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The approach of Kruzkov’s device of doubling the variables is applied to establish the local stability of strong solutions for a nonlinear
partial differential equation in the space L' (R) by assuming that the initial value only lies in the space L' (R) N L*(R).

1. Introduction and Main Results

Coclite and Karlsen [1] studied the well-posedness for the
nonlinear equation

Vp = Vigy + an' ) v,

=h"(v) vi +3h0" () VeVir H (v) Vixr> ®
where function h(v) satisfies
W W <cl, o)<, @
or
| 0| <e,  hW)I<cl, (3)

where c is a positive constant. The existence of entropy weak
solutions and several other dynamic properties for (1) are
investigated in [1].

Consider the following partial differential equation:

Vi = Vigy + mh' v) v,
(4)

=n" () vi + 30" vy, +H (V) v

where m is a positive constant and h(v) € C*. If m = 4 and
h(v) = v*/2, (4) becomes the Degasperis-Procesi equation
(see [2-12]). If h(v) = +*, we note that h(v) does not satisfy
conditions (2) and (3). Recently, Wu [13] established the local
well-posedness of strong solutions for (4) in the Sobolev
space C([0,T); H(R)) n C'([0,T); H'(R)) provided that
h(v) = v’ and the initial value lies in the space H*(R) with
s > 3/2. The objective of this work is to study (4) in the case

h(v) = v*. The local stability of strong solutions for this case
is established in the space L'(R). We think that this stability
result is a new conclusion for (4).

When h(v) = v, the Cauchy problem of (4) takes the
form

2 _ .3 2
Vi = Vi + 3007y, = 6V + 18w, v, + 3V

XXX

(5)
v(0,x) =, (x),
which is equivalent to
v, + 3V + (m—1) (1 - afc)’lax (v3) =0, ©)

v(0,x) = vy (x),

where the operator A g = (1 — afc)_lg = (1/2)J‘_°(‘)’Oe—lx—yl
g(y)dy forany g € L°(R) or g € L?(R) with a parameter p,
satisfying 1 < p, < oo.

Using the approach of Kruzkov’s device of doubling the
variables in [14], we obtain the following result.

Theorem 1. Let v, (t, x) and v,(t, x) be two strong solutions of
problem (5) or (6) with initial data v,(0, x) = v,,(x) € LY(R)n
L(R) and v,(0,x) = v,(x) € L'(R) N L(R). Then, for an
arbitrary T > 0,

o0 o0
J vy (£, x) = v, (£, x)| dx < e I [V10 (x) = vy ()| dx,
—00 —00
te[0,T]
(7)
holds, where c is a constant depending on IIVIOIILl(R), ||v10||Loo(R),
||V20"L1(R)) "V20"L°°(R)’ andT.
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This paper is organized as follows. Several lemmas are
given in Section 2 and the proof of Theorem 1 is completed in
Section 3.

2. Several Lemmas

Lemma 1 (see [13]). Assume that initial value v, = v(0, x) €
L2(R). Then the solution of problem (5) with m > 0 satisfies

J Klex:J
R

where K; = v— 02 vand K = (m - 32,)”'v. Moreover, there
exist two constants ¢, > 0 and ¢, > 0 depending only on m such
that

1+ &

Sh©ra- [ L+ @
®)

alvoll oy < alvlizgy < clvoll - )
In fact, ifv € L'(R) N L°(R), we know that v € L*(R).
Lemma 2 (see [13]). Assume that v, € L%(R). Then
vt € [0,00), (10)

It %)l < Vo eoe™

where ¢ > 0 is a constant independent of t.

Lemma 3. Let ], = (m—1)(1-02)"'9,(+*) and v, € L'(R) N
L*°(R). Consider that

€[0,00) (1)

1oy < b= 1 ooy

holds, where ¢ > 0 is a constant independent of t.

Proof. Since

[a”%8, ()

1 -X * y.3
e e (t,y)dy

1
Uk:

satisfies limy _, (U = 0.

Lemma 5 (see [14]). If the function |OF(u)/0ou| is bounded,
then the function H(u, v) = sign(u — v)(F(u) — F(v)) satisfies
the Lipschitz condition in u and v, respectively.

K? J]]] (t-1)/2|<k,8<(t+T) /2T =8, (x—y) 2|k, | (x+y) /2| <r-8
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1 x (o) y 3
+—e e v
2 )

<1 T ] d
_E‘[me |v (t,y). y,

(t.y) dyl

(12)

we complete the proof by using Lemma 2 and fzo e

Ix—yldy —
2. O

Let {; = [0,T] x R for an arbitrary T > 0. C;°({y) is the
space of all infinitely differentiable functions with compact
support in {;.. We define 8(w) as a function which is infinitely
differentiable on (—00, +00) such that 8(w) > 0, O(w) = 0 for
|lw| > 1, and '[_OZO 0(w)dw = 1. For any number k > 0, we let

O (w) = (O(k™*w)/k). Then we have that 0 (w) is a function
in C*°(-00, 00) and

O ()20, O (w)=0 if |w|=>k,

(13)

|6, (w)| < i, J 0, (w) dw = 1,

where c is a positive constant. Assume that the function u(x)
islocally integrable in (—00, 00). We define the approximation
of function u(x) as

dw -] o (5

We know that a point x; is defined as a Lebesgue point of
function u(x) if

)u(y) dy, k>0. (14)

l
For the Lebesgue point x, of the function u(x), we get
limy _, ou*(x,) = u(x,). Since the measure for the set of points
which are not the Lebesgue points of u(x) is zero, we have
uk(x) — u(x) ask — 0almost everywhere.

For any N > 0, let R, > supte[o,m)llvllim(m < 0o0.Let 2
represent the cone {(t,x) : x| < N -Ryt,0 <t < T, =
min(T, NR, D)} We let S, represent the cross section of the
cone O by the planet = 7,7 € [0, T;]. Let K, = {x : |x]| < 1},
where r > 0.

Lemma 4 (see [14]). Let the function u(t, x) be bounded and
measurable in cylinder QO = [0,T] x K,. If § € (0, min[r,T])
and h € (0,6), then the function

[u(t,x) —u(z, y)|dxdt dydr (16)

Lemma 6. Let v be the strong solution of problem (6) and
¢(t,x) € C°({y). Then

JLT {|v o| ¢, + sign (v — k) (v -« )¢x 17)

—sign(v—-«) ], (t, x) (/J} dxdt =0,
where o is an arbitrary constant.
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Proof. Let ®(v) be an arbitrary twice smooth function on
the line —co < v < 0o. We multiply the first equation of
problem (6) by the function <D'(v)¢(t, x), where ¢(t,x) €
Cy°(¢p). Integrating over {; and transferring the derivatives
with respect to t and x to the test function ¢, for any constant
«, we obtain

JLT {@ W), + [L o' (2) 3z2dz] é,

(18)
—' W), (5, %) ¢} dxdt = 0,

in which we have used I_O;[I: CD'(z)322dz]</>xdx =
= [T [6@' (v)3vv, Jdx.
Integration by parts yields

f:o [J: @' (z) 3zzdz] ¢.dx

= r; [ (v’ -o’) @' (v) (19)

_ IV (z3 - a3) 0" (2) dz] ¢, dx.

o

Let ®*(v) be an approximation of the function |v — «| and set
O(v) = OF). Using the properties of the sign(v — «), (18),
and (19) and sending k — 0, we have

” {lv —a| ¢, +sign (v — «) [v3 - oc3] o,
(r (20)

—sign(v-«) ], (t,x) ¢} dxdt =0,
which completes the proof. O

We note that the proof of (17) can also be found in [14].

Lemma 7. Assume that v,(t,x) and v,(t,x) are two strong
solutions of problem (6) associated with the initial data v, =
v,(0,x) € L'(R)NL*(R) and v, = v,(0,x) € L'(R)NL(R).
For any ¢ € C;°((p),

IJOO sign (v; — v,) []v1 (t,x) 7, (¢ x)] $pdx

-0

(21)

[ee]
SCJ |v = v,|dx
—00

holds, where ¢ depends on ||vigllpary 1Viollzeory 1v20ll12(y
IIVZOIILOO(R), T, and ¢.

Proof. We obtain

A [v? (t,x) — v; (t, x)]

1(® eyirs , (22)
= E J_me x=y [Vl (t,y)—vz (t,y)] dy,

470, [t = (60|
= ’—%e_’“ J_OO e’ [v? (t,y) - V; (t>)’)] dy

+%ex L e’ [vf (t,y) - V; (, )’)] d)’l (23)

[e¢]
I O A

<c J e_lx_yl |V1 (t7 )/) - VZ (t’ y)l dy’

—00
in which we have used Lemma 2. Using (23) and the Fubini
theorem completes the proof. O
3. Proof of Theorem 1
Here we state that the techniques used in this paper to estab-
lish the local stability of solutions for problem (6) come from

the methods of Kruzkov’s device of doubling the variables
presented in Kruzkov’s paper [14].

Proof of Theorem 1. For an arbitrary T > 0, set {; = [0, T]xR.
Let f(t,x) € C;°({y). We assume that f(t, x) = 0 outside the
cylinder

O={(tx)}=[0,T-28] xH, ,5, 0<20<min(T,r).

(24)
We define

(TN

=f()Ak(*)>

where (-++) = ((t +7)/2,(x + y)/2) and (*) = ((t = 1)/2, (x -
¥)/2). The function 6, (w) is defined in (13). Note that

hy+h, = f, () A (%), heth, =f () A ().

(26)

Taking v = v;(t,x) and & = v,(7, y) and assuming that
f(t, x) = 0 outside the cylinder ®, from Lemma 6, we have

ﬂﬂ s {62 v, (m.5)l

+sign (v, (t,x) - v, (1, ¥))

x (1 (6, %) =93 (1, 7)) by @7
—sign (v, (t,x) = v, (7, ))

x ], (t:x) h} dxdt dydr = 0.



Similarly, it has

[ e - 0l

+sign (v, (1, y) = v, (t, X))

< (4 (5.9) = () )
—sign (v, (1, ) = v, (£, %))

xJ,, (1, y) h} dxdtdydr = 0,

from which we obtain

0= J-J-J]- v (6, ) = v, (7, y)| (b, + h,) dx dt dy dr
CrxGr

i

X (vi (t,x) - v; (7, y))

x [h, +h,|dxdtdydr

Jm o, 8" (vi (6,) = v, (7. 7))

x (I, (t.x) = 1, (1.y)) hdx dt dy dr

- ﬂﬂ (I, + I,) dx dt dy dr
CrxGr

mj I, dxdt dy dr
CrxGr

We claim that

+

+

(29)

0< J-J.Z v, (£, x) = v, (t,x)| f, + sign (v, (£, x) = v, (£, %))

X (vi (t, x) - v; (t, x)) fidxdt

1B, (k)|3c[k+i

k2

where the constant ¢ does not depend on k. Using Lemma 4,
we obtain B;(k) — 0ask — 0. The integral B, does not
depend on k. In fact, substituting t = oy, (t —7)/2 = S, x =1,
(x — ¥)/2 = £ and noting that

J‘—kk J—O:o A (B.§)dEdp = 1, (34)

J:[[[ [(t-7)/2|<k,0<(t+7)/2<T-9, | (x-y)/2 | sk,l(x+y)/2 | <r-0
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+

“ sign (v, (£, x) — v, (£, X))

x [J,, (t,x) =], (t,%)] fdxdt|.
(30)

We note that the first two terms in the integrand of (29) can
be represented in the form

Hy=H(t,x, 7, y,v; (t,x),v, (1, ¥)) A (%) (31)

From Lemma5, we know that H, satisfies the Lipschitz
condition in v; and v,, respectively. By the choice of h, we
have H, = 0 outside the region as follows:

Jm H, dxdt dy dr
{rxCr

_ Jm” [H (t,x.7, 3,0, (6:%) v, (1, ))

—H(t,x,t,x,v; (t,x), v, (t,x))]
x A (%) dxdtdydr

" HHchzTH (t2,8,2,v, (%), v, (£, %))

XA (%)dxdtdydr

= B, (k) + B,.
(32)

Considering the estimate [A(x)| < ¢/k* and the expression
of function Hy, we have

v, (t,x) = v, (1, y)|dxdt dydr |, (33)

we have

R R ACE AN CRORACH))

k o)
x“ | Ak(ﬁ,s)dzd/s}dndal (35)
-k J-00

- 4” H (b %6, x,v, (£,%), v, (t, ) dx dt.
&r
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Hence

lim J]]] Hydxdtdydr
k—o {rx¢r

(36)
= 4” H(t,x,t,x,v; (t,x),v, (£, x)) dx dt.
r

Since
I, = sign (v, (t,x) - v, (1, ))

(37)
X (]V1 (t’x) - ]Vz (T’)’)) fAk(*)>

|C1 (k)| Sc(k+ —

By Lemmas 3 and 4, we have C,(h) — 0ask — 0. Using
(34), we have

G, = ZJL I3 (“1»’7) a1,V (0‘1>’7)’V2 (“1”7))

/\h (B.%) didﬁ} dndoy

= JL L (t x,t,x,v, (t,x), v, (t, x)) dx dt
-]

sign (v, (£, x) — v, (¢, x))

&

% (J,, (6,%) = J,, (%)) f (6, x) dx .
(40)

From (36) and (38)-(40), we prove that inequality (30) holds.
Let

B(t) = J, |v1 (t,x) —v, (t, x)| dx. (41)
We define
py (0) = J O (W) dw, (pp(0) =6, (0)20)  (42)

and choose the two numbers 7; and 7, € (0,T;), 7; < 7,. In
(30), we choose

f=lp(t=m)=pe(t-m)]x (%),
(43)
k <min(7,Ty - 7,),
where
Xt x)=x.t,x)=1-p,(Ix| + Ryt - N +¢),
(44)

e> 0.

When ¢ is sufficiently small, we note that function y(t,x) = 0
outside the cone 1 and f(t,x) = 0 outside the set ®. For
(t, x) € ©, we have

0= X+ Ry [Xa = X + Rox: (45)

kz JJJJ |(t—‘r)/2|Sk,&s(t+'r)/2§T—6,|(x—y)/2|§k,|(x+y)/2|§r—6

Jm I, dxdt dy de
{rxCr

- Jm (L (t, x, 7, y) = I (t, x,t, %)) dx dt dy dt
CrxCr

" Hﬂ L (t, % t,x) dxdt dydr = C, (h) + Cy,
{rxCr
(38)

we obtain

J,, 6, x) =], (T,y)| dxdt dydr) . (39)

Applying (30) and (42)-(45) and suitably choosing large
R,, we have the inequality

0< HET [0 (£ - 71) — 6, (¢ — 7,)]

0

Xx, |vi (8, x) = v, (t, x)|} dx dt

+

JJ. tct=r)-ple=m))[1, €0 -, 0]

0

x E(t,x) x (¢, x) dx dt|,
(46)

where E(t, x) = sign[v,(t, x) — v,(t, x)].
From (46), we obtain

0< ”E {66 (t = 1) = 6 (¢ — )]

0

Xxe |v1 (£, %) = v, (t, x)|} dx dt

o[ - - et

X ro [J,, (t:x) = ], (t:x)] E (t,x) x (t, x) dx]| dt
(47)
Using Lemma 7, we have
0[], {10:(t-m)- 0,
XXe |v1 (£, %) = v, (£, x)|} dx dt
(48)

TO
Y RCAGEARTACGES)
X J [v, = v,| dx dt,

where ¢ > 0 is a constant as described in (21).



Letting e — 01in (48) and sending N — 00, we have

0< ij {[6c (t - 7,) = 6, (£ - 1))

X |vy (£, x) = v, (£, x)|} dx dt
T, (49)
vef (pele-m) - pile-m)
X JOO [v, = v,| dx dt.

By the properties of the function 0, (w) for k < min(r,, T, -
7,), we have

Ty
J, 0= ) B e~ B(x)

TO
- L 0, (t-7,)[B(t) - B(r)] dt (50)
1 T, +k
SC%J |B(t) - B(1))|dt — 0 ask—0,
T,—k
where ¢ is independent of h.
Set
Ty Ty (t-m
P(r)) = J pe(t—1)B(t)dt = J J 0, (o) doB (t)dt.
0 0 -0
(51)
Using the similar proof of (50), we get
Ty
P (z) = - J 0, (t-7,)B(t)dt — ~B(x,)
0 (52)

ask — 0,

from which we obtain
P(r;)) — P(0) - LTl B(o)do ask —0. (53)
Similarly, we have
P(1,) — P(0) - JZZ B(o)do ask — 0. (54)
Then, we get

T
P(Tl)—P(TZ)—>J B(o)do ask— 0. (55)
T
LettingT, — Oand 7, — t,from (49), (50), and (55), for
any t € [0,T;], we have

LOO |v1 (t,x) —vy (t, x)| dx < Jloo |v1 (0, x) = v, (0, x)| dx

t roo
+CIJ. |v, = v, | dx,

0

(56)
where ¢ depends on [viglligry [Viollieory Va0l
vyl Lo(R) and T. Using the Gronwall inequality and (56)
completes the proof of Theorem 1. O

Abstract and Applied Analysis

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is supported by both the Fundamental Research
Funds for the Central Universities (JBK120504) and the
Applied and Basic Project of Sichuan Province (2012]Y0020).

References

[1] G. M. Coclite and K. H. Karlsen, “On the well-posedness of the
Degasperis-Procesi equation,” Journal of Functional Analysis,
vol. 233, no. 1, pp. 60-91, 2006.

[2] A. Constantin and D. Lannes, “The hydrodynamical rele-
vance of the Camassa-Holm and Degasperis-Procesi equations,”
Archive for Rational Mechanics and Analysis, vol. 192, no. 1, pp.
165-186, 2009.

[3] J. Escher, Y. Liu, and Z. Y. Yin, “Global weak solutions and blow-
up structure for the Degasperis-Procesi equation,” Journal of
Functional Analysis, vol. 241, no. 2, pp. 457-485, 2006.

[4] Y. Fu, Y. Liu, and C. Z. Qu, “On the blow-up structure for the
generalized periodic Camassa-Holm and Degasperis-Procesi
equations,” Journal of Functional Analysis, vol. 262, no. 7, pp.
3125-3158, 2012.

[5] D. Henry, “Infinite propagation speed for the Degasperis-
Procesi equation,” Journal of Mathematical Analysis and Appli-
cations, vol. 311, no. 2, pp- 755-759, 2005.

[6] G. L. Gui, Y. Liu, and L. X. Tian, “Global existence and blow-
up phenomena for the peakon b-family of equations,” Indiana
University Mathematics Journal, vol. 57, no. 3, pp. 1209-1234,
2008.

[7] Y. Liuand Z. Y. Yin, “Global existence and blow-up phenomena
for the Degasperis-Procesi equation,” Communications in Math-
ematical Physics, vol. 267, no. 3, pp. 801-820, 2006.

[8] S.Y.Laiand Y. H. Wu, “A model containing both the Camassa-
Holm and Degasperis-Procesi equations,” Journal of Mathemat-
ical Analysis and Applications, vol. 374, no. 2, pp. 458-469, 2011.

[9] S. Lai and A. Y. Wang, “The well-posedness of solutions for a
generalized shallow water wave equation,” Abstract and Applied
Analysis, vol. 2012, Article ID 872187, 15 pages, 2012.

[10] S.Y. Lai, “The global weak solution for a generalized Camassa-
Holm equation,” Abstract and Applied Analysis, vol. 2013, Article
ID 838302, 6 pages, 2013.

[11] Z. W. Lin and Y. Liu, “Stability of peakons for the Degasperis-
Procesi equation,” Communications on Pure and Applied Math-
ematics, vol. 62, no. 1, pp. 125-146, 2009.

[12] O. G. Mustafa, “A note on the Degasperis-Procesi equation,”
Journal of Nonlinear Mathematical Physics, vol. 12, no. 1, pp. 10-
14, 2005.

[13] M. Wu, “The local strong solutions and global weak solutions
for a nonlinear equation,” Abstract and Applied Analysis, vol.
2013, Article ID 619068, 5 pages, 2013.

[14] S. N. Kruzkov, “First order quasi-linear equations in several
independent variables,” Mathematics of the USSR-Sbornik, vol.
10, pp. 217-243, 1970.



