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We consider an impulsive neutral fractional integrodifferential equation with infinite delay in an arbitrary Banach space 𝑋. The
existence of mild solution is established by using solution operator and Hausdorff measure of noncompactness.

1. Introduction

In recent years, fractional calculus has becomes an active
area of research due to its demonstrated applications in
widespread fields of science and engineering such asmechan-
ics, electrical engineering, medicine, biology, ecology, and
many others. The memory and hereditary properties of
various materials and processes can be described by a
differential equation with fractional order. The fractional
differential equation also describes the efficiency of nonlinear
oscillations of the earthquake. The details on the theory and
its applications can be found in [1–4] and references given
therein.

On the other hand, many real world processes and
phenomena which are subjected during their development to
short-term external influences can be modeled as impulsive
differential equation with fractional order which have been
used efficiently in modelling many practical problems. Their
duration is negligible compared with the total duration of the
entire process and phenomena. Such process is investigated
in various fields such as biology, physics, control theory,
population dynamics, economics, chemical technology, and
medicine. In addition, the improvement of the hypothesis of
the functional differential equation with infinite delay relies
on a choice of phase space. There are various phase spaces
which have been studied. Hale and Kato in [5] introduced a
common phase space P. For more details on phase space,
we refer to books by Hale and Kato [5], Hino et al. [6]
and papers [7–10]. For the study of impulsive differential

equation, we refer to papers [7, 8, 11–18] and references given
therein.

The purpose of this work is to establish the existence of
mild solution for impulsive fractional differential equation
with infinite delay:

D𝑞

𝑡
[𝑢 (𝑡) + 𝑔 (𝑡, 𝑢𝑡)] = 𝐴 [𝑢 (𝑡) + 𝑔 (𝑡, 𝑢𝑡)] + I

1−𝑞

𝑡
𝑓 (𝑡, 𝑢𝑡) ,

𝑡 ∈ 𝐽 = [0, 𝑇] , 𝑡 ̸= 𝑡𝑖

𝑢0 = 𝜑 ∈ P,

Δ𝑢 (𝑡𝑖) = 𝐼𝑖 (𝑢𝑡𝑖
) , 𝑖 = 1, 2, . . . , 𝑛, 𝑛 ∈ N,

(1)

where 0 < 𝑇 < ∞, 0 < 𝑞 < 1, 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 is a
closed and densely defined linear operator and infinitesimal
generator of a solution (resolvent) operator {𝑆𝑞(𝑡)}𝑡≥0 on
Banach space 𝑋, and D𝑞

𝑡
denotes the fractional derivative

in Caputo sense and I
1−𝑞

𝑡
denotes the Riemann-Liouville

fractional integral operator. The history 𝑢𝑡 : (−∞, 0] → 𝑋

defined by 𝑢𝑡(𝑠) = 𝑢(𝑡 + 𝑠) for 𝑠 ∈ (−∞, 0] belongs to
some abstract phase space P defined axiomatically and 𝐼𝑖 ∈

𝐶(𝑋, 𝑋) (𝑖 = 1, . . . , 𝑛); 0 ≤ 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑛 ≤ 𝑡𝑛+1 = 𝑇 are
fixed numbers and Δ𝑢(𝑡) denotes the jump of the function 𝑢

at the point 𝑡, given by Δ𝑢(𝑡) = 𝑢(𝑡
+

) − 𝑢(𝑡
−

). The functions
𝑓, 𝑔 : 𝐽 ×P → 𝑋 are appropriate functions and satisfy some
conditions to be specified later.

Hindawi Publishing Corporation
International Journal of Differential Equations
Volume 2014, Article ID 780636, 10 pages
http://dx.doi.org/10.1155/2014/780636

http://dx.doi.org/10.1155/2014/780636


2 International Journal of Differential Equations

In [13], authors have considered the following impulsive
fractional differential equation in a Banach space of the form

D𝑞

𝑡
𝑢 (𝑡) = 𝐴𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) ,

𝑞 ∈ (0, 1] , 𝑡 ∈ 𝐽 = [0, 𝑇] , 𝑡 ̸= 𝑡𝑖,

𝑢 (0) = 𝑢0,

𝑢 (𝑡
+

𝑖
) = 𝑢 (𝑡

−

𝑖
) + 𝑦𝑖, 𝑖 = 1, 2, . . . , 𝑛, 𝑛 ∈ N,

(2)

where 𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 is the infinitesimal generator of a
𝐶0-semigroup {𝑇(𝑡) : 𝑡 ≥ 0} on a Banach space, 𝑓 : 𝐽 × 𝑋 →

𝑋 is continuous, and 𝑢0,𝑦𝑖 are the element of𝑋. Authors have
established some existence and uniqueness results for system
(2) under the different assumptions on initial conditions.

In this work, we adopt the idea of Wang et al. [13] and
establish the existence of a mild solution for the problem (1)
by using the measure of noncompactness and solution oper-
ator. The tool of measure of noncompactness has been used
in linear operator theory, theory of differential and integral
equations, the fixed point theory, and many others. For an
initial study of theory of the measure of noncompactness, we
refer to book of Banaś and Goebel [19] and Akhmerov et al.
[20] and papers [9, 21–25] and references given therein.

This paper is organized as follows: In Section 2 we recall
some basic definitions, lemmas, and theorems. We will prove
the existence of amild solution for the system (1) in Section 3.
In the last section, we shall discuss an example to illustrate the
application of the abstract results.

2. Preliminaries

Now we provide some basic definitions, notations, theorems,
lemmas, and preliminary facts which will be used throughout
this paper.

Let 𝑋 be a Banach space and let 𝐶([0, 𝑇]; 𝑋) be the
Banach space of continuous functions 𝑢(𝑡) from [0, 𝑇] to
𝑋 equipped with the norm ‖𝑦‖

𝐶
= sup

𝑡∈[0,𝑇]
‖𝑦(𝑡)‖

𝑋
and

𝐿
𝑝

((0, 𝑇); 𝑋) denotes the Banach space of all Bochner-
measurable functions from (0, 𝑇) to 𝑋 with the norm

‖𝑢‖𝐿𝑝 = (∫
(0,𝑇)

‖𝑢 (𝑠)‖
𝑝

𝑋
𝑑𝑠)

1/𝑝

. (3)

Assume that 0 ∈ 𝜌(𝐴), that is, 𝐴 is invertible. Then, this
permits us to define the positive fractional power𝐴

𝛼 as closed
linear operator with domain 𝐷(𝐴

𝛼
) ⊆ 𝐻 for 𝛼 ∈ (0, 1].

Moreover, 𝐷(𝐴
𝛼

) is dense in 𝐻 with the norm
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝛼
=

󵄩󵄩󵄩󵄩𝐴
𝛼

𝑦
󵄩󵄩󵄩󵄩 . (4)

It is easy to see that 𝐷(𝐴
𝛼

) which is dense in 𝑋 is a Banach
space. Henceforth, we use 𝑋𝛼 as notation of 𝐷(𝐴

𝛼
). Also,

we have that 𝑋𝜅 󳨅→ 𝑋𝛼 for 0 < 𝛼 < 𝜅 and, therefore, the
embedding is continuous. Then, we define 𝑋−𝛼 = (𝑋𝛼)

∗, for
each 𝛼 > 0. The space 𝑋−𝛼, standing for the dual space of
𝑋𝛼, is a Banach space with the norm ‖𝑧‖−𝛼 = ‖𝐴

−𝛼
𝑧‖ for

𝑧 ∈ 𝑋−𝛼. For more details on the fractional powers of closed
linear operators, we refer to book by Pazy [26].

To consider the mild solution for the impulsive problem,
we propose that the set PC([0, 𝑇]; 𝑋) = {𝑢 : [0, 𝑇] → 𝑋 :

𝑢 is continuous at 𝑡 ̸= 𝑡𝑖 and left continuous at 𝑡 = 𝑡𝑖 and
𝑢(𝑡

+

𝑖
) exists, for all 𝑖 = 1, . . . , 𝑚}. Clearly,PC([0, 𝑇]; 𝑋) is a

Banach space endowing the norm ‖𝑢‖PC = sup
𝑡∈[0,𝑇]

‖𝑢(𝑠)‖.
For a function 𝑢 ∈ PC([0, 𝑇]; 𝑋) and 𝑖 ∈ {0, 1, . . . , 𝑚}, we
define the function 𝑢𝑖 ∈ 𝐶([𝑡𝑖, 𝑡𝑖+1], 𝑋) such that

𝑢𝑖 (𝑡) = {
𝑢 (𝑡) , for 𝑡 ∈ (𝑡𝑖, 𝑡𝑖+1] ,

𝑢 (𝑡
+

𝑖
) , for 𝑡 = 𝑡𝑖.

(5)

For 𝑊 ⊂ PC([0, 𝑇]; 𝑋) and 𝑖 ∈ {0, 1, . . . , 𝑚}, we have 𝑊𝑖 =

{𝑢𝑖 : 𝑢 ∈ 𝑊} and following Accoli-Arzelà type criteria.

Lemma 1. A set 𝐵 ⊂ PC([0, 𝑇]; 𝑋) is relatively compact in
PC([0, 𝑇]; 𝑋) if and only if each set 𝐵𝑗 (𝑗 = 1, 2, . . . , 𝑚) is
relatively compact in 𝐶([𝑡𝑗, 𝑡𝑗+1], 𝑋) (𝑗 = 0, 1, . . . , 𝑚).

For the differential equation with infinite delay, Hale
and Kato [5] proposed the phase space P satisfying certain
fundamental axioms.

Definition 2 (see [6]). A phase spaceP is a linear spacewhich
contains all the functionsmapping (−∞, 0] into Banach space
𝑋 with a seminorm ‖ ⋅ ‖P. The fundamental axioms assumed
onP are the following,

(A) If 𝑢 : (−∞, 𝑎 + 𝑇] → 𝑋, 𝑇 > 0 is a continuous
function on [𝑎, 𝑎+𝑇] such that 𝑢𝑎 ∈ P and 𝑢|[𝑎,𝑎+𝑇] ∈

P ∈ PC([𝑎, 𝑎 + 𝑇]; 𝑋), then for every 𝑡 ∈ [𝑎, 𝑎 + 𝑇),
the following conditions hold:

(i) 𝑢𝑡 ∈ P,
(ii) 𝐻‖𝑢𝑡‖P ≥ ‖𝑢(𝑡)‖,
(iii) ‖𝑢𝑡‖P ≤ 𝑁(𝑡 + 𝑎)‖𝑢𝑎‖P + 𝐾(𝑡 − 𝑎) sup{‖𝑢(𝑠)‖ :

𝑎 ≤ 𝑠 ≤ 𝑡}.

Where 𝐻 is a positive constant, 𝑁, 𝐾 : [0, ∞) →

[0, ∞), 𝑁 is a locally bounded, 𝐾 is continuous, and
𝐻, 𝑁, 𝐾 are independent of 𝑢(⋅).

(A1) For the function 𝑢 in (A1), 𝑢𝑡 is aP-valued continu-
ous function for 𝑡 ∈ [𝑎, 𝑎 + 𝑇].

(B) The spaceP is complete.

Now, we state some basic definitions and properties of
fractional calculus.

Mittag-Leffler.The definition of one parameterMittag-Leffler
function is given as

𝐸𝛼 (𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝛼𝑘 + 1)
, (6)

and two-parameter Mittag-Leffler function is defined as

𝐸𝛼,𝛽 (𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝛼𝑧 + 𝛽)
=

1

2𝜋𝑖
∫
𝐶

𝜇
𝛼−𝛽

𝑒
𝜇

𝜇𝑎 − 𝑧
𝑑𝜇,

𝛼, 𝛽 > 0, 𝑧 ∈ C,

(7)
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where 𝐶 is a contour which starts and ends at −∞ and
encircles the disc |𝜇| ≤ |𝑧|

1/2 counter clockwise. The Laplace
transform of the Mittag-leffler is defined as

𝐿 (𝑡
𝛽−1

𝐸𝛼,𝛽 (−𝜌
𝛼

𝑡
𝛼

)) =
𝜆
𝛼−𝛽

𝜆𝛼 + 𝜌𝛼
, Re 𝜆 > 𝜌

1/𝛼
, 𝜌 > 0. (8)

For more details we refer to [1].
Laplace transform of integer order derivatives is defined

as

𝐿 [𝐹
𝑛

(𝑡) ; 𝜆] = 𝜆
𝑛
𝐿 [𝐹 (𝑡)] −

𝑛−1

∑

𝑘=0

𝜆
𝑛−𝑘−1

𝐹
𝑘

(0)

= 𝜆
𝑛
𝐿 [𝐹 (𝑡)] −

𝑛−1

∑

𝑘=0

𝜆
𝑘
𝐹
𝑛−𝑘−1

(0) .

(9)

Definition 3. TheRiemann-Liouville fractional integral oper-
atorI is defined as

I
𝑞

𝑡
𝐹 (𝑡) =

1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝐹 (𝑠) 𝑑𝑠, (10)

where𝐹 ∈ 𝐿
1
((0, 𝑇); 𝑋) and 𝑞 > 0 is the order of the fractional

integration.

Definition 4. The Riemann-Liouville fractional derivative is
given as

D𝑞

𝑡
𝐹 (𝑡) = 𝐷

𝑛

𝑡
I

𝑛−𝑞

𝑡
𝐹 (𝑡) , 𝑛 − 1 < 𝑞 < 𝑛, 𝑛 ∈ N, (11)

where 𝐷
𝑛

𝑡
= 𝑑

𝑛
/𝑑𝑡

𝑛, 𝐹 ∈ 𝐿
1
((0, 𝑇); 𝑋), and I

𝑛−𝑞

𝑡
𝐹 ∈

𝑊
𝑛,1

((0, 𝑇); 𝑋). Here, the notation 𝑊
𝑛,1

((0, 𝑇); 𝑋) stands for
the Sobolev space defined as

𝑊
𝑛,1

((0, 𝑇) ; 𝑋)

= {𝑦 ∈ 𝑋 : ∃𝑧 ∈ 𝐿
1

((0, 𝑇) ; 𝑋) :

𝑦 (𝑡) =

𝑛−1

∑

𝑘=0

𝑑𝑘

𝑡
𝑘

𝑘!
+

𝑡
𝑛−1

(𝑛 − 1)!
∗ 𝑧 (𝑡) , 𝑡 ∈ (0, 𝑇)} .

(12)

Note that 𝑧(𝑡) = 𝑦
𝑛
(𝑡) and 𝑑𝑘 = 𝑦

𝑘
(0).

Definition 5. The Caputo fractional derivative is given as

D𝛼

𝑡
𝐹 (𝑡) =

1

Γ (𝑛 − 𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝛼−1

𝐹
𝑛

(𝑠) 𝑑𝑠, 𝑛 − 1 < 𝛼 < 𝑛,

(13)

where 𝐹 ∈ 𝐶
𝑛−1

((0, 𝑇); 𝑋) ∩ 𝐿
1
((0, 𝑇); 𝑋) and the following

holds

I
𝑞

𝑡
(D𝑞

𝑡
𝐹 (𝑡)) = 𝐹 (𝑡) −

𝑛−1

∑

𝑘=0

𝑡
𝑘

𝑘!
𝐹
𝑘

(0) . (14)

Definition 6 (see [27]). A family {𝑆𝑞(𝑡)}𝑡≥0 ⊂ L(𝑋) of
bounded linear operators in 𝑋 is called a resolvent (or
solution operator) generating by𝐴 if the following conditions
are fulfilled:

(1) 𝑆𝑞(𝑡) is strongly continuous on R+ and 𝑆𝑞(0) = 𝐼;
(2) for 𝑥 ∈ 𝐷(𝐴) and 𝑡 ≥ 0, 𝑆𝑞(𝑡)𝐷(𝐴) ⊂ 𝐷(𝐴) and

𝐴𝑆𝑞(𝑡)𝑥 = 𝑆𝑞(𝑡)𝐴𝑥;
(3) 𝑆𝑞(𝑡)𝑥 is the solution of the equation

𝑢 (𝑡) = 𝑥 +
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝐴𝑢 (𝑠) 𝑑𝑠,

∀𝑥 ∈ 𝐷 (𝐴) , 𝑡 ≥ 0,

(15)

where L(𝑋) denotes the space of all bounded linear opera-
tors from 𝑋 into 𝑋 endowed with the norm of operators.

Also, the solution operator 𝑆𝑞(𝑡) for (15) is defined as (see
[27])

𝜆
𝑞−1

(𝜆
𝑞
𝐼 − 𝐴)

−1
𝑥 = ∫

∞

0

𝑒
−𝜆𝑡

𝑆𝑞 (𝑡) 𝑥𝑑𝑡, Re 𝜆 > 𝜔, 𝑥 ∈ 𝑋,

(16)

where 𝜔 ≥ 0 and {𝜆
𝑞

: Re 𝜆 > 𝜔} ⊂ 𝜌(𝐴).
Let

∑ (𝜔, 𝜃) = {𝜆 ∈ C :
󵄨󵄨󵄨󵄨arg (𝜆 − 𝜔)

󵄨󵄨󵄨󵄨 < 𝜃} . (17)

Definition 7 (see [27]). A solution operator 𝑆𝑞(𝑡) is said to be
analytic if 𝑆𝑞(⋅) : R+

→ L(𝑋) admits analytic extension
to a sector ∑(0, 𝜃0) for some 0 < 𝜃0 ≤ 𝜋/2. Furthermore, An
analytic resolvent 𝑆𝑞(𝑡) is said to be of analyticity type (𝜔0, 𝜃0)

if, for 𝜃0 > 𝜃 and 𝜔0 < 𝜔, there exists 𝑀 = 𝑀(𝜔, 𝜃) such that
‖𝑆𝑞(𝑡)‖ ≤ 𝑀𝑒

𝜔Re 𝑧 for 𝑧 ∈ ∑(0, 𝜃); here Re 𝑧 means the real
part of 𝑧.

In this work, we assume that solution operator {𝑆𝑞(𝑡)}𝑡≥0

is analytic; that is, {𝑆𝑞(𝑡)}𝑡≥0 satisfy the following property.

(HA) Themap 𝑡 󳨃→ 𝑆𝑞(𝑡) is continuous from [0, 𝑇] toL(𝑋)

endowed with the uniform operator norm ‖ ⋅ ‖L(𝑋).

Without loss of generality, we have that there exist a
positive constant 𝑀 such that ‖𝑆𝑞(𝑡)‖ ≤ 𝑀, for 𝑡 ≥ 0.

Definition 8 (see [19]). The Hausdorff measure of noncom-
pactness 𝜒𝑍 is defined as

𝜒𝑍 (𝐹) = inf {𝜖 > 0 : 𝐹 can be covered by finite

number of balls with radius 𝜖} ,

(18)

for bounded set 𝐹 ⊂ 𝑍, where 𝑍 is a Banach space.

Lemma 9 (see [19]). For any bounded set 𝑈, 𝑉 ⊂ 𝑌, where 𝑌

is a Banach space. Then, the following properties are fulfilled:

(i) 𝜒𝑌(𝑈) = 0 if and only if 𝑈 is pre-compact;
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(ii) 𝜒𝑌(𝑈) = 𝜒𝑌(convU) = 𝜒Y(U), where convU and 𝑈

denotes the convex hull and closure of 𝑈, respectively;
(iii) 𝜒𝑌(𝑈) ⊂ 𝜒𝑌(𝑉), when 𝑈 ⊂ 𝑉;
(iv) 𝜒𝑌(𝑈 + 𝑉) ≤ 𝜒𝑌(𝑈) + 𝜒𝑌(𝑉), where 𝑈 + 𝑉 = {𝑢 + V :

𝑢 ∈ 𝑈, V ∈ 𝑉};
(v) 𝜒𝑌(𝑈 ∪ 𝑉) ≤ max{𝜒𝑌(𝑈), 𝜒𝑌(𝑉)};
(vi) 𝜒𝑌(𝜆𝑈) = 𝜆 ⋅ 𝜒𝑌(𝑈), for any 𝜆 ∈ R;
(vii) if the map 𝑃 : 𝐷(𝑃) ⊂ 𝑌 → Z is continuous

and satisfies the Lipschitsz condition with constant 𝜅,
then we have that 𝜒Z(𝑃𝑈) ≤ 𝜅𝜒𝑌(𝑈) for any bounded
subset 𝑈 ⊂ 𝐷(𝑃), where 𝑌 andZ are Banach space.

The details on the measure of noncompactness and its
applications can be found in a book by Banaś and Goebel [19]
and papers [9, 10, 21, 23, 24].

Lemma 10 (see [19]). A bounded and continuous map 𝑄 :

𝐷 ⊂ 𝑍 → 𝑍 is a 𝜒𝑍-contraction if there exists a constant
0 < 𝜅 < 1 such that 𝜒𝑍(𝑄(𝑈)) ≤ 𝜅𝜒𝑍(𝑈), for any bounded
closed subset 𝑈 ⊂ 𝐷, where 𝑍 is a Banach space.

Lemma 11 (see [28]). Let 𝐷 ⊂ 𝑍 be closed and convex with
0 ∈ 𝐷 and let the continuous map 𝑄 : 𝐷 → 𝐷 be a 𝜒𝑍-
contraction. If the set {𝑢 ∈ 𝐷 : 𝑢 = 𝜆𝑄𝑢, for 0 < 𝜆 < 1} is
bounded, then the map 𝑄 has a fixed point in 𝐷.

Lemma 12 ((Darbo-Sadovskii) [19]). Let 𝐷 ⊂ 𝑍 be bounded,
closed, and convex. If the continuous map 𝑄 : 𝐷 → 𝐷 is a
𝜒𝑍-contraction, then the map 𝑄 has a fixed point in 𝐷.

In this work, we consider that 𝜒 denotes the Hausdorff
measure of noncompactness in 𝑋, 𝜒𝐶 denotes the Hausdorff
measure in noncompactness of 𝐶([0, 𝑇]; 𝑋) and 𝜒PC denotes
the Hausdorffmeasure of noncompactness inPC([0, 𝑇]; 𝑋).

Lemma 13 (see [19, 21]). If𝑈 is bounded subset of𝐶([0, 𝑇]; 𝑋).
Then, one has that 𝜒(𝑈(𝑡)) ≤ 𝜒𝐶(𝑈), for all 𝑡 ∈ [0, 𝑇], where
𝑈(𝑡) = {𝑢(𝑡); 𝑢 ∈ 𝑈} ⊆ 𝑋. Furthermore, if 𝑈 is equicontinuous
on [0, 𝑇], then 𝜒(𝑈(𝑡)) is continuous on the interval [0, 𝑇] and

𝜒𝐶 (𝑈) = sup
𝑡∈[0,𝑇]

{𝜒 (𝑈 (𝑡))} . (19)

Lemma 14 (see [19]). If 𝑈 ⊂ 𝐶([0, 𝑇]; 𝑋) is bounded and
equicontinuous set, then 𝜒(𝑈(𝑡)) is continuous and

𝜒 (∫

𝑡

0

𝑈 (𝑠) 𝑑𝑠) ≤ ∫

𝑡

0

𝜒 (𝑈 (𝑠)) 𝑑𝑠, ∀𝑡 ∈ [0, 𝑇] , (20)

where ∫
𝑡

0
𝑈(𝑠)𝑑𝑠 = {∫

𝑡

0
𝑢(𝑠)𝑑𝑠, 𝑢 ∈ 𝑈}.

Lemma 15 (see [29]). (1) If 𝑈 ⊂ PC([0, 𝑇]; 𝑋) is bounded,
then 𝜒(𝑈(𝑡)) ≤ 𝜒PC(𝑈), for all 𝑡 ∈ [0, 𝑇], where 𝑈(𝑡) =

{𝑢(𝑡) : 𝑢 ∈ 𝑈} ⊂ 𝑋.
(2) If 𝑈 is piecewise equicontinuous on [0, 𝑇], then 𝜒(𝑈(𝑡))

is piecewise continuous for 𝑡 ∈ [0, 𝑇] and

𝜒PC (𝑈) = sup {𝜒 (𝑈 (𝑡)) : 𝑡 ∈ [0, 𝑇]} . (21)

(3) If 𝑈 ⊂ PC([0, 𝑇]; 𝑋) is bounded and equicontinuous,
then 𝜒(𝑈(𝑡)) is piecewise continuous for 𝑡 ∈ [0, 𝑇] and

𝜒 (∫

𝑡

0

𝑈 (𝑠) 𝑑𝑠) ≤ ∫

𝑡

0

𝜒 (𝑈 (𝑠)) 𝑑𝑠, ∀𝑡 ∈ [0, 𝑇] , (22)

where ∫
𝑡

0
𝑈(𝑠)𝑑𝑠 = {∫

𝑡

0
𝑢(𝑠)𝑑𝑠 : 𝑢 ∈ 𝑈}.

3. Main Results

In this section, we will establish the existence results of
solution for (1) by using solution operator and Hausdorff ’s
measure of noncompactness.

From [13], we adopt the following concept of solution for
impulsive differential problem (1).

Definition 16. A piecewise continuous function 𝑢 :

(−∞, 𝑇] → 𝑋 is said to be a mild solution for impulsive
problem (1) if 𝑢0 = 𝜑, 𝑢(⋅)|𝐽 ∈ PC and

𝑢 (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑆𝑞 (𝑡) [𝜑 (0) + 𝑔 (0, 𝜑)] − 𝑔 (𝑡, 𝑢𝑡)

+∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑡1] ,

𝑆𝑞 (𝑡) [𝜑 (0) + 𝑔 (0, 𝜑)] − 𝑔 (𝑡, 𝑢𝑡)

+𝑆𝑞 (𝑡 − 𝑡1) 𝐼1 (𝑢𝑡1
) + 𝑆𝑞 (𝑡 − 𝑡1)

× [𝑔 (𝑡1, 𝑢𝑡1
+ 𝐼1 (𝑢𝑡1

))

−𝑔 (𝑡1, 𝑢𝑡1
)]

+∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢𝑠) 𝑑𝑠, 𝑡 ∈ (𝑡1, 𝑡2] ,

...
𝑆𝑞 (𝑡) [𝜑 (0) + 𝑔 (0, 𝜑)] − 𝑔 (𝑡, 𝑢𝑡)

+

𝑛

∑

𝑖=1

𝑆𝑞 (𝑡 − 𝑡𝑖) 𝐼1 (𝑢𝑡𝑖
)

+

𝑛

∑

𝑖=1

𝑆𝑞 (𝑡 − 𝑡𝑖)

× [𝑔 (𝑡𝑖, 𝑢𝑡𝑖
+ 𝐼𝑖 (𝑢𝑡𝑖

)) − 𝑔 (𝑡𝑖, 𝑢𝑡𝑖
)]

+∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢𝑠) 𝑑𝑠, 𝑡 ∈ (𝑡𝑛, 𝑇] ,

(23)

where

𝑆𝑞 (𝑡) =
1

2𝜋𝑖
∫
Γ

𝑒
𝜆𝑡

𝜆
𝑞−1

𝑅 (𝜆
𝑞
, 𝐴) 𝑑𝜆. (24)

Nowwe list the following assumptions which are required
to establish main results.

(Hf) The function 𝑓 : 𝐽 × P → 𝑋 satisfies the following
conditions:

(1) the function 𝑓(⋅, 𝑢) : 𝐽 → 𝑋 is strongly
measurable for every 𝑢 ∈ P and 𝑢0 ∈ P,
𝑢|𝐽 ∈ PC;

(2) 𝑓(𝑡, ⋅) : P → 𝑋 is a continuous function for
each 𝑡 ∈ 𝐽;
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(3) there exists an integrable function 𝑚𝑓 :

[0, 𝑇] → [0, ∞) and a nondecreasing contin-
uous function Ω : [0, ∞) → (0, ∞) such that

󵄩󵄩󵄩󵄩𝑓 (𝜏, 𝑥)
󵄩󵄩󵄩󵄩 ≤ 𝑚𝑓 (𝜏) Ω (‖𝑥‖P) , 𝜏 ∈ 𝐽, 𝑥 ∈ P; (25)

(4) there exists an integrable function 𝜂 : [0, 𝑇] →

[0, ∞) such that, for any bounded set 𝐵 ⊂ P, we
have

𝜒 (𝑆𝑞 (𝜏) 𝑓 (𝜏, 𝐵)) ≤ 𝜂 (𝜏) sup
−∞≤𝜃≤0

𝜒 (𝐵 (𝜃)) ; (26)

for almost everywhere 𝜏 ∈ 𝐽, where 𝐵(𝜃) = {𝑢(𝜃) :

𝑢 ∈ 𝐵}.
(Hg) (1) For 0 < 𝛽 < 1, 𝐴

𝛽
𝑔(⋅, ⋅) is Lipschitz continuous

function for all (𝑡, V) ∈ 𝐽 × P and there exist positive
constants 𝐶1 and 𝐶2 such that

󵄩󵄩󵄩󵄩󵄩
𝐴
𝛽

𝑔 (𝑡, 𝑢)
󵄩󵄩󵄩󵄩󵄩

≤ 𝐶1‖𝑢‖P + 𝐶2; (27)

(2) there exists a constant 𝐿𝑔 > 0 such that

󵄩󵄩󵄩󵄩󵄩
𝐴
𝛽

𝑔 (𝑡, 𝑢) − 𝐴
𝛽

𝑔 (𝑡, V)
󵄩󵄩󵄩󵄩󵄩

≤ 𝐿𝑔‖𝑢 − V‖P, (28)

for all 𝑢, V ∈ P.

(HI) The functions 𝐼𝑖 : 𝑋 → 𝑋, (𝑖 = 1, . . . , 𝑛)

are continuous functions and satisfy the following
conditions:

(1) There is a constant 𝐿𝐼 > 0 such that
󵄩󵄩󵄩󵄩𝐼𝑖 (𝑢) − 𝐼𝑖 (V)

󵄩󵄩󵄩󵄩 ≤ 𝐿𝐼‖𝑢 − V‖P, ∀𝑢, V ∈ P. (29)

(2) There exist positive constants 𝐿𝑗 (𝑗 = 1, 2) such
that

󵄩󵄩󵄩󵄩𝐼𝑖 (𝑢)
󵄩󵄩󵄩󵄩 = 𝐿1‖𝑢‖P + 𝐿2, (30)

for all 𝑢 ∈ P.

(H1)

𝐾𝑇𝑀

1 − 𝜁2

∫

𝑡

0

𝑚𝑓 (𝑠) 𝑑𝑠 < ∫

∞

𝑑

𝑑𝑠

Ω (𝑠)
, (31)

where

𝜁1 = (𝑀𝐾𝑇𝐻 + 𝑁𝑇 + 𝑀𝐶1

󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

𝐾𝑇)
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩P

+ 𝐾𝑇𝐶2

󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

(𝑀 + 1) + 𝐾𝑇 (𝑛𝑀𝐿2 (1 + 𝐿𝑔)) ,

𝜁2 = [
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

𝐶1 + 𝑛𝑀𝐿1 (1 + 𝐿𝑔)] 𝐾𝑇 < 1, 𝑑 =
𝜁1

1 − 𝜁2

;

(32)

(H2)

𝐾𝑇 [
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

𝐿𝑔 + 𝑛𝑀𝐿𝐼 + 𝑀𝑛𝐿𝑔 (2 + 𝐿𝐼)] + ∫

𝑡

0

𝜂 (𝑠) 𝑑𝑠 < 1.

(33)

Now, let 𝑧 : (−∞, 𝑇] → 𝑋 be a function given by 𝑧0 = 𝜑 and
𝑧(𝑡) = 𝑆𝑞(𝑡)𝜑(0) on 𝐽. It is easy to see that ‖𝑧𝑡‖P ≤ (𝐾𝑇𝑀𝐻 +

𝑁𝑇)‖𝜑‖P, where 𝐾𝑇 = sup
0≤𝑡≤𝑇

𝐾(𝑡), 𝑁𝑇 = sup
0≤𝑡≤𝑇

𝑁(𝑡).

Theorem 17. Suppose that hypotheses (HA), (Hf), (Hg), (HI),
and (H1)-(H2) are satisfied. Then, there exists a mild solution
for the impulsive problem (1).

Proof. Consider the space 𝑆(𝑇) = {𝑢 : (−∞, 𝑇] → 𝑋 : 𝑢0 =

0, 𝑢|𝐽 ∈ P} endowed with supremum norm ‖ ⋅ ‖P. Define the
operator 𝑄 : 𝑆(𝑇) → 𝑆(𝑇) by

(𝑄𝑥) (𝑡)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

0, 𝑡 ∈ (−∞, 0]

𝑆
𝑞 (𝑡) 𝑔 (0, 𝜑) − 𝑔 (𝑡, 𝑢

𝑡
+ 𝑧

𝑡
)

+∫

𝑡

0

𝑆
𝑞 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢

𝑠
+ 𝑧

𝑠
) 𝑑𝑠, 𝑡 ∈ [0, 𝑡

1
] ,

𝑆
𝑞 (𝑡) 𝑔 (0, 𝜑) − 𝑔 (𝑡, 𝑢

𝑡
+ 𝑧

𝑡
)

+𝑆
𝑞

(𝑡 − 𝑡
1
) 𝐼

1
(𝑢

𝑡1
+ 𝑧

𝑡1
) + 𝑆

𝑞
(𝑡 − 𝑡

1
)

× [𝑔 (𝑡
1
, 𝑢

𝑡1
+ 𝑧

𝑡1
+ 𝐼

1
(𝑢

𝑡1
+ 𝑧

𝑡1
))

−𝑔 (𝑡
1
, 𝑢

𝑡1
+ 𝑧

𝑡1
)]

+∫

𝑡

0

𝑆
𝑞 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢

𝑠
+ 𝑧

𝑠
) 𝑑𝑠, 𝑡 ∈ (𝑡

1
, 𝑡

2
] ,

...
𝑆
𝑞 (𝑡) 𝑔 (0, 𝜑) − 𝑔 (𝑡, 𝑢

𝑡
+ 𝑧

𝑡
)

+

𝑛

∑

𝑖=1

𝑆
𝑞

(𝑡 − 𝑡
𝑖
) 𝐼

1
(𝑢

𝑡𝑖
+ 𝑧

𝑡𝑖
)

+

𝑛

∑

𝑖=1

𝑆
𝑞

(𝑡 − 𝑡
𝑖
)

× [𝑔 (𝑡
𝑖
, 𝑢

𝑡𝑖
+ 𝑧

𝑡𝑖
+ 𝐼

𝑖
(𝑢

𝑡𝑖
+ 𝑧

𝑡𝑖
))

−𝑔 (𝑡
𝑖
, 𝑢

𝑡𝑖
+ 𝑧

𝑡𝑖
)]

+∫

𝑡

0

𝑆
𝑞 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢

𝑠
+ 𝑧

𝑠
) 𝑑𝑠, 𝑡 ∈ (𝑡

𝑛
, 𝑇] ,

(34)

and we have that
󵄩󵄩󵄩󵄩𝑢𝑡 + 𝑧𝑡

󵄩󵄩󵄩󵄩P

≤
󵄩󵄩󵄩󵄩𝑢𝑡

󵄩󵄩󵄩󵄩P
+

󵄩󵄩󵄩󵄩𝑧𝑡
󵄩󵄩󵄩󵄩P

,

≤ 𝐾 (𝑡) sup {‖𝑢 (𝑠)‖ : 0 ≤ 𝑠 ≤ 𝑡} + 𝑁 (𝑡)
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩P

+ 𝐾 (𝑡) sup {‖𝑧 (𝑠)‖ : 0 ≤ 𝑠 ≤ 𝑡} + 𝑁 (𝑡)
󵄩󵄩󵄩󵄩𝑧0

󵄩󵄩󵄩󵄩P
,

≤ 𝐾 (𝑡) ‖𝑢‖𝑡 + 𝐾 (𝑡) 𝑀𝐻
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩P
+ 𝑁 (𝑡)

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩P

,

≤ (𝐾𝑇𝑀𝐻 + 𝑁𝑇)
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩P
+ 𝐾𝑇‖𝑢‖𝑡,

(35)

where ‖𝑢‖𝑡 = sup
0≤𝑠≤𝑡

‖𝑢(𝑠)‖. Thus, 𝑄 is well defined and
with the values in 𝑆(𝑇) by our assumptions. By Lebesgue
dominated convergence theorem, axioms of phase space
and assumptions (Hf), (Hg), and (HI), it is clear that 𝑄 is
continuous map. Furthermore, by uniformly continuity of
the map 𝑡 󳨃→ 𝑆𝑞(𝑡) on (0, 𝑇], we obtain that set 𝑄(𝑆(𝑇)) is
equicontinuous. We prove the result in following steps.

Step 1. The set {𝑢 ∈ PC : 𝑢 = 𝜆𝑄𝑢, for 0 < 𝜆 < 1} is
bounded.

Let 𝑢𝜆 be a solution of 𝑢 = 𝜆𝑄𝑢 for 0 < 𝜆 < 1. Therefore,
we have that

󵄩󵄩󵄩󵄩𝑢𝜆𝑡 + 𝑧𝑡
󵄩󵄩󵄩󵄩P

≤ (𝐾𝑇𝑀𝐻 + 𝑁𝑇)
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩P
+ 𝐾𝑇

󵄩󵄩󵄩󵄩𝑢𝜆

󵄩󵄩󵄩󵄩𝑡
. (36)
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Take V𝜆(𝑡) = (𝐾𝑇𝑀𝐻 + 𝑁𝑇)‖𝜑‖P + 𝐾𝑇‖𝑢𝜆‖
𝑡
, for 𝑡 ∈ 𝐽. Then,

we get that for 𝑡 ∈ [0, 𝑡1]

󵄩󵄩󵄩󵄩𝑢𝜆 (𝑡)
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝜆𝑄𝑢𝜆 (𝑡)
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑄𝑢𝜆 (𝑡)
󵄩󵄩󵄩󵄩 ,

≤ 𝑀
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

(𝐶1

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩P

+ 𝐶2) +
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

(𝐶1V𝜆 (𝑡) + 𝐶2)

+ 𝑀 ∫

𝑡

0

𝑚𝑓 (𝑠) Ω (V𝜆 (𝑠)) 𝑑𝑠.

(37)

For 𝑡 ∈ (𝑡1, 𝑡2], we have

󵄩󵄩󵄩󵄩𝑢𝜆 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝑀

󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

(𝐶1

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩P

+ 𝐶2)

+
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

(𝐶1V𝜆 (𝑡) + 𝐶2) + 𝑀
󵄩󵄩󵄩󵄩𝐼1 (V𝜆 (𝑡1))

󵄩󵄩󵄩󵄩

+ 𝑀
󵄩󵄩󵄩󵄩𝑔 (𝑡1, V𝜆 (𝑡1) + 𝐼1 (V𝜆 (𝑡1))) − 𝑔 (𝑡1, V𝜆 (𝑡1))

󵄩󵄩󵄩󵄩

+ 𝑀 ∫

𝑡

0

𝑚𝑓 (𝑠) Ω (V𝜆 (𝑠)) 𝑑𝑠,

≤ 𝑀
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

(𝐶1

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩P

+ 𝐶2) +
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

(𝐶1V𝜆 (𝑡) + 𝐶2)

+ 𝑀 (𝐿1 (V𝜆 (𝑡)) + 𝐿2)

+ 𝑀𝐿𝑔 (𝐿1V𝜆 (𝑡) + 𝐿2)

+ 𝑀 ∫

𝑡

0

𝑚𝑓 (𝑠) Ω (V𝜆 (𝑠)) 𝑑𝑠.

(38)

For 𝑡 ∈ (𝑡𝑛, 𝑇],

󵄩󵄩󵄩󵄩𝑢𝜆 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝑀

󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

(𝐶1

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩P

+ 𝐶2) +
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

(𝐶1V𝜆 (𝑡) + 𝐶2)

+ 𝑛𝑀 (𝐿1 (V𝜆 (𝑡)) + 𝐿2) + 𝑛𝑀𝐿𝑔 (𝐿1V𝜆 (𝑡) + 𝐿2)

+ 𝑀 ∫

𝑡

0

𝑚𝑓 (𝑠) Ω (V𝜆 (𝑠)) 𝑑𝑠.

(39)

Therefore, for all 𝑡 ∈ [0, 𝑇] = 𝐽, we have

󵄩󵄩󵄩󵄩𝑢𝜆 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝑀

󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

(𝐶1

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩P

+ 𝐶2)

+
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

(𝐶1V𝜆 (𝑡) + 𝐶2) + 𝑛𝑀𝐿1 (1 + 𝐿𝑔) V𝜆 (𝑡)

+ 𝑛𝑀𝐿2 (1 + 𝐿𝑔) + 𝑀 ∫

𝑡

0

𝑚𝑓 (𝑠) Ω (V𝜆 (𝑠)) 𝑑𝑠,

≤ 𝑀
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

(𝐶1

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩P

+ 𝐶2)

+
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

𝐶2 + 𝑛𝑀𝐿2 (1 + 𝐿𝑔)

+ (
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

𝐶1 + 𝑛𝑀𝐿1 (1 + 𝐿𝑔)) V𝜆 (𝑡)

+ 𝑀 ∫

𝑡

0

𝑚𝑓 (𝑠) Ω (V𝜆 (𝑠)) 𝑑𝑠.

(40)

From V𝜆(𝑡) = (𝐾𝑇𝑀𝐻 + 𝑁𝑇)‖𝜑‖P + 𝐾𝑇‖𝑢𝜆‖
𝑡
, it implies that

V𝜆 (𝑡) ≤ (𝑀𝐾𝑇𝐻 + 𝑁𝑇 + 𝑀
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

𝐶1𝐾𝑇)
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩P

+ 𝐾𝑇

󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

𝐶2 (𝑀 + 1) + 𝐾𝑇 (𝑛𝑀𝐿2 (1 + 𝐿𝑔))

+ 𝐾𝑇 (
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

𝐶1 + 𝑛𝑀𝐿1 (1 + 𝐿𝑔)) V𝜆 (𝑡)

+ 𝑀𝐾𝑇 ∫

𝑡

0

𝑚𝑓 (𝑠) Ω (V𝜆 (𝑠)) 𝑑𝑠,

(41)

and consequently,

V𝜆 (𝑡) ≤
𝜁1

1 − 𝜁2

+
𝑀𝐾𝑇

1 − 𝜁2

∫

𝑡

0

𝑚𝑓 (𝑠) Ω (V𝜆 (𝑠)) 𝑑𝑠,

= 𝑑 +
𝑀𝐾𝑇

1 − 𝜁2

∫

𝑡

0

𝑚𝑓 (𝑠) Ω (V𝜆 (𝑠)) 𝑑𝑠,

(42)

where

𝜁1 = (𝑀𝐾𝑇𝐻 + 𝑁𝑇 + 𝑀𝐶1

󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

𝐾𝑇)
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩P

+ 𝐾𝑇

󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

𝐶2 (𝑀 + 1) + 𝑛𝐾𝑇𝑀𝐿2 (1 + 𝐿𝑔) ,

𝜁2 = 𝐾𝑇 [
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

𝐶1 + 𝑛𝑀𝐿1 (1 + 𝐿𝑔)] .

(43)

Let 𝜉𝜆(𝑡) = 𝑑 + (𝑀𝐾𝑇/(1 − 𝜁2)) ∫
𝑡

0
𝑚𝑓(𝑠)Ω(𝜉𝜆(𝑠))𝑑𝑠. Thus

𝜉𝜆(0) = 𝑑. Therefore, we get

𝜉
󸀠

𝜆
(𝑡)

Ω (𝜉𝜆 (𝑡))
≤

𝐾𝑇𝑀

1 − 𝜁2

𝑚𝑓 (𝑡) . (44)

Integrating above inequality we have that

∫

𝜉𝜆(𝑡)

𝑑

𝑑𝑠

Ω (𝑠)
≤

𝐾𝑇𝑀

1 − 𝜁2

∫

𝑡

0

𝑚𝑓 (𝑠) 𝑑𝑠 < ∫

∞

𝑑

𝑑𝑠

Ω (𝑠)
. (45)

It gives that the functions 𝜉𝜆(𝑡) are bounded on interval 𝐽.
Therefore, the functions V𝜆(𝑡) are bounded and 𝑢𝜆(⋅) are also
bounded on 𝐽.

Step 2. The map 𝑄 is a 𝜒-contraction.
Firstly, we introduce decomposition of 𝑄 into 𝑄 = 𝑄1 +

𝑄2, for 𝑡 ≥ 0 such that

𝑄1𝑢 (𝑡) =

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

𝑆𝑞 (𝑡) 𝑔 (0, 𝜑) − 𝑔 (𝑡, 𝑢𝑡 + 𝑧𝑡) ,

𝑡 ∈ [0, 𝑡1] ,

𝑆𝑞 (𝑡) 𝑔 (0, 𝜑) − 𝑔 (𝑡, 𝑢𝑡 + 𝑧𝑡)

+

𝑚

∑

𝑖=1

𝑆𝑞 (𝑡 − 𝑡𝑖) 𝐼𝑖 (𝑢𝑡𝑖
+ 𝑧𝑡𝑖

) +

𝑚

∑

𝑖=1

𝑆𝑞 (𝑡 − 𝑡𝑖)

× [𝑔 (𝑡𝑖, 𝑢𝑡𝑖
+ 𝑧𝑡𝑖

+ 𝐼𝑖 (𝑢𝑡𝑖
+ 𝑧𝑡𝑖

))

−𝑔 (𝑡𝑖, 𝑢𝑡𝑖
+ 𝑧𝑡𝑖

)] ,

𝑡 ∈ (𝑡𝑚, 𝑡𝑚+1] , 𝑚 = 1, 2, 3, . . . , 𝑛;

𝑄2𝑢 (𝑡) = ∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢𝑠 + 𝑧𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] .

(46)
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To prove the result, we firstly show that 𝑄1 is Lipschitz
continuous. For 𝑥1, 𝑥2 ∈ 𝑆(𝑇) and 𝑡 ∈ [0, 𝑡1], we have that

󵄩󵄩󵄩󵄩𝑄1𝑥1 (𝑡) − 𝑄1𝑥2 (𝑡)
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝑥1𝑡
+ 𝑧𝑡) − 𝑔 (𝑡, 𝑥2𝑡

+ 𝑧𝑡)
󵄩󵄩󵄩󵄩 ,

≤
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

𝐿𝑔

󵄩󵄩󵄩󵄩𝑥1𝑡
− 𝑥2𝑡

󵄩󵄩󵄩󵄩 .

(47)

For 𝑡 ∈ (𝑡𝑚, 𝑡𝑚+1], 𝑚 = 1, 2, . . . , 𝑛 we have
󵄩󵄩󵄩󵄩𝑄1𝑥1 (𝑡) − 𝑄1𝑥2 (𝑡)

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

𝐿𝑔

󵄩󵄩󵄩󵄩𝑥1𝑡
− 𝑥2𝑡

󵄩󵄩󵄩󵄩P
+ 𝑚𝑀𝐿𝐼

󵄩󵄩󵄩󵄩𝑥1𝑡
− 𝑥2𝑡

󵄩󵄩󵄩󵄩P

+ 𝑀𝑚𝐿𝑔 (2 + 𝐿𝐼)
󵄩󵄩󵄩󵄩𝑥1𝑡

− 𝑥2𝑡

󵄩󵄩󵄩󵄩P
,

= 𝐾𝑇 [
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

𝐿𝑔 + 𝑚𝑀𝐿𝐼 + 𝑀𝑚𝐿𝑔 (2 + 𝐿𝐼)]

×
󵄩󵄩󵄩󵄩𝑥1 − 𝑥2

󵄩󵄩󵄩󵄩𝑇
.

(48)

Thus for 𝑡 ∈ [0, 𝑇] we have
󵄩󵄩󵄩󵄩𝑄1𝑥1 (𝑡) − 𝑄1𝑥2 (𝑡)

󵄩󵄩󵄩󵄩

≤ 𝐾𝑇 [
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

𝐿𝑔 + 𝑛𝑀𝐿𝐼 + 𝑀𝑛𝐿𝑔 (2 + 𝐿𝐼)]

×
󵄩󵄩󵄩󵄩𝑥1 − 𝑥2

󵄩󵄩󵄩󵄩𝑇
.

(49)

Taking supremum on [0, 𝑇], we get
󵄩󵄩󵄩󵄩𝑄1𝑥1 − 𝑄1𝑥2

󵄩󵄩󵄩󵄩𝑇

≤ 𝐾𝑇 [
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

𝐿𝑔 + 𝑛𝑀𝐿𝐼 + 𝑀𝑛𝐿𝑔 (2 + 𝐿𝐼)]

×
󵄩󵄩󵄩󵄩𝑥1 − 𝑥2

󵄩󵄩󵄩󵄩𝑇
.

(50)

Hence, it implies that𝑄1 satisfies the Lipschitz conditionwith
Lipschitz constant 𝐿, where 𝐿 = 𝐾𝑇[‖𝐴

−𝛽
‖𝐿𝑔 + 𝑛𝑀𝐿𝐼 +

𝑀𝑛𝐿𝑔(2 + 𝐿𝐼)].
Therefore, from Lemma 9 (vii), we have that for any

bounded set 𝐵 ∈ PC

𝜒PC (𝑄1𝐵) ≤ 𝐿𝜒PC (𝐵) . (51)

Next, we show that 𝑄2 is a 𝜒-contraction. Let 𝐵 be an
arbitrary bounded subset 𝑆(𝑇). Since 𝑆𝑞(𝑡) is equicontinuous
solution operator, therefore 𝑆𝑞(𝑡 − 𝑠)𝑓(𝑠, 𝑢𝑠 + 𝑧𝑠) is piecewise
continuous. From Lemma 9, we have that for any bounded
set 𝐵 ∈ PC,

𝜒 (𝑄2𝐵 (𝑡)) = 𝜒 (∫

𝑡

0

𝑆𝑞 (𝑡 − 𝑠) 𝑓 (𝑠, 𝐵𝑠 + 𝑧𝑠) 𝑑𝑠)

≤ ∫

𝑡

0

𝜂 (𝑠) sup
−∞<𝜔≤0

𝜒 (𝐵 (𝑠 + 𝜔) + 𝑧 (𝑠 + 𝜔)) 𝑑𝑠

≤ ∫

𝑡

0

𝜂 (𝑠) sup
0≤𝜏≤𝑠

𝜒 (𝐵 (𝜏)) 𝑑𝑠

≤ 𝜒PC (𝐵) ∫

𝑡

0

𝜂 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] .

(52)

Thus for any bounded set 𝐵 ∈ PC

𝜒PC (𝑄𝐵) = 𝜒PC (𝑄1𝐵 + 𝑄2𝐵)

≤ 𝜒PC (𝑄1𝐵) + 𝜒PC (𝑄2𝐵)

≤ (𝐿 + ∫

𝑡

0

𝜂 (𝑠) 𝑑𝑠) 𝜒PC (𝐵) .

(53)

By the assumption (H2), we obtain that 𝜒PC(𝑄𝐵) < 𝜒PC(𝐵);
that is, 𝑄 is a contraction. Therefore, 𝑄 has at least one fixed
point in𝐵 byDarbo fixed point theorem. Let𝑢 be a fixed point
of 𝑄 on 𝑆(𝑇), then 𝑦 = 𝑢 + 𝑧 is a mild solution for (1).

Theorem 18. Suppose that (Hf), (Hg), and (HI) are satisfied
and

𝐾𝑇 [
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

𝐶1 + 𝑛𝑀𝐿1 (1 + 𝐿𝑔)]

+ ∫

𝑇

0

𝑚𝑓 (𝑠) 𝑑𝑠 lim
𝜏→∞

sup Ω (𝜏)

𝜏
< 1.

(54)

Then, there exists a mild solution for the impulsive problem (1).

Proof. Proceeding as in the proof ofTheorem 17, we infer that
𝑄 defined by (34) is continuous from 𝑆(𝑇) into 𝑆(𝑇). Next we
indicate that there exists 𝑟 > 0 such that 𝑄(𝐵𝑟) ⊂ 𝐵𝑟, where 𝐵

is defined by 𝐵𝑟 = {𝑢 ∈ 𝑆(𝑇) : ‖𝑢‖𝑇 ≤ 𝑟}. To this end, let us
assume that assertion is false, then for any 𝑟 > 0 there exists
𝑢𝑟 ∈ 𝐵𝑟 and 𝑡𝑟 ∈ 𝐽 such that 𝑟 < ‖𝑄𝑢𝑟(𝑡𝑟)‖. Therefore, for
𝑡𝑟 ∈ [0, 𝑡1] and 𝑢𝑟 ∈ 𝐵𝑟,

𝑟 <
󵄩󵄩󵄩󵄩𝑄𝑢𝑟 (𝑡𝑟)

󵄩󵄩󵄩󵄩 ≤ 𝑀
󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝜑)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑔 (𝑡, 𝑢𝑟𝑡𝑟

+ 𝑧𝑡𝑟
)
󵄩󵄩󵄩󵄩󵄩

+ 𝑀 ∫

𝑡

0

𝑚𝑓 (𝑠) Ω (
󵄩󵄩󵄩󵄩𝑢𝑟𝑠

+ 𝑧𝑠
󵄩󵄩󵄩󵄩) 𝑑𝑠,

≤ 𝑀
󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝜑)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

(𝐶1

󵄩󵄩󵄩󵄩󵄩
𝑢𝑟𝑡𝑟

+ 𝑧𝑡𝑟

󵄩󵄩󵄩󵄩󵄩P
+ 𝐶2)

+ 𝑀 ∫

𝑡

0

𝑚𝑓 (𝑠) Ω (
󵄩󵄩󵄩󵄩𝑢𝑟𝑠

+ 𝑧𝑠
󵄩󵄩󵄩󵄩) 𝑑𝑠,

≤ 𝑀
󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝜑)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

× (𝐶1 (𝐾𝑇𝑀𝐻 + 𝑁𝑇)
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩P
+ 𝐶1𝐾𝑇𝑟 + 𝐶2)

+ 𝑀 ∫

𝑡

0

𝑚𝑓 (𝑠) 𝑑𝑠Ω ((𝐾𝑇𝑀𝐻 + 𝑁𝑇)
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩P
+ 𝐾𝑇𝑟)

= 𝑟0.

(55)
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For 𝑡𝑟 ∈ (𝑡1, 𝑡2], we have

𝑟 <
󵄩󵄩󵄩󵄩𝑄𝑢𝑟 (𝑡𝑟)

󵄩󵄩󵄩󵄩 ≤ 𝑀
󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝜑)

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

(𝐶1

󵄩󵄩󵄩󵄩󵄩
𝑢𝑟𝑡𝑟

+ 𝑧𝑡𝑟

󵄩󵄩󵄩󵄩󵄩P
+ 𝐶2)

+ 𝑀 (𝐿1

󵄩󵄩󵄩󵄩󵄩
𝑢𝑟𝑡𝑟

+ 𝑧𝑡𝑟

󵄩󵄩󵄩󵄩󵄩P
+ 𝐿2)

+ 𝑀𝐿𝑔 (𝐿1

󵄩󵄩󵄩󵄩󵄩
𝑢𝑟𝑡𝑟

+ 𝑧𝑡𝑟

󵄩󵄩󵄩󵄩󵄩P
+ 𝐿2)

+ 𝑀 ∫

𝑡

0

𝑚𝑓 (𝑠) Ω (
󵄩󵄩󵄩󵄩𝑢𝑟𝑠

+ 𝑧𝑠
󵄩󵄩󵄩󵄩) 𝑑𝑠,

≤ 𝑀
󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝜑)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

× (𝐶1 (𝐾𝑇𝑀𝐻 + 𝑁𝑇)
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩P
+ 𝐶1𝐾𝑇𝑟 + 𝐶2)

+ 𝑀 (𝐿1 (𝐾𝑇𝑀𝐻 + 𝑁𝑇)
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩P
+ 𝐿1𝐾𝑇𝑟 + 𝐿2)

+ 𝑀𝐿𝑔 (𝐿1 (𝐾𝑇𝑀𝐻 + 𝑁𝑇)
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩P
+ 𝐿1𝐾𝑇𝑟 + 𝐿2)

+ 𝑀 ∫

𝑡

0

𝑚𝑓 (𝑠) 𝑑𝑠Ω ((𝐾𝑇𝑀𝐻 + 𝑁𝑇)
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩P
+ 𝐾𝑇𝑟) ,

= 𝑟1.

(56)

For 𝑡𝑟 ∈ (𝑡𝑛, 𝑇], we have

𝑟 <
󵄩󵄩󵄩󵄩𝑄𝑢𝑟 (𝑡𝑟)

󵄩󵄩󵄩󵄩 ≤ 𝑀
󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝜑)

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

(𝐶1 (𝐾𝑇𝑀𝐻 + 𝑁𝑇)
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩P
+ 𝐶1𝐾𝑇𝑟 + 𝐶2)

+ 𝑛𝑀 (𝐿1 (𝐾𝑇𝑀𝐻 + 𝑁𝑇)
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩P
+ 𝐿1𝐾𝑇𝑟 + 𝐿2)

+ 𝑛𝑀𝐿𝑔 (𝐿1 (𝐾𝑇𝑀𝐻 + 𝑁𝑇)
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩P
+ 𝐿1𝐾𝑇𝑟 + 𝐿2)

+ 𝑀 ∫

𝑡

0

𝑚𝑓 (𝑠) 𝑑𝑠Ω ((𝐾𝑇𝑀𝐻 + 𝑁𝑇)
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩P
+ 𝐾𝑇𝑟) ,

= 𝑟𝑛,

(57)

which implies that 𝑟 < max{𝑟0, 𝑟1, . . . , 𝑟𝑛}. Therefore, we
conclude that

𝑟 < 𝑀
󵄩󵄩󵄩󵄩𝑔 (𝑡, 𝜑)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

× (𝐶1 (𝐾𝑇𝑀𝐻 + 𝑁𝑇)
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩P
+ 𝐶1𝐾𝑇𝑟 + 𝐶2)

+ 𝑛𝑀 (𝐿1 (𝐾𝑇𝑀𝐻 + 𝑁𝑇)
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩P
+ 𝐿1𝐾𝑇𝑟 + 𝐿2)

+ 𝑛𝑀𝐿𝑔 (𝐿1 (𝐾𝑇𝑀𝐻 + 𝑁𝑇)
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩P
+ 𝐿1𝐾𝑇𝑟 + 𝐿2)

+ 𝑀 ∫

𝑡

0

𝑚𝑓 (𝑠) 𝑑𝑠Ω ((𝐾𝑇𝑀𝐻 + 𝑁𝑇)
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩P
+ 𝐾𝑇𝑟) .

(58)

We divide both the sides of (58) by 𝑟 and letting 𝑟 → ∞, we
obtain that

1 < 𝐾𝑇 [
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

𝐶1 + 𝑛𝑀𝐿1 + 𝑛𝑀𝐿𝑔𝐿1]

+ 𝑀 ∫

𝑇

0

𝑚𝑓 (𝑠) 𝑑𝑠

× lim
𝑟→∞

sup
Ω ((𝐾𝑇𝑀𝐻 + 𝑁𝑇)

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩P

+ 𝐾𝑇𝑟)

𝑟
,

< 𝐾𝑇 [
󵄩󵄩󵄩󵄩󵄩
𝐴
−𝛽󵄩󵄩󵄩󵄩󵄩

𝐶1 + 𝑛𝑀𝐿1 (1 + 𝐿𝑔)]

+ ∫

𝑇

0

𝑚𝑓 (𝑠) 𝑑𝑠 lim
𝜏→∞

sup Ω (𝜏)

𝜏
.

(59)

This contradicts the inequality (54). Hence, there exists a
positive constant 𝑟 > 0 such that 𝑄(𝐵𝑟) ⊂ 𝐵𝑟. Moreover, by
uniform continuity of the map 𝑡 󳨃→ 𝑆𝑞(𝑡) on (0, 𝑇], we have
that set 𝑄(𝐵𝑟) is equicontinuous. As the proof ofTheorem 17,
we infer that system (1) has a mild solution.

4. Example

In this section, we consider an example to illustrate the
application of the theory. Here we take the space𝐶0×𝐿

2
(ℎ, 𝑋)

as the phase spaceP (see, [7]).
Now we study the following fractional differential equa-

tion with infinite delay:
𝑑
𝑞

𝑑𝑡𝑞
[𝑢 (𝑡, 𝑥) + ∫

𝑡

−∞

∫

𝜋

0

𝑏 (𝑡 − 𝑠, 𝜇, 𝑥) 𝑢 (𝑠, 𝜇) 𝑑𝜇 𝑑𝑠]

=
𝜕
2

𝑑𝑥2
[𝑢 (𝑡, 𝑥) + ∫

𝑡

−∞

∫

𝜋

0

𝑏 (𝑡 − 𝑠, 𝜇, 𝑥) 𝑢 (𝑠, 𝜇) 𝑑𝜇 𝑑𝑠]

+ I
1−𝑞

𝑡
∫

𝑡

−∞

𝑓 (𝑡, 𝑡 − 𝑠, 𝑥, 𝑢 (𝑠, 𝑥)) 𝑑𝑠,

𝑡 ∈ [0, 𝑇] , 𝑥 ∈ [0, 𝜋] ,

𝑢 (𝑡, 0) = 𝑢 (𝑡, 𝜋) = 0, 0 ≤ 𝑡 ≤ 𝑇,

𝑢 (𝜏, 𝑥) = 𝜑 (𝜏, 𝑥) , 0 ≥ 𝜏, 𝑥 ∈ [0, 𝜋] ,

Δ𝑢 (𝑡𝑘, 𝑥) = ∫

𝑡𝑘

−∞

𝑎𝑘 (𝑡𝑘 − 𝑠) 𝑢 (𝑠, 𝑥) 𝑑𝑠, 𝑘 = 1, 2, . . . , 𝑛,

(60)

where 𝜑 ∈ 𝐶0 × 𝐿
2
(ℎ; 𝑋) and 0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑛 < 𝑡𝑛+1 = 𝑇 are

prefixed numbers. Let𝑋 = 𝐿
2
[0, 𝜋] and consider the operator

𝐴 : 𝐷(𝐴) ⊂ 𝑋 → 𝑋 as 𝐴V = V󸀠󸀠 with the domain

𝐷 (𝐴) = {V ∈ 𝑋 : V, V󸀠 are absolutely continuous and V󸀠󸀠 ∈𝑋,

V (0) = 0 = V (𝜋) } .

(61)
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Then,

𝐴 =

∞

∑

𝑛=1

𝑛
2

(V, V𝑛) V𝑛, V ∈ 𝐷 (𝐴) , (62)

Here V𝑛(𝑥) = √(2/𝜋) sin(𝑛𝑥), 𝑛 ∈ N is the orthogonal set
of eigenvectors of 𝐴. It is clear that 𝐴 is the infinitesimal
generator of an analytic semigroup {𝑆(𝑡)}𝑡≥0 in 𝑋 which is
given by

𝑆 (𝑡) V =

∞

∑

𝑛=1

𝑒
−𝑛
2
𝑡

(V, V𝑛) V𝑛, ∀V ∈ 𝑋, 𝑡 > 0. (63)

By Theorem 3.1 in [27], we get that 𝐴 is the infinitesimal
generator of solution operator {𝑆𝑞(𝑡)}𝑡≥0 and there exists a
positive constant 𝑀 such that ‖𝑆𝑞(𝑡)‖

L(𝑋)
≤ 𝑀 for 𝑡 ∈ [0, 𝑇].

The functions 𝑏, 𝑓, 𝑎𝑘 satisfy the following conditions:
(1) the functions 𝑏(𝑠, 𝜇, 𝑥), (𝜕𝑏/𝜕𝑥)(𝑠, 𝜇, 𝑥) are measur-

able such that 𝑏(𝑠, 𝜇, 𝜋) = 𝑏(𝑠, 𝜇, 0) = 0 and

𝐿𝑔

= max
{

{

{

(∫

𝜋

0

∫

0

−∞

∫

𝜋

0

1

ℎ (𝑠)
(

𝜕
𝑖
𝑏 (𝑠, 𝜇, 𝑥)

𝜕𝑥𝑖
)

2

𝑑𝜇 𝑑𝑠 𝑑𝑥)

1/2

:

𝑖 = 0, 1

}

}

}

< ∞;

(64)

(2) 𝑓 : R4
→ R is continuous and there exist a 𝜂 :

𝐶(R2
,R) such that

󵄩󵄩󵄩󵄩𝑓 (𝑡1, 𝑡2, 𝑥, 𝑢)
󵄩󵄩󵄩󵄩 ≤ 𝜂 (𝑡1, 𝑡2) ‖𝑢‖ , (𝑡1, 𝑡2, 𝑥, 𝑢) ∈ R

4
; (65)

(3) the functions 𝑎𝑘 : [0, ∞) → R, 𝑘 = 1, 2, . . . , 𝑛 are
continuous and

𝐿𝐼 = (∫

0

−∞

(𝑎𝑘 (𝑠))
2

ℎ (𝑠)
𝑑𝑠)

1/2

< ∞. (66)

The impulsive system (60) might be reformulated as the
abstract impulsive Cauchy problem (1) where

𝑔 (𝑡, 𝜙) (𝑥) = ∫

0

−∞

∫

𝜋

0

𝑏 (𝑠, 𝑦, 𝑥) 𝜙 (𝑠, 𝑦) 𝑑𝑦 𝑑𝑠,

𝐹 (𝑡, 𝜙) (𝑥) = ∫

0

−∞

𝑓 (𝑡, 𝑠, 𝑥, 𝜙 (𝑠, 𝑥)) 𝑑𝑠,

𝐼𝑘 (𝜙) (𝑥) = ∫

0

−∞

𝑎𝑘 (𝑠) 𝜙 (𝑠, 𝑥) 𝑑𝑠, 𝑘 = 1, . . . , 𝑛.

(67)

It may be verified that 𝑔,𝐹 satisfy the assumptions (Hf), (Hg),
and (HI); that is, 𝑔(𝑡, ⋅) and 𝐼𝑘, 𝑘 = 1, . . . , 𝑛 are bounded
linear operators and the range of 𝑔(⋅) is contained in 𝑋1/2,
‖𝐴

1/2
𝑔(𝑡, ⋅)‖ ≤ 𝐿𝑔, ‖𝐼𝑘‖ ≤ 𝐿𝐼, 𝑘 = 1, . . . , 𝑛, and ‖𝐹(𝑡, 𝜙)‖ ≤

𝑚𝐹(𝑡)‖𝜙‖P for every 𝑡 ∈ [0, 𝑇], where 𝑚𝐹(𝑡) is defined as
𝑚𝐹(𝑡) = (∫

0

−∞
𝜂(𝑡, 𝑠)

2
/ℎ(𝑠)𝑑𝑠)

1/2. Applying Theorem 17, we
obtain that problem (60) has a mild solution.
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ing Operators, Birkhäuser, Berlin, Germany, 1992.

[21] S. Ji and G. Li, “A unified approach to nonlocal impulsive
differential equations with the measure of noncompactness,”
Advances in Difference Equations, vol. 2012, article 182, 14 pages,
2012.

[22] P. Chen and Y. Li, “Nonlocal problem for fractional evolution
equations of mixed type with the measure of noncompactness,”
Abstract and Applied Analysis, vol. 2013, Article ID 784816, 12
pages, 2013.

[23] R. P. Agarwal, M. Benchohra, and D. Seba, “On the application
of measure of noncompactness to the existence of solutions for
fractional differential equations,”Results inMathematics, vol. 55,
no. 3-4, pp. 221–230, 2009.

[24] X. Xue, “Nonlocal nonlinear differential equations with a mea-
sure of noncompactness in Banach spaces,” Nonlinear Analysis:
Theory, Methods and Applications, vol. 70, no. 7, pp. 2593–2601,
2009.

[25] Z. Fan and G. Mophou, “Nonlocal problems for fractional
differential equations via resolvent operators,” International
Journal of Differential Equations, vol. 2013, Article ID 490673,
9 pages, 2013.

[26] A. Pazy, Semigroups of Linear Operators and Applications to
Partial Differential Equations, Springer, New York, NY, USA,
1983.

[27] E. Bazhlekova, Fractional evolution equations in Banach spaces
[Ph.D. thesis], Eindhoven University of Technology, 2001.

[28] R. P. Agarwal, M. Meehan, and D. O’Regan, Fixed Point
Theory and Applications, Cambridge Tracts in Mathematics,
Cambridge University Press, New York, NY, USA, 2001.

[29] R. Ye, “Existence of solutions for impulsive partial neutral
functional differential equation with infinite delay,” Nonlinear
Analysis: Theory, Methods and Applications, vol. 73, no. 1, pp.
155–162, 2010.


