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Two ellipsoidal ultimate boundary regions of a special three-dimensional (3D) chaotic system are proposed. To this chaotic system,
the linear coefficient of the 𝑖th state variable in the 𝑖th state equation has the same sign; it also has two one-order terms and
one quadratic cross-product term in each equation. A numerical solution and an analytical expression of the ultimate bounds
are received. To get the analytical expression of the ultimate boundary region, a new result of one maximum optimization
question is proved. The corresponding ultimate boundary regions are demonstrated through numerical simulations. Utilizing the
bounds obtained, a linear controller is proposed to achieve the complete chaos synchronization. Numerical simulation exhibits the
feasibility of the designed scheme.

1. Introduction

Bounded chaotic systems and their ultimate bounds are
important for chaos synchronization and chaos control [1–
3]. But it is generally difficult to obtain the ultimate bound
of a chaotic system or the analytical expression of the bound
even if the chaotic system has simple dynamic differential
equations. The well-known Lorenz chaotic system was pre-
sented in 1963 [4]. It is a 3D autonomous systemwith only two
quadratic terms. In 1987, a cylindrical bound and a spherical
bound for the globally attractive and positive invariant sets
of Lorenz system were proposed by Leonov et al. [5, 6].
Since then, several ultimate boundaries of Lorenz system
have been obtained, like another cylindrical bound [7], the
improved spherical bound [8], the ellipsoidal bounds [9–
11], the butterfly bound [12], and so on [13–15]. References
[10, 11] also discussed the ellipsoidal ultimate bounds of the
unified Lorenz system [16].The ultimate boundaries for other
well-known chaotic attractors, such as Chen attractor [17],

Lü attractor [18], and Qi attractor [19], were also proposed
[20–22].

Since the research for the ultimate bounds set of chaotic
systems is restricted by the region of the coefficients of the
systems, in [20, 21], the ultimate boundary regions of the
chaotic systems were researched only in several designated
parameters regions.Theultimate boundaries ofmany existing
chaotic systems are still not presented. So, it is also a
challenging work to search the ultimate bounds of some
new 3D chaotic systems [1, 2, 23–26] and hyperchaotic
systems [27–29]. Recently, using the optimization idea and
the Lyapunovmethod, which are often applied to estimate the
boundaries of chaotic systems [1, 8, 10, 22, 27, 28], Wang et al.
[30] constructed a specialmethod to find the ultimate bound-
aries of a class of high dimensional autonomous quadratic
chaotic systems. In the following parts, this method is called
the unified method. Wang et al. [30] solved the ultimate
boundary problem of more existing chaotic attractors and
hyperchaotic attractors and got the numerical solutions of
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corresponding bounds. But the unifiedmethod is not applied
successfully to every existing chaotic system.

In this paper, the following 3D chaotic system which was
introduced by Tang et al. [31] in 2012 is considered:

𝑥̇
1
= −𝑎𝑥

1
+ 𝑏𝑥
2
+ 𝑥
2
𝑥
3
,

𝑥̇
2
= 𝑐𝑥
1
− 𝑑𝑥
2
− 𝑥
1
𝑥
3
,

𝑥̇
3
= 𝑒𝑥
1
− 𝑓𝑥
3
+ 𝑔𝑥
1
𝑥
2
,

(1)

where 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝑅 are state variables and 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, and

𝑔 ∈ 𝑅
+. Every state equation has two one-order terms and

one quadratic cross-product term. System (1) has complex
dynamic behaviors and several larger chaotic coefficient’s
regions. It has a typical chaotic attractor when 𝑎 = 25, 𝑏 = 16,
𝑐 = 40, 𝑑 = 4, 𝑒 = 5, 𝑓 = 5, and 𝑔 = 7.

To system (1), the method used in [1, 8, 10, 22, 27, 28] to
find the boundary of chaotic attractor does not seem very
suitable. One can notice that the coefficients of the 𝑖th state
variable 𝑥

𝑖
in the 𝑖th (𝑖 = 1, 2, 3) equation have the same

sign and they are negative. Under this special condition,
the unified method [30] to find the boundary of chaotic
attractor can be applied to system (1). In this paper, the unified
method [30] is used to get the numerical solution of the
ultimate bound of system (1) with 𝑎 > 0, 𝑏 > 0, 𝑐 > 0,
𝑑 > 0, 𝑒 > 0, 𝑓 > 0, and 𝑔 > 0. Moreover, to get the
analytical expression of the ellipsoidal ultimate boundary of
system (1), a new conclusion about a designated maximum
optimization question is proved. Utilizing this result, an
analysis expression of the ellipsoidal ultimate boundary is
given when the coefficients of the chaotic system 𝑑 = 𝑓. The
boundary is useful in the control or synchronization of chaos.
Using the boundary set gained, one can realize the complete
chaos synchronization.

The rest of the paper includes four sections. Section 2
introduces the unified approach [30] and proposes a new
theorem about an interesting analytic solution of amaximum
optimization problem. Utilizing the new theorem above and
the unified method, Section 3 estimates the ellipsoidal ulti-
mate boundary regions of system (1). Some numerical sim-
ulations about the boundary regions are exhibited. Section 4
applies the bound in chaos synchronization. Section 5 pro-
vides the conclusions.

2. Some Preliminaries and Notations

The unified method constructed in [30] to estimate the
ultimate boundary of chaotic attractor is introduced firstly.

The considered autonomous system is described as

𝑋̇ = 𝑓 (𝑋) , (2)

where 𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇

∈ 𝑅
𝑛, 𝑓: 𝑅𝑛 → 𝑅

𝑛. Let
𝑋(𝑡, 𝑡
0
, 𝑋
0
) be the solution satisfying 𝑋(𝑡, 𝑡

0
, 𝑋
0
) = 𝑋

0 with
the initial time 𝑡

0
and initial state 𝑋

0 and let Ω ∈ 𝑅
𝑛 be

a compact set. The distance between 𝑋(𝑡, 𝑡
0
, 𝑋
0
) and Ω is

defined by

𝜌 (𝑋 (𝑡, 𝑡
0
, 𝑋
0
) , Ω) = inf

𝑌∈Ω

󵄩󵄩󵄩󵄩󵄩
𝑋 (𝑡, 𝑡

0
, 𝑋
0
) − 𝑌

󵄩󵄩󵄩󵄩󵄩
. (3)

DenoteΩ
𝜀
= {𝑋 | 𝜌(𝑋,Ω) < 𝜀}. Obviously,Ω ∈ Ω

𝜀
.

Definition 1 (see [10, 30]). Suppose that there exists a compact
set Ω ∈ 𝑅

𝑛 satisfying

lim
𝑡→∞

𝜌 (𝑋 (𝑡) , Ω) = 0, (4)

for all 𝑋0 ∈ 𝑅
𝑛
/Ω. It means that, for any 𝜀 > 0, there exists

𝜏 > 𝑡
0
satisfying 𝑋(𝑡, 𝑡

0
, 𝑋
0
) ∈ Ω

𝜀
for all 𝑡 ≥ 𝜏. Then, the set

Ω is called an ultimate bound of system (2).

Consider the HDQADS [30, 32], described by

𝑋̇ = 𝐴𝑋 +

𝑛

∑

𝑖=1

𝑥
𝑖
𝐵
𝑖
𝑋 + 𝐶, (5)

where 𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇

∈ 𝑅
𝑛, 𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

∈ 𝑅
𝑛×𝑛,

𝐵
𝑖
= (𝑏
𝑖

𝑗𝑘
)
𝑛×𝑛

∈ 𝑅
𝑛×𝑛, and 𝐶 = (𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛
)
𝑇
∈ 𝑅
𝑛. Also, all

elements of𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑛
satisfy 𝑏𝑘

𝑖𝑗
= 𝑏
𝑗

𝑖𝑘
(𝑖, 𝑗, 𝑘 = 1, 2, . . . , 𝑛).

Construct a general quadratic function candidate [30]

𝑉 (𝑋) = (𝑋 + 𝜇)
𝑇

𝑃 (𝑋 + 𝜇) , (6)

where 𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇
∈ 𝑅
𝑛, 𝑃 = 𝑃

𝑇
= (𝑝
𝑖𝑗
)
𝑛×𝑛

∈ 𝑅
𝑛×𝑛,

and 𝜇 = (𝜇
1
, 𝜇
2
, . . . , 𝜇

𝑛
)
𝑇

∈ 𝑅
𝑛 are real parameters to be

determined.
Calculating the derivative of (6) along with system (5)

[30], one can get

𝑉̇ (𝑋) =

𝑛

∑

𝑖=1

𝑥
𝑖
𝑋
𝑇
(𝐵
𝑇

𝑖
𝑃 + 𝑃𝐵

𝑖
)𝑋 + 𝑋

𝑇
𝑄𝑋 +𝑀𝑋 + 2𝐶

𝑇
𝑃𝜇,

(7)

where 𝑄 = 𝐴
𝑇
𝑃 + 𝑃𝐴 + 2(𝐵

𝑇

1
𝑃𝜇, 𝐵
𝑇

2
𝑃𝜇, . . . , 𝐵

𝑇

𝑛
𝑃𝜇)
𝑇
= 𝑄
𝑇,

𝑀 = 2(𝜇
𝑇
𝑃𝐴 + 𝐶

𝑇
𝑃).

Hereafter, the meaning of 𝑃 > 0 is that the matrix 𝑃 is
positive definite and of 𝑃 < 0 is that 𝑃 is negative definite.

Lemma 2 (see [30]). If there exists a 𝑃 ∈ 𝑅
𝑛×𝑛

> 0 and a
𝜇 ∈ 𝑅

𝑛 such that

𝑄 < 0,

𝑛

∑

𝑖=1

𝑥
𝑖
𝑋
𝑇
(𝐵
𝑇

𝑖
𝑃 + 𝑃𝐵

𝑖
)𝑋 = 0,

(8)

for any 𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇

∈ 𝑅
𝑛, then the boundness of

system (5) is proved and the ultimate boundary region is

Ω = {𝑋 ∈ 𝑅
𝑛
| (𝑋 + 𝜇)

𝑇

𝑃 (𝑋 + 𝜇) ≤ 𝑅max} , (9)

where 𝑅max ∈ 𝑅 which can be determined by solving the
optimization problem:

max 𝑉 (𝑋) = (𝑋 + 𝜇)
𝑇

𝑃 (𝑋 + 𝜇) ,

s.t. 𝑉̇ (𝑋) = 𝑋
𝑇
𝑄𝑋 +𝑀𝑋 + 2𝐶

𝑇
𝑃𝜇 = 0.

(10)

The conditions (8) are sufficient but not necessary [30].
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Since the symmetry of 𝑃 > 0, then 𝑉(𝑋) can be
transformed into a positive definite radially unbounded
Lyapunov function 𝑉(𝑋) via𝑋 = 𝑋 + 𝜇.

For simplification, let 𝑢 = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
) = 2𝜇

𝑇
𝑃. One

has 𝜇𝑇 = (1/2)𝑢𝑃
−1, 𝜇𝑇𝑃𝜇 = (1/4)𝑢𝑃

−1
𝑢
𝑇. After a simple

calculation, one can rewrite Lemma 2 as follows.

Lemma 3. If there exists a real symmetric matrix 𝑃 > 0 and a
vector 𝑢 = (𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
) such that

𝑄 = 𝐴
𝑇
𝑃 + 𝑃𝐴 + (𝐵

𝑇

1
𝑢
𝑇
, 𝐵
𝑇

2
𝑢
𝑇
, . . . , 𝐵

𝑇

𝑛
𝑢
𝑇
)
𝑇

< 0,

𝑛

∑

𝑖=1

𝑥
𝑖
𝑋
𝑇
(𝐵
𝑇

𝑖
𝑃 + 𝑃𝐵

𝑇

𝑖
)𝑋 = 0,

(11)

for any 𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇

∈ 𝑅
𝑛, then the boundness of

system (5) is proved and the ultimate boundary region is

Ω = {𝑋 ∈ 𝑅
𝑛
| 0 ≤ 𝑋

𝑇
𝑃𝑋 + 𝑢𝑋 +

1

4
𝑢𝑃
−1
𝑢
𝑇
≤ 𝑅max} ,

(12)

where 𝑅max ∈ 𝑅 which can be determined by solving the
optimization problem:

max 𝑉 (𝑋) = 𝑋
𝑇
𝑃𝑋 + 𝑢𝑋 +

1

4
𝑢𝑃
−1
𝑢
𝑇
,

s.t. 𝑉̇ (𝑋) = 𝑋
𝑇
𝑄𝑋 +𝑀𝑋 + 𝑢𝐶 = 0,

(13)

where𝑀 = 2𝐶
𝑇
𝑃 + 𝑢𝐴.

Theorem 4. Denote the set

Γ = {(𝑥
1
, 𝑥
2
, 𝑥
3
)
𝑇

∈ 𝑅
3
|
𝑥
2

1

𝑝2
+
(𝑥
2
− 𝑚)
2

𝑚2 + 𝑛2
+
(𝑥
3
− 𝑛)
2

𝑚2 + 𝑛2
= 1,

𝑝 > 0, 𝑚 ̸= 0, 𝑛 ̸= 0} ,

(14)

and 𝐺(𝑥
1
, 𝑥
2
, 𝑥
3
) = 𝑥
2

1
+ 𝑥
2

2
+ 𝑥
2

3
, (𝑥
1
, 𝑥
2
, 𝑥
3
) ∈ Γ. Then

max
(𝑥
1
,𝑥
2
,𝑥
3
)∈Γ

𝐺 =

{{

{{

{

𝑝
4

𝑝2 − (𝑚2 + 𝑛2)
, 𝑝 > √2 (𝑚2 + 𝑛2),

4 (𝑚
2
+ 𝑛
2
) , 𝑝 ≤ √2 (𝑚2 + 𝑛2),

min
(𝑥
1
,𝑥
2
,𝑥
3
)∈Γ

𝐺 = 0.

(15)

Proof. Let 𝜑(𝑥
1
, 𝑥
2
, 𝑥
3
) = (𝑥

2

1
/𝑝
2
) + (𝑥

2
− 𝑚)
2
/(𝑚
2
+ 𝑛
2
) +

((𝑥
3
−𝑛)
2
/(𝑚
2
+𝑛
2
))−1. Notice that (𝜕𝜑/𝜕𝑥

1
, 𝜕𝜑/𝜕𝑥

2
, 𝜕𝜑/𝜕𝑥

3
)

= (2𝑥
1
/𝑝
2
, 2(𝑥
2
−𝑚)/(𝑚

2
+𝑛
2
), 2(𝑥
3
−𝑛)/(𝑚

2
+𝑛
2
)) = (0, 0, 0)

if and only if (𝑥
1
, 𝑥
2
, 𝑥
3
) = (0,𝑚, 𝑛)(∈Γ).

Now, define

𝐹 (𝑥
1
, 𝑥
2
, 𝑥
3
) = 𝑥
2

1
+ 𝑥
2

2
+ 𝑥
2

3

+ 𝜆(
𝑥
2

1

𝑝2
+
(𝑥
2
− 𝑚)
2

𝑚2 + 𝑛2
+
(𝑥
3
− 𝑛)
2

𝑚2 + 𝑛2
− 1) .

(16)

Let
1

2
𝐹
𝑥
1

= 𝑥
1
(1 +

𝜆

𝑝2
) = 0, (17)

1

2
𝐹
𝑥
2

= 𝑥
2
+
𝜆 (𝑥
2
− 𝑚)

𝑚2 + 𝑛2
= 0, (18)

1

2
𝐹
𝑥
3

= 𝑥
3
+
𝜆 (𝑥
3
− 𝑛)

𝑚2 + 𝑛2
= 0, (19)

𝐹
𝜆
=

𝑥
2

1

𝑝2
+
(𝑥
2
− 𝑚)
2

𝑚2 + 𝑛2
+
(𝑥
3
− 𝑛)
2

𝑚2 + 𝑛2
− 1 = 0. (20)

From (17), 𝑥
1
= 0 or 𝜆 = −𝑝

2. From (18), 𝑥
2
= 𝑚𝜆/(𝑚

2
+

𝑛
2
+ 𝜆), 𝑥

2
− 𝑚 = −𝑚(𝑚

2
+ 𝑛
2
)/(𝑚
2
+ 𝑛
2
+ 𝜆). From (19),

𝑥
3
= 𝑛𝜆/(𝑚

2
+ 𝑛
2
+ 𝜆), 𝑥

3
− 𝑛 = −𝑛(𝑚

2
+ 𝑛
2
)/(𝑚
2
+ 𝑛
2
+ 𝜆).

From (18), (19), and 𝑚𝑛 ̸= 0, one gets 𝑥
3
= (𝑛/𝑚)𝑥

2
. From

(20), 𝑥2
1
= 𝑝
2
(1 − (𝑥

2
−𝑚)
2
/(𝑚
2
+ 𝑛
2
) − (𝑥
3
− 𝑛)
2
/(𝑚
2
+ 𝑛
2
)).

(i) When 𝑥
1
= 0, substituting 𝑥

3
= (𝑛/𝑚)𝑥

2
into (20),

one obtains 0 + (𝑥
2
− 𝑚)
2
/(𝑚
2
+ 𝑛
2
) + (𝑥

3
− 𝑛)
2
/(𝑚
2
+ 𝑛
2
) =

(𝑥
2
− 𝑚)
2
/(𝑚
2
+ 𝑛
2
) + ((𝑛/𝑚)𝑥

2
− 𝑛)
2
/(𝑚
2
+ 𝑛
2
) = 1; that

is, 𝑥
2
(𝑥
2
−2𝑚) = 0.Then, one gets 𝑥

2
= 0 or 𝑥

2
= 2𝑚 and two

equilibria (0, 0, 0) and (0, 2𝑚, 2𝑛). Since𝑚𝑛 ̸= 0, obviously,

𝐺 (0, 2𝑚, 2𝑛) = 4 (𝑚
2
+ 𝑛
2
) > 𝐺 (0, 0, 0) = 0. (21)

(ii) When 𝜆 = −𝑝
2 and 𝑝 > √2(𝑚2 + 𝑛2), (18)–(20) have

the following solutions: 𝑥
1
= ±𝑝

2
√𝑝2 − 2(𝑚2 + 𝑛2)/((𝑚

2
+

𝑛
2
)−𝑝
2
), 𝑥
2
= −𝑚𝑝

2
/(𝑚
2
+𝑛
2
−𝑝
2
), 𝑥
3
= −𝑛𝑝

2
/(𝑚
2
+𝑛
2
−𝑝
2
),

and

𝐺 (𝑥
1
, 𝑥
2
, 𝑥
3
) =

𝑝
4

𝑝2 − (𝑚2 + 𝑛2)
. (22)

Notice that 𝑥
1
is not able to be zero. In fact, if 𝑥

1
= 0, by

𝑝 > √2(𝑚2 + 𝑛2), one has 𝑝 = 0; this is a contradiction.
When 𝑝 > √2(𝑚2 + 𝑛2), one has

𝐺 (0, 2𝑚, 2𝑛) − 𝐺 (𝑥
1
, 𝑥
2
, 𝑥
3
)

= 4 (𝑚
2
+ 𝑛
2
) −

𝑝
4

𝑝2 − (𝑚2 + 𝑛2)

=

(2 (𝑚
2
+ 𝑛
2
) − 𝑝
2
)
2

(𝑚2 + 𝑛2) − 𝑝2
< 0.

(23)

Since Γ is a closed set and 𝐺 is continuous on Γ, the
extreme values of 𝐺 can be attained on Γ. Then, from (i) and
(ii), one can achieve

max
(𝑥
1
,𝑥
2
,𝑥
3
)∈Γ

𝐺

=

{{

{{

{

𝐺(𝑥
1
, 𝑥
2
, 𝑥
3
) =

𝑝
4

𝑝2 − (𝑚2 + 𝑛2)
, 𝑝 > √2 (𝑚2 + 𝑛2),

𝐺 (0, 2𝑚, 2𝑛) = 4 (𝑚
2
+ 𝑛
2
) , 𝑝 ≤ √2 (𝑚2 + 𝑛2),

min
(𝑥
1
,𝑥
2
,𝑥
3
)∈Γ

𝐺 = 0.

(24)

The proof is complete.
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3. The Ultimate Bound Set of
Chaotic System (1)

In the following, Lemma 3 and Theorem 4 are applied to
estimate the ultimate bounds of the 3D chaotic system (1).

Rewrite system (1) into the form of system (5); then, one
has

𝐴 = [

[

−𝑎 𝑏 0

𝑐 −𝑑 0

𝑒 0 −𝑓

]

]

, 𝐵
1
=
[
[
[

[

0 0 0

0 0 −
1

2

0
𝑔

2
0

]
]
]

]

,

𝐵
2
=

[
[
[
[

[

0 0
1

2

0 0 0
𝑔

2
0 0

]
]
]
]

]

, 𝐵
3
=

[
[
[
[
[

[

0
1

2
0

−
1

2
0 0

0 0 0

]
]
]
]
]

]

,

𝐶 = 0.

(25)

Let 𝑃 = (𝑝
𝑖𝑗
)
3×3

, 𝑝
𝑖𝑗
= 𝑝
𝑗𝑖
(𝑖, 𝑗 = 1, 2, 3), 𝑢 = (𝑢

1
, 𝑢
2
, 𝑢
3
).

According to (11) in Lemma 2, calculate

3

∑

𝑖=1

𝑥
𝑖
𝑋
𝑇
(𝐵
𝑇

𝑖
𝑃 + 𝑃𝐵

𝑇

𝑖
)𝑋

= 2𝑥
2
(𝑔𝑥
2

1
+ 𝑥
2

3
) 𝑝
13
+ 2𝑥
3
(𝑥
2

2
− 𝑥
2

1
) 𝑝
12

+ 2𝑥
1
(9𝑥
2

2
− 𝑥
2

3
) 𝑝
23
+ 2𝑥
1
𝑥
2
𝑥
3
(𝑝
11
− 𝑝
22
+ 𝑝
33
) .

(26)

Since
3

∑

𝑖=1

𝑥
𝑖
𝑋
𝑇
(𝐵
𝑇

𝑖
𝑃 + 𝑃𝐵

𝑖
)𝑋 = 0, (27)

holds for any 𝑥
𝑖
∈ 𝑅 (𝑖 = 1, 2, 3), letting

𝑝
12

= 𝑝
13

= 𝑝
23

= 0, 𝑝
22

= 𝑝
11
+ 𝑝
33
, (28)

one gets

𝑃 = [

[

𝑝
11

0 0

0 𝑝
22

0

0 0 𝑝
33

]

]

,

𝑀 = 𝑢𝐴 + 2𝐶
𝑇
𝑃

= [−𝑢
1
𝑎 + 𝑢
2
𝑐 + 𝑢
3
𝑒, 𝑢
1
𝑏 − 𝑢
2
𝑑, −𝑢
3
𝑓] ,

𝑄 = 𝐴
𝑇
𝑃 + 𝑃𝐴 + [𝐵

𝑇

1
𝑢
𝑇
, 𝐵
𝑇

2
𝑢
𝑇
, 𝐵
𝑇

3
𝑢
𝑇
]
𝑇

=

[
[
[
[
[

[

−2𝑎𝑝
11

𝑏𝑝
11
+ 𝑐𝑝
22
+
𝑔

2
𝑢
3
𝑒𝑝
33
−
1

2
𝑢
2

𝑏𝑝
11
+ 𝑐𝑝
22
+
𝑔

2
𝑢
3

−2𝑑𝑝
22

1

2
𝑢
1

𝑒𝑝
33
−
1

2
𝑢
2

1

2
𝑢
1

−2𝑓𝑝
33

]
]
]
]
]

]

.

(29)

For simplifying 𝑄, let

𝑏𝑝
11
+ 𝑐𝑝
22
+
𝑔

2
𝑢
3
= 0, 𝑒𝑝

33
−
1

2
𝑢
3
= 0; (30)

that is,

𝑢
3
= −

2

𝑔
(𝑏𝑝
11
+ 𝑐𝑝
22
) , 𝑢

2
= 2𝑒𝑝

33
; (31)

then

𝑢 = (0, 2𝑒𝑝
33
, −

2

𝑔
(𝑏𝑝
11
+ 𝑐𝑝
22
)) . (32)

So, one has

𝑃 = [

[

𝑝
11

0 0

0 𝑝
22

0

0 0 𝑝
33

]

]

,

𝑀 = [2𝑒𝑝
33
𝑐 −

2

𝑔
(𝑏𝑝
11
+ 𝑐𝑝
22
) 𝑒, −2𝑒𝑝

33
𝑑,

2

𝑔
(𝑏𝑝
11
+ 𝑐𝑝
22
) 𝑓] ,

𝑄 = [

[

−2𝑎𝑝
11

0 0

0 −2𝑑𝑝
22

0

0 0 −2𝑓𝑝
33

]

]

.

(33)

From Lemma 3, the next theorem is achieved.

Theorem 5. Suppose that 𝑎 > 0, 𝑏 > 0, 𝑐 > 0, 𝑑 > 0, 𝑒 > 0,
𝑓 > 0, 𝑔 > 0 𝑝

11
, 𝑝
33

∈ 𝑅
+, and 𝑝

22
= 𝑝
11
+ 𝑝
33
. Denote

Ω = {𝑋 ∈ 𝑅
3
| 𝑝
11
𝑥
2

1
+ 𝑝
22
(𝑥
2
+
𝑒𝑝
33

𝑝
22

)

2

+𝑝
33
(𝑥
3
−
𝑏𝑝
11
+ 𝑐𝑝
22

𝑔𝑝
33

)

2

≤ 𝑅max} ,

(34)

where 𝑋 = (𝑥
1
, 𝑥
2
, 𝑥
3
)
𝑇. Then, Ω is the ultimate bound set

of system (1). 𝑅max can be found by calculating the maximum
optimization question:

max 𝑉 = 𝑝
11
𝑥
2

1
+ 𝑝
22
(𝑥
2
+
𝑒𝑝
33

𝑝
22

)

2

+ 𝑝
33
(𝑥
3
−
𝑏𝑝
11
+ 𝑐𝑝
22

𝑔𝑝
33

)

2

s.t. 2𝑎𝑝
11
𝑥
2

1
+ 2𝑑𝑝

22
𝑥
2

2
+ 2𝑓𝑝

33
𝑥
2

3
−
2𝑓

𝑔
(𝑏𝑝
11
+ 𝑐𝑝
22
) 𝑥
3

+ (
2𝑒

𝑔
(𝑏𝑝
11
+ 𝑐𝑝
22
) − 2𝑒𝑝

33
𝑐) 𝑥
1
+ 2𝑒𝑝
33
𝑑𝑥
2
= 0.

(35)



Abstract and Applied Analysis 5

Proof. Since 𝑝
11
, 𝑝
33

∈ 𝑅
+, 𝑝
22

= 𝑝
11

+ 𝑝
33

∈ 𝑅
+, one gets

𝑃 > 0, 𝑄 > 0. According to (13), one obtains the Lyapunov-
like quadratic function

𝑉 (𝑋) = 𝑋
𝑇
𝑃𝑋 + 𝑢𝑋 +

1

4
𝑢𝑃
−1
𝑢
𝑇

= 𝑝
11
𝑥
2

1
+ 𝑝
22
(𝑥
2
+
𝑒𝑝
33

𝑝
22

)

2

+ 𝑝
33
(𝑥
3
−
𝑏𝑝
11
+ 𝑐𝑝
22

𝑔𝑝
33

)

2

(36)

and its derivative along with system (1)

𝑉̇ (𝑋) = 𝑋
𝑇
𝑄𝑋 +𝑀𝑋 + 𝑢𝐶

= 2𝑎𝑝
11
𝑥
2

1
+ 2𝑑𝑝

22
𝑥
2

2
+ 2𝑓𝑝

33
𝑥
2

3
−
2𝑓

𝑔
(𝑏𝑝
11
+ 𝑐𝑝
22
) 𝑥
3

+ (
2𝑒

𝑔
(𝑏𝑝
11
+ 𝑐𝑝
22
) − 2𝑒𝑝

33
𝑐) 𝑥
1
+ 2𝑒𝑝
33
𝑑𝑥
2
.

(37)

From Lemma 3, the above conclusion holds.

Remark 6. It is generally difficult to get the analytic solution
of the optimization problem (35). But, by using Lingo, it is
very easy to solve the optimization problem (35) numerically
for the fixed system parameters. For example, obviously, one
has 𝑃 > 0, 𝑄 > 0 for 𝑝

11
= 1.2, 𝑝

22
= 1.7, 𝑝

33
= 0.5,

𝑎 = 25, 𝑏 = 16, 𝑐 = 40, 𝑑 = 4, 𝑒 = 5, 𝑓 = 5, and 𝑔 = 7.
With the appointed parameters, utilizing Lingo to deal with
the optimization problem (35), one gets the corresponding
ultimate boundary region of system (1) as follows:

Ω = {𝑋 ∈ 𝑅
3
| 1.2𝑥

2

1
+ 1.7(𝑥

2
+

5

11
)

2

+0.5(𝑥
3
−
600

7
)

2

≤ 319.4716} .

(38)

Figure 1 exhibits the ultimate boundary set of the chaotic
strange attractor of system (1) under 𝑝

11
= 1.2, 𝑝

22
= 1.7,

and 𝑝
33

= 0.5.

Furthermore, to simplify the constraint condition of the
maximum optimization problem (35), let the coefficient of 𝑥

1

be equal to 0.That is, (2𝑒/𝑔)(𝑏𝑝
11
+𝑐𝑝
22
)−2𝑒𝑝

33
𝑐 = 0.Then, if

𝑑 = 𝑓, one can solve the maximum problem (35) analytically.

Theorem 7. Suppose that 𝑎 > 𝑑/2, 𝑏 > 0, 𝑐 > 0, 𝑑 = 𝑓 > 0,
𝑒 > 0, 𝑔 > 1, and 𝑝

𝑖𝑖
∈ 𝑅
+
(𝑖 = 1, 2, 3), 𝑝

22
= 𝑝
11
+ 𝑝
33
, and

X1

X2

X
3

−50

−20
−20

−40 −40

0

50

40

4020

200
0

100

Figure 1: The chaotic attractor of system (1) with 𝑎 = 25, 𝑏 = 16,
𝑐 = 40, 𝑑 = 4, 𝑒 = 5, 𝑓 = 5, and 𝑔 = 7 and its ultimate bound with
𝑝
11
= 1.2, 𝑝

22
= 1.7, and 𝑝

33
= 0.5.

(2𝑒/𝑔)(𝑏𝑝
11

+ 𝑐𝑝
22
) − 2𝑒𝑝

33
𝑐 = 0. Then, system (1) possesses

following ultimate bound:

Ω = {𝑋 ∈ 𝑅
3
| (𝑐𝑔 − 𝑐) 𝑥

2

1
+ (𝑐𝑔 + 𝑏) (𝑥

2
+
𝑒 (𝑏 + 𝑐)

𝑏 + 𝑐𝑔
)

2

+ (𝑏 + 𝑐) (𝑥
3
− 𝑐)
2

≤

(𝑏𝑒
2
+ 𝑏𝑐
2
+ 𝑐𝑒
2
+ 𝑐
3
𝑔) (𝑏 + 𝑐)

𝑏 + 𝑐𝑔
} .

(39)

Proof. When

𝑏 > 0, 𝑐 > 0, 𝑔 > 1, 𝑝
33

∈ 𝑅
+
,

𝑝
22

= 𝑝
11
+ 𝑝
33
,

2𝑒

𝑔
(𝑏𝑝
11
+ 𝑐𝑝
22
) − 2𝑒𝑝

33
𝑐 = 0,

(40)

one has

𝑝
11

=
𝑐𝑔 − 𝑐

𝑏 + 𝑐
𝑝
33

∈ 𝑅
+
, (41)

𝑝
22

=
𝑐𝑔 + 𝑏

𝑏 + 𝑐
𝑝
33

∈ 𝑅
+
, (42)

𝑒𝑝
33

𝑝
22

=
𝑒 (𝑏 + 𝑐)

𝑏 + 𝑐𝑔
, (43)

𝑏𝑝
11
+ 𝑐𝑝
22

𝑔𝑝
33

= 𝑐. (44)

According to (44) andTheorem 5, one obtains

Ω = {𝑋 ∈ 𝑅
3
| 𝑝
11
𝑥
2

1
+ 𝑝
22
(𝑥
2
+
𝑒𝑝
33

𝑝
22

)

2

+ 𝑝
33
(𝑥
3
− 𝑐)
2

≤ 𝑅max} ,

(45)
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and the following maximum problem

max 𝑉 = 𝑝
11
𝑥
2

1
+ 𝑝
22
(𝑥
2
+
𝑒𝑝
33

𝑝
22

)

2

+ 𝑝
33
(𝑥
3
− 𝑐)
2

s.t. 2𝑎𝑝
11
𝑥
2

1
+ 2𝑑𝑝

22
𝑥
2

2
+ 2𝑓𝑝

33
𝑥
2

3
+ 2𝑑𝑒𝑝

33
𝑥
2

− 2𝑓𝑐𝑝
33
𝑥
3
= 0.

(46)

The above optimization problem is rewritten by

max 𝑉 = (√𝑝
11
𝑥
1
)
2

+ (√𝑝
22
𝑥
2
+

𝑒𝑝
33

√𝑝
22

)

2

+ (√𝑝
33
𝑥
3
− 𝑐√𝑝

33
)
2

s.t. 𝑎(√𝑝
11
𝑥
1
)
2

+ 𝑑(√𝑝
22
𝑥
2
+

𝑒𝑝
33

2√𝑝
22

)

2

+ 𝑓(√𝑝
33
𝑥
3
−
𝑐√𝑝
33

2
)

2

= 𝑑(
𝑒𝑝
33

2√𝑝
22

)

2

+ 𝑓(
𝑐√𝑝
33

2
)

2

.

(47)

Denote 𝑚 = 𝑒𝑝
33
/2√𝑝
22
, 𝑛 = −𝑐√𝑝

33
/2, 𝑥
1
= √𝑝

11
𝑥
1
, 𝑥
2
=

√𝑝
22
𝑥
2
+ 2𝑚, and 𝑥

3
= √𝑝

22
𝑥
3
+ 2𝑛. By 𝑑 = 𝑓 > 0, the

corresponding maximum problem is described by

max 𝑉 = 𝑥
2

1
+ 𝑥
2

2
+ 𝑥
2

3

s.t.
𝑥
2

1

𝑑 (𝑚2 + 𝑛2) /𝑎
+
(𝑥
2
− 𝑚)
2

𝑚2 + 𝑛2
+
(𝑥
3
− 𝑛)
2

𝑚2 + 𝑛2
= 1.

(48)

Set 𝑝
2

= 𝑑(𝑚
2
+ 𝑛
2
)/𝑎. Since 𝑎 > 𝑑/2, then 𝑝 =

√𝑑(𝑚2 + 𝑛2)/𝑎 < √2(𝑚2 + 𝑛2). Then, with the new result in
Theorem 4 and (42) in problem (46), 𝑉 has the maximum
𝑅max = 4(𝑚

2
+ 𝑛
2
) = (𝑏𝑒

2
+ 𝑏𝑐
2
+ 𝑐𝑒
2
+ 𝑐
3
𝑔)𝑝
33
/(𝑏 + 𝑐𝑔).

According to Lemma 3, Theorem 5, (41)–(43), and 𝑝
33

∈ 𝑅
+,

system (1) gets the ellipsoidal ultimate boundary region as
follows:

Ω = {𝑋 ∈ 𝑅
3
| 𝑝
11
𝑥
2

1
+ 𝑝
22
(𝑥
2
+
𝑒𝑝
33

𝑝
22

)

2

+ 𝑝
33
(𝑥
3
− 𝑐)
2

≤

(𝑏𝑒
2
+ 𝑏𝑐
2
+ 𝑐𝑒
2
+ 𝑐
3
𝑔) 𝑝
33

𝑏 + 𝑐𝑔
}
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Figure 2: The chaotic attractor of system (1) with 𝑎 = 25, 𝑏 = 16,
𝑐 = 40, 𝑑 = 4, 𝑒 = 5, 𝑓 = 4, and 𝑔 = 1.5 and its analytic ellipsoidal
ultimate boundary region.

= {𝑋 ∈ 𝑅
3
|
𝑐𝑔 − 𝑐

𝑏 + 𝑐
𝑝
33
𝑥
2

1
+
𝑐𝑔 + 𝑏

𝑏 + 𝑐
𝑝
33
(𝑥
2
+
𝑒 (𝑏 + 𝑐)

𝑏 + 𝑐𝑔
)

2

+ 𝑝
33
(𝑥
3
− 𝑐)
2

≤

(𝑏𝑒
2
+ 𝑏𝑐
2
+ 𝑐𝑒
2
+ 𝑐
3
𝑔) 𝑝
33

𝑏 + 𝑐𝑔
}

= {𝑋 ∈ 𝑅
3
| (𝑐𝑔 − 𝑐) 𝑥

2

1
+ (𝑐𝑔 + 𝑏) (𝑥

2
+
𝑒 (𝑏 + 𝑐)

𝑏 + 𝑐𝑔
)

2

+ (𝑏 + 𝑐) (𝑥
3
− 𝑐)
2

≤

(𝑏𝑒
2
+ 𝑏𝑐
2
+ 𝑐𝑒
2
+ 𝑐
3
𝑔) (𝑏 + 𝑐)

𝑏 + 𝑐𝑔
} .

(49)

The proof is complete.

Remark 8. If one lets 𝑑 = 𝑓, system (1) still possesses a large
range of chaos. Through Theorem 7, the analytic expression
of the ultimate bound can be acquired easily. For example,
when 𝑎 = 25, 𝑏 = 16, 𝑐 = 40, 𝑑 = 𝑓 = 4, 𝑒 = 5, and 𝑔 = 1.5,
the corresponding ellipsoidal ultimate boundary set of (1) is
gained as

Ω = {𝑋 ∈ 𝑅
3
| 20𝑥
2

1
+ 76(𝑥

2
+
70

19
)

2

+ 56(𝑥
3
− 40)
2

≤
1722000

19
} ,

(50)

which is demonstrated clearly in Figure 2.
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4. Application in Chaos Synchronization

Consider two nonlinear autonomous systems
𝑋̇ = 𝑔 (𝑡, 𝑋) , (51)

𝑌̇ = ℎ (𝑡, 𝑌) + 𝑈 (𝑡, 𝑋, 𝑌) , (52)

where 𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇, 𝑌 = (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
)
𝑇

∈ 𝑅
𝑛,

𝑔, ℎ ∈ 𝐶
𝑟
[𝑅
+
× 𝑅
𝑛
, 𝑅
𝑛
], 𝑈 = (𝑈

1
, 𝑈
2
, . . . , 𝑈

𝑛
)
𝑇

∈ 𝐶
𝑟
[𝑅
+
×

𝑅
𝑛
× 𝑅
𝑛
, 𝑅
𝑛
], and 𝑟 ≥ 1. 𝑅

+
means the nonnegative real

set. Let (51) be the drive system and let (52) be the response
system.𝑈(𝑡, 𝑋, 𝑌)means the controller function.𝑋0 = 𝑋(𝑡

0
),

𝑌
0
= 𝑌(𝑡
0
) ∈ 𝑅
𝑛 are the initial values of (51), (52).

Definition 9. The driver system (51) and the response system
(52) are called to achieve global complete synchronization, if
lim
𝑡→∞

‖𝑌(𝑡) − 𝑋(𝑡)‖ = 0 for any initial values𝑋0, 𝑌0.

Next, let system (1) be the driver system. Design the
controller 𝑈

𝑖
= −𝑘

𝑖
(𝑦
𝑖
− 𝑥
𝑖
)(𝑖 = 1, 2, 3). So, the response

system to system (1) is described as follows:
̇𝑦
1
= −𝑎𝑦

1
+ 𝑏𝑦
2
+ 𝑦
2
𝑦
3
− 𝑘
1
(𝑦
1
− 𝑥
1
) ,

̇𝑦
2
= 𝑐𝑦
1
− 𝑑𝑦
2
− 𝑦
1
𝑦
3
− 𝑘
2
(𝑦
2
− 𝑥
2
) ,

̇𝑦
3
= 𝑒𝑦
1
− 𝑓𝑦
3
+ 𝑔𝑦
1
𝑦
2
− 𝑘
3
(𝑦
3
− 𝑥
3
) ,

(53)

where 𝑦
1
, 𝑦
2
, 𝑦
3
∈ 𝑅 are state variables and 𝑘

𝑖
∈ 𝑅
+
(𝑖 =

1, 2, 3) are all controller parameters which can be adjusted.

Theorem 10. The driver system (1) and the response system
(53) are globally complete synchronization when
𝑘
1

>
𝑔 (𝑝
11
(𝑏 − 2𝑎)+𝑝

22
𝑐+(𝑝
11
+ 𝑝
22
)𝑀
3
+𝑝
22
𝑀
2
) + 𝑝
33
𝑒

2𝑔𝑝
11

,

(54)

𝑘
2
>
𝑝
11
𝑏 + 𝑝
22
(𝑐 − 2𝑑) + (𝑝

11
+ 𝑝
22
)𝑀
3
+ 𝑝
33
𝑀
1

2𝑝
22

, (55)

𝑘
3
>
𝑔 (𝑝
22
𝑀
2
+ 𝑝
33
𝑀
1
) + 𝑝
33
(𝑒 − 2𝑓)

2𝑝
33

, (56)

where 𝑀
1

= √𝑅/𝑝
11
, 𝑀
2

= √𝑅/𝑝
22

+ 𝑒𝑝
33
/𝑝
22
, 𝑀
3

=

√𝑅/𝑝
33
+ (𝑏𝑝
11
+ 𝑐𝑝
22
)/𝑔𝑝
33
, 𝑅 = 𝑅max, 𝑝11 ∈ 𝑅

+, 𝑝
33

∈ 𝑅
+,

and 𝑝
22

= 𝑝
11
+ 𝑝
33
.

Proof. Let 𝑅 = 𝑅max. From Theorem 5, one has |𝑥
1
| ≤

√𝑅/𝑝
11

= 𝑀
1
, |𝑥
2
| ≤ √𝑅/𝑝

22
+ 𝑒𝑝
33
/𝑝
22

= 𝑀
2
, and

|𝑥
3
| ≤ √𝑅/𝑝

33
+ (𝑏𝑝
11
+ 𝑐𝑝
22
)/𝑔𝑝
33

= 𝑀
3
. Let the state errors

be 𝑒
1
= 𝑦
1
− 𝑥
1
, 𝑒
2
= 𝑦
2
− 𝑥
2
, and 𝑒

3
= 𝑦
3
− 𝑥
3
, then the error

dynamics of system (1) and system (53) is
̇𝑒
1
= ̇𝑦
1
− 𝑥̇
1
= − (𝑎 + 𝑘

1
) 𝑒
1
+ 𝑏𝑒
2
+ 𝑒
2
𝑒
3
+ 𝑒
2
𝑥
3
+ 𝑒
3
𝑥
2
,

̇𝑒
2
= ̇𝑦
2
− 𝑥̇
2
= 𝑐𝑒
1
− (𝑑 + 𝑘

2
) 𝑒
2
− 𝑒
1
𝑒
3
− 𝑒
3
𝑥
1
− 𝑒
1
𝑥
3
,

̇𝑒
3
= ̇𝑦
3
− 𝑥̇
3
= 𝑒𝑒
1
− (𝑓 + 𝑘

3
) 𝑒
3
+ 𝑔𝑒
1
𝑒
2
+ 𝑔𝑒
2
𝑥
1
+ 𝑔𝑒
1
𝑥
2
.

(57)

Noticing the formula (28), one has 𝑝
22

= 𝑝
11

+ 𝑝
33
.

Let 𝑉(𝑒) = (1/2)(𝑝
11
𝑒
2

1
+ 𝑝
22
𝑒
2

2
+ (𝑝
33
/𝑔)𝑒
2

3
); then its time

derivative along the orbit of system (57) is

𝑉̇ (𝑒)

= 𝑝
11
𝑒
1
̇𝑒
1
+ 𝑝
22
𝑒
2
̇𝑒
2
+
𝑝
33

𝑔
𝑒
3
̇𝑒
3

= −𝑝
11
(𝑎 + 𝑘

1
) 𝑒
2

1
− 𝑝
22
(𝑑 + 𝑘

2
) 𝑒
2

2
−
𝑝
33

𝑔
(𝑓 + 𝑘

3
) 𝑒
2

3

+ (𝑝
11
𝑏 + 𝑝
22
𝑐 + (𝑝

11
+ 𝑝
22
) 𝑥
3
) 𝑒
1
𝑒
2

+ (
𝑝
33

𝑔
𝑒 + (𝑝

11
+ 𝑝
33
) 𝑥
2
) 𝑒
1
𝑒
3
+ 𝑝
33
𝑥
1
𝑒
2
𝑒
3

+ (𝑝
11
− 𝑝
22
+ 𝑝
33
) 𝑒
1
𝑒
2
𝑒
3

≤ −𝑝
11
(𝑎 + 𝑘

1
) 𝑒
2

1
− 𝑝
22
(𝑑 + 𝑘

2
) 𝑒
2

2
−
𝑝
33

𝑔
(𝑓 + 𝑘

3
) 𝑒
2

3

+ (𝑝
11
𝑏 + 𝑝
22
𝑐 + (𝑝

11
+ 𝑝
22
)𝑀
3
)
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑒2

󵄨󵄨󵄨󵄨

+ (
𝑝
33

𝑔
𝑒 + (𝑝

11
+ 𝑝
33
)𝑀
2
)
󵄨󵄨󵄨󵄨𝑒1

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑒3

󵄨󵄨󵄨󵄨 + 𝑝
33
𝑀
1

󵄨󵄨󵄨󵄨𝑒2
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑒3

󵄨󵄨󵄨󵄨 + 0

≤ −𝑝
11
(𝑎 + 𝑘

1
) 𝑒
2

1
− 𝑝
22
(𝑑 + 𝑘

2
) 𝑒
2

2
−
𝑝
33

𝑔
(𝑓 + 𝑘

3
) 𝑒
2

3

+ (𝑝
11
𝑏 + 𝑝
22
𝑐 + (𝑝

11
+ 𝑝
22
)𝑀
3
)
𝑒
2

1
+ 𝑒
2

2

2

+ (
𝑝
33

𝑔
𝑒 + (𝑝

11
+ 𝑝
33
)𝑀
2
)
𝑒
2

1
+ 𝑒
2

3

2
+ 𝑝
33
𝑀
1

𝑒
2

2
+ 𝑒
2

3

2

= −𝑝
11
(𝑘
1
− ( (𝑔 (𝑝

11
(𝑏 − 2𝑎) + 𝑝

22
𝑐 + (𝑝

11
+ 𝑝
22
)𝑀
3

+𝑝
22
𝑀
2
) + 𝑝
33
𝑒) × (2𝑔𝑝

11
)
−1

)) 𝑒
2

1

− 𝑝
22

× (𝑘
2
−
𝑝
11
𝑏 + 𝑝
22
(𝑐 − 2𝑑) + (𝑝

11
+ 𝑝
22
)𝑀
3
+ 𝑝
33
𝑀
1

2𝑝
22

)

× 𝑒
2

2

−
𝑝
33

𝑔
(𝑘
3
−
𝑔 (𝑝
22
𝑀
2
+ 𝑝
33
𝑀
1
) + 𝑝
33
(𝑒 − 2𝑓)

2𝑝
33

) 𝑒
2

3

= −𝐸
𝑇
𝐾𝐸,

(58)

where 𝐸 = [|𝑒
1
|, |𝑒
2
|, |𝑒
3
|]
𝑇,

𝐾 =
[
[

[

−𝑝
11
(𝑘
1
− 𝑘
󸀠

1
) 0 0

0 −𝑝
22
(𝑘
2
− 𝑘
󸀠

2
) 0

0 0 −𝑝
33
(𝑘
3
− 𝑘
󸀠

3
)

]
]

]

,

(59)
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Figure 3: Synchronization error of the response system (53) and the
diver system (1).

with

𝑘
󸀠

1

=
𝑔 (𝑝
11
(𝑏 − 2𝑎)+𝑝

22
𝑐 + (𝑝

11
+ 𝑝
22
)𝑀
3
+𝑝
22
𝑀
2
) + 𝑝
33
𝑒

2𝑔𝑝
11

,

(60)

𝑘
󸀠

2
=
𝑝
11
𝑏 + 𝑝
22
(𝑐 − 2𝑑) + (𝑝

11
+ 𝑝
22
)𝑀
3
+ 𝑝
33
𝑀
1

2𝑝
22

, (61)

𝑘
󸀠

3
=
𝑔 (𝑝
22
𝑀
2
+ 𝑝
33
𝑀
1
) + 𝑝
33
(𝑒 − 2𝑓)

2𝑝
33

. (62)

When 𝑘
𝑖
> 𝑘
󸀠

1
(𝑖 = 1, 2, 3), 𝐾 > 0. One can draw that the

origin of the error system (57) is asymptotically stable, which
implies that the driver system (1) and the response system (53)
achieve globally complete synchronization.

Remark 11. The numerical simulations are studied by MAT-
LAB 7.6.0. Take (−1, −0.5, 5) and (1, −3, −4) as the values of
the initial condition of system (1) and system (53), respec-
tively. When 𝑎 = 25, 𝑏 = 16, 𝑐 = 40, 𝑑 = 4, 𝑒 = 5, 𝑓 = 5,
𝑔 = 7, 𝑝

11
= 1.2, 𝑝

22
= 1.7, and 𝑝

33
= 0.5, from Remark 6,

one gets 𝑅 = 319.4716, 𝑀
1
= 16.3164, 𝑀

2
= 15.1791, and

𝑀
3

= 50.1916. By Theorem 10, one can choose the three
feedback control coefficients as 𝑘

1
= 600, 𝑘

2
= 190, and

𝑘
3
= 236. Figure 3 proves that the response system realizes

synchronization with the driver system through a short time.

5. Conclusion

In this paper, the ultimate boundary regions of a special
3D chaotic system are studied through a unified method
for the ultimate boundary set estimating of chaotic systems.
In this unified way, to get the analytical expression of
the ultimate boundary region, the key is to calculate the
analytical solution of the maximum optimization problem.
Furthermore, an interesting result about the analytic solution
of the corresponding maximum optimization problem is
proposed to obtain the analytic ellipsoidal ultimate boundary
regions of the chaotic system.The ultimate bounds which are

useful in chaos synchronization are demonstrated through
numerical simulations.
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[16] J. LÜ, G. Chen, and D. Cheng, “Bridge the gap between the
Lorenz system and the Chen system,” International Journal of
Bifurcation and Chaos in Applied Sciences and Engineering, vol.
12, no. 12, pp. 2917–2926, 2002.

[17] G. Chen and T. Ueta, “Yet another chaotic attractor,” Interna-
tional Journal of Bifurcation and Chaos, vol. 9, no. 7, pp. 1465–
1466, 1999.
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