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We discuss the dynamical behavior of the stochastic delay three-specie mutualism system. We develop the technique for stochastic
differential equations to deal with the asymptotic property. Using it we obtain the existence of the unique positive solution, the
asymptotic properties, and the nonpersistence. Finally, we give the numerical examinations to illustrate our results.

1. Introduction

The classical Lotka-Volterra model for two mutualistic species
is described by the ordinary differential equation (ODE)

%) (1) = x, (t) [r) = ayyx;, (8) + agyx, (D] W
X, () = X, (t) ["2 +ay%, (£) — ayx, (t)] .

There are many extensive literatures concerned with the
dynamics of this model and we do not mention them here
except [1]. Goh [1] showed that if a;,a,, > ay,4,; holds,
system (1) has a stable and globally attractive equilibrium
point x* = (x7, x,) with the following property:

x (1) — x), %) —x,, ast— 0o, (2)
where

710y, + 1ya Tyl + 1
xT: 192 T 0% X = 2% 191 > 0.

a9y, — A0y a1y, — A120y)

(3)

In fact, in many physical as well as biological systems,
many studies indicate that time delay widely exists in nature,
for examples, in [2-7]. When the growth rate of each specie
is affected by the time delay, as a result, (1) becomes a delay
differential equation (DDE)

%, (t) = x, () [r, —ayx; (t = 1) +apx, (t-1)], W
%y (1) = x, () [y + A%, (t = T) —apx, (F—1)] .

In [4], He and Gopalsamy obtained a supercritical Hopf-
bifurcation of (4) at T = 7" (a constant) and proved that
the equilibrium (x],x3) is no longer asymptotically stable
as the delay increases to 7*. If only the interspecific positive
feedback terms are affected by the delay, (1) becomes

Xy () = x, () [r; —ayx; (t) + apx, (t-1)],
(5)
%,y (1) = x5 (t) [1y + ayy 2, (t = T) — apx, (1)].

The positive equilibrium (x], x;) of (5) is globally attractive
ifa,,ay, > a,,a,, holds, awhich implies the delay is harmless.

Population systems are often subject to environmental
noise and many authors have investigated the dynamical
behaviors of stochastic population systems, for examples,
in [8-26]. May [27] revealed that the parameters of the
stochastic systems always fluctuate around their average
values and the solution also fluctuates around its average
value. If we still use ; to denote the average growth rate, then
the intrinsic growth rate becomes

rp— i+ G,Bi ®), (6)

where B;(t) is white noise and o; is a positive constant
representing the intensity of the noise. As a result,
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the mutualism system (1) becomes a stochastic differential
equation (SDE)

%, (t) =x; (1) [(r; — ayyx; () + ay,x, () dt + 0,dB, (1)],

%, (1) = x, (t) [(r, + gy, () — aypx, (t)) dt + 0,dB, (1)] .
™)

Ji et al. in [14] analyzed the long-time asymptotic behavior
of the system (7) and obtained the ergodic property and its
stationary distribution.

Let us take a further step by considering a 3-dimensional
mutualism system

Xy (t) = x, () [r; —ayx; (t) + apx, (E—T) +aj3x; (E—1)],
Xy (£) = %5 () [1y + Ggy ) (t = T) = gy, (£) + Apsx5 (£ — 7)),

X3 (1) = x5 () [1r3 + agx; (t = T) + asyx, (= 7) — azx; ()],

(8)

subject to the white noise. As a result, it becomes a stochastic
delay differential equation (SDDE)

dux, (t) = x; (t) [(ry = ayy %, (8) + ag,x, (£ - 1)
+ a;3x; (t— 1)) dt + 0,dB, ()],

dx, (t) = x, (t) [(ry + agy %, (£ = 7) — ayyx, (1) ©)
+ayx; (t — 7)) dt + 0,dB, (1)],

dx; (t) = x5 (t) [(r3 + agyx; (t = T) + agyx, (- 1)
— ay3%5 (1)) dt + 0,dB, ()] .

Our aim is to investigate the long-time asymptotic behav-
ior of SDDE (9). This paper is organized as follows. In order to
obtain better dynamic properties of SDDE (9), we show that
there exists a unique global positive solution with any initial
positive value under some assumptions in Section 2. Then,
we estimate the expectation in time average of the distance
between the solution of (9) and the positive equilibrium point
of the deterministic model (8); namely,

t
limsup% J E|x(t) - x"| <K (0), (10)
t— 00 0

where x* is the unique positive equilibrium point of system
(8). In Section 3, we prove that system (9) is persistent in
time average as the intensity of the white noise is small and
yields the limit of the solution in time average. In Section 4,
we obtain the nonpersistence of system (9) as the intensity of
noise is big. Finally, in Section 5, we illustrate our results by
some numerical examinations.

Throughout this paper, unless otherwise specified, let
(Q{F )20, P) denote a complete probability space with a
filtration {#},,, satisfying the usual conditions (i.e., it is right
continuous and F contains all P-null sets). Denote by R’ the
positive cone in R’; namely, Ri ={x = (xl,xz,x3)T e R:
x; > 0,7 =1,2,3}. Let 7 > 0 and denote by C([-, 0];Ri)
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the family of the continuous functions from [-7, 0] to Ri. For
x € R?, its norm is denoted by [x| = x| + [x,] + [x5].

To discuss the dynamical behavior of (9), we impose the
following assumption.

Assumption 1. Consider a;; > 0,1, j = 1,2,3and a;; > a;, +
13, Gy > Oy T A3, A33 > A3 + A3y,

Assumption 2. Consider r; > of/z, i=1,2,3.

2. Existence and Uniqueness of
the Positive Solution

In population dynamics, the existence of the global positive
solution is necessary. In order for a SDE to have a unique
global (i.e, no explosion at any finite time) solution for
any given initial value, its coefficients are generally required
to satisfy the linear growth condition and local Lipschitz
condition (Arnold et al. [28], Mao [23]). However, the
coeflicients of system (9) do not satisfy the linear growth
condition, though they are locally Lipschitz continuous, so
the solution of system (9) may explode at a finite time. So
we prepare the following useful lemma and then yield the
existence of the positive solution by using it.

Lemma 3. Under Assumption 1, then we have

(1) aypas; —ayas, >0,  ayas3 —apay >0,

a110y; — Ay > 0,
(2) (anas33 = ay3a5,) + (a3305) + A3, Gp3) + (A3, + G3,05,)
>0,
(3) (%1“33 - a13a31) + (3335‘12 + a32a13) + (%1“32 + a31a12)
>0,
(4) (ay1ay = ayy)) + (A12055 + Ayya15) + (1,63 + Gy 0y3)
>0,

—a;; 4y a3
(5) | gy —ayn ay
a31 43y —ds3

= 01109053 t 0110)3035; + 0501305

t as30150y1 + A150)3051 + 0510350,

< 0.
(11)

Proof. The assertions (1)-(5) are obviously obtained from
a;, > ap + ap Gy > Gy + dy, i3 > dy + a3y, and
a; >0, i, j = 1,2, 3. Here we omit the proof. O

Theorem 4. Under Assumption I, for any given initial value
x(+) € C([-7,0]; Ri), there is a unique positive solution x(t) to
system (9) on t > —1 and the solution will remain in Ri with
probability I; namely, x(t) € R forallt > -t a.s.
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Proof. Firstly, define a C* function V; : R} — R, by

Vi (xl’xz)’%)

=¢ [x; ) -1-logx; ()] +¢ [x, (t) — 1 —logx, ()]

+6[x; () - 1-logx; (t)],
(12)

where

¢ = ((anas3 — ay305,) + (3305, + a3,0y3)
+(a30y) + a31a5,))
X (ay,aya33 —

1109303, — Gyr0,303)

-1
—0330150) — 1203031 — %1“32“13) >
¢ = ((ay,a33 — ay3a5)) + (a0, + a3,a,3)
+ (a,,as, + a3 a
(anas, + a3,a,5)) 1)

X (%1“22“33 = 4110303 — Gy 01303,
-1
= G330150y) — G033 — ‘121“32‘113) >
s = (1180 — a12051) + (a12053 + ayy0,3)
+ (a0 + ay,4,3))
X (ay,0,053 —

ay10303) — Gy 01303,

-1
—A330150y1) — A1p0)303 — azlaszals) .

From Lemma3, ¢ > 0,i = 1,2,3. So, Vj(x},%,,x3) is
nonnegative. By It6’s formula, we obtain

AV, (xy, %5, x3) = LV, (x,, x5, x5) dt

(14)
x;(t)— 1] 0,dB; (t),

where

LV, (x1, %5, x3)
=[x, () = 1] [r; — ayyx; ()
+ apX, (t—7) + ajx; (- 7))
+6 [x, (1) = 1] [1y + ayy x, (£ = T) — ayyx, (1)
+ ayxs (t = 7))

+¢5 [ (8) = 1] [r3 + a3, %, (t = T)

3
+ A, (t—T) — assx; (t)]
€07 + 605 + 603
+ =z 23
2
(15)
By Young’s inequality, we have
Lv, (xl’xZ’x3)
=q [ (ry +ay) x; (t) — ax; (t— 1)
—apx; (f—1) - auxf (£) +apx; () x, (- 1)
o2
+apx, (O)x;t—-1)—1 + ?lj|
+G [ (ry + ay) x, () — ayy x, (t = 1)
—ayx5 (- 1) — azzxi (£) + ayx, () x, (E—7)
e
+ayx, () x5 (E—7) =1y + 72]
+G [ (r3 + az3) x5 (1) — agx; (F— 1)
—agx, (t-1) - a33x§ () +azx;5 () x, (t—71)
o2
+ apx; () x, (t—1)—13 + 73]
<q [ (r1 +ay;) x; () — apx, (F— 1)
—a13x3(t—1’)+< —ap; + % + @) 1(f)
a12 52 a3 2
5 (- T)+ (t—r)—r1+—]
+6 [ (ry +a5) X, (t) = Ay, %) (t = T) — a3 (t = 7)
a4 2
+ (—a22+ 71 + ?)xz (t)
1 D3 2
+ Txl( T)+—x3(t— )—r2+—]
+G [ (r3 + as3) x5 (t) — agx; (t — 1)
— %, (= 7)+ (o + 2+ 2 ) 22 0
+ —x1 (t-1)+ ﬁxi(t—r)—r3+ —]
(16)



Secondly, define
HTrrane  agc
V, (%1, %5, %3) = J [(% + 3; 3)x§ (s—1)
t
+ (%;Q + %ZOZ ) xi (s—1) 17)
+ (agcz + ag%)xf (s—r)] ds.
By Itd’s formula, we have
v, (x, x5, x3)
apc  apG\ o a;36,  Gy36\ o
(%4 + 552w o+ (3523250
a6 035G\ 2 anc  05G\ o
(5B 52
d136 | B3G\ 2
—( 1;1+ ; >x3(t—1)
_(612102 N a31¢3)x§ (t—‘r)] dt
2 2
(18)
Therefore, let
V(x1, %5, %3) = Vy (1, 5, %3) + V (1,00, %3) . (19)

Equalities (16) and (18) imply that

3
AV (x, %5, %x3) = LV (x, x5, x3) + Zci [x; (t) - 1] 0;dB; (),
i=1
(20)

where

LV (xl’xz”%)
¢ [ - xf (t) (a1 = ayy —ay3) + (ry +ayy) x, (1)
o2
—apX, (t—1)—apx; (t-1) -1 + ?1]
+G [ - xé (t) (ay, — a3y — ay3) + (ry + ayy) X, (1)
o2
—aux  (t—T)—apx; (t—1)—1, + 72]
TG [ - x§ (t) (a3 — as) — azy) + (3 + a33) x5 (1)

2
o
—ayx (t—T)—apx, (t—1) -1+ 73] <K,
(21)

where K is a positive constant. By the method similar to that
in [24], the proof is therefore completed. [

Under Assumption 1, DDE (8) has a positive equilibrium
x* = (x],x,,x;) which is globally attractive while the system
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with the stochastic perturbation has a unique global positive
solution. It is natural to ask how to estimate the distance
between the solution of the deterministic system and the

solution of the stochastic system. The following theorem gives
us an answer.

Theorem 5. Under Assumption 1, system (9) has the following
property:

1
lim sup—E

t— 00

Jt { (ay —ap —a;3)e +1

) 5 [ () - ;]

—ay - 1
+(“22 Gy — Ay3) G + [

. x,(9) =]

N (as3 — a3 —a5,) &5 + 1
2

[x; (s) - x;]z} ds

3 * 2
< 2in1 GX; 0]

(22)
where x(t) is a solution on t > T to (9) with an initial value
x() € C([-7, 0];Ri), G (i = 1,2,3) is defined in the proof
of Theorem 4, and x* = (x,,x,,x;) is the unique positive
equilibrium of system (8); namely,

X
x1 = ((a2853 — ay3a3,) 11 + (12033 + ay35,) 1
+ (a12055 + a130,) 73)
X (‘111‘122“33 4110303, — Ayy01303)
-1
—A330150p) — A1p0303) — a21a32a13) >
X
Xy = ((ay133 + ay3a31) 1y + (1,055 — a1305,) 1
+ (ay,ay3 + ay30y,) 73)
X (%1“22“33 — 110,303 — Gy01303]
-1
— O3301,0y) — Ayp0y303) — a21a32a13) >
X
x3 = ((ay,5, + apas)) 1y + (4103, +ayya3,) 1,
+(ay,a5y — a105,) 13)
x (%1‘122“33 — 110,303 — Gy01303]
-1
—a330150,) — 4103031 — 5‘21“32‘113) .
(23)

For brevity, we will give the proof in the appendix.

3. Persistence in Time Average

For convenience, we denote the unique global solution of
system (9) by x(t,&) with an initial data & € C([-7,0]; R}).
Theorem 4 shows that the solution of system (9) will remain
positive under Assumption 1. This property gives us an
opportunity to investigate how the solution varies in R;. In
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population dynamics, one of the most attractive properties is
persistence which means all species will coexist. Now we give
the definition of persistence in time average.

Definition 6. System (9) is persistent in time average, if, for
any initial data & € C([-7,0]; R3) the solution x(t, &) has the
property that

t t
0< litm inf% J x; (s)ds < lim sup— J x; (s)ds < +00
- 0 0

t— 00

(24)
as. i=1,2,3.

To prove that system (9) is persistent in time average, we
will cite a lemma. Jiang and Shi in [17] discussed a stochastic
nonautonomous logistic equation

dN (t)

=N@®)[(a®)-bE)N (@) dt+a()dB(t)], (25)

where B(t) is 1-dimensional standard Brownian motion,
N(0) = N,, and N is independent of B(t). They obtained
the following result.

Lemma 7 (see [17]). Assume that a(t),b(t), and a(t) are
bounded continuous functions defined on [0, 00), a(t) > 0,
and b(t) > 0. Then there exists a unique continuous positive
solution of (25) for any initial value N(0) = N, > 0, which is
global and represented by

t 2
N(t)=<epr [a(s)—az(s)]ds+oc(s)dB(s)})
0
1 t s OCZ(T)
x(ﬁo+Job(s)exp{Jo [a(‘r)— 5 ]d‘[

+a (1) dB (1) ]» ds)l,

t>0.
(26)
Moreover, the solution N(t) has the property that
lim logN (1) _ 0, as. (27)
t— 00 t

Remark 8. Let ¢;(t), i =
following equation:

1,2, 3, be the solution of the

dg; (t) = ¢; (t) [(r; — ay¢; (£)) dt + 0,dB; (1)],
(28)

tZO, i=1>2)3)

with initial value ¢,(0) = x;(0). From Lemma 7, we have
2
=G240, (1)

¢ (1) = b (02 ))s+0,B,(5) I t20.
(1/x;(0)) + a; _[Oe’f o; 12)s+0iBi(s) g g

(29)

5
From the result in [13], we know
2
2
lim ~ J 6. (s)ds = 12912,
t—ooft a..:
11 (30)
lim 88O o s io1,23
t— 00 t

provided Assumption 2.

Theorem 9. Under Assumptions 1 and 2, system (9) is persis-
tent in time average.

Proof. From Lemma 7, we know
x; (t)

IO r+ZI Ljei G (s=T)= (07/2))ds+a;B;(t)

(l/x 0)) +‘1uf jo (14231, 41 % (=) =(0 0} 12))du+a;Bi(s) 4 ¢

=(1) <e*0,B,(t)

« [ 1 o It T a7 /s
xi (0) 11

t t 3 2 -1
y J o LTy (4= ~(07 /D) du+0,Bi(9) ds]) '
0

(3D
From Remark 8, yields
x M) =¢; (), i=12,3. (32)
Together with Lemma 7, it is easy to obtain
r—ol2 1!
————— < liminf- J x; (s)ds,
a; t—oo t Jy (33)
1 t
lim inf 52 Og’; D0 asi=1,23

The inequality limsup, _, . (1/t) I(: x;(s)ds < +00 as.i =
1,2, 3 will be shown in Theorem 11. O

Theorem 9 shows that system (9) is persistent in time
average if the intensity of noise is small. Next we want to
obtain the limit of the solution in time average of system (9).
We begin from the lemma in [29].

Lemma 10. Let f € C[[0,00) x Q, (0,00)], F(t) € ((0,00) x
Q, R). If there exist positive constants A, and A such that

log f (1) = M - A r F©ds+F(H), t20, as, (34)
0

and lim, _, . (F(t)/t) = 0 a.s., then

liminfl th(s) ds > A a.s (35)
t—oo f 0 - AO, -



Theorem 11. Under Assumptions 1 and 2, for any initial data
& e C([-1,0]; Ri), the solution x(t,&) has the property that

N s
tlgr.}og L x;(s)ds = X;

as.i=1,2,3, (36)

where
~%

2

o
((%2“33 — ay303,) (”1 - 71) + (ay,033 + ay3a3))

2 2
o o
X <7'2 - 72) + (ay,ay3 + ay3ay,) (”3 - 73))

X (%1“22“33 = 4110x303) — 001303,

-1
T Q330150 — A130y303) — 5‘21‘132‘113) >

~%

2

o
((0215‘33 + ay305)) (”1 - 71) +(ay,a33 — ay3a5)

2 2
o o
X (”2 - 72) +(ay,ay; + ag3ay,) (”3 - ?3))

X (%1“22“33 = 4110303) — Gy 01303

-1
—A330150;) — 120303 — a21a32a13) >

~%

X3
o2
= ((a21a32 + ay03)) (”1 - 71) + (ay,a3; + ay,a5)

2 2
o o
X (”2 - 72) +(ay,ay — ap,ay,) (”3 - ?3))

X (a11a22a33 = a110303) — G 01303,
-1
—03301,0) — 120303 — %1“32“13) .
(37)

The mathematical derivations are lengthy; we will give the
proof in the appendix.

4. Nonpersistence

In this section, we will show that the system (9) is nonpersis-
tent if the intensity of the noise is big enough; however, it does
not occur to the deterministic system. First of all, we give the
definition of nonpersistence.

Definition 12. System (9) is nonpersistent, if there are positive
constants b;, b,, by such that

3
, b =
tll)ngogxi t) =0 as. (38)

Theorem 13. Under Assumption 1, if C < 0 holds, system (9)
is nonpersistent, where C = by, (r; — (of/z)) +by, (1, — (0—5/2)) +
bis(rs — (02/2)), by, > 0; by, by is defined by (B.24).
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Proof. It follows from (B.25) that
by logx, (t) + by, log x, (t) + b3 log x5 (t)
< (by Ty + bty +bys7s) t

t 3 3
-m J x; (s)ds+ ZbliGiBi )+ ZbliUi
0 i=1

i=1

3 3
< (byyTy + b7, +b37) ZbliGiBi () + ZbliUi'
i=1 i=1
(39)
Together with lim, , (B;(t)/t) = 0 and lim,_, (U;/t) =
0,i=1,2,3, we have
13
lim sup?Zbli logx; (t) < by,7, + b, 7, + bs75.  (40)
t=o0 bing
If b, 7, + b,7, + bj575 < 0 holds, it follows
3
Jim [T« @) =0 as. (41)
i=1

Hence, system (9) is nonpersistent. The proof is completed.
O

By a similar method, we can yield the following theorems.

Theorem 14. Under Assumption 1, if C < 0 holds, system (9)
is nonpersistent, where C = by, (r; — (crf/Z)) +b,,(r,— (05/2)) +
by3(r3 - (0§/2)), by, > 0, by = ((=ay 853 — ay303))/(a1305, —
a11433))bsys bys = (=130, — a1163)/(a1303) — a11033))by,.

Theorem 15. Under Assumption I, if C < 0 holds, system (9)
is nonpersistent, where C = by, (r, — (0%/2)) +bs, (1, — (05/2)) +
bys(ry - (0§/2)), byy > 0, by = ((—a3105, — a3,051)/(a1205; —
a1105,))bs3, by, = (=310, — a3,a11)/(a1,05, — a1105,))bs3.

5. Numerical Examinations

In this section, we give the numerical examinations to
illustrate above results. By the method mentioned in [30],
consider the discrete equation:

X1+l = X1k T X1k [ (11 = @11 Xy j + QX oy + A13 X3 k) At
+alsl’k\/A_t + %o‘f (eikAt - At)] ,

Xok+1 = Xok T Xk [ (ry + D1 X k-m ~ Xk T a23x3,k—m) At
+ ast’kVA_t + %a; (sikAt - At)] 5

X3k+1 = X3k T X3k [ (73 + @31 X oy + 32X oy — A33%3) At

1
+ 03€3 VAL + 50§ (5§,kAt - At)] ,
(42)
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where m represents the integer part of /At — 1. Choosing
suitable parameters in the system, by Matlab we get the
simulation figures with initial value (x,(t), x,(t), x5(t)) =
(0.7,0.3,0.9), t € [-7,0]. (For convenience we let the initial
value be a constant function; otherwise we have to give m + 1
values.) The time step At = 0.005; we always choose

ay, ap, a3 0.7 0.2 04
ay Gy a3 | =101 05 03],
az; sy Qi3 0.2 04 0.8

r 0.4
ry |=102].
13 0.3

Then a;; —a;, —a;; = 01,ay, —ay; —ay; = 0.2, a5 —
ay —az = 0.2, (x},x5,x3) = (2.2679,2.0268,1.9554). By
choosing different intensities of the noise and time delays, we
obtain the following cases to illustrate our results.

N

Case 1 (persistence). Choosing 7 = 20.2 g, = 0.04, 0, =
0.08, 03 = 0.07, then we have r; > 67/2, i = 1,2,3. Hence all
assumptions of Theorem 11 are satisfied. Figure 1 shows that
the solution fluctuates in a small zone.

Case 2 (nonpersistence (we only illustrate the first situation)).

(1) x,(t) Is Disturbed by a Big Noise, Which Leads to Nonper-
sistence. Choosing 7 = 20.2, 0, = 1.53, 0, = 0.08, 05 =
0.07, by, = 0.10, b, = 0.1143, b;; = 0.0929, then we have
;> crf, i=2,3butb,(r —(af/Z)) +by,(r,— (cr§/2))+bl3(r3 -
(a§ /2)) < 0. For convenience we shorten b; to b,.. Hence
the assumptions of Theorem 13 are satisfied, and system (9)
is nonpersistent (see Figure 2(d)). In addition, since r; >
01.2, i =2,3,x,(t), x5(t) do not tend to zero in time average by
Theorem 9. So lim, _, . x,(t) = 0 a.s. (see Figures 2(a)-2(c)).

(2) The Second Specie x,(t) Is Disturbed by the Big White
Noise, Which Leads to the Nonpersistence. Choosing 7 =
202,06, = 0.04,0, = 117,05 = 007, b, = 0.10,b, =
0.1143, by = 0.0929, then we have r; > o7, i = 1,3, but
by (r, = (07/2)) + by(r, — (03/2)) + by(r; — (03/2)) < 0. Hence
the assumptions of Theorem 13 are satisfied, and system (9)
is nonpersistent (see Figure 3(d)). In addition, since r; >
07, i = 1,3,x,(t), x;(t) do not tend to zero in time average by

Tileorem 9.So lim, _, ,x,(t) = 0 a.s. (see Figures 3(a)-3(c)).

(3) The Third Specie x5(t) Is Disturbed by the Big White Noise,
Which Leads to the Nonpersistence. Choosing 7 = 20.2, 0, =
0.04, 0, = 0.08, 0, = 1.36,b, = 0.10, b, = 0.1143, b, =
0.0929, then we have r; > criz, i =1,2,butb(r, - (0%/2)) +
by(r, - (0%/2)) + by(rs — (o§/2)) < 0. Hence the assumptions
of Theorem 13 are satisfied, and system (9) is nonpersistent
(see Figure 4(d)). In addition, since »; > 01.2, i = 1,2,
x,(t), x,(t) do not tend to zero in time average by Theorem 9.
So we have lim, _, . x5(¢) = 0 a.s. (see Figures 4(a)-4(c)).

(4) The First Two Species x,(t), x,(t) Are Disturbed by the Big
White Noises, Which Leads to the Nonpersistence. Choosing
T =202,0, =125, 0, = 101,05 = 007, b, = 0.10, b, =
0.1143, by = 0.0929, then we haver; > o7, but b, (r;—(07/2))+
by(ry = (03/2)) + by(r5 — (03/2)) < 0. Hence the assumptions
of Theorem 13 are satisfied; then system (9) is nonpersistent
(see Figure 5(d)). In addition, since r; > crg, x5(t) does
not tend to zero in time average by Theorem 9. So we have
lim, ,  x;(t) =0, i = 1,2 a.s. (see Figures 5(a)-5(c)).

(5) The First and the Third Species x,(t), x5(t) Are Disturbed
by the Big White Noises, Which Leads to the Nonpersistence.
Choosing 7 = 20.2, 0, = 1.25,0, = 0.08, 05 = 1.12, b, =
0.10, b, = 0.1143, b; = 0.0929, then we have r, > 0%,
but by(r; = (01/2)) + by(r, = (05/2)) + by(rs - (03/2)) <
0. Hence the assumptions of Theorem 13 are satisfied, and
system (9) is nonpersistent (see Figure 6(d)). In addition,
since r, > 03, x,(t) does not tend to zero in time average
by Theorem 9. So we have lim, , x;(t) = 0,i = 1,3 as.
(see Figures 6(a)-6(c)).

(6) The Last Two Species x,(t), x5(t) Are Disturbed by the
Big White Noises, Which Leads to Nonpersistence. Choosing
T =202,0, =004, 0, = 1.17, 05 = 1.36, b, = 0.10, b, =
0.1143, by = 0.0929, then we haver, > o7, but b, (r,—(07/2))+
by(r, - (0%/2)) +by(r5 - (0§/2)) < 0. Hence the assumptions
of Theorem 13 are satisfied, and system (9) is nonpersistent
(see Figure 7(d)). In addition, since r; > of, x,(t) does
not tend to zero in time average by Theorem 9. So we have
lim, _, . x;(f) =0, i = 2,3 a.s. (see Figures 7(a)-7(c)).

(7) All the Three Species x,(t), x,(t), x5(t) Are Disturbed by the
Big White Noise, Which Leads to the Nonpersistence. Choosing
T =202,0, = 125,0; = 1.01, 0, = 1.36, b, = 0.10, b, =
0.1143, by = 0.0929, then we have b, (r, — (07/2)) + by(r, —
((7§ /2)) + by(r; — (0§ /2)) < 0. Hence the assumptions of
Theorem 13 are satisfied, and system (9) is nonpersistent
(see Figure 8(d)). So we have lim, , x;(t) = 0,i = 1,2,3
a.s. (see Figures 8(a)-8(c)).

Appendices
A. Proof of Theorem 5

Proof. Define a C* function V; : R> — R, by

* * xp (¢
Vi (%1, %0, %3) = ¢ [xl (t) - x, —x, log . i )]
1
* * X, (t
+c [x2 (t) = x, — x, log ;ﬁ )] (A1)
2

* * x5 (¢
+05[x3(t)—x3—x310g ;ﬁ)]
3
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x(t) x (1)
4 4 .
| | JJ/J/
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FIGURE I: The solution (imaginary line) of system (8) and the solution (real line) of system (9) with o, = 0.04, o, = 0.08, o, = 0.07, At = 0.005.

By It6’s formula, we have

av, (xpxz)’%)

N ! %
=q [1 . (t)]dx1 ) +¢ [1 5 (t)]dx2 ()
+6 [1 - %] dx, (t) + %xfafdt

C
+ %x;cf;dt + ESx;‘agdt

=¢ [x; (1) = x; ] [(ry — ayy %, () + apx, (= 7)
+ ayx; (t - 1)) dt + 0,dB, (t)]
+6 (%, (1) = x5 | [(ry + agyxy (= T) — apx, (£)
+ ay3x; (t — 7)) dt + 0,dB, (t)]

+ [23 (8) = x5 ] [(r3 + a3 ) (¢ = T) + ag,x, (£ - 1)

— ay3x; (t)) dt + 03dBy (1)]

+ (%xfcf + %x;‘ag + %xiai)dt,
(A.2)
where
Lvy (xl,xz,x3)
=q [Xl () - XT] [”1 —ayx; (t)
+anx, (t—1)+ a;x; (t—1)]
+6 [, () = 23] [, + @y %, (£ = 7)
(A.3)

=y, () + ay3x5 (t — 7)]
+6 (x5 (1) — x5 | [r3 +agx, (F—7)
+ a3, (= T) — assx; (t)]

% 2 % 2 * 2
+ clxl O'l +C2x20'2 +C3X303
2 .
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4 ' x1(t) ' x,(t)
3t
T I
100 200 300 400 0 100 200 300 400
t t
(a) ()
b
x5 (t) AL OR2 02 (1)
4 r T T
3t
0 L . . . . . h . . .
0 100 200 300 400 0 100 200 300 400
t t
(© (d)

FIGURE 2: The solution (imaginary line) of system (8) and the solution (real line) of system (9) with o, = 1.53, 0, = 0.08, 05 = 0.07, At =

0.005.

Since x* = (x7, x5, x3) is the equilibrium point of system (8),
we have
LV (xy, x5, x3)
=¢ [x, (1) = x| [-ay, (%, (1) = x)) +ap, (x, (- 7) — x3)
+ ays (5 (t = 7) = x3)]
+6 [0 (1) = x5 ] 4y (e (= 1) = x7) —ay, (3, () — %)
+ a3 (5 (t = 7) = x3)]
+ ¢ [0 (8) = x5 ] [ag; (e (= 1) = x7)
+ag (%, (t-1) - x3)

— a3 (x5 (t) - x;)]

2
axX[ 07 + x5 05 + X300
+
2

= —ay,6[x, (t) - xf]z + a6 [x (t) - x:] [x, (¢t~ 1) - x;]

+ape [ () = x| [x; (6 -7) - x;]

+ay,6 [x, (t) —x;] [x, (t—7) - x;‘]

— ay6[x, (t) - x;]z +ay36, [x, (8) = x5 ] [oe5 (8 = 7) = x5]

+ a6 x5 (t) - x;] [x, (t-7) - xf]
+asnc [x5 () = %3] [, (E = 7) = x5 ]
— a336[x;5 (1) _x;]z

X[ 07 + X, 05 + G,X; 05
+ .
2

(A4)
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x1 (1) x,(t)

0 100 200 300 400 100 200 300 400

t t
() (b)
x3(t) AL OR2 022 (1)
4 T T T 4 T T T
3 3L
2+
1F
0l : ' ' : 0oL : : :
0 100 200 300 400 0 100 200 300 400
t t
© (d)

FIGURE 3: The solution (imaginary line) of system (8) and the solution (real line) of system (9) with o, = 0.04, 0, = 1.17, 05 = 0.07, At =
0.005.

By Young inequality, we have <22 (0 -x) + [x -1 - %],
@z [ O~ -0~ s x5 (1) = %3] [x, (£ = 7) = x3]

a,,C 12 %12
: 1;1{(x1(t)_x1) +la-n-xT}, s%;% {0 = 5) + [x, (¢ - 1) - 5]
aysc; [ () = x7 ] [x3 (8 = 7) = x5 ] (A.5)
a,5C N2 %12
= 1; 1 {(xl - xl) tlat-n- x3] } ’ Substituting (A.5) into (A.4), we yield

a6 [x, () = ;] [x, (- 1) = x{]
LV (xy, x5, x3)

416 *\2 %12
=7 {(XZ(t)_XZ) Hn -0 -x] }’ 4126 +alzﬁ)[x1(t)—xf]2

< <—a11c1 +
a6, [ X, () — x;] [x; (t—7) - x;]

a a o2
+ <—a2202 ;219 LQ) [x, (£) — x5 ]

2 2

< % (e, =) + [ t -0 - %]},

431G | 936G )
a6 (x5 (1) — x5 ] [x, (F—7) — x7] + (‘%3% T T) ENGOEEN
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1) 0
4 , , 4 2
3r 3
2t """""" T2 F e
1l ’ A \ I
ol s s s s - - - s -
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t t
(a) (b)
b,

x5(t) XORR 02 (1)
4 4 . . :
31 3
2 2t

0 100 200 300 400 0 100 200 300 400
t t

(© (d)

FIGURE 4: The solution (imaginary line) of system (8) and the solution (real line) of system (9) with 0, = 0.04, 0, = 0.08, 03 = 1.36, At =
0.005.

+ (‘721"2 N a31C3> [, (=) - %]’ N <‘121°z N a31%> [, (t-7) - x|
2 2 2 2
a5c a32c3) 12
o) — a,c, a 2
+< y Ty )let-n-x] +< o 3;%>[x2(t—T)_xz]
a136 | 436 oy e*]?
+(T+ 2 )[x3(t ) -] <“13C1 azsfa>[x t-1) -]
* 2 * 2 * 2 2 2 3 3
aX[ 07 + 60X, 05 + X, 05
+ .
2 OXIOT + X500 + ;XL On >
(A6) Pt bt 22 2 234 dt+ ) 0,dB,.
i=1
From (A.6), we have (A7)

av, (xl,xz,x3)

912G | 4136 " Define
< { (- + 2%+ 29 [, (0 - ;T
* <_a22Q + % + %) [x2 (t) - x;]z V2 (xl’ x2,x3)

t+1

¢ a . a1,C;  GayC a2

+<—a33c3+ 3; Ea —3;%> [x; (t)—x3]2 =J- {(—1; ! +—3; 3) [x,(s— 1) —x;]
t
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x,(t)
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x,()
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(d)

FIGURE 5: The solution (imaginary line) of system (8) and the solution (real line) of system (9) with o, = 1.25, 0, = 1.01, 05 = 0.07, At =

0.005.

+ <a13cl + aBCZ) [x;(s—7) —x;‘]2

2 2
a asc .
+< 2;2+ 3;3>[x1(5—‘r)—x1]2}ds.
(A.8)

Then by It6’s formula, we have
av, (xl’ xz,x3)
apc  asc €72
{2

aq,C; %12
+< 1; ! +02;Cz>[x3(t)—x3]

)+ ln @-xT’

+ a32%> [x, (t - 1) —x;]2

ag;c 12
—(—1; ! +—a2;oz>[x3(t—r)—x3]

- (@ + %) [x, (t - 7) -x;]z}dt.
2 2
(A.9)
Define
V (x1,%5,%3) = V) (%1, %5, %3) + V, (%7, %5, %3) . (A.10)

Together with (A.7) and (A.9), it implies

av (xl’x2>x3)

5 EAORESE

< {(“12‘”’13_“11)51 -1
N (a21+“23_5‘22)02_1[

3 x, (t) - x;]2
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x,(t)

100 200 300 400
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t t
@) (b)
x5(t) xi’l (t)x?2 (t)x? ®)
4 . .
3t -
100 200 300 400 0 100 200 300 400
t t
(0) (d)

FIGURE 6: The solution (imaginary line) of system (8) and the solution (real line) of system (9) with o, = 1.25, 0, = 0.08, 05 = 1.12, At =

0.005.

+ (a31+a32—a33)%—1[

5 x5 () —x;‘]2

3
dt+ ) 0,dB;.

* 2 * 2 * 2
L QX107 +6X;0 +%x303}
i=1

2
(A1)

Integrating from 0 to ¢, taking the expectation, we have

E[V ()] -V (0)

<_E Jt { (ay, —ay, ;a13)51 +1 [x, (s) - xi«]Z
0

—ay - 1
+(6’22 ay) — Gy3) €y + [

B X, (s) _x;]z

—ay - +1
+ (a33 as) aaz)% [

5 X5 (s)—x;]z}ds

cleaf + czx;ag + c3x;o'§
+ > t.

(A12)
Then we yield

EV(®)] _ V()

t t
B (a —ap—a3)q +1
2

1(* .
E? L [x, (s) - x}]*ds
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. ' xl(t) ' xz(t)
3t |
2t T T 21 ]
1t f ‘ l ]
0l s s s - . . . .
0 100 200 300 400 100 200 300 400
t t
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4 . . .
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FIGURE 7: The solution (imaginary line) of system (8) and the solution (real line) of system (9) with o, = 0.04, 0, = 1.17, 05 = 1.36, At =

0.005.

g — 1 t
3 (ay, — ay 2“23)"2 + E% J [x, (5) —x;]zds
0

G35 — 03 —ds3p) G+ 1 _1 (¢ .
_(33 312 32) G E;J [x3(s)—x3]2ds
0

cleaf + czx;ag + c3x;0§
5 .
(A.13)

Lettingt — 00, therefore we have

2

1 *
lim sup—E [x, (s) = x7]
t— o0 0 2

r {(“11 —ap—a;)g+1

N (ay — a3 —ay3) 6 + 1

. EYORE A

+ (@33 — a3 —az) ¢ +1
2

[x; (s) — x;]z} ds
< 21'3:1 Cixi*oi2

(A.14)

which is the required assertion. The proof is completed. [

B. Proof of Theorem 11

Proof. 1t is sufficient to prove

, 1t
% sliminf—J- x;(s)ds
t—oo t Jo

, (B.1)
1 * .
< lim sup— J x;(s)ds <X as. i=123.
0

t— 0o
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FIGURE 8: The solution (imaginary line) of system (8) and the solution (real line) of system (9) with o, = 1.25, 0, = 1.01, 05 = 1.36, At =

0.005.

By It6’s formula, we have

dlog x, (t)

2
o
= (rl - 71 —apx, () +apx, (t—1)+a;x; (- T)) dt

+0,dB (1),

dlogx, (t)

2
o
= (rz - 72 + ayxy (t—T) = ayx, (1) + ayx; (F— T)) dt

+0,dB, (1),

dlog x; (t)

2
o
= (”3 - 73 +agx; (t=7) +a3x, (F—7) — as3x; (f)> dt

+ 03dB; (1) .
(B.2)

Integrating both sides of (B.2) from 0 to ¢, then we have

log x, (t)

0 0
=logx, (0) + 71t +ay, J & (s)ds+ay J & (s)ds

t t—1
—-ay, J xy (s)ds +ay, J x, (s)ds
0

0

t—1
+ap J.o x;(s)ds+o0,B; (t),
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log x, (t)

0

0
=logx, (0) + 7,t + ay; J & (s)ds + ay J & (s)ds

t-7 t
+ ay, J x, (s)ds —ay, J x, (s)ds
0 0

t—-1
+ay; J x5 (s)ds +0,B, (1),
0

log x5 ()

0 0
=logx; (0) + 75t + a5 J & (s)ds +as, J & (s)ds

t—

-7 T
+ ay, J x, (s)ds +as, J x, (s)ds
0 0

t
—ay; J x5 (s)ds+0;3B5 (1),
0

(B.3)
where7; =1, — (of/z), i=1,2,3. From (33), we know
Lt 7
liminf— | x, (s)ds > — := M,
t—ooo t Jo ap
1 (! T
lim inf — J x, (s)ds = LE =N, (B.4)
tooo t Jo ay
Lt 73
liminf- | x;(s)ds> —=:=1L,.
t—oo t Jy ds;3
Hence, for any sufficiently small 0 < g <

(1/2) min{M,, Ny, L,}, there is a T;(w) > 0 such that if
> Tyw), -0/t = 1—g, (1/0) [ x,()ds = M, - ¢,

(1/1) [ xy(s)ds = Ny ey, (1/1) [ xy(s)ds = Ly — e It
follows from (B.3) that for ¢ > T, (w) + T,

0

log x, (t) = logx, (0) + 71t + ay, J x, (s)ds

0 t
+a13j X5 (s)ds—auj x; (s)ds

0

t—7

t—7

+ay, J X, (s)ds +ay; J X5 (s)ds+a,B, (t)
0 0

0

=logx, (0) + 71t + ay, J x, (s)ds

0 t
+ay, J x5 (s)ds—ay J- x; (s)ds
T 0

1 -7
+ap,(t-1) P Jo x, (s)ds
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1 t—T
+a,;(t—-1) P JO x5 (s)ds +o0,B; (t)

0

>logx; (0) + 71t +ay, J x, (s)ds

0 t
+a13j x5 (s)ds—ay, J x;(s)ds+ap, (t-1)
-7 0

X (N, —¢&)+a;(t-1)(L, —¢)+0,B ()

=[ri+an (N, —¢)+a; (L, —¢)|t

t
—-ap J x,(s)ds+o,B, (t) + S,
0

(B.5)
where
S; = logx, (0) = [a1, (N, — &) + a5, (L, —¢)] T
0 0 (B.6)
+a,, J X, (s)ds +ay; J x5 (s) ds.
We know
Jim 2B O S (B.7)
t— 0o t
From Lemma 10, we have
1 t
liminf— J x; (s)ds
t—oo t Jg
(B.8)
o+ N, —¢)+ L,-
> T a12( 1 s1) 5113( 1 81) = M,.
apn
Similarly,
1 t
lim inf—J x, (s)ds
t—oo t Jy
T, + M, —¢&)+ L, -
> L) 021( 1 51) ‘123( 1 51) =N,
ay
(B.9)

Lt
htrr_1>1£f? L x5 (s)ds

T3+ M, —¢g)+ N, -
> T3 ‘131( 1 51) aaz( 1 31) =L,
as3

Let &, = (1/2) min{M,, N,, L,, ¢}, continuing this process,
we obtain sequences {M,,}, {N,;}, {L,}, {¢,}, where

_rptap (Nt = &1) ¥ g3 (Lyy —&,1)
bl

ap
N = Tytay (M, —& 1) +ay (L, — &)
n - >
22 (B.10)
I = Ty +ay (M, ) —&,1) +as (N, —&,,)
! as3

1.
€ = 5 min {M,,N,,L,,&,_,}.
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Sequence {M,},{N,},{L,} is nondecreasing and bounded;
then we have

1 t
lim inf— J x,(s)ds > M,
t—oo f Jy

1 t
lim inf— J x,(s)ds > N,, (B.11)

t—oo t Jo

1 t

htnllggf; L x;(s)ds>L,.
Letn — o00; we derive from (B.10) that
Jime, =0 Jim M, =,

(B.12)

. ~%
lim N, = x,,

. ~%
lim L, = &5,
n— o0 n— oo

where X[,X,,X, is the unique solution of the following
equation:

—_— ~% ~% ~% _ 0
ryp—anX; TapX, +a;x; =0,

Ty + Gy X — X, +a,X; =0, (B.13)
73+ a3 %) +apX, —apX, =0,
Thus we obtain the assertion
1 (* .
lim inf - J' x;(s)ds =%, i=12,3as. (B.14)
t—oo t Jo
Next, we will prove
1 t
lim sup— J- x;(s)ds<X i=1,23as. (B.15)
t— 0o t 0

It follows from (B.2) that

t+1

t+T
d [logx1 (t)+auj X, (s—1) ds+a13j X3 (s—1) ds]
t t

= [r, —ayx; (t) +apx, (t) + a;3x; ()] dt + 0,dB, (£).
(B.16)

Integrating both sides of (B.16) from 0 to ¢, we have

t+1 T

xz(s—‘r)ds—alzj x,(s—1)ds

0

log x, (t) + a;, J

t

t+T T
+a13J- xs(s—'r)ds—alsj x;(s—1)ds
t 0
t t
=logx, (0) + 7t —ay, J x; (s)ds+ay, J x, (s)ds
0 0

t
+a; J x5 (s)ds+0,B ().
0
(B.17)
Since x;(t) > 0, i = 1,2, 3, we have
t
logx, (t) <U, +7,t —ay, J x, (s)ds
0

t

t
+ay, J X, (s)ds +ay; J X5 (s)ds+a,B, (),
0 0
(B.18)
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where

T

U, =ay, L X, (s—T)ds+ay; L x; (s —1)ds +logx, (0).
(B.19)

Similarly,

t
logx, (t) <U, + 72t —a,, J X, (s)ds
0
t t
tan j x1 (s)ds + ay; j x3(s)ds +0,B, (1),
0 0
(B.20)

where

T

U, =ay J X (s—T)ds+a23J x5 (s—1)ds +logx, (0).
0 0
(B.21)
t t
logx; (t) < Us + 75t —ass J x5 (s)ds + az J x; (s)ds
0 0
t
+ as, J X, (s)ds+03B5 (1),
0
(B.22)

where

T

U, = as L x, (s—71)ds +as, L x, (s — 1) ds +log x5 (0).
(B.23)

Let b;; be a positive constant

—y,033 — G130
12933 — 41343,
bl = —bll’
Gy303; — A330y)

—y301, — dy30,
_ TOp30yp — G134y
by =—""—"—""b,,

Gy303) — d330))
m
—Qy,033 — G130
12933 — G133
——=——b,-a
y303) — 330y,

—y301, — 30,
_ 23912 — G139
=ay by —ay ————=0

31
Gy303) — d330))

= ( (=a11055833 + Q1189305 + A5y 01305; + 330150,

-1
+a1205305) + Gy 032013 (G303, — a3305;) )bn-
(B.24)

From Lemma 3, we know b, > 0, b;; > 0, m; > 0. Since
x;(t) > 0, from (B.18)-(B.22) we have

by log x, (t) + by, log x, (t) + by; log x5 (¢)

t
= [by 7 + buF, + biFs] £ J d
[11”1 1272 13”3] m; Oxl (s)ds (B.25)

3 3
+ ZbliaiBi )+ ZbliUi'
i=1 i=1
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From (33), we know

log x; (t) 50

litm inf i=1,2,3, (B.26)
which implies
lim b, log x, (t) + b, log x, (t) + by log x5 (t) > 0.
t— o0 t
(B.27)
From
3 3
lim 2y biio;B; (? + i bl 0, (B.28)
t— 00
we have
1 (! b7, + b7, + b7 .
lim sup— J x; (s)ds < LSRR PLE R ELE R x,. (B29)
t—oo b Jo my
Similarly,
1 t
lim sup— J x, (s)ds < X,
t—oo L Jo
(B.30)

t
lim sup% J' x5 (s)ds < X;.
0

t— 00

Therefore, limsup, _, .,(1/t) f; x(s)ds < X*. The proof is
completed. O
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