
Research Article
A High-Order Iterate Method for Computing 𝐴(2)𝑇,𝑆

Xiaoji Liu and Zemeng Zuo

Faculty of Science, Guangxi University for Nationalities, Nanning 530006, China

Correspondence should be addressed to Xiaoji Liu; xiaojiliu72@126.com

Received 13 February 2014; Revised 11 April 2014; Accepted 17 April 2014; Published 4 May 2014

Academic Editor: Juan R. Torregrosa

Copyright © 2014 X. Liu and Z. Zuo. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We investigate a new higher order iterativemethod for computing the generalized inverse𝐴(2)
𝑇,𝑆

for a givenmatrix𝐴. We also discuss
how the new method could be applied for finding approximate inverses of nonsingular square matrices. Analysis of convergence
is included to show that the proposed scheme has at least fifteenth-order convergence. Some tests are also presented to show the
superiority of the new method.

1. Introduction

The traditional generalized inverses, the Moore-Penrose
inverse, the weighted Moore-Penrose inverse, the Drazin
inverse, the group inverse, the Bott-Duffin inverse, and
so forth are of special interest in matrix theory. They are
extensively used in statistics, control theory, power systems,
nonlinear equations, optimization and numerical analysis,
and so on. Most of these generalized inverses are outer
inverses of the form 𝐴(2)

𝑇,𝑆
having the prescribed range 𝑇 and

null space 𝑆. For a given complex matrix 𝐴 ∈ C𝑚×𝑛, the
uniquematrix𝑋 ∈ C𝑛×𝑚 such that𝑋𝐴𝑋 = 𝑋, 𝑅(𝑋) = 𝑇, and
𝑁(𝑋) = 𝑆 is known as the outer inverse or 2-inverse denoted
by 𝐴(2)
𝑇,𝑆

of 𝐴 with the prescribed range 𝑇 and null space
𝑆. This also plays an important role in singular differential
and difference equations, the stable approximations of ill-
posed problems, and in linear and nonlinear problems [1,
2]. As a result, it has been extensively studied by many
researchers and many methods [3–16] are proposed in the
literature for computing them. There are some techniques
to tackle this problem, which are basically divided into two
parts: the direct solvers such as Gaussian elimination with
partial pivoting (GEPP). However, direct methods usually
need much cost in both time and space in order to achieve
desired results; sometimes they may not be able to work at
all. In contrast, iterative method compensates for individual
and accumulation of round-off errors as it is a process of
successive refinement.

The well-known second order Schulz method in [17]
firstly presents Newton’s method:

𝑋𝑘+1 = 𝑋𝑘 (2𝐼 − 𝐴𝑋𝑘) , (1)

where 𝐼 is the identity matrix. In 2011, Li et al. in [18] gave the
following locally cubically convergent scheme:

𝑋𝑘+1 = 𝑋𝑘 (3𝐼 − 𝐴𝑋𝑘 (3𝐼 − 𝐴𝑋𝑘)) (2)

and also proposed another iterative method:

𝑋𝑘+1 = 𝑋𝑘 (𝐼 +
1

2
(𝐼 − 𝐴𝑋𝑘) (𝐼 + (2𝐼 − 𝐴𝑋𝑘))) . (3)

Krishnamurthy and Sen in [19] provided the following
fourth-order method:

𝑋𝑘+1 = 𝑋𝑘 (𝐼 + 𝑌𝑘 (𝐼 + 𝑌𝑘 (𝐼 + 𝑌𝑘))) , (4)
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in which 𝑌𝑘 = 𝐼 − 𝐴𝑋𝑘. As another example from this
primary source, the authors provided the following twelfth-
order method:

𝑋𝑘+1

= 𝑋𝑘 (𝐼 + 𝑌𝑘 (𝐼 + 𝑌𝑘

× (𝐼 + 𝑌𝑘 (𝐼 + 𝑌𝑘

× (𝐼 + 𝑌𝑘 (𝐼 + 𝑌𝑘

× (𝐼 + 𝑌𝑘 (𝐼 + 𝑌𝑘 )))))))) .

(5)

It is known that the Schulz iteration is numerically stable.
Unfortunately, the method is too slow at the beginning of
the process for finding 𝐴(2)

𝑇,𝑆
. To remedy this drawback and

lead to the better equilibrium between the high speed and
the operational cost, we define a new higher order iterative
method.

The aim of the present paper is to introduce and inves-
tigate new higher order iterative methods for computing
the generalized inverse 𝐴(2)

𝑇,𝑆
for a given matrix 𝐴. We

also discussed how the new method could be applied for
finding approximate inverses of nonsingular square matrices.
Analysis of convergence is included to show that the proposed
scheme has at least fifteenth-order convergence. Some tests
are also presented to show the superiority of the newmethod.

The paper is organized as follows. Section 1 is the intro-
duction. In Section 2, some preliminaries involving notations
are given. We analytically discuss the application of the
new algorithm in the computation of 𝐴(2)

𝑇,𝑆
in Section 3. The

proposed iterative method for computing matrix inversion
for its convergence analysis is also given. In Section 4, we dis-
cuss the complexity of the iterative methods to theoretically
find the most efficient method. Some numerical examples
matrices are worked out in Section 5; the results obtained are
compared with existing methods.

2. Preliminaries

In this section, we shall describe some concepts used in this
paper. Let the symbolsC𝑚×𝑛, 𝑇 and 𝑆 denote the set of𝑚×𝑛
complex matrices, the subspace of 𝐶𝑛, and the subspace of
𝐶𝑚, respectively. In addition, the symbols 𝑅(𝑥), 𝑁(𝑥), 𝐴∗,
𝜌(𝑋), and ‖𝑋‖ denote the range, the null space, the conjugate
transpose, spectral radius, and Frobenius norm of𝑋. It is well
known that 𝐴 converges; that is, lim𝑛→∞𝐴

𝑛 = 0 if and only
if 𝜌(𝐴) < 1.

The following lemmas are needed in what follows.

Lemma 1. If 𝑃𝐿,𝑀 denotes the projector on a space 𝐿 along a
space𝑀, then

(i) 𝑃𝐿,𝑀𝑄 = 𝑄 if and only if 𝑅(𝑄) ⊆ 𝐿;

(ii) 𝑄𝑃𝐿,𝑀 = 𝑄 if and only if𝑁(𝑄) ⊇ 𝑀.

Lemma 2. Let 𝐴 ∈ C𝑚×𝑛; let 𝑇 and 𝑆 be the subspace of 𝐶𝑛
and 𝐶𝑚, respectively, with dim𝑇 = dim 𝑆⊥ = 𝑡 ≤ 𝑟. Then, 𝐴
has a unique outer inverse𝑋 denoting𝐴(2)

𝑇,𝑆
such that𝑅(𝑋) = 𝑇

and𝑁(𝑋) = 𝑆 if and only if
𝐴𝑇 ⊕ 𝑆 = 𝐶

𝑚
. (6)

It is well known that, for 𝐴 ∈ C𝑚×𝑛, the Moore-Penrose
inverse 𝐴†, the Drazin inverse 𝐴𝐷, the weighted Moore-
Penrose inverse𝐴†𝑀,𝑁, and the weightedDrazin inverse𝐴

𝐷,𝑊

can be represented by

(i) 𝐴† = 𝐴(2)
R(𝐴∗),N(𝐴∗)

;

(ii) 𝐴𝐷 = 𝐴(2)
R(𝐴𝑘),N(𝐴𝑘)

, where 𝑘 = Ind(𝐴);

(iii) 𝐴†𝑀,𝑁 = 𝐴
(2)

R(𝑁−1𝐴∗𝑀),N(𝑁−1𝐴∗𝑀)
;

(iv) 𝐴𝐷,𝑊 = (𝑊𝐴𝑊)
(2)

R((𝐴𝑊)
𝑘

𝐴),N((𝐴𝑊)
𝑘

𝐴)
, where 𝑘 =

Ind(𝐴𝑊).

3. A New Method for Finding the
Generalized Inverse 𝐴(2)

𝑇,𝑆

Inspired andmotivated by the classical method (1) for finding
the inverse of a matrix 𝐴, it should be pointed out that
Newton’s method for the matrix equation [17] is as follows:

𝐹 (𝑉) := 𝑉
−1
− 𝐴 = 0. (7)

To construct a new matrix iteration, we must find a non-
linear equation solver, which is more efficient than Newton’s
method when it is applied to (7). Toward this goal, we apply
the following rational iteration function:

𝑌𝑘 = 𝑉𝑘 − 𝐹
󸀠
(𝑉𝑘)
−1
𝐹 (𝑉𝑘) ,

𝑍𝑘 = 𝑉𝑘 − [2
−1
𝐹 (𝑉𝑘)] [𝐹

󸀠
(𝑉𝑘)
−1
+ 𝐹
󸀠
(𝑌𝑘)
−1
] ,

𝑊𝑘 = 𝑍𝑘 − [(𝑍𝑘 − 𝑌𝑘)
−1
(𝐹(𝑍𝑘) − 𝐹(𝑌𝑘))]

−1
𝐹 (𝑍𝑘) ,

𝑉𝑘+1 = 𝑊𝑘 − [2
−1
𝐹 (𝑊𝑘) 𝐹

󸀠
(𝑊𝑘)
−1
]

× [2 + 𝐹
󸀠󸀠
(𝑊𝑘) 𝐹 (𝑊𝑘) 𝐹

󸀠
(𝑊𝑘)
−2
]

(8)

on the matrix equation (7), to obtain the following efficient
high-order method after simplifying:

𝑉𝑘+1 = −
1

8
𝑉𝑘 (−11𝐼 + 25𝐴𝑉𝑘 − 30(𝐴𝑉𝑘)

2

+ 20(𝐴𝑉𝑘)
3
− 7(𝐴𝑉𝑘)

4
+ (𝐴𝑉𝑘)

5
)

× (12𝐼 − 66𝐴𝑉𝑘 + 271(𝐴𝑉𝑘)
2
− 730(𝐴𝑉𝑘)

3

+ 2060(𝐴𝑉𝑘)
4
− 1982(𝐴𝑉𝑘)

5

+ 1260(𝐴𝑉𝑘)
6
− 1572(𝐴𝑉𝑘)

7

+ 870(𝐴𝑉𝑘)
8
− 340(𝐴𝑉𝑘)

9
+ 89(𝐴𝑉𝑘)

10

− 14(𝐴𝑉𝑘)
11
+ (𝐴𝑉𝑘)

12
) .

(9)
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Now, by simplification, we suggest the following matrix
iteration:

𝜓𝑘 = 𝐴𝑉𝑘,

𝜒𝑘 = −11𝐼 + 𝜓𝑘 (25𝐼 + 𝜓𝑘 (−30𝐼

+𝜓𝑘 (20𝐼 + 𝜓𝑘 (−7𝐼 + 𝜓𝑘)))) ,

𝜃𝑘 = 𝜓𝑘𝜒𝑘,

𝑉𝑘+1 = −
1

8
𝑉𝑘𝜒𝑘 (12𝐼 + 𝜃𝑘 (6𝐼 + 𝜃𝑘)) 𝑛 = 0, 1, 2, . . . ,

(10)

where 𝐼 is the identity matrix.
Note that it is also known that for 𝑌 ∈ C𝑛×𝑚𝑟 with 𝑅(𝑌) =

𝑇 and𝑁(𝑌) = 𝑆, and the initial approximation𝑉0 = 𝛼𝑌, with
0 < 𝛼 < 2/(𝜌(𝐴𝑌)), it holds that

󵄩󵄩󵄩󵄩𝐼 − 𝐴𝑉0
󵄩󵄩󵄩󵄩 < 1. (11)

We are about to use this fact in the following theorem so as
to find the theoretical order of the proposed method (10) for
finding the generalized inverse 𝐴(2)

𝑇,𝑆
.

Theorem 3. Let 𝐴 ∈ C𝑚×𝑛𝑟 , let 𝑇 be a subspace of 𝐶𝑛 of
dimension 𝑠 ≤ 𝑟, and let 𝑆 be a subspace of 𝐶𝑚 of dimension
𝑚 − 𝑠. Suppose 𝑌 ∈ C𝑛×𝑚𝑟 with 𝑅(𝑌) = 𝑇 and 𝑁(𝑌) = 𝑆
and the initial approximation 𝑉0 = 𝛼𝑌; the sequence {𝑉𝑘}

𝑘=∞
𝑘=0

generalized by (9) satisfies the following error estimate when
finding 𝐴(2)

𝑇,𝑆
:

󵄩󵄩󵄩󵄩󵄩
𝐴
(2)

𝑇,𝑆
− 𝑉𝑘
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴
(2)

𝑇,𝑆

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝐼 − 𝐴𝑉0

󵄩󵄩󵄩󵄩
15
𝑘

, 𝑘 = 0, 1, 2, . . . . (12)

Proof. We use notations that 𝐸0 = 𝐼 − 𝐴𝑉0 and subsequently
𝐸𝑘 = 𝐼 − 𝐴𝑉𝑘. Then,

𝐸𝑘+1 = 𝐼 − 𝐴𝑉𝑘+1

= 𝐼 −
1

8
𝐴𝑉𝑘 (−11𝐼 + 25𝐴𝑉𝑘 − 30(𝐴𝑉𝑘)

2

+20(𝐴𝑉𝑘)
3
− 7(𝐴𝑉𝑘)

4
+ (𝐴𝑉𝑘)

5
)

× (12𝐼 − 66𝐴𝑉𝑘 + 271(𝐴𝑉𝑘)
2
− 730(𝐴𝑉𝑘)

3

+ 1405(𝐴𝑉𝑘)
4
− 1982(𝐴𝑉𝑘)

5
+ 2060(𝐴𝑉𝑘)

6

− 1472(𝐴𝑉𝑘)
7
+ 870(𝐴𝑉𝑘)

8
− 340(𝐴𝑉𝑘)

9

+89(𝐴𝑉𝑘)
10
− 14(𝐴𝑉𝑘)

11
+ (𝐴𝑉𝑘)

12
)

=
1

8
(2𝐼 − 𝐴𝑉𝑘)

3
(𝐼 − 𝐴𝑉𝑘)

15

=
1

8
(𝐼 + 𝐸𝑘)

3
𝐸
15

𝑘

=
1

8
(𝐸
15

𝑘 + 3𝐸
16

𝑘 + 3𝐸
17

𝑘 + 𝐸
18

𝑘 ) .

(13)

By taking an arbitrary matrix norm on both sides of (13), we
attain
󵄩󵄩󵄩󵄩𝐸𝑘+1

󵄩󵄩󵄩󵄩 ≤
1

8
(
󵄩󵄩󵄩󵄩𝐸𝑘
󵄩󵄩󵄩󵄩
15
+ 3
󵄩󵄩󵄩󵄩𝐸𝑘
󵄩󵄩󵄩󵄩
16
+ 3
󵄩󵄩󵄩󵄩𝐸𝑘
󵄩󵄩󵄩󵄩
17
+
󵄩󵄩󵄩󵄩𝐸𝑘
󵄩󵄩󵄩󵄩
18
) . (14)

In addition, since ‖𝐸0‖ ≤ 1, by relation (14), we obtain that

󵄩󵄩󵄩󵄩𝐸1
󵄩󵄩󵄩󵄩 ≤
1

8
(
󵄩󵄩󵄩󵄩𝐸0
󵄩󵄩󵄩󵄩
15
+ 3
󵄩󵄩󵄩󵄩𝐸0
󵄩󵄩󵄩󵄩
16
+ 3
󵄩󵄩󵄩󵄩𝐸0
󵄩󵄩󵄩󵄩
17
+
󵄩󵄩󵄩󵄩𝐸0
󵄩󵄩󵄩󵄩
18
) ≤
󵄩󵄩󵄩󵄩𝐸0
󵄩󵄩󵄩󵄩
15
.

(15)

Now if we consider ‖𝐸𝑘‖ < 1, therefore

󵄩󵄩󵄩󵄩𝐸𝑘+1
󵄩󵄩󵄩󵄩 ≤
1

8
(
󵄩󵄩󵄩󵄩𝐸𝑘
󵄩󵄩󵄩󵄩
15
+ 3
󵄩󵄩󵄩󵄩𝐸𝑘
󵄩󵄩󵄩󵄩
16
+ 3
󵄩󵄩󵄩󵄩𝐸𝑘
󵄩󵄩󵄩󵄩
17
+
󵄩󵄩󵄩󵄩𝐸𝑘
󵄩󵄩󵄩󵄩
18
)

≤
󵄩󵄩󵄩󵄩𝐸𝑘
󵄩󵄩󵄩󵄩
15
.

(16)

Using mathematical induction, we obtain

󵄩󵄩󵄩󵄩𝐸𝑘+1
󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝐸0
󵄩󵄩󵄩󵄩
15
𝑘

, 𝑘 ≥ 0. (17)

Using this fact 𝑉0 = 𝛼𝑌 with 𝑅(𝑌) = 𝑇 and 𝑁(𝑌) = 𝑆 in
conjunction with (9), we conclude that

𝑅 (𝑉𝑘) ⊆ 𝑇, 𝑁 (𝑉𝑘) ⊇ 𝑆, 𝑘 ≥ 0. (18)

It is not difficult to verify that

𝐴
(2)

𝑇,𝑆𝐴𝑉𝑘 = 𝑉𝑘, 𝑉𝑘𝐴𝐴
(2)

𝑇,𝑆 = 𝑉𝑘, 𝑘 ≥ 0. (19)

Therefore, the error matrix 𝐹𝑘 = 𝐴
(2)

𝑇,𝑆
− 𝑉𝑘 satisfies

𝐹𝑘 = 𝐴
(2)

𝑇,𝑆 − 𝑉𝑘 = 𝐴
(2)

𝑇,𝑆 − 𝐴
(2)

𝑇,𝑆𝐴𝑉𝑘

= 𝐴
(2)

𝑇,𝑆 (𝐼 − 𝐴𝑉𝑘) = 𝐴
(2)

𝑇,𝑆𝐸𝑘.

(20)

From the last identity and (17) we have

󵄩󵄩󵄩󵄩𝐹𝑘
󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩󵄩
𝐴
(2)

𝑇,𝑆

󵄩󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐸𝑘
󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩󵄩
𝐴
(2)

𝑇,𝑆

󵄩󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐸0
󵄩󵄩󵄩󵄩
15
𝑘

, (21)

which is a confirmation of (12).

Theorem 4. Let 𝐴 ∈ C𝑚×𝑛𝑟 , let 𝑇 be a subspace of 𝐶𝑛 of
dimension 𝑠 ≤ 𝑟, and let 𝑠 be a subspace of 𝐶𝑚 of dimension
𝑚 − 𝑠. Suppose 𝑌 ∈ C𝑛×𝑚𝑟 with 𝑅(𝑌) = 𝑇 and𝑁(𝑌) = 𝑆. If the
initial approximation 𝑉0 = 𝛼𝑌 is in accordance with (11). The
sequence {𝑉𝑘}

𝑘=∞
𝑘=0 generalized by (9) converges with fifteenth

order to 𝐴(2)
𝑇,𝑆
.

Proof. From (13), we know

𝐸𝑘+1 =
1

8
(𝐸
15

𝑘 + 3𝐸
16

𝑘 + 3𝐸
17

𝑘 + 𝐸
18

𝑘 ) . (22)

Set 𝐹𝑘 = 𝑉𝑘 − 𝐴
(2)

𝑇,𝑆
. We have

𝐴𝐹𝑘+1 = 𝐴𝑉𝑘+1 − 𝐴𝐴
(2)

𝑇,𝑆

= 𝐴𝑉𝑘+1 − 𝐼 + 𝐼 − 𝐴𝐴
(2)

𝑇,𝑆

= −𝐸𝑘+1 + 𝐼 − 𝐴𝐴
(2)

𝑇,𝑆

= −
1

8
(𝐸
15

𝑘 + 3𝐸
16

𝑘 + 3𝐸
17

𝑘 + 𝐸
18

𝑘 ) + 𝐼 − 𝐴𝐴
(2)

𝑇,𝑆.

(23)
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On the other hand, from conditions (18) and (19), we can
obtain the equation

(𝐼 − 𝐴𝐴
(2)

𝑇,𝑆)
𝑡
= 𝐼 − 𝐴𝐴

(2)

𝑇,𝑆, 𝑡 = 1, 2, 3, . . . , (24)

(𝐼 − 𝐴𝐴
(2)

𝑇,𝑆)𝐴𝐹𝑘

= (𝐼 − 𝐴𝐴
(2)

𝑇,𝑆) (𝐴𝑉𝑘 − 𝐴𝐴
(2)

𝑇,𝑆)

= 𝐴𝑉𝑘 − 𝐴𝐴
(2)

𝑇,𝑆 − 𝐴𝐴
(2)

𝑇,𝑆𝐴𝑉𝑘 + 𝐴𝐴
(2)

𝑇,𝑆𝐴𝐴
(2)

𝑇,𝑆

= 𝐴𝑉𝑘 − 𝐴𝐴
(2)

𝑇,𝑆 − 𝐴𝑉𝑘 + 𝐴𝐴
(2)

𝑇,𝑆 = 0.

(25)

According to the relations (22)–(25), we have

𝐴𝐹𝑘+1 =
1

8
(𝐹
15

𝑘 + 3𝐹
16

𝑘 + 3𝐹
17

𝑘 + 𝐹
18

𝑘 ) . (26)

Therefore
󵄩󵄩󵄩󵄩𝐴𝐹𝑘+1

󵄩󵄩󵄩󵄩 ≤
1

8
(
󵄩󵄩󵄩󵄩𝐴𝐹𝑘

󵄩󵄩󵄩󵄩
15
+ 3
󵄩󵄩󵄩󵄩𝐴𝐹𝑘

󵄩󵄩󵄩󵄩
16
+ 3
󵄩󵄩󵄩󵄩𝐴𝐹𝑘

󵄩󵄩󵄩󵄩
17
+
󵄩󵄩󵄩󵄩𝐴𝐹𝑘

󵄩󵄩󵄩󵄩
18
)

≤
󵄩󵄩󵄩󵄩𝐴𝐹𝑘

󵄩󵄩󵄩󵄩
15
.

(27)

It would be now easy to find the error inequality of the high-
order iterative as follows:
󵄩󵄩󵄩󵄩𝐹𝑘+1

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩󵄩
𝑉𝑘+1 − 𝐴

(2)

𝑇,𝑆

󵄩󵄩󵄩󵄩󵄩
=
󵄩󵄩󵄩󵄩󵄩
𝐴
(2)

𝑇,𝑆𝐴𝑉𝑘+1 − 𝐴
(2)

𝑇,𝑆𝐴𝐴
(2)

𝑇,𝑆

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝐴
(2)

𝑇,𝑆

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴𝑉𝑘+1 − 𝐴𝐴

(2)

𝑇,𝑆

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝐴
(2)

𝑇,𝑆

󵄩󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐴𝐹𝑘+1

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩󵄩
𝐴
(2)

𝑇,𝑆

󵄩󵄩󵄩󵄩󵄩 ‖
𝐴‖
15󵄩󵄩󵄩󵄩𝐹𝑘

󵄩󵄩󵄩󵄩
15
.

(28)

Thus, ‖𝑉𝑘+1 − 𝐴
(2)

𝑇,𝑆
‖ → 0; that is, the sequence {𝑉𝑘}

𝑘=∞
𝑘=0

converges to the generalized inverse𝐴(2)
𝑇,𝑆

in at least fifteenth-
order as 𝑛 → 0. This ends the proof.

Since the Moore-Penrose inverse, the weighted Moore-
Penrose inverse, the Drazin inverse, and the weighted Drazin
inverse of a matrix over C always exist, the below corollary
follows immediately byTheorems 4.

Corollary 5. Suppose the condition of Theorem 3 holds. Let
𝑉𝑘 be defined by Theorem 3. Denote 𝑉∞ = lim𝑘→∞𝑉𝑘, the
sequence {𝑉𝑘}

𝑘=∞
𝑘=0 generalized by (9) and using the initial

approximation 𝑉0 = 𝛼𝑌 and such that 0 < 𝛼 < 2/(𝜌(𝐴𝑌)),
if and only if one of the following holds:

(i) 𝑉∞ = 𝐴
† with 𝑌 = 𝐴∗;

(ii) 𝑉∞ = 𝐴
𝐷 with 𝑌 = 𝐴𝑙, 𝑙 ≥ Ind(𝐴);

(iii) 𝑉∞ = 𝐴
†
𝑀,𝑁 with 𝑌 = 𝑁

−1𝐴∗𝑀, where M and N are
Hermite positive definite matrices of the orders m and
n, respectively;

(iv) 𝑉∞ = 𝐴
𝐷,𝑊 with 𝑌 = (𝐴𝑊)𝑙𝐴, 𝑙 ≥ Ind(𝐴𝑊), where

𝑊 ∈ C𝑛×𝑚.

By taking special matrix, we can get some desired results.
We discuss the applications of (9) in computing matrix
inversion 𝐴−1 as follows.

Corollary 6. Let 𝐴 = [𝑎𝑖𝑗] ∈ C𝑛×𝑛 be a nonsingular real or
complex matrix. If the initial approximation 𝑉0 satisfies

󵄩󵄩󵄩󵄩𝐼 − 𝐴𝑉0
󵄩󵄩󵄩󵄩 < 1, (29)

then the iterative method (9) converges with at least fifteenth-
order to 𝐴−1.

Proof. From (13), we know

𝐸𝑘+1 = 𝐼 − 𝐴𝑉𝑘+1

=
1

8
(𝐸
15

𝑘 + 3𝐸
16

𝑘 + 3𝐸
17

𝑘 + 𝐸
18

𝑘 ) .
(30)

Hence, by taking arbitrarymatrix norm on both sides of (30),
we attain
󵄩󵄩󵄩󵄩𝐸𝑘+1

󵄩󵄩󵄩󵄩 ≤
1

8
(
󵄩󵄩󵄩󵄩𝐸𝑘
󵄩󵄩󵄩󵄩
15
+ 3
󵄩󵄩󵄩󵄩𝐸𝑘
󵄩󵄩󵄩󵄩
16
+ 3
󵄩󵄩󵄩󵄩𝐸𝑘
󵄩󵄩󵄩󵄩
17
+
󵄩󵄩󵄩󵄩𝐸𝑘
󵄩󵄩󵄩󵄩
18
) . (31)

In addition, since ‖𝐸0‖ < 1 by relation (13), we obtain that

󵄩󵄩󵄩󵄩𝐸1
󵄩󵄩󵄩󵄩 ≤
1

8
(
󵄩󵄩󵄩󵄩𝐸𝑘
󵄩󵄩󵄩󵄩
15
+ 3
󵄩󵄩󵄩󵄩𝐸𝑘
󵄩󵄩󵄩󵄩
16
+ 3
󵄩󵄩󵄩󵄩𝐸𝑘
󵄩󵄩󵄩󵄩
17
+
󵄩󵄩󵄩󵄩𝐸𝑘
󵄩󵄩󵄩󵄩
18
)

≤
󵄩󵄩󵄩󵄩𝐸𝑜
󵄩󵄩󵄩󵄩
15
< 1.

(32)

Now if we consider ‖𝐸𝑘‖ < 1, therefore

󵄩󵄩󵄩󵄩𝐸𝑘+1
󵄩󵄩󵄩󵄩 ≤
1

8
(
󵄩󵄩󵄩󵄩𝐸𝑘
󵄩󵄩󵄩󵄩
15
+ 3
󵄩󵄩󵄩󵄩𝐸𝑘
󵄩󵄩󵄩󵄩
16
+ 3
󵄩󵄩󵄩󵄩𝐸𝑘
󵄩󵄩󵄩󵄩
17
+
󵄩󵄩󵄩󵄩𝐸𝑘
󵄩󵄩󵄩󵄩
18
)

≤
󵄩󵄩󵄩󵄩𝐸𝑘
󵄩󵄩󵄩󵄩
15
< 1.

(33)

Using mathematical induction, we obtain
󵄩󵄩󵄩󵄩𝐸𝑘+1

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝐸𝑘
󵄩󵄩󵄩󵄩
15
, 𝑘 ≥ 0. (34)

Furthermore, we get that

󵄩󵄩󵄩󵄩𝐸𝑘+1
󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝐸𝑘
󵄩󵄩󵄩󵄩
15
≤ ⋅ ⋅ ⋅ ≤

󵄩󵄩󵄩󵄩𝐸0
󵄩󵄩󵄩󵄩
15
𝑘+1

. (35)

That is, 𝐼 − 𝐴𝑉𝑘 → 0, when 𝑘 → ∞ and

𝑉𝑘 󳨀→ 𝐴
−1
, as 𝑘 󳨀→ ∞. (36)

Thus, the new method (9) converges to the inverse of the
matrix 𝐴 in the case 𝜌(𝐴𝑉0) < 1, where 𝜌 is the spectral
radius. Now, we prove that the order of convergence for the
sequence {𝑉𝑘}

𝑘=∞
𝑘=0 is at least fifteen. Let 𝜎𝑘 denote the error

matrix 𝜎𝑛 = 𝐴
−1 − 𝑉𝑘; afterwards

𝐸𝑘 = 𝐴𝜎𝑘 = 𝐼 − 𝐴𝑉𝑘. (37)

The identity (13) in conjunction with (37) implies that

𝐴𝜎𝑘+1 =
1

8
((𝐴𝜎𝑘)

15
+ 3(𝐴𝜎𝑘)

16
+ 3(𝐴𝜎𝑘)

17
+ (𝐴𝜎𝑘)

18
) .

(38)

Therefore, using invertibility of𝐴, it follows immediately that

𝜎𝑘+1 =
1

8
((𝐴𝜎𝑘)

14
+ 3(𝐴𝜎𝑘)

15
+ 3(𝐴𝜎𝑘)

16
+ (𝐴𝜎𝑘)

17
) 𝜎𝑘.

(39)
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Table 1: Comparison of the computational complexity for different methods.

Methods
(1) (2) (3) (4) (5) (9)

Rate of convergence 2 3 3 4 9 15
Number of matrix multiplications 2 3 4 4 9 9
Efficiency index (𝐸) 1 1 0.75 1 1 1.678

By taking any subordinate norm of (39), we obtain

󵄩󵄩󵄩󵄩𝜎𝑘+1
󵄩󵄩󵄩󵄩 =
1

8
(‖𝐴‖
14
+ 3‖𝐴‖

15 󵄩󵄩󵄩󵄩𝜎𝑘
󵄩󵄩󵄩󵄩 + 3‖𝐴‖

16󵄩󵄩󵄩󵄩𝜎𝑘
󵄩󵄩󵄩󵄩
2

+‖𝐴‖
17󵄩󵄩󵄩󵄩𝜎𝑘

󵄩󵄩󵄩󵄩
3
)
󵄩󵄩󵄩󵄩𝜎𝑘
󵄩󵄩󵄩󵄩
15
.

(40)

Consequently, it is proved that the iterative formula (9)
converges to 𝐴−1, and the order of this method is at least
fifteen.

4. Complexity of the Methods

Let us consider two parameters 𝜌 and 𝜅 which stand for
the rate of convergence and the number of matrix-by-matrix
multiplications in floating point arithmetics, respectively.
Then the comparative index could be expressed by

𝐸 =
𝜌

𝜅
. (41)

According to Table 1, we can see that the iterative process (9)
reduces the computational complexity by using less number
of basic operations and leads to the better equilibrium
between the high speed and the operational cost.

5. Numerical Examples

In this section, we will illustrate a numerical experiment
on our method and give some theoretical and numerical
comparison with the existing solution methods. All these
numerical experiments are executed in the Matlab 7.13.0.564
(R2011b) (Build 7601: Service Pack 1) of the software used
on an intel(R) core (TM)2 Duo CPU T6500 2.10GHz with
2GBRAMmemory running on thewindowsXPProfessional
Version 2002 Service Pack 3.

Example 1. Consider the singular M-matrix 𝐴 of order 6 × 6
in [20]

𝐴 =

[
[
[
[
[
[
[

[

1 −1 0 0 0 0

−1 1 0 0 0 0

−1 −1 1 −1 0 0

−1 −1 −1 1 0 0

−1 −1 −1 0 2 −1

−1 −1 0 −1 −1 2

]
]
]
]
]
]
]

]

. (42)

Clearly, 𝑘 = ind(𝐴) = 2. Now, taking 𝑌 = 𝐴𝑘 given by

𝑌 =

[
[
[
[
[
[
[

[

2 −2 0 0 0 0

−2 2 0 0 0 0

0 0 2 −2 0 0

0 0 −2 2 0 0

0 0 −3 2 5 −4

0 0 2 −3 −4 5

]
]
]
]
]
]
]

]

, (43)

such that𝑅(𝑌) = 𝑇, 𝑁(𝑌) = 𝑆.Wemust take𝛼which satisfies
0 < 𝛼 < 0.074074 to satisfy the convergence condition 0 <
𝛼 < 2/(𝜌(𝐴𝑌)). The Drazin inverse 𝐴𝑑 is obtained as

𝐴
𝐷
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1

4
−
1

4
0 0 0 0

−
1

4

1

4
0 0 0 0

0 0
1

4
−
1

4
0 0

0 0 −
1

4

1

4
0 0

0 0 −
5

12
−
7

12

2

3

1

3

0 0 −
7

12
−
5

12

1

3

2

3

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (44)

Table 2 compares the number of iterations (𝑁) and error
bounds of the existingmethods [17, 18] and the fastestmethod
of [20] with the stopping criteria ‖𝑋𝑘+1 − 𝑋𝑘‖ ≤ 10

−10. It is
found that our method takes fewer numbers of iterations and
gives accurate estimations of𝐴𝑑 in comparison to themethod
compared.

Example 2. Consider the following 12 × 12 matrix investi-
gated in ([21] Example 3.2):

𝐴 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

2 0.4 0 0 0 0 0 0 0 0 0 0

−2 0.4 0 0 0 0 0 0 0 0 0 0

−1 −1 1 −1 0 0 0 0 −1 0 0 0

−1 −1 −1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 −1 −1 0 0 −1 0

0 0 0 0 1 1 −1 −1 0 0 0 0

0 0 0 −1 −2 0.4 0 0 0 0 0 0

0 0 0 0 2 0.4 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 1 −1 −1 −1

0 0 0 0 0 0 0 0 −1 1 −1 −1

0 0 0 0 0 0 0 0 0 0 0.4 −2

0 0 0 0 0 0 0 0 0 0 0.4 2

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(45)

Then 𝑘 = ind(𝐴) = 3. Now, 𝑌 = 𝐴𝑘 with 𝛼 = 2/ tr(𝐴𝑘+1).
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Table 2: Comparison of𝑁 and error bounds for different values of 𝛼.

Methods
Methods of [20] Our method Methods of [20] Our method Methods of [20] Our method Methods of [20] Our method

𝛼 0.03 0.03 0.04 0.04 0.05 0.05 0.06 0.06
𝑁 𝐾 = 11 𝐾 = 3 𝐾 = 11 𝐾 = 3 𝐾 = 12 𝐾 = 3 𝐾 = 10 𝐾 = 3
󵄩󵄩󵄩󵄩󵄩
𝐴
(2)

𝑇,𝑆
− 𝑋𝑘

󵄩󵄩󵄩󵄩󵄩
4.0569e − 014 1.0813e − 13 8.2489e − 016 1.9636e − 13 5.5590e − 012 2.8817e − 13 2.4454e − 014 1.0759e − 12

󵄩󵄩󵄩󵄩𝑋𝑘+1 − 𝑋𝑘
󵄩󵄩󵄩󵄩 4.0253e − 014 1.4434e − 13 2.0263e − 016 1.4434e − 13 5.5592e − 012 8.8161e − 14 2.4572e − 014 1.0792e − 12

Table 3: Comparisons.

Methods Euler-Knopp SIM [21] Newton’s method [17] Newton-Raphson Methods of [18] Our method
Iteration number 787 iteration 50 iteration 15 iteration 11 iteration 10 iteration 5 iteration

According to Table 3, our method algorithm only needs
5 iterations to converge with ‖𝑋𝑘 − 𝑋𝑘−1‖ ≤ 10

−8. We obtain
𝐴𝐷 = [𝐴11𝐴12]. Consider

𝐴11 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0.25 −0.25 0 0 0 0
1.25 1.25 0 0 0 0
−1.6641 −0.9922 0.25 −0.25 0 0
−1.1953 −0.6797 −0.25 0.25 0 0
−2.7637 −1.0449 −1.875 −1.25 −1.25 1.25
−2.7637 −1.0449 −1.875 −1.25 −1.25 1.25
14.1094 6.3008 6.625 3.375 5 −3
−19.3242 −8.5078 −9.75 −5.25 −7.5 4.5
−0.625 −0.3125 0 0 0 0
−1.25 −0.9375 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝐴12 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 0 0 0 0 0
0 0 0 0 0 0
0 0 −0.0625 −0.0625 0 0.1563
0 0 −0.0625 0.1875 0.6875 1.3438
1.25 1.25 1.484384 2.5781 3.3203 6.6406
1.25 1.25 1.4844 2.5781 4.5703 8.5156
−5 −5 −4.1875 −8.5 −10.5078 −22.4609
7.5 7.5 6.375 12.5625 15.9766 33.7891
0 0 0.25 −0.25 −0.875 −1.625
0 0 −0.25 0.25 −0.875 −1.625
0 0 0 0 1.25 1.25
0 0 0 0 −0.25 0.25

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(46)
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