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The forest new gap models via local fractional calculus are investigated. The JABOWA and FORSKA models are extended to deal
with the growth of individual trees defined on Cantor sets. The local fractional growth equations with local fractional derivative
and difference are discussed. Our results are first attempted to show the key roles for the nondifferentiable growth of individual
trees.

1. Introduction

Fractals had been used to describe special problems in
biology and ecology [1–4] because of the measure of nature
objects underlying the geometry, replacing the complex real-
world objects by describing the Euclidean ideas. Fractal
dimension was applied to describe the measure of the
complexity in biology and ecology. In forestry, the fractal
geometry had been applied to estimate stand density, predict
forest succession, and describe the form of trees [5–7]. The
scaling of dynamics in hierarchical structure was investigated
in [8–12].The ecological resilience example fromboreal forest
was presented in the context [8]. The quantitative theory
of forest structure was discussed [9]. The allometric scaling
laws in biology were proposed in the works [10, 11]. Based
upon the cross-scale analysis, the geometry and dynamics
of ecosystems were considered and the structure ecosystems
across scales in time and space were discussed in [12, 13].
Fractal forestry was modeled by using the scaling of the
testing parameters for ecological complexity.

Forest gap model (JABOWA) developed by Botkin et
al. [14–16] was the first simulation model for gap-phase
replacement. It was applied to describe a forest as a mosaic
of closed canopies and simulate forest dynamics based upon

the establishment, growth, and death of individual trees [17–
20]. The JABOWA model in the form of the FORET model
(called JABOWA-FORET) was further developed in [21–24].
The JABOWA model of the simulation of stand structure in
a forest gap model was improved in [24] and the FORSKA
[25] was proposed by Botkin et al. In [14–16], the ecological
functions are continuous. In [10–13], the ecological functions
were expressed across scales in time and space. However, as
it is shown in Figure 1 the ecological functions distinguishing
hierarchical size scales in nature, such as the measures of tree
size and measure of soil fertility, are defined on Cantor sets.
The above approaches do not deal with them.

Local fractional calculus theory [26–38] was applied to
handle the nondifferentiable functions defined on Cantor
sets. The heat-conduction, transport, Maxwell, diffusion,
wave, Fokker-Planck, and themechanical structure equations
were usefully shown (see for more details [28–36] and the
cited references therein). In order to simulate forest dynamics
on the basis of the establishment, growth, and death of
individual trees defined on Cantor sets, the aim of this paper
is to present the forest new gapmodels for simulating the gap-
phase replacement by employing the local fractional calculus.

The paper has been organized as follows. In Section 2,
we review the JABOWA and FORSKA models for the forest
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Figure 1: The ecological function 𝑓(𝑥) defined on Cantor set.

succession. In Section 3, we propose JABOWA and FORSKA
models for the fractal forest succession. Finally, Section 4 is
conclusions.

2. Growth Models for Forest Gap

In this section we will revise the JABOWA and FORSKA
models.

2.1. The JABOWA Model. The growth equation with differ-
ence form is given by [15, 16, 24, 39]

Δ𝐷

Δ𝑡
= 𝐺 ⋅ 𝐷 ⋅ 𝜙 (𝐷) ⋅

1

𝑏 (𝐷)
⋅ 𝑓 (𝑒) , (1)

where the function 𝐷 is diameter at breast height of the
trees, the parameter 𝐻 is tree height, 𝐺 is a growth rate,
the function 𝑏(𝐷) is a quantity encapsulating this allometric
relationship, 𝑓(𝑒) is a quantity influencing the abiotic and
biotic environment on tree growth, 𝜙(𝐷) = (1−𝐷⋅𝐻/(𝐷max ⋅
𝐻max)), and 𝐷max and 𝐻max are the maximum measures of
the tree dimensions.

The parameter 𝑓(𝑒) is simulated as follows [24]:

𝑓 (𝑒) = 𝑔
1
(AL) ⋅ 𝑔

2
(SBAR) ⋅ 𝑔

3
(𝐷𝐷) , (2)

where 𝑔
1
(AL) is a quantity of available light, 𝑔

2
(SBAR) is a

quantity of stand basal area, and 𝑔
2
(SBAR) is a quantity of

the annual degree-day sum. It was referred to as Liebig’s law
of the minimum [24].

The allometric relationship with a parabolic form is
written as follows [24, 40]:

𝑏 (𝐷) = 𝑏
1
+ 𝑏
2
𝐷 + 𝑏
3
𝐷2, (3)

where 𝑏
1
, 𝑏
2
, and 𝑏

3
are parameters.

Leaf area index reads as follows [24]:

LAI = 𝜇𝐷2, (4)

where 𝜇 = 𝑐/𝑘 with a species-specific parameter 𝑐 and the
scale leaf weight per tree to the projected leaf area 𝑘.

In order to implement a newheight-diameter relationship
[40], the differential formof growth equation in the JABOWA
model was suggested as follows [41]:

𝑑𝐷

𝑑𝑡
= 𝐺 ⋅ 𝐷 ⋅ 𝜑 (𝐷) , (5)

where the function has the following form:

𝜑 (𝐷) =
1 − 𝐻/𝐻max

2𝐻max − 𝑏 (−𝑠𝐷/𝑏 + 2) 𝑒
−𝐷𝑠/𝑏

(6)

with the parameter 𝑏 = 𝐻max −137 and the initial slope value
of the height diameter relationship 𝑠.

2.2.The FORSKAModel. TheFORSKAmodel was developed
for unmanaged natural forests and tree height had 𝐻-𝐷
relationship with the FORSKAmodel given by [24, 25, 39, 41]

𝐻 = 1.3 + (𝐻max − 1.3) ⋅ (1 − 𝑒
−𝑠𝐷/(𝐻max−1.3)) , (7)

where the parameter 𝑠 is the initial slope value of the height
diameter relationship at 𝐷 = 0, 𝐻max is the maximum
measure of the tree dimension,𝐷 is diameter at breast height
of the trees, and𝐻 is tree height.

As it is known, the trees in the real forest do not follow
the 𝐻-𝐷 relationship. The growth equation with differential
form can be written as follows [24, 25]:

𝑑𝐻

𝑑𝐷
= 𝑠 ⋅ 𝑓 (𝐻) , (8)

where

𝑓 (𝐻) =
𝐻 − 1.3

𝐻max − 1.3
. (9)

3. The JABOWA and FORSKA Models for
the Fractal Forest Succession

In this section, based upon the local fractional calculus
theory, we show the JABOWA and FORSKA models for
the fractal forest succession. At first, we start with the local
fractional derivative.

3.1. Local Fractional Derivative. We now give the local frac-
tional calculus and the recent results.

If
󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑥0)

󵄨󵄨󵄨󵄨 < 𝜀
𝛼 (10)

with |𝑥 − 𝑥
0
| < 𝛿, for 𝜀, 𝛿 > 0 and 𝜀, 𝛿 ∈ 𝑅, then we denote

[26–28]

𝑓 (𝑥) ∈ 𝐶
𝛼
(𝑎, 𝑏) . (11)

If 𝑓(𝑥) ∈ 𝐶
𝛼
(𝑎, 𝑏), then we have [26]

dim
𝐻
(𝐹 ∩ (𝑎, 𝑏)) = dim

𝐻
(𝐶
𝛼
(𝑎, 𝑏)) = 𝛼, (12)



Abstract and Applied Analysis 3

where 𝐶
𝛼
(𝑎, 𝑏) = {𝑓 : 𝑓(𝑥) is local fractional continuous,

𝑥 ∈ 𝐹 ∩ (𝑎, 𝑏)}.
Let𝑓(𝑥) ∈ 𝐶

𝛼
(𝑎, 𝑏).The local fractional derivative of𝑓(𝑥)

of order 𝛼 at 𝑥 = 𝑥
0
is defined as [26–34]

𝑓(𝛼) (𝑥
0
) =

𝑑𝛼𝑓 (𝑥)

𝑑𝑥𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥0
= lim
𝑥→𝑥0

Δ𝛼 (𝑓 (𝑥) − 𝑓 (𝑥
0
))

(𝑥 − 𝑥
0
)
𝛼

, (13)

where Δ𝛼(𝑓(𝑥) − 𝑓(𝑥
0
)) ≅ Γ(1 + 𝛼)Δ(𝑓(𝑥) − 𝑓(𝑥

0
)).

For 0 < 𝛼 ≤ 1, the increment of 𝑓(𝑥) can be written as
follows [26, 27]:

Δ𝛼𝑓 (𝑥) = 𝑓
(𝛼)
(𝑥) (Δ𝑥)

𝛼 + 𝜆(Δ𝑥)
𝛼, (14)

where Δ𝑥 is an increment of 𝑥 and 𝜆 → 0 as Δ𝑥 → 0.
For 0 < 𝛼 ≤ 1, the 𝛼-local fractional differential of 𝑓(𝑥)

reads as [26, 27]

𝑑𝛼𝑓 = 𝑓(𝛼) (𝑥) (𝑑𝑥)
𝛼. (15)

From (14), we have approximate formula in the form

Δ𝛼𝑓 (𝑥) ≅ Γ (1 + 𝛼) Δ (𝑓 (𝑥) − 𝑓 (𝑥
0
)) . (16)

Let 𝑓(𝑥) ∈ 𝐶
𝛼
(𝑎, 𝑏). The local fractional integral of 𝑓(𝑥) of

order 𝛼 is given by [26–31]

𝑎
𝐼(𝛼)
𝑏

𝑓 (𝑥) =
1

Γ (1 + 𝛼)
∫
𝑏

𝑎

𝑓 (𝑡) (𝑑𝑡)
𝛼

=
1

Γ (1 + 𝛼)
lim
Δ𝑡→0

𝑗=𝑁−1

∑
𝑗=0

𝑓 (𝑡
𝑗
) (Δ𝑡
𝑗
)
𝛼

,

(17)

where Δ𝑡
𝑗
= 𝑡
𝑗+1

− 𝑡
𝑗
, Δ𝑡 = max{Δ𝑡

1
, Δ𝑡
2
, Δ𝑡
𝑗
, . . .}, and

[𝑡
𝑗
, 𝑡
𝑗+1
], 𝑗 = 0, . . . , 𝑁 − 1, 𝑡

0
= 𝑎, 𝑡

𝑁
= 𝑏, is a partition of

the interval [𝑎, 𝑏].
The 𝛼-dimensional Hausdorff measure 𝐻

𝛼
is calculated

by [26]

𝐻
𝛼
(𝐹 ∩ (0, 𝑥)) =

0
𝐼(𝛼)
𝑥

1 =
𝑥𝛼

Γ (1 + 𝛼)
. (18)

3.2. The Local Fractional JABOWA Models (LFJABOWA).
Here, we structure the LFJABOWA models via local frac-
tional derivative and difference.

From (5), when

𝐺 ⋅ 𝜑 (𝐷) = 𝜆
0
𝐷𝛽−1, (19)

the Enquist growthmodel in JABOWAmodel reads as [11, 42]

𝑑𝐷

𝑑𝑡
= 𝜆
0
𝐷𝛽, (20)

where 𝐷 is the diameter at breast height, 𝜆
0
is the scaling

coefficient, and 𝛽 is the fractal dimension.
Making use of the fractional complex transform [29] and

(20), the growth equation in the JABOWA model with local
fractional derivative (LFJABOWA) is suggested by

𝑑𝛼𝐷

𝑑𝑡𝛼
= 𝜆
0
𝐷𝛽, (21)
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Figure 2: The graph of (22) with parameters 𝛽 = 1, 𝜆
0
= 1, and

𝑡
0
= 0.
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Figure 3: The graph of (22) with parameters 𝛽 = 1, 𝜆
0
= 2, and

𝑡
0
= 0.

where 𝐷 is the diameter at breast height, 𝜆
0
is the scaling

coefficient, and 𝛼 and 𝛽 are the fractal dimensions. In order
to illustrate the difference from the works presented in [42],
we consider the following case: when 𝛽 = 1, (21) can be
integrated to give

𝐷 (𝑡) = 𝐸
𝛼
(𝜆
0
𝑡𝛼) − 𝐸

𝛼
(𝜆
0
𝑡𝛼
0
) . (22)

For the parameters 𝛽 = 1, 𝑡 = 0, the solutions of (21) with
different values 𝜆

0
= 1, 𝜆

0
= 2, 𝜆

0
= 3, and 𝜆

0
= 4 are,

respectively, shown in Figures 2, 3, 4, and 5.
Using the fractional complex transform, (5) becomes into

𝑑𝛼𝐷

𝑑𝑡𝛼
= 𝐺 ⋅ 𝐷 ⋅ 𝜑 (𝐷) . (23)

Comparing (22) and (23), we have

𝑑𝛼𝐷

𝑑𝑡𝛼
= 𝜓 (𝑡, 𝐷) , (24)



4 Abstract and Applied Analysis

0 0.2 0.4 0.6 0.8 1

700

600

500

400

300

200

100

0

x

y
(
x
)

Figure 4: The graph of (22) with parameters 𝛽 = 1, 𝜆
0
= 3, and

𝑡
0
= 0.

where

𝜓 (𝑡, 𝐷) = 𝐺 ⋅ 𝐷 ⋅ 𝜑 (𝐷) (25)

or

𝜓 (𝑡, 𝐷) = 𝜆
0
𝐷𝛽. (26)

From (25) and (26), we could get

𝜑 (𝐷) = 𝐷
𝛽−1, (27)

𝜆
0
= 𝐺. (28)

Hence, the local fractional JABOWA model (LFJABOWA)
reads as follows:

𝑑𝛼𝐷

𝑑𝑡𝛼
= 𝜓 (𝑡, 𝐷) , (29)

where 𝜓(𝑡, 𝐷) is a nondifferentiable function and 𝐷 is the
diameter at breast height.

In view of (16), from (29) we give the difference form
of local fractional JABOWA model (LFJABOWA) in the
following form:

Δ𝛼𝐷

(Δ𝑡)𝛼
= 𝜓 (𝑡, 𝐷) , (30)

where 𝐷 is the diameter at breast height and Δ𝛼𝐷(𝑡) ≅ Γ(1 +
𝛼)Δ(𝐷(𝑡) − 𝐷(𝑡

0
)).

When the fractal dimension 𝛼 is equal to 1, we get the
generalized form of (1); namely,

Δ𝐷

Δ𝑡
= 𝜓 (𝑡, 𝐷) , (31)

where

𝜓 (𝑡, 𝐷) = 𝐺 ⋅ 𝐷 ⋅ 𝜙 (𝐷) ⋅
1

𝑏 (𝐷)
⋅ 𝑓 (𝑒) . (32)
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Figure 5: The graph of (22) with parameters 𝛽 = 1, 𝜆
0
= 4, and

𝑡
0
= 0.

3.3. The Local Fractional FORSKA Models (LFFORSKA).
Here, we present the LFFORSKA models via local fractional
derivative and difference.

The tree height 𝐻 is the nondifferentiable function;
namely,

󵄨󵄨󵄨󵄨𝐻 (𝐷) − 𝐻 (𝐷
0
)
󵄨󵄨󵄨󵄨 < 𝜍
𝛼, (33)

where for 𝜍, 𝜗 > 0 𝜍, 𝜗 ∈ 𝑅, and |𝐷 − 𝐷
0
| < 𝜗.

Following the fractional complex transform [29], from (8)
we have the local fractional growth equation in the following
form:

𝑑𝛼𝐻

𝑑𝐷𝛼
= 𝑠 ⋅ 𝑓 (𝐻) , (34)

where𝑓(𝐻) is a local fractional continuous function,𝐻 is the
tree height, and 𝑠 is a parameter.

Therefore, the generalized form of (34) is suggested as
follows:

𝑑𝛼𝐻

𝑑𝐷𝛼
= 𝜒 (𝐷,𝐻) , (35)

where 𝐷 is the diameter at breast height and 𝐻 is the tree
height. In view of (16), (35) can be rewritten as follows:

Δ𝛼𝐻

(Δ𝐷)𝛼
= 𝜒 (𝐷,𝐻) , (36)

where
󵄨󵄨󵄨󵄨𝐷 − 𝐷

0

󵄨󵄨󵄨󵄨 < 𝜗,

󵄨󵄨󵄨󵄨𝐻 (𝐷) − 𝐻 (𝐷
0
)
󵄨󵄨󵄨󵄨 < 𝜍
𝛼.

(37)

The expression (36) is the difference form of local frac-
tional FORSKA model (LFFORSKA).
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4. Conclusions

In this work we investigated the local fractional models for
the fractal forest succession. Based on the local fractional
operators, we suggested the differential and difference forms
of the local fractional JABOWA and FORSKA models. The
nondifferentiable growths of individual trees were discussed.
It is a good start for solving the rhetorical models for the
fractal forest succession in the mathematical analysis.
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