, above, we said that
Xo» X, Xy N X, and X, + X, are examples of interpolation
spaces between X, and X,). However, in the third section of
this paper, we will prove that gentleness is stable by real and
complex interpolation methods. In the next section, we give
all the necessary recalls concerning these methods.

The notion of gentleness was introduced by Jaffard [5]. It
describes what would be an “ideal” function space to work
with wavelet coefficients, in “any” wavelet basis. This is the
case for Sobolev spaces in PDEs (see [6, 7] for instance),
and for Besov spaces in statistics, see [8]. Moreover, many
signals and images are stored, denoised, or transmitted by
their wavelet coefficients (see [9]). One often needs to obtain
local or global information on signals or images by conditions
bearing on the moduli of their wavelet coeflicients. These
conditions should be independent of the chosen wavelet
basis.

Gentleness is based mainly on separability, exis-

tence of bases, homogeneity, and y-stability; let §(RY) be
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the Schwartz space of all complex valued rapidly decreasing
C™ functions on RY. Set

S (®)={fes(R): | #f@dx=ovpent),
3)

(where xP = xy' -~-x5" forall x = (x,...,x,) € R and all

B=(B-..,Ba) € N¥). By &gO(IRd) we denote its topological
dual (also called the space of tempered distributions modulo
polynomials).

Definition 1. Let H € R. A function space E is gentle of order
H if we have the following.

(i) EisaBanach ora quasi-Banach space of distributions.

(ii) E is homogeneous of order H; that is, there exists a

constant C > 0 such that for all f € E, alla € R? and
allr >0

lrefle<Clfle I fle<CIfle @

where 7, and h, are the shift and the dilation operators
defined by

T,f(x)=f(x-a),  hfx)=f(rx). (5)

(ifi) §oo(RY) < E — &' (RY).

(iv) If E is separable, then & 00([R{d) is dense in E, and if
E is the dual of a separable space F, then cS’OO(IRd) is
dense in F.

(v) There exists y > 0 such that E is y-stable.

The first requirement is explained in the following def-
inition introduced by Bourdaud in [10]. Denote by 2" (R
the dual space of the space of all complex valued compactly
supported C™ functions on R%.

Definition 2. A Banach (resp., quasi-Banach) space of distri-
butions is a vector subspace E of 9'(|Rd) endowed with a
complete norm (resp., quasi-norm) such that the embedding
E — 9'(R% is continuous.

Recall that a quasi-Banach space is a complete topological
vector space endowed with a quasi-norm. A quasi-norm (see
[1] page 59) satisfies the requirements of a norm except for
the triangular inequality which is replaced by the weaker
condition

IC>0; Vx,y€E,
(6)

”x + )’”E < C(llxllg + "y”E) .
We say that || - || is a p-norm where 0 < p < 1 if in addition
v,y € B+ ylg < Ixlg + Il %)

Note that a quasi-norm is always equivalent to a p-norm
(see [11]). The real Hardy spaces H?(R?) and Besov spaces
B;’p(Rd), with s € Rand 0 < p < 1, are quasi-Banach spaces.
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We should point out that the definitions of intermediate
and interpolation spaces carry over without change for a
compatible couple of quasi-Banach spaces (see [12-14]).

In the second requirement in Definition 1, the shift
invariance implies that the definition of pointwise regularity
introduced by Jaffard in [5] (which describes how the norm
of f (properly renormalized by substracting a polynomial)
behaves in small neighbourhoods of a given point x,) is the
same at every point, and the dilation invariance is implicit in
pointwise regularity through scaling invariance. This require-
ment and the third one imply that Meyer-Lemarié wavelets
[15] belong to E since they are obtained by translations
and dyadic dilations of a basic function (mother wavelet) in
8 (R,

The fourth requirement shows that wavelet bases are
either unconditional bases or unconditional *-weak bases
of gentle spaces. Examples of nonseparable spaces for which
wavelets are s-weak bases include homogeneous Hoélder
spaces C*(R?) and, more generally, homogeneous Besov
spaces B;q(Rd) with p = co or g = co.

The last requirement implies that the characterization of
gentle space by wavelet coefficients does not depend on the
particular r-smooth wavelet basis (see [15]) which is chosen
for y < r;let ., be the space of infinite matrices M, A)

indexed by dyadic cubes A = k277 +[0,2/[?and A’ = K27+
(0,277 [* (where j,j € Zand k, k' € %) and satisfying

3C>0:¥(LA)  [M(ALA)| < Cw, (M), (8)

where
Wy (A’ ’\,)
2~ (@/2yp)ljf') )
(=) (e 2 e =)
(here | - | denotes the Euclidean norm). Meyer proved that

A, is algebra. Besides, he defined Op(.#,,) as the algebra of

bounded operators on LZ(IRd) whose matrices on a ¥-smooth
wavelet basis (for a r > y) belong to ., and showed that this
definition does not depend on the chosen wavelet basis. In
particular, we can use compactly supported wavelet bases.

Definition 3. Let y > 0. A Banach or a quasi-Banach space
of distributions E is y-stable if the operators of Op(.#,) are
continuous on E.

In [16], we extended the notion of gentle spaces to include
anisotropic homogeneous Besov spaces.

In the fourth section of this paper, we will apply our
results to exhibit new examples of gentle spaces, namely,
Lorentz spaces L1 (see [2]) and H9 spaces (see [17]). We
will also prove that if the Jackson and Bernstein inequalities
are valid, then “nonlinear approximation space” as defined
in [18] associated to a gentle space is gentle. Note that
there are different types of nonlinear approximations. The n-
term approximation is one of the dominant types. We can
mention, for example, approximation by splines with # free

knots or by rational functions of degree n; see DeVore and
Popov [19]. Approximation by a linear combination with #-
term of ¢-function was developed by DeVore et al. in [20].
A generalization of n-term approximation (called restricted
approximation) by a linear combination of compactly sup-
ported biorthogonal wavelets was presented by Cohen et
al. in [21]. In this paper, we consider approximation by a
linear combination of Lemarié-Meyer wavelets as was done
by Kyriazis in [18]. This form of approximation occurs in
several applications including image processing, statistical
estimation, and numerical solutions of differential equations.

2. Real and Complex Interpolation Methods

Originally, real and complex interpolation methods were
developed for Banach spaces. The extension of real interpola-
tion for quasi-Banach spaces causes no serious problem (see
(12,13, 22]). However, for the complex method the situation is
quite different (see [23-25]). Let us recall briefly some basic
definitions and notations related to these two methods. For
more details see [1, 12, 13, 22, 26-28].

Definition 4. Let (X, X,) be a compatible couple of Banach
or quasi-Banach spaces.

(1) The K-functional is defined for each f € X, + X, and
t>0 by

K(fit) = K(fit, X, X,)
=inf {| foll, + el Aillx, : £ = fo+ fi}s

where the infimum extends over all representations
f=fo+ fiof fwith f, € X;and f; € X;.

(2) The J-functional is defined for each f € X, N X, and
t>0 by

(10)

J(£1) =T (£t X X,) = max{| fll. el fllx, - ()

The K-functional and J-functional, introduced By Peetre,
are nonnegative concave and increasing functions.

Definition 5. Let (X, X,) be a compatible couple of Banach
or quasi-Banach spaces.

()Let 0 <O <1 and 0 <g<oo orlet 0<O<1
and q = oo. The space (X, X;)g,x consists of all
f € X, + X, such that

| loq

00 1/q

(J (t’eK(f,t))q%) , 0<f6<1,0<g<oo0,
0

supt ’K (f,t),

t>0

0<0<1l,g=00
(12)

is finite.



(2)Let 0 < 0 < 1 and 0 < g < o00. The space
(Xo, X1)g,qy conmsists of all f € X, + X, that are
represented by Bochner-integral

o0 ds
IS TCES 13)
0 S
where 1 is measurable with values in XN X, and such
that
1Mo
00 1/q
(J (579] (u (s),s))qé> , g<oo, (14)
:= inf 0 s

sup 5_91 (wu(s),s),

>0

q=00
is finite, where the infimum is taken over all represen-
tations (13) of f.

Remark 6. There is a discrete representation of the space
(XO’XI)G,q,I (see [1]); in fact f € (XO’Xl)G,q,] if and only if
there exists a sequence (u,),c7 in X, N X, such that

f=2u, (15)

veZ

1/q
(Z(z‘”] (u,, 2”))q> <oo, ifg<oo  (16)

veZ
or
sup2™J (u,,2") < 00, ifq = co. 17)
veZ
Moreover,

”f ||9)q,] is equivalent to

1/q
inf (Z(z_ve] (“wzv))q> , g<oo, (18)
mn

veZ
sup279T (u,,2”),
veZ

q =00,

where the infimum extends over all sequences (u,),., satis-
tying (15).

The following result is given in [1] (see also [29]).

Theorem 7. Let (X, X,) be a compatible couple of Banach
(resp., quasi-Banach) spaces. Then, spaces (X, X1)g x> With
0<0<1and0<g<oo or 0<0<1 and q = oo, and
(X0, X1)gq)> with 0 <0 <1 and 0 < g < 0o, equipped,
respectively, by the norms (resp., quasi-norms) (12) and (14)
are Banach (resp., quasi-Banach) spaces and are interpolation
spaces between X, and X.

Furthermore, if 0 < 0 <1 and 0 < q < oo, then
(X0, X1)gqx = (Xo» X1)gq With equivalence of norms (resp.,
quasi-norms).

Real interpolation method means either the K- or J-
method. We will write (X, X, )y, instead of (X, X)g,4x oOr
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(XO’XI)Q,q,]’ it 0 <0 <1.If0 = 0orlandg = oo,
then (X, X,)g,, denotes (Xy, X1)gqx- By Il - g, we denote
the norm or quasi-norm on (X, X, )y, depending whether
this space is Banach or quasi-Banach.

In the complex case, we will first restrict ourselves to
Banach spaces. There are two interpolation spaces whose
norms are equivalent under some conditions. Set

S={zeC,0<R(z) <1}, So={z € C,0< R (2) < 1}.
(19)

Let (X, X;) be a compatible couple of Banach spaces. We
denote by F the space of all functions f : S — X, + X,
that are bounded, continuous on S, and analytic on S, such
that functions t — f(k +it), k = 0,1, from R into X, are
continuous and tend to zero as |t| — ©o.

By & we denote the space of all functions g : S — X+X,;
that are continuous on S and analytic on S, satisfying

lg (z)||xo+x1 <C(L+]z]) (20)

such that g(k + it;) — g(k + it,) has values in X, k = 0, 1, for
any —00 < t; <t, < 00.
Spaces # and & provided, respectively, with

11 = mox fsupflsop Lt + ol |

g(ity) — g (it,)
t— 1t

>

Xo

ol = mas { s

t,HER

g(1+it)) —g(1+it,)

su
: t -t

t1, 5 ER

J

Definition 8. Let (X, X;) be a compatible couple of Banach
spaces. For all 0 < 6 < 1 (resp. 0 < 6 < 1) we define
(Xo» X1)(g) (resp., (XO,XI)[G]) as the space of all x € X, + X
such that x = f(0) (resp., x = g'(@)) for some f € F (resp.,
geo).

are Banach spaces.

Theorem 9. Let (X, X,) be a compatible couple of Banach
spaces. Then, spaces (X, X;)g, where 0 < 6 < 1 and

(X, X)) where 0 < 0 < 1, equipped respectively with
Ixllg) := inf{|f|5: fO) =x. f e F},  (23)

I = inf {|g]l, : g’ (6) = x, g € &} (24)

are Banach spaces and are interpolation spaces between X, and
X,.

Remark 10. We have (X, X;)g; C (XO,XI)[G]. In general,

(X X1)ig) and (X, X 1)[0] are not equal. However, if either
X, or X, is reflexive and if 0 < 6 < 1, then (X, X;);g =

(Xo» X)) and 1] = [|xll ), for all x € X, + X.

The extension of this method to quasi-Banach spaces is
not routine; one cannot use duality as was done for Banach
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spaces. The duality theorem is not true in general in the quasi-
Banach case, and the maximum principle fails for functions
taking values in a quasi-Banach space (see [30]).

There are several possible ways to define complex inter-
polation spaces. For example, in [23] complex interpolation
was defined in the framework of Fourier analysis, while in
[24] complex interpolation was defined as in the Banach
setting but by adding in | f]l5 (which was given in (21)) a
third term SUp,cs, I ) Xy+X, " In [25], the authors described
a new approach to interpolate by the complex method some
quasi-Banach spaces; let A(S) be the space of all scalar valued
functions f continuous and bounded on S and analytic on §;,.
Let (X,, X;) be a compatible couple of quasi-Banach spaces.
Denote by &/(X,,, X;) the collection of all functions f that can
be written as a finite sum f(z) = Y fi.(z)a; where f. € A(S)
and g, € X, N X,. We put

Ul = ma fsupl g sup 7 -+l |
(25)

and forallx € X, N X, and 0 < 0 < 1let

lxllg := inf {|| fl e, x,) : f 6) = x, f € o (X, X))}
(26)

This functional is a semi-quasi-norm. Let
N={xeX,nX, :|xly=0}; (27)

then, (XN X,)/N, | - lly) is a quasi-normed space. We define
[Xo> X;]g as the completion of ((X,NX{)/N, || - ll5) (see [31]).

3. Real and Complex Interpolation between
Gentle Spaces

Assume that E, and E; are two gentle spaces. Let E be an
interpolation space between them. Then, E is a Banach or a
quasi-Banach space of distributions and & 00([Rd) — E —
s (R,

On the other hand, there exist two constants y, > 0 and
y1 > 0 such that E; is y;-stable, i = 0,1. Set y = min{y,, y,}.
IfT € Op(M,), then T € Op(A,).So T is continuous on E;
and therefore continuous on E. Thus, E is y-stable.

We will now prove the homogeneity property.

Proposition11. Let E; and E, be two gentle spaces of order H,,
and H,, respectively. Then, spaces

(1) (Eg, Ey)g,p with0 <0 < land1 < q<ooor0<0<1
and q = 0o,

(2) (Ep, Ey)g) with 0 < 0 < 1 (in the Banach setting),

(3) (E,, El)w], with 0 < 0 < 1 (in the Banach setting),
(4) [Ey, E g, with 0 < 0 < 1 (in the quasi-Banach setting)

are homogeneous spaces of order (1 — 0)H, + 0H,.

Proof. (1) Let0 <0 <1land0 <g<ooorlet0 <60 < 1and
q = 0. Let f € (Ep, E\)gg> fo € Eg>and f; € E; such that

f = fo+ fi- Lett > 0. From the homogeneity of E, and E,
we get

K(z,(f).t) < |z (fO)”EO +tz, (fl)“E1

<C (”fO"EO + t“fl”El)’
K (b, (f)1) < |l (fo)llg, + el (g,

< Crtb (||f0||E0 +trh T ) "El)

By taking the infimum over all such decompositions f =
fo + fi of f, we obtain

K(z (f).) <CK(£it) 50 |7 (llgy < Cl oy

K (h, (f).t) < CroK (foer™).
(29)

(i) If0 < 0 < 1and 0 < g < 00, then

e Ol = ([ K (.00 %)

H (%0 H,~H,\\4 ¢ Y
<crt( [T (or (e e )

It follows, by a simple change of variable, that

00 1/q
I, (f)”e,q < Crthy~0H~H) < J-O (t*f’[( (f t))q%>

= G
4

(31)

(i) If 0 < 0 < 1 and g = 00, we obtain

[, (Pl = sup ¢ K (hy (£).) = CrO ] £,
(32)

Therefore, the space (Ey, E,)g, is homogeneous of order
(1-6)H, + 6H,.

(2) Now, let f € (E, E;)g); there exists g € F
f = g(0). Clearly

7,(9(2) (x)= g (2) (x —a),

F such that

h, (9 (2)) (x)= g (2) (rx).
(33)

Thus, z +— 7,(g(z)) and z — h,(g(z)) are analytic
functions.

From (23), (21), and the homogeneity of E, and E,, we can
easily see that

lza(Pllig) < €l f Ny (34)
Put

F(z) = r&DHo =ty (9(2)). (35)
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Therefore,
h (f) =7 RE ). (36)
Hence,
I8, (F)ll gy < 7O F5

(1 0)H,+6H,
max 1 sup ||F (it)||
{@5’ &’ (37)

sup I (1 + it>||El} .

teR

It follows from (35) and the homogeneity of E; and E, that
IF @llg, = [, (g @), < Clg (D],
IFQL+iD)lg, =k, (g (1 +it))] 5, (38)
<Clg(1+ it)||El.
This implies that

IFll5 [ (Dllgy < €25 gl 39)

< Cllgls

Taking the infimum over all g € & such that g(0) = f, we
obtain

I (O o = Crl- OOt I.f "[9]' (40)

@) If f € (EO,EI)[G], then there exists g € ¥ such
that f = 0). So as previously z — 7,(g(z)) and z —
h,(g(z)) are analytic functions. Clearly, from (24), (22), and
the homogeneity of E, and E,, we have

[0

. (DI <l A (4)
Set
G2) = L (DHo R (g () )dy. (42)
Hence,
G'(0) = r M (f). (43)
Thus,
i, ()] < AR G (44)

Let —0o < t; < t, < 00. From (42) and the fact that E is
homogeneous of order H,, we get

I6it) =G el =™ [ e (o' 1),
<C J:Z o' )], at (45)

< Clg it) - g it
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Similarly
IG(1+it)) =G (L +ity)|g, <Cllg(1+ity) = g (1 +ity)| -
(46)
Therefore,
IGls < Clgly,  so I, (N < Crdmorhg .

(47)

By taking the infimum over all g € € such that g'(0) = f, we
obtain

[, ()| < OOy 101, (48)

(4) Now, let f € [E,, E, ]o. There exists a sequence (f,,),, €
(Ey N E;)/N such that | f - f,l, — 0.Letg € 9(Ey,E,)
such that g(0) = f — f, and g is written as a finite sum g(z) =
Y gx(2)a, where g, € A(S) and a; € Ej N E,. We define

7,(9(2) = Y 1,(9x (2)) &

‘ (49)
h(g(2) = Zhr (9 () @

k

where
7, (gx (2)) (x)
h, (gi (2)) (%) = gi (2) (),
and z > 7,(g,(2)) and z > h. (g, (2)) are analytic functions.

By arguing similarly as in (Ey, E;)g), by taking f — f,, instead
of f, we get the desired result. O

=gk (2) (x —a),
(50)

Let us now prove the density property.
Proposition 12. If ¢ < oo, then S, (RY) is dense in
(Ep» Ey )y

Proof. Since q < 0o, then E; N E, is dense in (E, E;)g 4 (see
e.g., [1]). Therefore it suffices to prove that every function f €
E, N E, can be approached by a sequence (f,,)),,cn € cFOO(Rd)
in (Ey, E,)g,- The assumption q < oo implies that 0 < 6 < 1,
so by the equivalence between real interpolation spaces we
will prove this approach in (Eg, Ey)g g ;-

On the other hand, since E; and E, are gentle spaces, then
wavelets are either unconditional bases or unconditional -
weak bases, depending on the separability of these spaces.
Using the y-stability, we can take Lemarié-Meyer wavelet
basis; let y° and y' be, respectively, the Lemarié-Meyer
[32] father and mother wavelets; that is, ¥ and ' are
in the Schwartz class such that all moments of ' vanish,
JR wo(x)dx = 1, and the collection of the union of (1//0(- -

k))iez and 272y (27 -

L*(R). Let V be the set of nonzero vertices of the unit cube in
R, for each vertex v = (V15...,v4) € V we set

—k)) jen kez 1s an orthonormal basis of

.y xd) € Rd,
(51)

Y =yt () (xa) s x = (e
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and we define
) (x) =27y (2Vx - k), (52)

indexed by dyadic cube A = 277[k, k + 1], where k € Z? and
j € Z.Denote by A (resp., A ;) the set of all dyadic cubes
(resp., dyadic cubes at scale j). Then, the collection

fyi :AeAveV} (53)

is an orthonormal basis of L*(R%). Thus any function f €
L*(R%) can be written as

f= z ZCX‘//)VP where ¢; = (f,y3) - (54)

AeA veV

Let f € EgNE,. Put f; = Yjep, Dyev Ay then, (f)icz
belongs to &, (R?), so to E, N E, and f = 2jez fj- Since
E,NE, c (E,, El)e,q,]’ we therefore obtain from (15) and (16)
that

1/q
<Z(z‘f91 ( fj,zf))‘1> < 0. (55)
jez
Set now
fu= 215 (56)
j=-n

It follows from (18) that

1/q
1f = fullog,s < < > (7 (fj,zj))q) . (67)

| j|>n
which tends to 0 as # tends to infinity. O

Proposition 13. Suppose that . (R?) is dense in E, and in
E,.

(1) Assume that E, and E, are Banach spaces. Then

(a) if 0 <0< 1,then S (R?)isdensein (Eg, E1)(g)-
(b) if 0<8 <1, then S, (R?) dense in (E,, E))!".

(2) Assume that E and E, are quasi-Banach spaces. Then
8 (R is dense in [E,, E, |5, where 0 <0 < 1.

Proof . Let f € (E, E;)g). There exists g € & such that f =
9(9).

Since &, (R?) is dense in both E, and E,, then, for all
€ > 0, there exist two functions g, and g, in cS’OO(Rd) such
that forallt € R,

lg@) = golle, <& N9 +it) = gilly <& (58)

Let H € % such that H takes values in oS’OO(Rd), H(it) = g,
and H(1 +it) = g, forallt € R. Put h = H(0). Thus, from
(23), (21), and (58), we obtain

If = hligy < g - Hl5 <. (59)

Since h € &, (RY), then this implies the density of & (R%)
in (EO’ El)[a] .

Now let f € (Ey, E el Arguing similarly as previously
but by replacing & by €, g by g, and (58) by

g(it) - g(it)
tl - t2

(60)

<&

E,

1

g1 +it))—g(1+it,)
t —t —9
1 2

Taking H € & such that H takes values in &' OO(IRd), H(it) =
tg, and H(1 +it) = tg, for all t € R. To finish the proof, it
suffices to put h = H' ().

For the proof of the density of & (R?) in [E,, E, ],, we
argue similarly as in (Ey, E;)jg by taking f - f, instead
of f, where (f,), is a sequence in (E, N E;)/N such that
If = fully — 0. O

Consequence. Suppose that §_(R?) is dense in both X, and
X,, where X] = E;, withi = 0,1. Let 0 < 6 < 1. It follows
from the previous proposition that &, (R%) is dense in both
(Xo» X1)(g) and (X, Xl)w]. On the other hand, since

S (RY) > XonX, —> X, i=0,1, (61)

then X, N X, is dense in X;, i = 0,1. From the duality
theorem (see [1]), it follows that
’ 11\ (0]
(XO’Xl)[e] = (XO’Xl) = (EO’El) >
(62)

o1y
((XO’XI) ) :(XO’XI)EQ]'

Furthermore, if either E, or E, is reflexive (then either X, or
X, is reflexive), then

(XO’XI)EQ] = (EO’EI)[G]’
o1y AL (6] (63)
((XO’XI) ) = (XO’XI) = (EO’EI) .

4. Applications

As a first application we show that Lorentz spaces LP1 =
LPI(R?) are gentle. This follows from the fact that L7 =
(Lo, LP)g,, (see [1]), where 0 < 6 < 1,1 < py,p; < 0o,
(1/p) = (1 -6)/py) + B/p;) and p, < q < oo and
L = LP(R%) and L7 = LP'(RY) (where 1 < py, p, < 00)
are gentle spaces (see [4]).

In the second application, we consider the real
interpolation between Hardy spaces H”* = HP(R?) and



BMO = BMO(RY) spaces. In [4], we investigated the
gentleness property of some functional spaces and we proved
the stability of this property by duality. We also proved that
homogeneous Lizorkin-Triebel spaces F;’q(le) (see [33]),
wheres € R,0 < p < coand 0 < g < oo are gentle spaces.
In particular, HP(Rd) = Fg’z(Rd), where 0 < p < 1 are
gentle. As a consequence, since BMO is the topological dual
of H', then BMO is gentle. In [34], it was shown that, for
0<0<1,0<g<00,0<p, < land p = py/1 -6,
(H?,BMO),,, = HP4, where H?1 = HPI(RY) is the space
of all tempered distributions f on R? such that

sup £y = f| € LM, (64)

where ¢,(x) = ¢(x/t) and ¢ is a smooth function with
.[[Rd ¢(x)dx#0 (see [17]). Consequently H”? are gentle
spaces. Note that H”? = H? for p = q.

Our last application refers to some nonlinear approxi-
mation spaces introduced in [18]. Take the Lemarié-Meyer
orthonormal basis (53). Let X, be the set of all functions

S= z AA(S), (65)

AeA(n)

where A,(S) = Y, vy, and A(n) is a subset of A with
cardinality §A(n) < n. For a given distribution f and any
quasi-normed subspace X ¢ & Z)O([R{d), we define

o (f: X) := inf || f = S]x. (66)

For 0 < g < oo and « > 0, we define the approximation class
QYZ(X) asthe setofall f € cS’(')O(Rd) such that

1/q9
<Z(2ja‘72f (f>X))q> , 0<q< oo,
|f|.Q¢;(X) =

jez

sup 2oy (f, X)),
Jj€Z

(67)
q =00,

is finite.

In [18], Kyriazis proved that if X and Y are quasi-normed
spaces that verify, for some r > 0, Jackson inequality
(forall f € Y,0,(f,X) < Cn?|f|l,) and Bernstein
inequality (for all S € 2, [|Slly < Cnr/d||S||X), then for each
0O<a<rand0<g<oo

A (X) = (X,Y) (68)

alrg:
This result was also proved in [21], where Cohen et al. have
used compactly supported biorthogonal wavelets, and in [35],
by DeVore and Lorentz, where Y is embedded in X.

In the literature complete characterizations are known for
the cases X = H?, 0 < p < 00; X = B?,’p,O < p < o003 and

X = Fﬁ’t,ﬁ €R,0 < p <o00,and 0 < t < 0o. DeVore et al.
have shown, in [20], that forany 0 < & < sandany0 < g < co

of/d P\ _ P pST _
'Qi‘l (H )_ (H ’BT )oc/s,q’ ; (69)

s 1
d p
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This result was proved by simpler techniques in [21], where
the authors proved also that for any 0 < & < sand any 0 <
g oo

/d .O,P _ 'O’P 55,
oty (ByF) = (B). BY),,. (70)
and for any o > 0 and any 0 < g < 0o
d (prpY = g4 (RO
Ayt (HP) = ot (B)P). (71)

Approximation in Fﬁ’t was investigated in [18]. More pre-
cisely, it has been shown that, for every 0 < p < 00,0 <
g t<00,a>0,and f e R,
a/d (Bt _ (Bht pyT
'dq (FP )_ (FP ’BT )a/(V—ﬁ),q’ (72)
wherea < y—-fBand 1/t =y-B/d+1/p.
Since H?, B%P , and Ff’t are gentle spaces, then their
approximation spaces (which are real interpolation spaces)
are also gentle. Moreover, the pairs (H?, Bi’r), (B?;P , B;’T), and

(Fﬁ * B]T”T), under the above conditions on all parameters p,
g, s, t, 7, and y, verify the Jackson and Bernstein inequalities.
More generally, we deduce that if X and Y are gentle spaces
and if the Jackson and Bernstein inequalities are valid, then
the approximation space is also gentle.

In [18, 21], the authors restricted themselves to particular
wavelets. They remarked that all of their theorems hold
in more generality. Using our result, this remark is now
confirmed using the gentleness stability by real interpolation.
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