
Research Article
Local 𝐶𝑟 Stability for Iterative Roots of Orientation-Preserving
Self-Mappings on the Interval

Yingying Zeng

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

Correspondence should be addressed to Yingying Zeng; mathyyz@163.com

Received 9 April 2014; Accepted 1 May 2014; Published 21 May 2014

Academic Editor: Yongkun Li

Copyright © 2014 Yingying Zeng. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Stability of iterative roots is important in their numerical computation. It is known that under some conditions iterative roots of
orientation-preserving self-mappings are both globally𝐶0 stable and locally𝐶1 stable but globally𝐶1 unstable. Although the global
𝐶
1 instability implies the general global 𝐶𝑟 (𝑟 ≥ 2) instability, the local 𝐶1 stability does not guarantee the local 𝐶𝑟 (𝑟 ≥ 2) stability.

In this paper we generally prove the local 𝐶𝑟 (𝑟 ≥ 2) stability for iterative roots. For this purpose we need a uniform estimate for
the approximation to the conjugation in 𝐶𝑟 linearization, which is given by improving the method used for the 𝐶1 case.

1. Introduction

Let 𝐼 := [0, 1] and let 𝐶𝑟(𝐼, 𝐼), 𝑟 ≥ 0, be the set of all 𝐶𝑟 self-
mappings defined on 𝐼. An iterative root of order 𝑘 of a given
self-mapping 𝐹 : 𝐼 → 𝐼 is a self-mapping 𝑓 : 𝐼 → 𝐼 such
that

𝑓
𝑘
(𝑥) = 𝐹 (𝑥) , ∀𝑥 ∈ 𝐼, (1)

where 𝑓𝑘 denotes the 𝑘th iterate of 𝑓, defined by 𝑓𝑘(𝑥) :=
𝑓(𝑓
𝑘−1
(𝑥)) and 𝑓0(𝑥) = 𝑥 for all 𝑥 ∈ 𝐼 inductively. The

study of iterative roots was started long ago, at least about
two hundred years ago when Babbage published his paper
[1]. In recent decades, regarded as a weak version of the
embedding flow problem for dynamical systems [2, 3], the
problem of iterative roots attracted great attention in the field
of dynamical systems [3, 4] and functional equations [5–8].
Based on the work for monotonic mappings [6, 7], advances
have beenmade to nonmonotonic cases [8–11], self-mappings
on circles [12, 13], set-valued functions [14, 15], and high-
dimensional mappings [16, 17].

Because of the potential in extensive applications (e.g.,
to information processing [18, 19] and graph theory [20]),
numerical computation [21, 22] of iterative roots became an
important task, which demands approximation to iterative
roots and considers stability of iterative roots. In 2007 Xu

and Zhang [23] proved 𝐶0 stability for iterative roots on a
closed interval with exact one fixed point at an endpoint.
This result is substantially a local 𝐶0 stability because the
stability is totally decided by the behaviors of the itera-
tive root in a sufficiently small neighborhood of the fixed
point. In [24] results of global 𝐶0 stability are given, where
the global sense means the stability on a closed interval
bounded by two fixed points. Recently, it was proved in
[25] that iterative roots of every orientation-preserving self-
mapping on the interval are locally 𝐶1 stable but globally
𝐶
1 unstable.
In this paper we generally consider 𝐶𝑟 (𝑟 ≥ 1) stability of

iterative roots. It is clear that the global𝐶1 instability given in
[25] implies the general global 𝐶𝑟 (𝑟 ≥ 2) instability because
𝐶
1 approximation is the most fundamental requirement for
𝐶
𝑟 approximation. However, the above result of local 𝐶1

stability does not guarantee the local 𝐶𝑟 (𝑟 ≥ 2) stability. In
this paper we concentrate on the local 𝐶𝑟 (𝑟 ≥ 2) stability
for iterative roots of orientation-preserving self-mapping on
𝐼. Clearly, the given mapping is a strictly increasing function.
The local 𝐶𝑟 (𝑟 ≥ 2) stability is proved by approximation
to the conjugation in 𝐶𝑟 linearization. In order to give an
estimate to the approximation uniformly with respect to the
order of iteration, we improve the method used in [25] to
obtain lower growth rate for given functions under iteration.
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Figure 1: ℎ ∈H𝑟
−
(𝜆).

2. Preliminaries

In order to state our results clearly, we first pay attention to
the existence of𝐶𝑟 (𝑟 ≥ 2) iterative roots of increasing𝐶𝑟 self-
mappings on a compact interval including exactly one fixed
point which is hyperbolic. In some sense, this is a local case.
For each 𝜆 ∈ (0, 1) and integer 𝑟 ≥ 0, let

H
𝑟

−
(𝜆) := {ℎ ∈ 𝐶

𝑟
(𝐼, 𝐼) : ℎ (0) = 0, ℎ

󸀠
(0) = 𝜆, ℎ

󸀠
(𝑥) > 0,

ℎ (𝑥) < 𝑥, ∀𝑥 ∈ (0, 1] } ,

H
𝑟

+
(𝜆) := {ℎ ∈ 𝐶

𝑟
(𝐼, 𝐼) : ℎ (1) = 1, ℎ

󸀠
(1) = 𝜆, ℎ

󸀠
(𝑥) > 0,

ℎ (𝑥) > 𝑥, ∀𝑥 ∈ [0, 1) }

(2)

(cf. Figures 1 and 2) together with the norm

‖ℎ‖𝑟
:= sup
𝑥∈𝐼

|ℎ (𝑥)| + ⋅ ⋅ ⋅ + sup
𝑥∈𝐼

󵄨
󵄨
󵄨
󵄨
󵄨
ℎ
(𝑟)
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
. (3)

In what follows we only discuss the first class becauseH𝑟
+
(𝜆)

can be converted toH𝑟
−
(𝜆) by considering𝐺(𝑥) = 1−𝐹(1−𝑥).

Given integers 𝑘, 𝑟 ≥ 2, a function 𝐹 belonging to the
class ⋃

𝜆∈(0,1)
H𝑟
−
(𝜆) has a unique 𝑘th order 𝐶𝑟 iterative root

𝑓 defined on 𝐼, which is strictly increasing and is given by the
formula

𝑓 (𝑥) := 𝜑
−1
(𝜆
1/𝑘
𝜑 (𝑥)) , (4)

where 𝜑 : 𝐼 → R is the principal solution of Schröder’s
equation

𝜑 (𝐹 (𝑥)) = 𝜆𝜑 (𝑥) . (5)
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Figure 2: ℎ ∈H𝑟
+
(𝜆).

The principle solution is given by 𝜑(𝑥) = lim
𝑛→+∞

𝜆
−𝑛
𝐹
𝑛
(𝑥),

satisfying 𝐶𝑟 differentiable in 𝐼 with 𝜑󸀠(0) = 1 and 𝜑(0) = 0
and strictly increasing by Theorem 6.1 in [6]. Moreover, the
proofs of Theorem 3.5.1 in [7] and Theorem 4.5 in [6] show
that

𝜑
(𝑟)
(𝑥) = lim

𝑛→+∞
𝜆
−𝑛
(𝐹
𝑛
)
(𝑟)

(𝑥) . (6)

Note that the aim of this paper is to consider the local 𝐶𝑟
(𝑟 ≥ 2) stability for iterative roots.Then we recall the formula
for higher order derivatives of composition ([26, page 3]).
Namely, for integer𝑚 ≥ 1,

(𝐺 ∘ 𝐻)
(𝑚)
(𝑥) = ∑

𝜔∈Ω(𝑚)

𝑐
𝜔
𝐺
(𝑝)
(𝐻 (𝑥))

𝑝

∏

𝑞=1

𝐻
(𝑗𝑞)
(𝑥) , (7)

where Ω(𝑚) := {(𝑝; 𝑗
1
, . . . , 𝑗

𝑝
) : 1 ≤ 𝑝 ≤ 𝑚, 𝑗

1
+ ⋅ ⋅ ⋅ + 𝑗

𝑝
= 𝑚

and 𝑗
𝑞
≥ 1 for all 𝑞 = 1, . . . , 𝑝}. Here 𝑐

𝜔
is a positive universal

constant, which is independent of𝐺 and𝐻.Then we have the
following lemma.

Lemma 1. Let 𝐹 ∈H𝑟
−
(𝜆) with some 𝑟 ≥ 2 and 𝜆 ∈ (0, 1) and

let (𝐹
𝑖
) be a sequence of functions inH𝑟

−
(𝜆) satisfying condition

lim
𝑖→+∞

󵄩
󵄩
󵄩
󵄩
𝐹
𝑖
− 𝐹
󵄩
󵄩
󵄩
󵄩𝑟
= 0. (8)

Then, for a given number 𝜇 ∈ (𝜆, 1), there exist an 𝐿 > 1, an
𝜀 > 0, and an𝑁

0
∈ N such that

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝐹
𝑛
)
(𝑚)

(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐿𝜆
𝑛
,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝐹
𝑛

𝑖
)
(𝑚)

(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐿𝜆
𝑛
, (9)

󵄨
󵄨
󵄨
󵄨
𝐹
𝑛

𝑖
(𝑥) − 𝐹

𝑛
(𝑥)
󵄨
󵄨
󵄨
󵄨
≤ {(1 +

𝐿𝜆

𝜇 − 𝜆

)𝜇
𝑛−1
−

𝐿

𝜇 − 𝜆

𝜆
𝑛
}
󵄩
󵄩
󵄩
󵄩
𝐹
𝑖
− 𝐹
󵄩
󵄩
󵄩
󵄩1

(10)

for all 𝑖 ≥ 𝑁
0
, 𝑛 ∈ N, and 0 ≤ 𝑚 ≤ 𝑟 and for all 𝑥 ∈ 𝐼

𝜀
:= [0, 𝜀].
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Proof. Let 𝐾 := 2‖𝐹‖
𝑟
and choose a sufficiently small 𝜀 > 0

such that 𝜆 + 𝐾𝜀 < 1 and sup
𝑥∈𝐼𝜀
|𝐹
󸀠
(𝑥)| < 𝜇. Then by the

mean value theorem,

|𝐹 (𝑥)| = |𝐹 (𝑥) − 𝐹 (0)| =

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
󸀠
(𝜉
𝑥
)

󵄨
󵄨
󵄨
󵄨
󵄨
|𝑥|

≤

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
󸀠
(0)

󵄨
󵄨
󵄨
󵄨
󵄨
|𝑥| +

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
󸀠
(𝜉
𝑥
) − 𝐹
󸀠
(0)

󵄨
󵄨
󵄨
󵄨
󵄨
|𝑥|

≤ 𝜆 |𝑥| + 𝐾|𝑥|
2

(11)

for all 𝑥 ∈ 𝐼. In particular, |𝐹𝑛−1(𝑥)| ≤ (𝜆+𝐾𝜀)𝑛−1 for all 𝑛 ≥ 1
and 𝑥 ∈ 𝐼

𝜀
. It follows that
󵄨
󵄨
󵄨
󵄨
𝐹
𝑛
(𝑥)
󵄨
󵄨
󵄨
󵄨
≤ 𝜆

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑛−1
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
+ 𝐾

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑛−1
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

2

≤ {𝜆 + 𝐾(𝜆 + 𝐾𝜀)
𝑛−1
}

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑛−1
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝑛−1

∏

𝑠=0

{𝜆 + 𝐾(𝜆 + 𝐾𝜀)
𝑠
} |𝑥|

= 𝜆
𝑛

𝑛−1

∏

𝑠=0

{1 + 𝐾𝜆
−1
(𝜆 + 𝐾𝜀)

𝑠
} |𝑥|

≤ 𝐿
0
𝜆
𝑛
, ∀𝑥 ∈ 𝐼

𝜀
,

(12)

where 𝐿
0
:= ∏
+∞

𝑠=0
{1 + 𝐾𝜆

−1
(𝜆 + 𝜂𝜀)

𝑠
} ∈ (1, +∞).

Then we give the proof of the first inequality given in (9)
by induction on𝑚 greater than 1. From (7), write

(𝐹
𝑛
)
(𝑚)

(𝑥) = 𝐹
󸀠
(𝐹
𝑛−1
(𝑥)) (𝐹

𝑛−1
)

(𝑚)

(𝑥)

+ ∑

𝑝≥2

𝜔∈Ω(𝑚)

𝑐
𝜔
𝐹
(𝑝)
(𝐹
𝑛−1
(𝑥))

𝑝

∏

𝑞=1

(𝐹
𝑛−1
)

(𝑗𝑞)

(𝑥) .

(13)

When𝑚 = 1, the second term is absent. Applying (12) and by
induction, we have
󵄨
󵄨
󵄨
󵄨
󵄨
(𝐹
𝑛
)
󸀠

(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐹
󸀠
(𝐹
𝑛−1
(𝑥)) (𝐹

𝑛−1
)

󸀠

(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ {

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
󸀠
(0)

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
󸀠
(𝐹
𝑛−1
(𝑥)) − 𝐹

󸀠
(0)

󵄨
󵄨
󵄨
󵄨
󵄨
}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝐹
𝑛−1
)

󸀠

(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ {𝜆 + 𝐾𝐿
0
𝜆
𝑛−1
}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝐹
𝑛−1
)

󸀠

(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝑛−1

∏

𝑠=0

{𝜆 + 𝐾𝐿
0
𝜆
𝑠
} |𝑥|

= 𝜆
𝑛

𝑛−1

∏

𝑠=0

{1 + 𝐾𝐿
0
𝜆
𝑠−1
} |𝑥| ≤ 𝐿1

𝜆
𝑛
, ∀𝑥 ∈ 𝐼

𝜀
,

(14)

where 𝐿
1
:= ∏
+∞

𝑠=0
{1 + 𝐾𝐿

0
𝜆
𝑠−1
} ∈ (1, +∞). Further, assume

that the first inequality in (9) holds for all 𝑚 ≤ ℓ < 𝑟. Let
Θ := ∑

𝑝≥2, 𝜔∈Ω(ℓ+1)
𝑐
𝜔
𝐾∏
ℓ

𝑞=1
𝐿
𝑞
. Noting that 𝜆 ∈ (0, 1) and

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
󸀠
(𝐹
𝑛−1
(𝑥))

󵄨
󵄨
󵄨
󵄨
󵄨
≤

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
󸀠
(0)

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
󸀠
(𝐹
𝑛−1
(𝑥)) − 𝐹

󸀠
(0)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜆 + 𝐾𝐿
0
𝜆
𝑛−1
, ∀𝑥 ∈ 𝐼

𝜀
,

(15)

we get

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝐹
𝑛
)
(ℓ+1)

(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐹
󸀠
(𝐹
𝑛−1
(𝑥)) (𝐹

𝑛−1
)

(ℓ+1)

(𝑥)

+ ∑

𝑝≥2

𝜔∈Ω(ℓ+1)

𝑐
𝜔
𝐹
(𝑝)
(𝐹
𝑛−1
(𝑥))

𝑝

∏

𝑞=1

(𝐹
𝑛−1
)

(𝑗𝑞)

(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ (𝜆 + 𝐾𝐿
0
𝜆
𝑛−1
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝐹
𝑛−1
)

(ℓ+1)

(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ Θ𝜆
2(𝑛−1)

≤ 𝜆
𝑛

𝑛−2

∏

𝑠=−1

(1 + 𝐾𝐿
0
𝜆
𝑠
) + Θ

𝑛−1

∑

𝑡=0

𝜆
2𝑡

𝑛−1

∏

𝑠=𝑡+1

(𝜆 + 𝐾𝐿
0
𝜆
𝑠
)

= 𝜆
𝑛

𝑛−2

∏

𝑠=−1

(1 + 𝐾𝐿
0
𝜆
𝑠
) + Θ𝜆

𝑛

𝑛−1

∑

𝑡=0

𝜆
𝑡−1

𝑛−2

∏

𝑠=𝑡

(1 + 𝐾𝐿
0
𝜆
𝑠
)

≤ 𝐿
ℓ+1
𝜆
𝑛

(16)

inductively, where

𝐿
ℓ+1
:= {

+∞

∏

𝑠=−1

(1 + 𝐿
0
𝐾𝜆
𝑠
)

+ Θ

+∞

∑

𝑡=0

𝜆
𝑡−1

+∞

∏

𝑠=0

(1 + 𝐾𝐿
0
𝜆
𝑠
)} ∈ (1, +∞) .

(17)

Put 𝐿 := max{𝐿
0
, 𝐿
1
, . . . , 𝐿

𝑟
}. Then the first inequality given

in (9) is proved.
It follows from (8) that there is an 𝑁

0
∈ N such that if

𝑖 ≥ 𝑁
0
, then ‖𝐹

𝑖
‖
𝑟
≤ 2‖𝐹‖

𝑟
= 𝐾 and sup

𝑥∈𝐼𝜀
|𝐹
󸀠

𝑖
(𝑥)| < 𝜇. Thus,

by the same procedure as before, we can prove the second
inequality given in (9).

In the following, we are going to prove inequality (10). It
is clear that (10) holds when 𝑛 = 1. Further, assume that (10)
holds for 𝑛 = ℓ ∈ N. It follows that

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
ℓ+1

𝑖
(𝑥) − 𝐹

ℓ+1
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑖
(𝐹
ℓ

𝑖
(𝑥)) − 𝐹 (𝐹

ℓ
(𝑥))

󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑖
(𝐹
ℓ

𝑖
(𝑥)) − 𝐹

𝑖
(𝐹
ℓ
(𝑥))

󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
𝑖
(𝐹
ℓ
(𝑥)) − 𝐹 (𝐹

ℓ
(𝑥))

󵄨
󵄨
󵄨
󵄨
󵄨

≤ sup
𝜉∈𝐼𝜀

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
󸀠

𝑖
(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
⋅

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
ℓ

𝑖
(𝑥) − 𝐹

ℓ
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

+ sup
𝜉∈𝐼𝜀

󵄨
󵄨
󵄨
󵄨
󵄨
(𝐹
𝑖
− 𝐹)
󸀠

(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
⋅

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
ℓ
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜇

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
ℓ

𝑖
(𝑥) − 𝐹

ℓ
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
+ 𝐿𝜆
ℓ󵄩
󵄩
󵄩
󵄩
𝐹
𝑖
− 𝐹
󵄩
󵄩
󵄩
󵄩1



4 Journal of Applied Mathematics

≤ 𝜇{(1 +

𝐿𝜆

𝜇 − 𝜆

)𝜇
ℓ−1
−

𝐿

𝜇 − 𝜆

𝜆
ℓ
}

×
󵄩
󵄩
󵄩
󵄩
𝐹
𝑖
− 𝐹
󵄩
󵄩
󵄩
󵄩1
+ 𝐿𝜆
ℓ󵄩
󵄩
󵄩
󵄩
𝐹
𝑖
− 𝐹
󵄩
󵄩
󵄩
󵄩1

≤ {(1 +

𝐿𝜆

𝜇 − 𝜆

)𝜇
ℓ
−

𝐿

𝜇 − 𝜆

𝜆
ℓ+1
}
󵄩
󵄩
󵄩
󵄩
𝐹
𝑖
− 𝐹
󵄩
󵄩
󵄩
󵄩1

(18)

for all 𝑖 ≥ 𝑁
0
and for all 𝑥 ∈ 𝐼

𝜀
. Thus, we can obtain (10) by

induction. This completes the proof.

In Lemma 1 we gave a better estimate for 𝐹𝑛 and 𝐹𝑛
𝑖

and their derivatives than that given in [25, Lemma 2.1]. In
Lemma 1 the growth rate on 𝑛 is much lower in the sense that
the constant 𝐿𝜆𝑛 given in (9) tends to 0 as 𝑛 → +∞ faster
than the constant 𝜇𝑛

0
given in (2.4) of [25].

3. The Main Result

Our aim of this section is to prove the following stability
result.

Theorem 2. Given integers 𝑘, 𝑟 ≥ 2, let 𝐹 ∈ H𝑟+1
−
(𝜆) with

some 𝜆 ∈ (0, 1) and let (𝐹
𝑖
) be a sequence of functions in

H𝑟+1
−
(𝜆). If

lim
𝑖→+∞

󵄩
󵄩
󵄩
󵄩
𝐹
𝑖
− 𝐹
󵄩
󵄩
󵄩
󵄩𝑟+1
= 0,

𝐹
(𝑚)
(0) = 𝐹

(𝑚)

𝑖
(0) , ∀𝑚 = 2, . . . , 𝑟,

(19)

then

lim
𝑖→+∞

󵄩
󵄩
󵄩
󵄩
𝑓
𝑖
− 𝑓
󵄩
󵄩
󵄩
󵄩𝑟
= 0, (20)

where 𝑓 and 𝑓
𝑖
are unique 𝑘th order 𝐶𝑟 iterative roots of 𝐹 and

𝐹
𝑖
, respectively, defined on 𝐼.

In order to proveTheorem 2weneed the following lemma
on 𝐶𝑟 stability of Schröder’s equation.

Lemma 3. Given an integer 𝑟 ≥ 2, let 𝐹 ∈H𝑟+1
−
(𝜆) with some

𝜆 ∈ (0, 1) and let (𝐹
𝑖
) be a sequence of functions in H𝑟+1

−
(𝜆)

satisfying condition (19). Then

lim
𝑖→+∞

󵄩
󵄩
󵄩
󵄩
𝜑
𝑖
− 𝜑
󵄩
󵄩
󵄩
󵄩𝑟
= 0, (21)

where 𝜑 : 𝐼 → R and 𝜑
𝑖
: 𝐼 → R are the principal solutions

of Schröder’s equations 𝜑(𝐹(𝑥)) = 𝜆𝜑(𝑥) and 𝜑
𝑖
(𝐹
𝑖
(𝑥)) =

𝜆𝜑
𝑖
(𝑥), respectively.

Proof. From (6) we can see that

𝜑
(𝑚)
(𝑥) = lim

𝑛→+∞
𝜆
−𝑛
(𝐹
𝑛
)
(𝑚)

(𝑥) ,

𝜑
(𝑚)

𝑖
(𝑥) = lim

𝑛→+∞
𝜆
−𝑛
(𝐹
𝑛

𝑖
)
(𝑚)

(𝑥)

(22)

for all 𝑚 ∈ [0, 𝑟] ∩ Z and 𝑥 ∈ 𝐼. In what follows we intend
to discuss our results in a sufficiently small interval 𝐼

𝜀
first

and extend them to the whole interval 𝐼, where 𝜀 is given in
Lemma 1.

In order to prove the convergence of the sequence (𝜑
𝑖
)

in 𝐼
𝜀
, we claim that there exists a constant 𝑀

𝑚
, which is

independent of 𝑛, such that

𝜆
−𝑛
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝐹
𝑛

𝑖
)
(𝑚)

(𝑥) − (𝐹
𝑛
)
(𝑚)

(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑀
𝑚

󵄩
󵄩
󵄩
󵄩
𝐹
𝑖
− 𝐹
󵄩
󵄩
󵄩
󵄩𝑟+1
,

∀𝑥 ∈ 𝐼
𝜀
,

(23)

where𝑚 = 0, 1, . . . , 𝑟. If (23) is true, then we get

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
(𝑚)

𝑖
(𝑥) − 𝜑

(𝑚)
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
= lim
𝑛→+∞

𝜆
−𝑛
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝐹
𝑛

𝑖
)
(𝑚)

(𝑥) − (𝐹
𝑛
)
(𝑚)

(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑀
𝑚

󵄩
󵄩
󵄩
󵄩
𝐹
𝑖
− 𝐹
󵄩
󵄩
󵄩
󵄩𝑟+1
, ∀𝑥 ∈ 𝐼

𝜀
,

(24)

implying the stability in 𝐼
𝜀
. Next, we extend the result (24)

from 𝐼
𝜀
to the whole interval 𝐼. As indicated in [25], we have

lim
𝑖→+∞

󵄩
󵄩
󵄩
󵄩
𝐹
𝑛

𝑖
− 𝐹
𝑛󵄩
󵄩
󵄩
󵄩𝑟+1
= 0, ∀𝑛 ∈ N, (25)

by (8) because the composition operator is continuous by
Example 4.4.5 in [27]. Moreover, since 0 is the unique stable
fixed point of 𝐹 in 𝐼 and by (8), there is an integer 𝑁 ∈ N

such that 𝐹𝑁(𝑥), 𝐹𝑁
𝑖
(𝑥) ∈ 𝐼

𝜀
for all 𝑖 ∈ N and 𝑥 ∈ 𝐼. Then,

according to Schröder’s equation, we can obtain the formulae

𝜑 (𝑥) = 𝜆
−𝑁
𝜑 (𝐹
𝑁
(𝑥)) , 𝜑

𝑖
(𝑥) = 𝜆

−𝑁
𝜑
𝑖
(𝐹
𝑁

𝑖
(𝑥)) ,

∀𝑥 ∈ 𝐼,

(26)

where𝜑 := 𝜑|
𝐼𝜀

and 𝜑
𝑖
:= 𝜑
𝑖
|
𝐼𝜀
. Then by Lemma 1 and

from (24), (26), and the uniform continuity of 𝜑(𝑚), we get
lim
𝑖→+∞
‖𝜑
𝑖
− 𝜑‖
0
= 0 and

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
(𝑚)

𝑖
(𝑥) − 𝜑

(𝑚)
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

= 𝜆
−𝑁

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∑

𝜔∈Ω(𝑚)

𝑐
𝜔
𝜑
(𝑝)

𝑖
(𝐹
𝑁

𝑖
(𝑥))

𝑝

∏

𝑞=1

(𝐹
𝑁

𝑖
)

(𝑗𝑞)

(𝑥)

− ∑

𝜔∈Ω(𝑚)

𝑐
𝜔
𝜑
(𝑝)
(𝐹
𝑁
(𝑥))

𝑝

∏

𝑞=1

(𝐹
𝑁
)

(𝑗𝑞)

(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜆
−𝑁
∑

𝜔∈Ω(𝑚)

𝑐
𝜔

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜑
(𝑝)

𝑖
(𝐹
𝑁

𝑖
(𝑥))

𝑝

∏

𝑞=1

(𝐹
𝑁

𝑖
)

(𝑗𝑞)

(𝑥)

−𝜑
(𝑝)
(𝐹
𝑁
(𝑥))

𝑝

∏

𝑞=1

(𝐹
𝑁
)

(𝑗𝑞)

(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜆
−𝑁
∑

𝜔∈Ω(𝑚)

𝑐
𝜔
{

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
(𝑝)

𝑖
(𝐹
𝑁

𝑖
(𝑥)) − 𝜑

(𝑝)
(𝐹
𝑁
(𝑥))

󵄨
󵄨
󵄨
󵄨
󵄨

×

𝑝

∏

𝑞=1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝐹
𝑁

𝑖
)

(𝑗𝑞)

(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
(𝑝)
(𝐹
𝑁
(𝑥))

󵄨
󵄨
󵄨
󵄨
󵄨
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×

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑝

∏

𝑞=1

(𝐹
𝑁

𝑖
)

(𝑗𝑞)

(𝑥) −

𝑝

∏

𝑞=1

(𝐹
𝑁
)

(𝑗𝑞)

(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

}

≤ 𝜆
−𝑁
∑

𝜔∈Ω(𝑚)

𝑐
𝜔
{𝐿
𝑝
𝜆
𝑝𝑁

× (

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
(𝑝)

𝑖
(𝐹
𝑁

𝑖
(𝑥)) − 𝜑

(𝑝)
(𝐹
𝑁

𝑖
(𝑥))

󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
(𝑝)
(𝐹
𝑁

𝑖
(𝑥)) − 𝜑

(𝑝)
(𝐹
𝑁
(𝑥))

󵄨
󵄨
󵄨
󵄨
󵄨
)

+ 𝐿
𝑝−1
𝜆
(𝑝−1)𝑁 󵄨󵄨

󵄨
󵄨
󵄨
𝜑
(𝑝)
(𝐹
𝑁
(𝑥))

󵄨
󵄨
󵄨
󵄨
󵄨

×

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹
𝑁

𝑖
− 𝐹
𝑁󵄩󵄩
󵄩
󵄩
󵄩𝑟+1
}

≤ 𝜆
−𝑁
∑

𝜔∈Ω(𝑚)

𝑐
𝜔
{𝐿
𝑝
𝜆
𝑝𝑁

× (𝑀
𝑝

󵄩
󵄩
󵄩
󵄩
𝐹
𝑖
− 𝐹
󵄩
󵄩
󵄩
󵄩𝑟+1

+

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
(𝑝)
(𝐹
𝑁

𝑖
(𝑥)) − 𝜑

(𝑝)
(𝐹
𝑁
(𝑥))

󵄨
󵄨
󵄨
󵄨
󵄨
)

+ 𝐿
𝑝−1
𝜆
(𝑝−1)𝑁 󵄨󵄨

󵄨
󵄨
󵄨
𝜑
(𝑝)
(𝐹
𝑁
(𝑥))

󵄨
󵄨
󵄨
󵄨
󵄨

×

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹
𝑁

𝑖
− 𝐹
𝑁󵄩󵄩
󵄩
󵄩
󵄩𝑟+1
} 󳨀→ 0

(27)

as 𝑖 → +∞ for all𝑚 = 1, . . . , 𝑟. Hence, (21) is proved and the
proof is completed.

In the following, we will prove the claimed (23) by
induction on 𝑚. Clearly, (2.11) in [25] and what is indicated
above the proof of Theorem 2.1 in [25] show that (23) holds
for𝑚 = 1 and𝑚 = 0, respectively. Then we suppose that (23)
is also satisfied for all 𝑚 ∈ [1, ℓ], where 2 ≤ ℓ < 𝑟, and we
will prove (23) for𝑚 = ℓ+1. Our strategy is to prove that, for
given 𝑠 ∈ N, there exists𝑀

ℓ+1
(𝑠) such that

𝜆
−𝑠
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝐹
𝑠

𝑖
)
(ℓ+1)

(𝑥) − (𝐹
𝑠
)
(ℓ+1)

(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑀
ℓ+1 (
𝑠)
󵄩
󵄩
󵄩
󵄩
𝐹
𝑖
− 𝐹
󵄩
󵄩
󵄩
󵄩𝑟+1

(28)

and (𝑀
ℓ+1
(𝑠)) is a bounded sequence whose upper bound

satisfies (23). Clearly, for 𝑠 = 0 we can find constant𝑀
ℓ+1
(0)

satisfying (28). Then, assume that there exists 𝑀
ℓ+1
(𝑠) such

that (28) holds for any 𝑠 = 0, . . . , 𝑛 − 1. Applying Lemma 1
and the inductive hypothesis, we have

𝜆
−𝑛
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝐹
𝑛

𝑖
)
(ℓ+1)

(𝑥) − (𝐹
𝑛
)
(ℓ+1)

(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 𝜆
−𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐹
󸀠

𝑖
(𝐹
𝑛−1

𝑖
(𝑥)) (𝐹

𝑛−1

𝑖
)

(ℓ+1)

(𝑥)

+ ∑

𝑝≥2

𝜔∈Ω(ℓ+1)

𝑐
𝜔
𝐹
(𝑝)

𝑖
(𝐹
𝑛−1

𝑖
(𝑥))

𝑝

∏

𝑞=1

(𝐹
𝑛−1

𝑖
)

(𝑗𝑞)

(𝑥)

− 𝐹
󸀠
(𝐹
𝑛−1
(𝑥)) (𝐹

𝑛−1
)

(ℓ+1)

(𝑥)

− ∑

𝑝≥2

𝜔∈Ω(ℓ+1)

𝑐
𝜔
𝐹
(𝑝)
(𝐹
𝑛−1
(𝑥))

𝑝

∏

𝑞=1

(𝐹
𝑛−1
)

(𝑗𝑞)

(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜆
−𝑛
{

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐹
󸀠

𝑖
(𝐹
𝑛−1

𝑖
(𝑥)) (𝐹

𝑛−1

𝑖
)

(ℓ+1)

(𝑥)

−𝐹
󸀠
(𝐹
𝑛−1
(𝑥)) (𝐹

𝑛−1
)

(ℓ+1)

(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ ∑

𝑝≥2

𝜔∈Ω(ℓ+1)

𝑐
𝜔

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐹
(𝑝)

𝑖
(𝐹
𝑛−1

𝑖
(𝑥))

𝑝

∏

𝑞=1

(𝐹
𝑛−1

𝑖
)

(𝑗𝑞)

(𝑥)

−𝐹
(𝑝)
(𝐹
𝑛−1
(𝑥))

𝑝

∏

𝑞=1

(𝐹
𝑛−1
)

(𝑗𝑞)

(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

}

≤ 𝜆
−1
𝑀
ℓ+1
(𝑛 − 1)

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
󸀠

𝑖
(𝐹
𝑛−1

𝑖
(𝑥))

󵄨
󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩
𝐹
𝑖
− 𝐹
󵄩
󵄩
󵄩
󵄩𝑟+1

+ 𝐿𝜆
−1
𝐴
1,𝑛−1
(𝑥)

+ ∑

𝑝≥2

𝜔∈Ω(ℓ+1)

𝑐
𝜔
{𝐿
𝑝
𝜆
(𝑝−1)𝑛−𝑝

𝐴
𝑝,𝑛−1
(𝑥)

+

𝑝

∑

𝑞=1

𝑀
𝑗𝑞
𝐿
𝑝−1
𝜆
(𝑝−1)𝑛−𝑝

×

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
(𝑝)
(𝐹
𝑛−1
(𝑥))

󵄨
󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩
𝐹
𝑖
− 𝐹
󵄩
󵄩
󵄩
󵄩𝑟+1
} ,

(29)

where 𝐴
𝑝,𝑛
(𝑥) := |𝐹

(𝑝)

𝑖
(𝐹
𝑛

𝑖
(𝑥)) − 𝐹

(𝑝)
(𝐹
𝑛
(𝑥))|. By Lemma 1

and condition (19), we obtain that |𝐹󸀠
𝑖
(𝐹
𝑛−1

𝑖
(𝑥))| ≤ |𝐹

󸀠

𝑖
(0)| +

|𝐹
󸀠

𝑖
(𝐹
𝑛−1

𝑖
(𝑥)) − 𝐹

󸀠

𝑖
(0)| ≤ 𝜆 + 𝐿𝜂𝜆

𝑛−1,

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
(𝑝)
(𝐹
𝑛−1
(𝑥))

󵄨
󵄨
󵄨
󵄨
󵄨
≤

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
(𝑝)
(0)

󵄨
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
(𝑝)
(𝐹
𝑛−1
(𝑥)) − 𝐹

(𝑝)
(0)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜂 + 𝐿𝜂𝜆
𝑛−1
,

𝐴
𝑝,𝑛 (
𝑥)

≤

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
(𝑝)

𝑖
(𝐹
𝑛

𝑖
(𝑥)) − 𝐹

(𝑝)
(𝐹
𝑛

𝑖
(𝑥)) − 𝐹

(𝑝)

𝑖
(0) + 𝐹

(𝑝)
(0)

󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
𝐹
(𝑝)
(𝐹
𝑛

𝑖
(𝑥)) − 𝐹

(𝑝)
(𝐹
𝑛
(𝑥))

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐿𝜆
𝑛󵄩
󵄩
󵄩
󵄩
𝐹
𝑖
− 𝐹
󵄩
󵄩
󵄩
󵄩𝑟+1
+ 𝜂
󵄨
󵄨
󵄨
󵄨
𝐹
𝑛

𝑖
(𝑥) − 𝐹

𝑛
(𝑥)
󵄨
󵄨
󵄨
󵄨

≤ 𝐿𝜆
𝑛󵄩
󵄩
󵄩
󵄩
𝐹
𝑖
− 𝐹
󵄩
󵄩
󵄩
󵄩𝑟+1
+ 𝜂{(1 +

𝐿𝜆

𝜇 − 𝜆

)𝜇
𝑛−1
−

𝐿

𝜇 − 𝜆

𝜆
𝑛
}

×
󵄩
󵄩
󵄩
󵄩
𝐹
𝑖
− 𝐹
󵄩
󵄩
󵄩
󵄩1

= {(1 +

𝐿𝜆

𝜇 − 𝜆

) 𝜂𝜇
𝑛−1
+ (1 −

𝜂

𝜇 − 𝜆

)𝐿𝜆
𝑛
}
󵄩
󵄩
󵄩
󵄩
𝐹
𝑖
− 𝐹
󵄩
󵄩
󵄩
󵄩𝑟+1
,

(30)
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where 𝜂 := 2‖𝐹‖
𝑟+1

and 𝜇 is given in Lemma 1, for all 𝑥 ∈ 𝐼
𝜀
,

0 < 𝑝 ≤ 𝑟, 𝑖 ≥ 𝑁
0
, and 𝑛 ∈ N. It follows that

𝜆
−𝑛
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝐹
𝑛

𝑖
)
(ℓ+1)

(𝑥) − (𝐹
𝑛
)
(ℓ+1)

(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ {(1 + 𝐿𝜂𝜆
𝑛−2
)𝑀
ℓ+1
(𝑛 − 1) + (1 +

𝐿𝜆

𝜇 − 𝜆

)𝐿𝜂𝜇
𝑛−2
𝜆
−1

+(1 −

𝜂

𝜇 − 𝜆

)𝐿
2
𝜆
𝑛−2
}
󵄩
󵄩
󵄩
󵄩
𝐹
𝑖
− 𝐹
󵄩
󵄩
󵄩
󵄩𝑟+1

+ ∑

𝑝≥2

𝜔∈Ω(ℓ+1)

𝑐
𝜔
{(1 +

𝐿𝜆

𝜇 − 𝜆

)𝐿
𝑝
𝜂𝜇
𝑛−2
𝜆
(𝑝−1)𝑛−𝑝

+ (1 −

𝜂

𝜇 − 𝜆

)𝐿
𝑝+1
𝜆
𝑝𝑛−𝑝−1

+ (1 + 𝐿𝜆
𝑛−1
) 𝐿
𝑝−1
𝜂𝜆
(𝑝−1)𝑛−𝑝

𝑝

∑

𝑞=1

𝑀
𝑗𝑞
}

×
󵄩
󵄩
󵄩
󵄩
𝐹
𝑖
− 𝐹
󵄩
󵄩
󵄩
󵄩𝑟+1

≤ { (1 + 𝐿𝜂𝜆
𝑛−2
)𝑀
ℓ+1
(𝑛 − 1) + (1 +

𝐿𝜆

𝜇 − 𝜆

)𝐿𝜂𝜇
𝑛−2
𝜆
−1

+ (1 −

𝜂

𝜇 − 𝜆

)𝐿
2
𝜇
𝑛−2

+ ∑

𝑝≥2

𝜔∈Ω(ℓ+1)

𝑐
𝜔
{(1 +

𝐿𝜆

𝜇 − 𝜆

)𝐿
𝑝
𝜂𝜇
2𝑛−4

+ (1 −

𝜂

𝜇 − 𝜆

)𝐿
𝑝+1
𝜇
2𝑛−3

+ (1 + 𝐿) 𝐿
𝑝−1
𝜂𝜇
𝑛−2

𝑝

∑

𝑞=1

𝑀
𝑗𝑞
}}

×
󵄩
󵄩
󵄩
󵄩
𝐹
𝑖
− 𝐹
󵄩
󵄩
󵄩
󵄩𝑟+1

≤ {(1 + 𝐿𝜂𝜇
𝑛−2
)𝑀
ℓ+1
(𝑛 − 1) + Γ𝜇

𝑛
}
󵄩
󵄩
󵄩
󵄩
𝐹
𝑖
− 𝐹
󵄩
󵄩
󵄩
󵄩𝑟+1

(31)

because 𝜆 < 𝜇 ∈ (0, 1), where

Γ := 𝜇
4
{(1 +

𝐿𝜆

𝜇 − 𝜆

)𝐿𝜂𝜆
−1
+ (1 −

𝜂

𝜇 − 𝜆

)𝐿
2

+ ∑

𝑝≥2

𝜔∈Ω(ℓ+1)

𝑐
𝜔
{(1 +

𝐿𝜆

𝜇 − 𝜆

)𝐿
𝑝
𝜂

+ (1 −

𝜂

𝜇 − 𝜆

)𝐿
𝑝+1

+ (1 + 𝐿) 𝐿
𝑝−1
𝜂

𝑝

∑

𝑞=1

𝑀
𝑗𝑞
}} .

(32)

Let

𝑀
ℓ+1
(𝑛) := (1 + 𝐿𝜂𝜇

𝑛−2
)𝑀
ℓ+1
(𝑛 − 1) + Γ𝜇

𝑛

=

𝑛−2

∏

𝑗=1

(1 + 𝐿𝜂𝜇
𝑗
)𝑀
ℓ+1
(2) + Γ

𝑛

∑

𝑗=3

𝜇
𝑗

𝑛−2

∏

𝑡=𝑗−1

(1 + 𝐿𝜂𝜇
𝑡
) .

(33)

It is easy to check that

𝑀
ℓ+1 (
𝑛) ≤

+∞

∏

𝑗=1

(1 + 𝐿𝜂𝜇
𝑗
)𝑀
ℓ+1 (
2) + Γ

+∞

∑

𝑗=3

𝜇
𝑗

+∞

∏

𝑡=0

(1 + 𝐿𝜂𝜇
𝑡
)

(34)

for all 𝑛 ∈ N. By putting𝑀
ℓ+1
:= ∏
+∞

𝑗=1
(1 + 𝐿𝜂𝜇

𝑗
)𝑀
ℓ+1
(2) +

Γ∑
+∞

𝑗=3
𝜇
𝑗
∏
+∞

𝑡=0
(1+𝐿𝜂𝜇

𝑡
), we can prove (23) for𝑚 = ℓ+1 and

(23) is proved by induction.

Having this preparation, we can give a proof to the main
result of this paper.

Proof of Theorem 2. By (4) the 𝐶𝑟 iterative roots 𝑓 and 𝑓
𝑖
for

each 𝑖 ∈ N can be presented by

𝑓 (𝑥) = 𝜑
−1
(𝜆
1/𝑘
𝜑 (𝑥)) , 𝑓

𝑖
(𝑥) = 𝜑

−1

𝑖
(𝜆
1/𝑘
𝜑
𝑖
(𝑥)) ,

∀𝑥 ∈ 𝐼,

(35)

respectively. In order to prove the convergence of (𝑓
𝑖
) in 𝐼,

note that, for sufficiently large 𝑖 ∈ N such that 𝜆1/𝑘𝜑
𝑖
(𝑥) ∈

𝜑(𝐼) for all 𝑥 ∈ 𝐼, we have

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝜑
−1

𝑖
)

(𝑝)

(𝜆
1/𝑘
𝜑
𝑖 (
𝑥))

𝑝

∏

𝑞=1

𝜑

(𝑗𝑞)

𝑖
(𝑥)

−(𝜑
−1
)

(𝑝)

(𝜆
1/𝑘
𝜑 (𝑥))

𝑝

∏

𝑞=1

𝜑
(𝑗𝑞)
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝜑
−1

𝑖
)

(𝑝)

(𝜆
1/𝑘
𝜑
𝑖 (
𝑥)) − (𝜑

−1
)

(𝑝)

(𝜆
1/𝑘
𝜑 (𝑥))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

×

𝑝

∏

𝑞=1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜑

(𝑗𝑞)

𝑖
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝜑
−1
)

(𝑝)

(𝜆
1/𝑘
𝜑 (𝑥))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

×

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑝

∏

𝑞=1

𝜑

(𝑗𝑞)

𝑖
(𝑥) −

𝑝

∏

𝑞=1

𝜑
(𝑗𝑞)
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 2
𝑝
(
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩𝑟
)
𝑝
{

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
−1

𝑖
− 𝜑
−1󵄩󵄩
󵄩
󵄩
󵄩𝑟
+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝜑
−1
)

(𝑝)

(𝜆
1/𝑘
𝜑
𝑖 (
𝑥))

−(𝜑
−1
)

(𝑝)

(𝜆
1/𝑘
𝜑 (𝑥))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

}

+ 𝑝2
𝑝−1
(
󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩𝑟
)
𝑝−1󵄩󵄩
󵄩
󵄩
󵄩
𝜑
−1󵄩󵄩
󵄩
󵄩
󵄩𝑟

󵄩
󵄩
󵄩
󵄩
𝜑
𝑖
− 𝜑
󵄩
󵄩
󵄩
󵄩𝑟
󳨀→ 0

(36)
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as 𝑖 → +∞ for all integers 𝑝 ∈ [1, 𝑟] by (21) and the fact that
the inverse operator is continuous and (𝜑−1)(𝑝) is uniformly
continuous. Hence, lim

𝑖→+∞
‖𝑓
𝑖
− 𝑓‖
0
= 0 and

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝑓
𝑖
)
(𝑚)

(𝑥) − 𝑓
(𝑚)
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∑

𝜔∈Ω(𝑚)

𝑐
𝜔
𝜆
𝑝/𝑘
(𝜑
−1

𝑖
)

(𝑝)

(𝜆
1/𝑘
𝜑
𝑖
(𝑥))

𝑝

∏

𝑞=1

𝜑

(𝑗𝑞)

𝑖
(𝑥)

− ∑

𝜔∈Ω(𝑚)

𝑐
𝜔
𝜆
𝑝/𝑘
(𝜑
−1
)

(𝑝)

(𝜆
1/𝑘
𝜑 (𝑥))

𝑝

∏

𝑞=1

𝜑
(𝑗𝑞)
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∑

𝜔∈Ω(𝑚)

𝑐
𝜔
𝜆
𝑝/𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝜑
−1

𝑖
)

(𝑝)

(𝜆
1/𝑘
𝜑
𝑖
(𝑥))

𝑝

∏

𝑞=1

𝜑

(𝑗𝑞)

𝑖
(𝑥)

− (𝜑
−1
)

(𝑝)

(𝜆
1/𝑘
𝜑 (𝑥))

𝑝

∏

𝑞=1

𝜑
(𝑗𝑞)
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

󳨀→ 0

(37)

as 𝑖 → +∞ for all 𝑚 = 1, . . . , 𝑟, which implies that
lim
𝑖→+∞
‖𝑓
𝑖
− 𝑓‖
𝑟
= 0 and completes the proof.

Theorem 2 is also valid for 𝑟 = 1, which is the same as
Theorem 2.1 in [25] for 𝑟 = 1. However, it is hard to use the
estimates, for example, (2.4) and (2.5) in [25], to generalize
the result to the general 𝑟 parallel. In fact, we cannot use
those estimates to give a uniform constant Γ with respect
to 𝑛, the order of iteration, in (33). Using those estimates,
corresponding to Γ given in (32), we obtain the quantity

Γ
∗
(𝑛) := 𝜇

4

0
{𝐿
2
+ (𝑛 − 1) 𝐿𝜂𝜆

−1

+ ∑

𝑝≥2

𝜔∈Ω(ℓ+1)

𝑐
𝜔
{𝐿
𝑝+1
+ (𝑛 − 1) 𝐿

𝑝
𝜂

+ (1 + 𝐿) 𝐿
𝑝−1
𝜂

𝑝

∑

𝑞=1

𝑀
𝑗𝑞
}} ,

(38)

which tends to +∞ as 𝑛 → +∞. For this reason it is hard
to prove the boundedness of𝑀

ℓ+1
(𝑛). As remarked after the

proof of Lemma 1, our estimation in (9) and (10) enables us
to give the boundedness of𝑀

ℓ+1
(𝑛) and complete the proof

of (23).
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[15] T. Powierża, “Higher order set-valued iterative roots of bijec-
tions,” PublicationesMathematicae Debrecen, vol. 61, no. 3-4, pp.
315–324, 2002.
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