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We analyze a predator prey model with stochastic perturbation. First, we show that this system has a unique positive solution.
Then, we deduce conditions that the system is persistent in time average. Furthermore, we show the conditions that there is a
stationary distribution of the systemwhich implies that the system is permanent. After that, conditions for the system going extinct
in probability are established. At last, numerical simulations are carried out to support our results.

1. Introduction

Recently, the dynamic relationship between predator and
prey has been one of the dominant themes in both ecology
and mathematical ecology due to its universal importance.
Especially, the predator prey model is the typical represen-
tative. Thereby it significantly changed the biology and the
understanding of the existence and development of the basic
law and has made the model become the research hot spot.
One of the most famous models for population dynamics is
the Lotka-Volterra predator prey system which has received
plenty of attention and has been studied extensively; we
refer the reader to [1–3] for details. Specially persistence and
extinction of this model are interesting topics.

The predator prey model is described as follows:

�̇� (𝑡) = 𝑟𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐾

) − 𝑐𝑥 (𝑡) 𝑦 (𝑡) ,

̇𝑦 (𝑡) = −𝜇𝑦 (𝑡) + 𝑚𝑐𝑥 (𝑡) 𝑦 (𝑡) ,

(1)

where 𝑥(𝑡),𝑦(𝑡) denote the population densities of the species
at time 𝑡.The parameters 𝑟, 𝐾, 𝑐, 𝜇, 𝑚, are positive constants
that stand for prey intrinsic growth rate, carrying capacity,

the maximum ingestion rate, predator death rate, and the
conversion factor, respectively. From a biological viewpoint,
we not only require the positive solution of the system but
also require its unexploded property in any finite time and
stability. We know that system (1) has a unique positive
equilibrium (𝑥

∗

, 𝑦

∗

) which is a stable node or focus if the
following condition holds,𝑚𝑐𝐾 > 𝜇:

𝑥

∗

=

𝜇

𝑚𝑐

, 𝑦

∗

=

𝑟𝑚𝑐𝐾 − 𝑟𝜇

𝑚𝑐

2
𝐾

(2)

and the system (1) has a unique limit cycle which is stable (see
[4]).

However, population dynamics in the real world is
inevitably affected by environmental noise (see, e.g., [5–7]).
Parameters involved in the system are not absolute con-
stants; they always fluctuate around some average values.The
deterministic models assume that parameters in the systems
are deterministic irrespective of environmental fluctuations
which impose some limitations in mathematical modeling of
ecological systems. So we cannot omit the influence of the
noise on the system. Recently many authors have discussed
population systems subject to white noise (see, e.g., [8–12]).
May (see, e.g., [13]) pointed out that due to continuous
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fluctuation in the environment, the birth rates, death rates,
saturated rate, competition coefficients, and all other parame-
ters involved in themodel exhibit randomfluctuation to some
extent, and as a result the equilibriumpopulation distribution
never attains a steady value but fluctuates randomly around
some average value. Sometimes, large amplitude fluctuation
in population will lead to the extinction of certain species,
which does not happen in deterministic models.

Therefore, Lotka-Volterra predator prey models in ran-
dom environments are becoming more and more popu-
lar. Ji et al. [14, 15] investigated the asymptotic behavior
of the stochastic predator prey system with perturbation.
Liu and Chen [16] introduced periodic constant impulsive
immigration of predator into predator prey system and gave
conditions for the system to be extinct and permanent.

In this paper, we introduce the white noise into the
intrinsic growth rate and predator death rate of system (1);
that is, 𝑟 → 𝑟 + 𝜎

1

̇

𝐵

1
(𝑡), 𝜇 → 𝜇 + 𝜎

2

̇

𝐵

2
(𝑡); then, we obtain

the following stochastic system:

�̇� (𝑡) = 𝑟𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐾

) − 𝑐𝑥 (𝑡) 𝑦 (𝑡)

+

𝜎

1

𝐾

𝑥 (𝑡) (𝐾 − 𝑥 (𝑡))

̇

𝐵

1
(𝑡) ,

̇𝑦 (𝑡) = −𝜇𝑦 (𝑡) + 𝑚𝑐𝑥 (𝑡) 𝑦 (𝑡) − 𝜎

2
𝑦 (𝑡)

̇

𝐵

2
(𝑡) ,

(3)

where 𝐵

𝑖
(𝑡) (𝑖 = 1, 2) are independent white noises with

𝐵

𝑖
(0) = 0, 𝜎2

𝑖
> 0 (𝑖 = 1, 2) representing the intensities of

the noise.
The aim of this paper is to discuss the long time behavior

of system (3). We have mentioned that (𝑥∗, 𝑦∗) is the positive
equilibrium of system (1). But when it suffers stochastic
perturbations, there is no positive equilibrium. Hence, it is
impossible that the solution of system (3) will tend to a fixed
point. In this paper, we show that system (3) is persistent
in time average. Furthermore, under certain conditions, we
prove that the population of system (3) will die out in
probability which will not happen in deterministic system
and could reveal that large white noisemay lead to extinction.

The rest of this paper is organized as follows. In Section 2,
we show that there is a unique nonnegative solution of system
(3). In Section 3, we show that system (3) is persistent in time
average, while in Section 4 we consider three situations when
the population of the system will be extinct. In Section 5,
numerical simulations are carried out to support our results.

Throughout this paper, unless otherwise specified, let
(Ω, {F

𝑡
}

𝑡≥0
, 𝑃) be a complete probability space with a filtra-

tion {F
𝑡
}

𝑡≥0
satisfying the usual conditions (i.e., it is right

continuous and F
0
contains all P-null sets). Let 𝑅2

+
denote

the positive cone of 𝑅2; namely, 𝑅2
+
= {𝑥 = (𝑥

1
, 𝑥

2
) ∈ 𝑅

2

:

𝑥

𝑖
> 0, 𝑖 = 1, 2}, 𝑅2

+
= {𝑥 = (𝑥

1
, 𝑥

2
) ∈ 𝑅

2

: 𝑥

𝑖
≥ 0, 𝑖 = 1, 2}.

2. Existence and Uniqueness of the
Nonnegative Solution

To investigate the dynamical behavior, first, we should con-
cern whether the solution is global existence. Moreover, for

a population model, we should also consider whether the
solution is nonnegative. Hence, in this section we show that
the solution of system (3) is global and nonnegative. As we
have known, in order for a stochastic differential equation
to have a unique global (i.e., no explosion at a finite time)
solution with any given initial value, the coefficients of the
equation are generally required to satisfy the linear growth
condition and local Lipschitz condition (see, e.g., [17]). It
is easy to see that the coefficients of system (3) are locally
Lipschitz continuous, so system (3) has a local solution. By
Lyapunov analysis method, we show the global existence of
this solution.

By the classical comparison theorem of stochastic differ-
ential equations, we could get the following.

Lemma 1. Let (𝑥(𝑡), 𝑦(𝑡)) be a positive solution of system (3)
with (𝑥(0), 𝑦(0)) ∈ 𝑅

2

+
. Then, we have

𝑥 (𝑡) ≤ 𝑋 (𝑡) ,

𝑦 (𝑡) ≤ 𝑌 (𝑡) , a.s.,
(4)

where (𝑋(𝑡), 𝑌(𝑡)) are solutions of the following stochastic
differential equations:

̇

𝑋 (𝑡) = 𝑟𝑋 (𝑡) (1 −

𝑋 (𝑡)

𝐾

) +

𝜎

1

𝐾

𝑋 (𝑡) (𝐾 − 𝑋 (𝑡))

̇

𝐵

1
(𝑡) ,

𝑋 (0) = 𝑥 (0) ,

̇

𝑌 (𝑡) = −𝜇𝑌 (𝑡) + 𝑚𝑐𝑋 (𝑡) 𝑌 (𝑡) − 𝜎

2
𝑌 (𝑡)

̇

𝐵

2
(𝑡) ,

𝑌 (0) = 𝑦 (0) .

(5)

Consider the stochastic logistic equation

𝑑𝑁 (𝑡) = 𝑁 (𝑡) [(𝑟 −

𝑟

𝐾

𝑁 (𝑡)) 𝑑𝑡 +

𝛼

𝐾

(𝐾 − 𝑁 (𝑡)) 𝑑𝐵 (𝑡)] ,

𝑟, 𝐾 > 0.

(6)

Jiang et al. [18] studied system (6) and obtained the following
result.

Lemma 2. There exists a unique continuous positive solution
0 < 𝑁(𝑡) < 𝐾 to system (6) for any initial value 𝑁(0) = 𝑁

0

with 0 < 𝑁

0
< 𝐾. If 𝑟 > 𝛼

2

/2, then

lim
𝑡→∞

𝑁(𝑡) = 𝐾, a.s. (7)

FromLemmas 1 and 2, it is easy to get the following result.

Lemma 3. Let (𝑥(𝑡), 𝑦(𝑡)) be a positive solution of system (3)
with 0 < 𝑥(0) < 𝐾. Then, we have

0 < 𝑥 (𝑡) < 𝐾. a.s. (8)

Theorem 4. For any initial value {(𝑥(0), 𝑦(0)) ∈ 𝑅

2

+
, 𝑥(0) ∈

(0, 𝐾)}, there is a unique solution (𝑥(𝑡), 𝑦(𝑡)) of system (3) on
𝑡 ≥ 0, and the solution will remain in 𝑅

2

+
with probability 1.
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Proof. It is clear that the coefficients of system (3) are locally
Lipschitz continuous for the given initial value {(𝑥(0), 𝑦(0)) ∈
𝑅

2

+
, 𝑥(0) ∈ (0, 𝐾)}. So there is a unique local solution

(𝑥(𝑡), 𝑦(𝑡)) on 𝑡 ∈ [0, 𝜏

𝑒
), where 𝜏

𝑒
is the explosion time (see,

e.g., [17]). To show this solution is global, we need to show
that 𝜏

𝑒
= ∞ a.s. Let 𝑘

0
≥ 1 be sufficiently large so that 𝑥(0)

and 𝑦(0) all lie within the interval [1/𝑘
0
, 𝑘

0
]. For each integer

𝑘 ≥ 𝑘

0
, define the stopping time

𝜏

𝑚
= inf {𝑡 ∈ [0, 𝜏

𝑒
) : min {𝑥 (𝑡) , 𝑦 (𝑡)}

≤

1

𝑘

or max {𝑥 (𝑡) , 𝑦 (𝑡)} ≥ 𝑘} .

(9)

Throughout this paper, we set inf 0 = ∞ (as usual 0 denotes
the empty set). Clearly, 𝜏

𝑘
is increasing as 𝑘 → ∞. Set 𝜏

∞
=

lim
𝑘→∞

𝜏

𝑘
; then, 𝜏

∞
≤ 𝜏

𝑒
a.s. If we can show that 𝜏

∞
= ∞

a.s., then 𝜏

𝑒
= ∞ and (𝑥(𝑡), 𝑦(𝑡)) ∈ 𝑅

2

+
a.s. for all 𝑡 ≥ 0. In

other words, to complete the proof all we need to show is that
𝜏

∞
= ∞ a.s. If this statement is false, then there is a pair of

constants 𝑇 > 0 and 𝜖 ∈ (0, 1) such that

𝑃 {𝜏

∞
≤ 𝑇} > 𝜖. (10)

Hence, there is an integer 𝑘
1
≥ 𝑘

0
such that

𝑃 {𝜏

𝑘
≤ 𝑇} ≥ 𝜖 ∀𝑘 ≥ 𝑘

1
. (11)

Define a 𝐶2-function 𝑉 : 𝑅

2

+
→ 𝑅

+
by

𝑉 (𝑥, 𝑦) = (𝑥 − 𝑎 − 𝑎 log 𝑥

𝑎

) +

1

𝑚

(𝑦 − 1 − log𝑦) , (12)

where 𝑎 is a positive constant to be determined later. The
nonnegativity of this function can be seen from 𝑢−1− log 𝑢 ≥

0, for all 𝑢 > 0. Using Itô’s formula, we get

𝑑𝑉 := 𝐿𝑉𝑑𝑡 +

𝜎

1

𝐾

(𝑥 − 𝑎) (𝐾 − 𝑥) 𝑑𝐵

1
(𝑡)

+

𝜎

2

𝑚

(𝑦 − 1) 𝑑𝐵

2
(𝑡) ,

(13)

where

𝐿𝑉 = (𝑥 − 𝑎) (𝑟 −

𝑟

𝐾

𝑥 − 𝑐𝑦) +

𝑎𝜎

2

1

2𝐾

2

(𝐾 − 𝑥)

2

+

1

𝑚

(𝑦 − 1) (−𝜇 + 𝑚𝑐𝑥) +

𝜎

2

2

2𝑚

= −𝑎𝑟 +

𝑎𝜎

2

1

2

+

𝜇

𝑚

+

𝜎

2

2

2𝑚

+ (𝑟 +

𝑎𝑟 − 𝑎𝜎

2

1

𝐾

− 𝑐)𝑥

− (

𝑟

𝐾

−

𝑎𝜎

2

1

2𝐾

2

)𝑥

2

− (

𝜇

𝑚

− 𝑎𝑐) 𝑦.

(14)

Choose 𝑎 = 𝜇/𝑚𝑐 such that 𝜇/𝑚 − 𝑎𝑐 = 0, together with
Lemma 3; then,

𝐿𝑉 ≤ −𝑎𝑟 +

𝑎𝜎

2

1

2

+

𝜇

𝑚

+

𝜎

2

2

2𝑚

+ (𝑟 +

𝑎𝑟 − 𝑎𝜎

2

1

𝐾

− 𝑐)𝑥 − (

𝑟

𝐾

−

𝑎𝜎

2

1

2𝐾

2

)𝑥

2

≤ 𝑀,

(15)

where𝑀 is a positive constant. Therefore,

∫

𝜏𝑘∧𝑇

0

𝑑𝑉 (𝑥 (𝑡) , 𝑦 (𝑡))

≤ ∫

𝜏𝑘∧𝑇

0

𝑀𝑑𝑡 + ∫

𝜏𝑘∧𝑇

0

𝜎

1

𝐾

(𝑥 −

𝜇

𝑚𝑐

) (𝐾 − 𝑥) 𝑑𝐵

1
(𝑠)

+

𝜎

2

𝑚

(𝑦 (𝑠) − 1) 𝑑𝐵

2
(𝑠) ,

𝐸 [𝑉 (𝑥 (𝜏

𝑘
∧ 𝑇) , 𝑦 (𝜏

𝑘
∧ 𝑇))]

≤ 𝑉 (𝑥 (0) , 𝑦 (0))

+ 𝐸∫

𝜏𝑘∧𝑇

0

𝐾𝑑𝑡 ≤ 𝑉 (𝑥 (0) , 𝑦 (0)) + 𝑀𝑇.

(16)

Set Ω
𝑘
= {𝜏

𝑘
≤ 𝑇} for 𝑘 ≥ 𝑘

1
; then, by (11), we know that

𝑃(Ω

𝑘
) ≥ 𝜖. Note that for every 𝜔 ∈ Ω

𝑘
, there is at least one of

𝑥(𝜏

𝑘
, 𝜔) and 𝑦(𝜏

𝑘
, 𝜔) equals either 𝑘 or 1/𝑘; then,

𝑉 (𝑥 (𝜏

𝑘
) , 𝑦 (𝜏

𝑘
)) ≥ (𝑘 − 𝑎 − 𝑎 log 𝑘

𝑎

)

∧ (

1

𝑘

− 𝑎 + 𝑎 log (𝑎𝑘))

∧

1

𝑘

(𝑘 − 1 − log 𝑘)

∧

1

𝑘

(

1

𝑘

− 1 + log 𝑘) .

(17)

It then follows from (11) and (16) that

𝑉 (𝑥 (0) , 𝑦 (0)) + 𝐾𝑇 ≥ 𝐸 [1

Ω𝑘(𝜔)
𝑉 (𝑥 (𝜏

𝑘
) , 𝑦 (𝜏

𝑘
))]

≥ 𝜖 (𝑘 − 𝑎 − 𝑎 log 𝑘

𝑎

)

∧ (

1

𝑘

− 𝑎 + 𝑎 log (𝑎𝑘))

∧

1

𝑘

(𝑘 − 1 − log 𝑘)

∧

1

𝑘

(

1

𝑘

− 1 + log 𝑘) ,

(18)

where 1
Ω𝑘(𝜔)

is the indicator function ofΩ
𝑘
. Letting 𝑘 → ∞

leads to the contradiction that∞ > 𝑉(𝑥(0), 𝑦(0))+𝑀𝑇 = ∞.
So we must, therefore, have 𝜏

∞
= ∞ a.s.

3. Permanence

There is no equilibrium of system (3). Hence, we cannot show
the permanence of the system by proving the stability of
the positive equilibrium as the deterministic system. In this
section we first show that this system is persistent in mean.

3.1. Persistent in Time Average. L. S. Chen and J. Chen in
[19] proposed the definition of persistence in mean for the
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deterministic system. Here, we also use this definition for the
stochastic system.

Definition 5. System (3) is said to be persistent in mean if

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

𝑦 (𝑠) 𝑑𝑠 > 0, a.s. (19)

Lemma 6 (Xia et al. [20, Lemma 17]). Let 𝑓 ∈ 𝐶([0, +∞) ×

Ω, (0, +∞)), 𝐹 ∈ 𝐶([0, +∞) × Ω, 𝑅). If there exist positive
constants 𝜆

0
, 𝜆, such that

log𝑓 (𝑡) ≥ 𝜆𝑡 − 𝜆

0
∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠 + 𝐹 (𝑡) , 𝑡 ≥ 0 a.s. (20)

and lim
𝑡→∞

(𝐹(𝑡)/𝑡) = 0 a.s., then

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠 ≥

𝜆

𝜆

0

, a.s. (21)

Assumption 7. We have

(𝑟 −

𝜎

2

1

2

)𝐾𝑚𝑐 − 𝑟(𝜇 +

𝜎

2

2

2

) > 0.
(22)

Theorem 8. If Assumption 7 is satisfied, then the solution
(𝑥(𝑡), 𝑦(𝑡)) of system (3) with any initial value {(𝑥(0), 𝑦(0)) ∈
𝑅

2

+
, 𝑥(0) ∈ (0, 𝐾)} has the following property:

lim inf
𝑡→∞

1

𝑡

∫

𝑡

0

𝑦 (𝑠) 𝑑𝑠 ≥

(𝑟 − (𝜎

2

1
/2))𝐾𝑚𝑐 − 𝑟 (𝜇 + (𝜎

2

1
/2))

𝐾𝑚𝑐

2

> 0, 𝑎.𝑠.

(23)

Proof. According to Ito’s formula, the system (3) is changed
into

𝑑 log𝑥 (𝑡) = 𝑟 −

𝑟

𝐾

𝑥 (𝑡) − 𝑐𝑦 (𝑡)

−

𝜎

2

1

2𝐾

2

(𝐾 − 𝑥 (𝑡))

2

+

𝜎

1

𝐾

(𝐾 − 𝑥 (𝑡)) 𝑑𝐵

1
(𝑡) ,

𝑑 log𝑦 (𝑡) = −𝜇 −

𝜎

2

2

2

+ 𝑚𝑐𝑥 (𝑡) − 𝜎

2
𝑑𝐵

2
(𝑡) ;

(24)

then,

𝑑(log𝑥 (𝑡) + 𝑟

𝐾𝑚𝑐

log𝑦 (𝑡))

= 𝑟 −

𝑟

𝐾𝑚𝑐

(𝜇 +

𝜎

2

2

2

) − 𝑐𝑦 (𝑡) −

𝜎

2

1

2𝐾

2

(𝐾 − 𝑥 (𝑡))

2

+

𝜎

1

𝐾

(𝐾 − 𝑥 (𝑡)) 𝑑𝐵

1
(𝑡) −

𝑟𝜎

2

𝐾𝑚𝑐

𝑑𝐵

2
(𝑡)

≥ (𝑟 −

𝑟

𝐾𝑚𝑐

(𝜇 +

𝜎

2

2

2

) −

𝜎

2

1

2

)

− 𝑐𝑦 (𝑡) +

𝜎

1

𝐾

(𝐾 − 𝑥 (𝑡)) 𝑑𝐵

1
(𝑡) −

𝑟𝜎

2

𝐾𝑚𝑐

𝑑𝐵

2
(𝑡) .

(25)

After that
log𝑥 (𝑡) − log𝑥 (0)

𝑡

+

𝑟

𝐾𝑚𝑐

log𝑦 (𝑡) − log𝑦 (0)
𝑡

≥ (𝑟 −

𝑟

𝐾𝑚𝑐

(𝜇 +

𝜎

2

2

2

) −

𝜎

2

1

2

) − 𝑐

∫

𝑡

0

𝑦 (𝑠) 𝑑𝑠

𝑡

+

𝜎

1

𝐾𝑡

∫

𝑡

0

(𝐾 − 𝑥 (𝑠)) 𝑑𝐵

1
(𝑠) −

𝑟𝜎

2

𝐾𝑚𝑐𝑡

∫

𝑡

0

𝑑𝐵

2
(𝑠) ;

(26)

besides, from Lemma 3, it is clear that

lim sup
𝑡→∞

log𝑥 (𝑡)
𝑡

≤ 0, (27)

where𝑀
1
(𝑡) = ∫

𝑡

0

(𝐾−𝑥(𝑠))𝑑𝐵

1
(𝑠) and𝑀

2
(𝑡) = ∫

𝑡

0

𝑑𝐵

2
(𝑠) are

martingale with𝑀

𝑖
(0) = 0 (𝑖 = 1, 2), and from Lemma 3 we

get

lim sup
𝑡→∞

⟨𝑀

1
,𝑀

1
⟩

𝑡

, = lim sup
𝑡→∞

1

𝑡

∫

𝑡

0

(𝐾 − 𝑥 (𝑠))

2

𝑑𝑠 ≤ 𝐾

2

;

(28)

then, by strong law of large numbers, we know that
lim
𝑡→∞

(𝑀

𝑖
/𝑡) = 0 (𝑖 = 1, 2).

Hence,

lim
𝑡→0

((𝑟 − (𝑟/𝐾𝑚𝑐) (𝜇 + (𝜎

2

2
/2)) − (𝜎

2

1
/2)) 𝑡

+ (𝜎

1
/𝐾)𝑀

1
(𝑡) − (𝑟𝜎

2
/𝐾𝑚𝑐)𝑀

2
(𝑡) ) × (𝑡)

−1

= 𝑟 −

𝑟

𝐾𝑚𝑐

(𝜇 +

𝜎

2

2

2

) −

𝜎

2

1

2

.

(29)

With Lemma 6 and Assumption 7 we could get

lim
𝑡→∞

1

𝑡

∫

𝑡

0

𝑦 (𝑠) 𝑑𝑠

≥

𝑟 − (𝜎

2

1
/2) − (𝑟/𝐾𝑚𝑐) (𝜇 + (𝜎

2

2
/2))

𝑐

=

(𝑟 − (𝜎

2

1
/2))𝐾𝑚𝑐 − 𝑟 (𝜇 + (𝜎

2

2
/2))

𝐾𝑚𝑐

2

> 0.

(30)

3.2. Stationary Distribution and Ergodicity for System (3). In
this section we show there is a stationary distribution of
system (3).

Theorem 9. Let (𝑥(𝑡), 𝑦(𝑡)) be the solution of system (3) with
any initial value {(𝑥(0), 𝑦(0)) ∈ 𝑅

2

+
, 𝑥(0) ∈ (0, 𝐾)}. If 𝜎2

2
<

𝜇 < min{𝑚𝑐𝐾, 𝑟𝑚𝑐𝐾/𝜎

2

1
} and 𝜎

1
> 0, 𝜎

2
> 0, such that 𝜎2

1
<

𝐾𝑟/𝑥

∗ and

(

1

2

+ 𝑙𝑥

∗

)𝑥

∗

𝜎

2

1
+ (

1

2

+

𝑙𝑦

∗

𝑚

)

𝑦

∗

𝜎

2

2

𝑚

< min{1

2

(

𝑟

𝐾

−

𝑥

∗

𝜎

2

1

𝐾

2

) (𝑥

∗

)

2

,

𝑙

2

(𝜇 − 𝜎

2

2
) (𝑦

∗

)

2

, (𝐾 − 𝑥

∗

)

2

} ,

(31)
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where (𝑥∗, 𝑦∗) is the positive equilibrium of system (1) and 𝑙 is
defined as in the proof, then system (3) exists as a stationary
distribution and it is ergodic.

Proof. Since 𝜇 < 𝑚𝑐𝐾, then there is a positive equilibrium
(𝑥

∗

, 𝑦

∗

) of system (1), and

𝑟 =

𝑟

𝐾

𝑥

∗

+ 𝑐𝑦

∗

, 𝜇 = 𝑚𝑐𝑥

∗

. (32)

Define

𝑉

1
(𝑥, 𝑦) = (𝑥 − 𝑥

∗

− 𝑥

∗ log 𝑥

𝑥

∗

)

+

1

𝑚

(𝑦 − 𝑦

∗

− 𝑦

∗ log
𝑦

𝑦

∗

) ,

(33)

and let 𝐿 be the generating operator of system (3). Then,

𝐿𝑉

1
= (𝑥 − 𝑥

∗

) (𝑟 −

𝑟

𝐾

𝑥 − 𝑐𝑦)

+

𝑥

∗

𝜎

2

1

2𝐾

2

(𝐾 − 𝑥)

2

+

1

𝑚

(𝑦 − 𝑦

∗

) (−𝜇 + 𝑚𝑐𝑥) +

𝑦

∗

𝜎

2

2

2𝑚

= (𝑥 − 𝑥

∗

) [−

𝑟

𝐾

(𝑥 − 𝑥

∗

) − 𝑐 (𝑦 − 𝑦

∗

)]

+

𝑥

∗

𝜎

2

1

2𝐾

2

(𝐾 − 𝑥

∗

− (𝑥 − 𝑥

∗

))

2

+ 𝑐 (𝑥 − 𝑥

∗

) (𝑦 − 𝑦

∗

) +

𝑦

∗

𝜎

2

2

2𝑚

≤ −

𝑟

𝐾

(𝑥 − 𝑥

∗

)

2

+

𝑥

∗

𝜎

2

1

𝐾

2

× ((𝐾 − 𝑥

∗

)

2

+ (𝑥 − 𝑥

∗

)

2

) +

𝑦

∗

𝜎

2

2

2𝑚

= −(

𝑟

𝐾

−

𝑥

∗

𝜎

2

1

𝐾

2

) (𝑥 − 𝑥

∗

)

2

+

𝑥

∗

𝜎

2

1

2𝐾

2

(𝐾 − 𝑥

∗

)

2

+

𝑦

∗

𝜎

2

2

2𝑚

.

(34)

Define

𝑉

2
(𝑥, 𝑦) =

1

2

[(𝑥 − 𝑥

∗

) +

1

𝑘

(𝑦 − 𝑦

∗

)]

2

;
(35)

Note that

𝑑 [(𝑥 − 𝑥

∗

) +

1

𝑚

(𝑦 − 𝑦

∗

)]

= (𝑟𝑥 −

𝑟

𝐾

𝑥

2

−

𝜇

𝑚

𝑦)𝑑𝑡

+

𝜎

1

𝐾

𝑥 (𝐾 − 𝑥) 𝑑𝐵

1
(𝑡) −

𝜎

2

𝑚

𝑦𝑑𝐵

2
(𝑡)

= [𝑟 (𝑥 − 𝑥

∗

) −

𝑟

𝐾

(𝑥

2

− (𝑥

∗

)

2

) −

𝜇

𝑚

(𝑦 − 𝑦

∗

)] 𝑑𝑡

+

𝜎

1

𝐾

𝑥 (𝐾 − 𝑥) 𝑑𝐵

1
(𝑡) −

𝜎

2

𝑚

𝑦𝑑𝐵

2
(𝑡)

= [𝑟 (𝑥 − 𝑥

∗

) −

𝑟

𝐾

((𝑥 − 𝑥

∗

)

2

+ 2𝑥

∗

(𝑥 − 𝑥

∗

))

−

𝜇

𝑚

(𝑦 − 𝑦

∗

) 𝑑𝑡]

+

𝜎

1

𝐾

𝑥 (𝐾 − 𝑥) 𝑑𝐵

1
(𝑡) −

𝜎

2

𝑚

𝑦𝑑𝐵

2
(𝑡)

= [(𝑟 −

2𝑟𝑥

∗

𝐾

) (𝑥 − 𝑥

∗

) −

𝑟

𝐾

(𝑥 − 𝑥

∗

)

2

−

𝜇

𝑚

(𝑦 − 𝑦

∗

) ] 𝑑𝑡

+

𝜎

1

𝐾

𝑥 (𝐾 − 𝑥) 𝑑𝐵

1
(𝑡) −

𝜎

2

𝑚

𝑦𝑑𝐵

2
(𝑡) ;

(36)

Then,

𝐿𝑉

2
= [(𝑥 − 𝑥

∗

) +

1

𝑚

(𝑦 − 𝑦

∗

)]

× [(𝑟 −

2𝑟𝑥

∗

𝐾

) (𝑥 − 𝑥

∗

)

−

𝑟

𝐾

(𝑥 − 𝑥

∗

)

2

−

𝜇

𝑚

(𝑦 − 𝑦

∗

)]

+

𝜎

2

1

2𝐾

2

𝑥

2

(𝐾 − 𝑥)

2

+

𝜎

2

2

2𝑚

2

𝑦

2

≤ (𝑟 −

2𝑟𝑥

∗

𝐾

) (𝑥 − 𝑥

∗

)

2

+ (

𝑟

𝑚

−

2𝑟

𝐾𝑚

𝑥

∗

−

𝜇

𝑚

)

× (𝑥 − 𝑥

∗

) (𝑦 − 𝑦

∗

) −

𝜇

𝑚

2

(𝑦 − 𝑦

∗

)

2

+

𝜎

2

1

2𝐾

2

𝑥

2

(𝐾 − 𝑥)

2

+

𝜎

2

2

2𝑚

2

𝑦

2

≤ 𝑟(𝑥 − 𝑥

∗

)

2

+ (

𝑟

𝑚

−

2𝑟

𝐾𝑚

𝑥

∗

−

𝜇

𝑚

)

× (𝑥 − 𝑥

∗

) (𝑦 − 𝑦

∗

) −

𝜇

𝑚

2

(𝑦 − 𝑦

∗

)

2

+ 𝜎

2

1
[(𝑥 − 𝑥

∗

)

2

+ (𝑥

∗

)

2

] +

𝜎

2

2

𝑚

2

[(𝑦 − 𝑦

∗

)

2

+ (𝑦

∗

)

2

]

= (𝑟 + 𝜎

2

1
) (𝑥 − 𝑥

∗

)

2

−

𝜇 − 𝜎

2

2

𝑚

2

(𝑦 − 𝑦

∗

)

2

+ (

𝑟

𝑚

−

2𝑟

𝐾𝑚

𝑥

∗

−

𝜇

𝑚

) (𝑥 − 𝑥

∗

) (𝑦 − 𝑦

∗

)

+ 𝜎

2

1
(𝑥

∗

)

2

+

𝜎

2

2

𝑚

2

(𝑦

∗

)

2

,

(37)

where 𝐿 is also the generating operator of system (3). Note
that

(

𝑟

𝑚

−

2𝑟

𝐾𝑚

𝑥

∗

−

𝜇

𝑚

) (𝑥 − 𝑥

∗

) (𝑦 − 𝑦

∗

)

≤

(𝑟/𝑚 − (2𝑟/𝐾𝑚) 𝑥

∗

− 𝜇/𝑚)

2

2 ((𝜇 − 𝜎

2

2
) /𝑚

2
)

(𝑥 − 𝑥

∗

)

2
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+

1

2

(

𝜇 − 𝜎

2

2

𝑚

2

) (𝑦 − 𝑦

∗

)

2

:= 𝛿(𝑥 − 𝑥

∗

)

2

+ (

𝜇 − 𝜎

2

2

2𝑚

2

) (𝑦 − 𝑦

∗

)

2

;

(38)

Then,

𝐿𝑉

2
≤ (𝑟 + 𝜎

2

1
+ 𝛿) (𝑥 − 𝑥

∗

)

2

− (

𝜇 − 𝜎

2

2

2𝑚

2

) (𝑦 − 𝑦

∗

)

2

+ 𝜎

2

1
(𝑥

∗

)

2

+

𝜎

2

2

𝑚

2

(𝑦

∗

)

2

.

(39)

Now define

𝑉 (𝑥, 𝑦) = 𝑉

1
(𝑥, 𝑦) + 𝑙𝑉

2
(𝑥, 𝑦) , (40)

where 𝑙 is a positive constant to be determined later. Then,

𝐿𝑉 ≤ −(

𝑟

𝐾

−

𝑥

∗

𝜎

2

1

𝐾

2

− 𝑙 (𝑟 + 𝜎

2

1
+ 𝛿)) (𝑥 − 𝑥

∗

)

2

−

𝑙

2

(

𝜇 − 𝜎

2

2

𝑚

2

) (𝑦 − 𝑦

∗

)

2

+ (

1

2

+ 𝑙𝑥

∗

)𝑥

∗

𝜎

2

1

+ (

1

2

+

𝑙𝑦

∗

𝑚

)

𝑦

∗

𝜎

2

2

𝑚

.

(41)

Choose 𝑙 > 0 such that ((𝑟/𝐾) − (𝑥

∗

𝜎

2

1
/𝐾

2

) − 𝑙(𝑟 + 𝜎

2

1
+𝛿)) =

(1/2)((𝑟/𝐾) − (𝑥

∗

𝜎

2

1
/𝐾

2

)). Then, it follows from (47) that

𝐿𝑉 ≤ −

1

2

(

𝑟

𝐾

−

𝑥

∗

𝜎

2

1

𝐾

2

) (𝑥 − 𝑥

∗

)

2

−

𝑙

2

(

𝜇 − 𝜎

2

2

𝑚

2

) (𝑦 − 𝑦

∗

)

2

+ (

1

2

+ 𝑙𝑥

∗

)𝑥

∗

𝜎

2

1

+ (

1

2

+

𝑙𝑦

∗

𝑚

)

𝑦

∗

𝜎

2

2

𝑚

.

(42)

Note that

(

1

2

+ 𝑙𝑥

∗

)𝑥

∗

𝜎

2

1
+ (

1

2

+

𝑙𝑦

∗

𝑚

)

𝑦

∗

𝜎

2

2

𝑚

< min{1

2

(

𝑟

𝐾

−

𝑥

∗

𝜎

2

1

𝐾

2

) (𝑥

∗

)

2

,

𝑙

2

(

𝜇 − 𝜎

2

2

𝑚

2

) (𝑦

∗

)

2

, (𝐾 − 𝑥

∗

)

2

} .

(43)

Then, the ellipsoid

−

1

2

(

𝑟

𝐾

−

𝑥

∗

𝜎

2

1

𝐾

2

) (𝑥 − 𝑥

∗

)

2

−

𝑙

2

(

𝜇 − 𝜎

2

2

𝑚

2

) (𝑦 − 𝑦

∗

)

2

+ (

1

2

+ 𝑙𝑥

∗

)𝑥

∗

𝜎

2

1
+ (

1

2

+

𝑙𝑦

∗

𝑚

)

𝑦

∗

𝜎

2

2

𝑚

= 0

(44)

lies entirely in 𝐷

0

= {(𝑥, 𝑦) ∈ 𝑅

2

+
| 0 < 𝑥 < 𝐾}.

We can take 𝑈 to be a neighborhood of the ellipsoid with
𝑈 ⊆ 𝐸

𝑙
= 𝐷

0, so that for 𝑥 ∈ 𝑈 \ 𝐸

𝑙
, 𝐿𝑉 ≤ −𝐶 (𝐶 is

a positive constant), which implies that condition (B.2) in
Lemma 3.2 of [21] is satisfied. Hence, the solution (𝑥(𝑡), 𝑦(𝑡))

is recurrent in the domain 𝑈, which together with Lemma
3.3 and Remark 3.3 of [21] imply that (𝑥(𝑡), 𝑦(𝑡)) is recurrent
in any bounded domain 𝐷 ⊂ 𝐷

0. Besides, for ∀𝐷, there is a
𝑀 = min{(𝑥2𝜎2

1
/𝐾

2

)(𝐾 − 𝑥)

2

, 𝜎

2

2
𝑦

2

, (𝑥, 𝑦) ∈ 𝐷 } > 0, such
that

2

∑

𝑖,𝑗=1

𝜆

𝑖𝑗
𝜉

𝑖
𝜉

𝑗
=

𝑥

2

𝜎

2

1

𝐾

2

(𝐾 − 𝑥)

2

𝜉

2

1
+ 𝜎

2

2
𝑦

2

𝜉

2

2

≥ 𝑀











𝜉

2










∀𝑥 ∈ 𝐷, 𝜉 ∈ 𝑅

2

,

(45)

which implies that condition (B.1) in Lemma 3.2 of [21] is also
satisfied. Therefore, system (3) has a stationary distribution
𝜇(⋅) and it is ergodic.

From Lemma 3, with the initial value 0 < 𝑥(0) < 𝐾, we
have the property

0 < 𝑥 (𝑡) < 𝐾 a.s. (46)

Therefore, by ergodicity property, we know that function
𝑓(𝑧) = 𝑧

𝑝 is integrable with respect to the measure 𝜇, and

lim
𝑡→∞

1

𝑡

∫

𝑡

0

𝑥

𝑝

(𝑠) 𝑑𝑠 = ∫

𝑅
2
+

𝑧

𝑝

𝜇 (𝑑𝑧

1
, 𝑑𝑧

2
) , a.s. (47)

Hence, from these arguments, we get the following result.

Theorem 10. Assume the same conditions as in Theorem 9.
Then, we have

lim
𝑡→∞

1

𝑡

∫

𝑡

0

𝑥

𝑝

(𝑠) 𝑑𝑠 = ∫

𝑅
2
+

𝑧

𝑝

𝜇 (𝑑𝑧

1
, 𝑑𝑧

2
) , a.s. (48)

4. Extinction

In this section, we show the situation when the population
of system (3) will be extinct. Before we give the result, we
should do some prepare work. We first introduce a result on
the Feller’s test (see, e.g., [22]).

Let 𝐼 = (𝑙, 𝑟), −∞ ≤ 𝑟 ≤ +∞. Consider the following
one-dimensional time-homogeneous stochastic differential
equation:

𝑑𝑋

𝑡
= 𝜇 (𝑋

𝑡
) 𝑑𝑡 + 𝜎 (𝑋

𝑡
) 𝑑𝐵

𝑡
, 𝑋

0
= 𝑥. (49)

Assume that the coefficients 𝜎 : 𝐼 → 𝑅, 𝜇 : 𝐼 → 𝑅 satisfy
the following conditions:

(1) 𝜎

2

(𝑥) > 0; ∀𝑥 ∈ 𝐼,

(2) ∀𝑥 ∈ 𝐼, ∃𝜀 > 0, ∫

𝑥+𝜀

𝑥−𝜀

1 + 𝜇 (𝑦)

𝜎

2
(𝑦)

𝑑𝑠 < ∞.

(50)
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Fixing some 𝑐 ∈ 𝐼, the scale function is defined by

𝑝 (𝑥) = ∫

𝑥

𝑐

𝑒

−∫

V
𝑐
(2𝜇(𝑦)/𝜎

2
(𝑦))𝑑𝑦

𝑑V, 𝑥 ∈ 𝑅. (51)

Now, we present a useful Lemma.

Lemma 11. Assume that conditions (1) and (2) hold in (50),
and let 𝑋 be a nonexplosive solution of system (49) in I, with
𝑋

0
= 𝑥 ∈ 𝐼; we distinguish four cases:

(a) 𝑝(𝑙+) = −∞, 𝑝(𝑟−) = +∞, 𝑡ℎ𝑒𝑛 𝑃{sup
𝑡≥0

𝑋

𝑡
= 𝑟} =

𝑃{inf
𝑡≥0

𝑋

𝑡
= 𝑙} = 1, and for any 𝑦 ∈ 𝐼, we have

𝑝{∃𝑡 ∈ (0,∞),𝑋

𝑡
= 𝑦} = 1.

(b) 𝑝(𝑙+) > −∞, 𝑝(𝑟−) = +∞, 𝑡ℎ𝑒𝑛 𝑃{sup
𝑡≥0

𝑋

𝑡
= 𝑙} =

𝑃{inf
𝑡≥0

𝑋

𝑡
< 𝑟} = 1.

(c) 𝑝(𝑙+) = −∞, 𝑝(𝑟−) < +∞, 𝑡ℎ𝑒𝑛 𝑃{sup
𝑡≥0

𝑋

𝑡
= 𝑟} =

𝑃{inf
𝑡≥0

𝑋

𝑡
> 𝑙} = 1.

(d) 𝑝(𝑙+) > −∞, 𝑝(𝑟−) < +∞, 𝑡ℎ𝑒𝑛 𝑃{sup
𝑡≥0

𝑋

𝑡
= 𝑙} =

1−𝑃{inf
𝑡≥0

𝑋

𝑡
= 𝑟} = (𝑝(𝑟−) −𝑝(𝑥))/(𝑝(𝑟−) −𝑝(𝑙+)).

Case 1 (𝑟 < 𝜎

2

1
/2). Consider the first equation of system (5).

Let

𝑋 (𝑡) =

𝐾𝑒

𝑍(𝑡)

1 + 𝑒

𝑍(𝑡)

.

(52)

Then,

𝑍 (𝑡) = log 𝑋 (𝑡)

𝐾 − 𝑋 (𝑡)

, (53)

and so the first equation of system (5) is reformed as

𝑑𝑍 (𝑡) = (𝑟 −

𝜎

2

1

2

+

𝑒

𝑍(𝑡)

1 + 𝑒

𝑍(𝑡)

𝜎

2

1
)𝑑𝑡 + 𝜎

1
𝑑𝐵

1
(𝑡) , 𝑡 ≥ 0,

(54)

with an initial value 𝑍(0) = log(𝑥(0)/(𝐾 − 𝑥(0))) . Let

𝜇 (𝑥) = 𝑟 −

𝜎

2

1

2

+

𝑒

𝑥

1 + 𝑒

𝑥

𝜎

2

1
, 𝜎 (𝑥) = 𝜎

1
.

(55)

Then,

∫

V

0

−2𝜇 (𝑥)

𝜎

2
(𝑥)

𝑑𝑥

=

−2

𝜎

2

1

∫

V

0

(𝑟 −

𝜎

2

1

2

+

𝑒

𝑥

1 + 𝑒

𝑥

𝜎

2

1
)𝑑𝑥

=

−2

𝜎

2

1

[(𝑟 −

𝜎

2

1

2

) V + 𝜎

2

1
log (1 + 𝑒

V
)] + 2 log 2.

(56)

So if 𝑟
1
< 𝜎

2

1
/2, by Lemma 11, we get 𝑝(−∞) > −∞, 𝑝(+∞) <

+∞; then,

𝑃{sup
𝑡≥0

𝑍 (𝑡) = −∞} = 1 − 𝑃{inf
𝑡≥0

𝑍 (𝑡) = +∞}

=

𝑝 (∞) − 𝑝 (𝑥)

𝑝 (∞) − 𝑝 (−∞)

.

(57)

Hence,

𝑃{ lim
𝑡→∞

𝑋(𝑡) = 0} = 1 − 𝑃{ lim
𝑡→∞

𝑋(𝑡) = 𝐾}

=

𝑝 (∞) − 𝑝 (𝑥)

𝑝 (∞) − 𝑝 (−∞)

=

∫

+∞

𝑍(0)

𝑒

(−2/𝜎
2

1
)(𝑟−𝜎

2

1
/2)V

(1 + 𝑒

V
)

−2

𝑑V

∫

+∞

−∞

𝑒

(−2/𝜎
2

1
)(𝑟−𝜎

2

1
/2)V

(1 + 𝑒

V
)

−2

𝑑V
.

(58)

Furthermore, by the classical comparison theoremof stochas-
tic differential equations, we have

𝑥 (𝑡) ≤ 𝑋 (𝑡) , 𝑦 (𝑡) ≤ 𝑌 (𝑡) , (59)

where (𝑥(𝑡), 𝑦(𝑡)) is the solution of system (3). We could get

𝑃{ lim
𝑡→∞

𝑥 (𝑡) = 0} ≥

∫

+∞

𝑍(0)

𝑒

(−2/𝜎
2

1
)(𝑟−𝜎

2

1
/2)V

(1 + 𝑒

V
)

−2

𝑑V

∫

+∞

−∞

𝑒

(−2/𝜎
2

1
)(𝑟−𝜎

2

1
/2)V

(1 + 𝑒

V
)

−2

𝑑V
.

(60)

So, if lim
𝑘→∞

𝑥(𝑡) = 0, a.s., 𝜔 ∈ Ω

0
= {𝜔 : lim

𝑘→∞
𝑥(𝑡) = 0},

and from (24), then we know

𝑑 log𝑦 (𝑡) = −𝜇 −

𝜎

2

2

2

+ 𝑚𝑐𝑥 (𝑡) − 𝜎

2
𝑑𝐵

2
(𝑡) .

(61)

Then,

lim sup
𝑡→∞

log𝑦 (𝑡)
𝑡

= −𝜇 −

𝜎

2

2

2

< 0, 𝜔 ∈ Ω

0
.

(62)

Therefore, with the condition 𝑟 − 𝜎

2

1
/2 < 0, we obtain the

fact that system (3) will be extinct in probability.

Case 2 (𝑟 > 𝜎

2

1
/2, 𝜇+𝜎

2

2
/2 > 𝑚𝑐𝐾). According to Ito’s formula

and comparison principle, the second population of system
(3) is changed into

𝑑 log𝑦 (𝑡) = −𝜇 −

𝜎

2

2

2

+ 𝑚𝑐𝑥 (𝑡) − 𝜎

2
𝑑𝐵

2
(𝑡)

≤ −𝜇 −

𝜎

2

2

2

+ 𝑚𝑐𝑋 (𝑡) − 𝜎

2
𝑑𝐵

2
(𝑡) .

(63)

Notice that 𝑋(𝑡) < 𝐾 and then let (63) be divided by 𝑡, 𝑡 →

∞; we could get

lim sup
𝑡→∞

log𝑦 (𝑡)
𝑡

≤ −𝜇 −

𝜎

2

2

2

+ 𝑚𝑐𝐾 a.s. (64)

If 𝜇 + 𝜎

2

2
/2 > 𝑚𝑐𝐾, it follows

lim sup
𝑡→∞

log𝑦 (𝑡)
𝑡

< 0 a.s.; (65)

hence,

lim
𝑡→∞

𝑦 (𝑡) = 0, a.s. (66)
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Figure 1: The solution of system (1) and system (3) with (𝑥(0), 𝑦(0)) = (2, 1), 𝑟 = 1.2, 𝜇 = 0.3, 𝐾 = 4, 𝑐 = 0.2, 𝑚𝑐 = 0.1. The red lines
represent the solution of system (1), while the blue lines represent the solution of system (3) with 𝜎

1
= 0.01, 𝜎

2
= 0.01 in (a) and 𝜎

1
= 0.06,

𝜎

2
= 0.08 in (b), respectively.
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Figure 2: The solution of system (1) and system (3) with (𝑥(0), 𝑦(0)) = (2, 1), 𝑟 = 1.2, 𝜇 = 0.3, 𝐾 = 4, 𝑐 = 0.2, 𝑚𝑐 = 0.1. The red lines
represent the solution of system (1), while the blue lines represent the solution of system (3) with 𝜎

1
= 1, 𝜎

2
= 1 in (a) and 𝜎

1
= 6, 𝜎

2
= 1 in

(b), respectively.
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That is, for ∀𝜖 > 0, there are constants 𝑇
0
and Ω

𝜖
; then, if

𝑡 ≥ 𝑇

0
and 𝜔 ∈ Ω

𝜖
, we have 𝑃(Ω

𝜖
) > 1 − 𝜖 and 𝑦(𝑡) ≤ 𝜖. So,

𝑥 (𝑡) (𝑟 −

𝑟

𝐾

𝑥 (𝑡) − 𝜖) 𝑑𝑡 +

𝑟𝜎

1

𝐾

(𝐾 − 𝑥 (𝑡)) 𝑑𝐵

1
(𝑡)

≤ 𝑑𝑥 (𝑡) ≤ 𝑥 (𝑡) (𝑟 −

𝑟

𝐾

𝑥 (𝑡)) 𝑑𝑡 +

𝑟𝜎

1

𝐾

(𝐾 − 𝑥 (𝑡)) 𝑑𝐵

1
(𝑡) ,

(67)

if 𝑟 > 𝜎

2

1
/2; from the arbitrariness of 𝜖 > 0, Lemma 2, and

[23] (see Theorems 6.2 and 6.3), we could know that

lim
𝑡→∞

𝑥 (𝑡) = 𝐾, a.s. (68)

Concluding these arguments, we have the following theorem.

Theorem 12. Let (𝑥(𝑡), 𝑦(𝑡)) be the solution of system (3) with
any initial value {(𝑥(0), 𝑦(0)) ∈ 𝑅

2

+
, 𝑥(0) ∈ (0, 𝐾)}; then,

(1) if 𝑟 < 𝜎

2

1
/2, then

𝑃{ lim
𝑡→∞

𝑥 (𝑡) = 0} ≥

∫

+∞

𝑍(0)

𝑒

(−2/𝜎
2

1
)(𝑟−𝜎

2

1
/2)V

(1 + 𝑒

V
)

−2

𝑑V

∫

+∞

−∞

𝑒

(−2/𝜎
2

1
)(𝑟−𝜎

2

1
/2)V

(1 + 𝑒

V
)

−2

𝑑V
,

(69)

where 𝑍(0) = log(𝑥(0)/(𝐾 − 𝑥(0))) and

lim sup
𝑡→∞

log𝑦 (𝑡)
𝑡

= −𝜇 −

𝜎

2

2

2

< 0,

𝜔 ∈ Ω

0
= {𝜔 : lim

𝑡→∞

𝑥 (𝑡) = 0} .

(70)

That is to say, system (3) will be extinct in probability.

(2) If 𝜇 + 𝜎

2

2
/2 > 𝑚𝑐𝐾, 𝑟 > 𝜎

2

2
/2, then

lim
𝑡→∞

𝑦 (𝑡) = 0 𝑎.𝑠.,

lim
𝑡→∞

𝑥 (𝑡) = 𝐾, 𝑎.𝑠.

(71)

5. Numerical Simulation

In this section, we give out the numerical experiment to
support our results. Consider the equation

𝑑𝑥 (𝑡) = 𝑟𝑥 (𝑡) (1 −

𝑥 (𝑡)

𝐾

) − 𝑐𝑥 (𝑡) 𝑦 (𝑡)

+

𝜎

1

𝐾

𝑥 (𝑡) (𝐾 − 𝑥 (𝑡)) 𝑑𝐵

1
(𝑡) ,

𝑑𝑦 (𝑡) = −𝜇𝑦 (𝑡) + 𝑚𝑐𝑥 (𝑡) 𝑦 (𝑡) − 𝜎

2
𝑦 (𝑡) 𝑑𝐵

2
(𝑡) .

(72)

By the Milstein method in [24], we have the difference
equation

𝑥

𝑘+1
= 𝑥

𝑘
+ 𝑥

𝑘
[(𝑟 −

𝑟

𝐾

𝑥

𝑘
− 𝑐𝑦

𝑘
)Δ𝑡 +

𝜎

1

𝐾

(𝐾 − 𝑥

𝑘
) 𝜖

1,𝑘

√

Δ𝑡

+

𝜎

2

1

2𝐾

2

(𝐾 − 𝑥

𝑘
)

2

(𝜖

2

1,𝑘
Δ𝑡 − Δ𝑡)] ,

𝑦

𝑘+1
= 𝑦

𝑘
+ 𝑦

𝑘
[ (−𝜇 + 𝑚𝑐𝑥

𝑘
) Δ𝑡

−𝜎

2
𝜖

2,𝑘

√

Δ𝑡 +

𝜎

2

2

2

(𝜖

2

2,𝑘
Δ𝑡 − Δ𝑡)] ,

(73)

where 𝜖
1,𝑘

and 𝜖
2,𝑘

are the Gaussian random variables𝑁(0, 1).
By choosing (𝑥(0), 𝑦(0)) ∈ 𝑅

2

+
and suitable parameters, by

Matlab, we get Figures 1 and 2.
In Figure 1, choose parameters satisfying the condition of

Theorem 9; system (3) is ergodic and the solution will persist
in time average. Between picture (a) and (b), we only change
the intensity parameters 𝜎

1
and 𝜎
2
and keep other parameters

unchangeable. We observe that the amplitude of fluctuation
is becoming large as the intensity of white noise is increasing.
And we can see that the sample path is deviating from the
corresponding deterministic system as the intensity of the
white noise is becoming larger.

In Figure 2, we observe two cases. We observe case (1) in
Theorem 12 and choose parameters such as 𝑟 > 𝜎

2

1
/2, 𝜇 +

𝜎

2

2
/2 > 𝑚𝑐𝐾 in (a); as Theorem 12 indicated, the prey will

die out in probability and the predators will go to their
carrying capacity.We also observe case (2) inTheorem 12 and
choose parameters such as 𝑟 < 𝜎

2

1
/2 in (b); as Theorem 12

indicated, not only preys but also predators will die out in
probability when the noise of the predators is large, and it
does not happen in the deterministic system. This tells us
strong environmental noise may cause species to become
extinct. The larger the intensity environmental noise is, the
bigger the probability of dying out is.
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