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This paper proposes an improved geometric programming approach to address the optimization of biochemical systems. In the
proposed method we take advantage of a special and interesting class of nonlinear kinetic models known as generalized mass
action (GMA) models. In most situations optimization problems with GMAmodels are nonconvex and difficult problems to solve
for global optimality. To deal with this difficulty, in this work, some transformation strategy is first used to convert the optimization
problem with GMA models into an equivalent problem. Then a convexification technique is applied to transform this resulting
optimization problem into a series of standard geometric programming problems that can be solved to reach a global solution. Two
case studies are presented to demonstrate the advantages of the proposed method in terms of computational efficiency.

1. Introduction

Mathematical optimization of biochemical systems is a key
step towards the establishment of rational strategies for yield
improvement. In the last decades, much research has been
directed toward the development of model-based optimiza-
tion strategies for biochemical systems [1–21]. Before opti-
mizing a biochemical system, a key step in these approaches
is the selection of the appropriate mathematical model
among the different representations available. One type of
well-developed representation for biochemical systems is the
generalized mass action (GMA) model, which is based on
a modeling framework called biochemical systems theory
(BST) [22–28]. The hallmark of this representation is that
each process is represented separately as power-law formal-
ism so that there are as many contributions as actual fluxes
in the real biochemical system [28]. The main advantage
of GMA models is that they can capture the nonlinear
characteristics of real biochemical system while showing
some goodproperties required in themathematical optimiza-
tion. In most cases optimization problems of biochemical
systems with GMA models belong to a truly nonconvex
class of problems, that is, an intrinsically intractable NP-hard
problem.Thus, these problems are difficult to solve for global

optimality. In recent years, some optimization strategies have
been proposed to deal with such difficult problems [6, 8–
11, 14, 15]. One of these approaches to the optimization
of biological systems is the geometric programming (GP)
method [6, 14].These approaches are very interesting because
they take advantage of the special structure features of GMA
models; that is, each power-law term of GMA equations is
indeed a monomial function required for GP. Several GP
techniques including controlled error [6], penalty treatment
[6], and successive convex approximation [14] methods have
been presented to adapt GP solvers for the treatment of GMA
systems. When both controlled error and penalty treatment
approaches were used to optimize a biochemical system, a
possible outcome is that they cannot find the global optimal
solution of optimization problem [14]. To deal with this
difficulty, Xu presented a successive convex approximation
method to solve the optimization problems of biochemical
systems under steady-state conditions [14]. The main idea
of this approach is that the nonconvex optimization task of
GMA models is first transformed as a standard GP problem
through simple transformation and condense techniques.
Then the resulting optimization problem can be solved very
efficiently by a series of GPs. In the practical implementation
of this approach, however, more iterations are possibly
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required to find the global optimum of an optimization
problem with GMA models (see Section 4). To deal with
this issue and enhance the computational efficiency of the
successive convex approximation method, it is necessary to
make an improvement in its scheme. For this purpose, in
the present study, we propose an improved GP method to
solve steady-state optimization problems of biochemical sys-
tems with GMA models by adopting simple transformation
and convexification strategies. Besides, two case studies are
conducted to demonstrate the advantages of the proposed
method in computational efficiency. Case studies show that
the proposed algorithm significantly decreases the iterations
to reach a global solution compared with the method in [14].

The rest of the paper is organized as follows. Section 2
describes the steady-state optimization problem of biochem-
ical systems with GMAmodels. Section 3 presents the global
optimization approach for solving steady-state optimization
problem of biochemical systems. Section 4 gives two case
studies drawn from the literature to demonstrate the advan-
tages of the proposed method in computational efficiency.
Finally, brief conclusions are presented in Section 5.

2. Optimization Problem Statement

Consider the following steady-state optimization problem of
biochemical systems:

max𝐹 (𝑋) , (1)

subject to satisfying
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, 𝑒 = 1, 2, . . . , 𝑛 + 𝑚, (4)

where 𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑛+𝑚)
𝑇
∈ 𝑅
𝑛+𝑚; the objective

function 𝐹(𝑋) is usually a flux or a particular metabolite
concentration; the parameters 𝜇+

𝑖𝑗
> 0 and 𝜇−

𝑖𝑘
> 0 are

the stoichiometric coefficients of the metabolite 𝑋𝑖 in the
processes𝑉+

𝑖𝑗
and𝑉−
𝑖𝑘
, respectively; the parameters𝜆+

𝑙𝑢
> 0 and
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𝑙V > 0 are the positive constants;𝑉
+

𝑖𝑗
,𝑉−
𝑖𝑘
,𝑉+
𝑙𝑢
, and𝑉−

𝑙V denote
the fluxes of the corresponding reaction processes; constraint
(2) ensures that the system will operate under steady-state
conditions (i.e., 𝑑𝑋𝑖/𝑑𝑡 = 0); inequality constraint (3) forces
a flux or the ratio of some two fluxes to remain below a
certain limit; and constraint (4) imposes both the internal
metabolites 𝑋𝑒 (𝑒 = 1, 2, . . . , 𝑛) and external metabolites 𝑋𝑒
(𝑒 = 𝑛 + 1, 𝑛 + 2, . . . , 𝑛 + 𝑚) to stay within certain physically
and chemically feasible limits (𝑋𝐿

𝑒
> 0).

3. Optimization Methods

3.1. The GMA Formalism. A biochemical process containing
𝑛 metabolites is usually modeled as a system of differential
equations inwhich the variation inmetabolite concentrations
𝑋𝑖 can be represented as the following stoichiometric formal-
ism:
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In this representation, both of the fluxes 𝑉+
𝑖𝑗
and 𝑉−

𝑖𝑘
can be

expressed in the following power-law functions, respectively
[22, 23, 28]:
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where the model parameters 𝛼+
𝑖𝑗
> 0 and 𝛼−

𝑖𝑘
> 0 are the rate

constants for fluxes 𝑉+
𝑖𝑗
and 𝑉−

𝑖𝑘
, respectively, and 𝑔+

𝑖𝑗𝑒
∈ 𝑅

and 𝑔−
𝑖𝑘𝑒

∈ 𝑅 are the kinetic orders that reflect the direct
effects of any given system variable 𝑋𝑒 on fluxes 𝑉+

𝑖𝑗
and 𝑉−

𝑖𝑘
,

respectively. Note that a functionwith the form of (6) or (7) is
also called a monomial. A sum of one or more monomials is
called a posynomial, while a sum of one or more monomials,
possibly with negative multiplicative coefficients, is called a
signomial.

By introducing (6)-(7) into (5), one obtains the following
GMAmodel of (5):
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(8)

Based on (8) the objective function 𝐹(𝑋) and constraint
(3) can also be written as the following power-law forms,
respectively:
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(9)

where 𝑓𝑒 ∈ 𝑅, ℎ
+

𝑙𝑢𝑒
∈ 𝑅, and ℎ−

𝑙V𝑒 ∈ 𝑅 terms stand for the
kinetic orders and 𝛾 > 0, 𝛽+

𝑙𝑢
> 0, and 𝛽−

𝑙V > 0 represent the
corresponding rate constants.

Now we can rewrite optimization problems (1)–(4) as the
following formulation:

max𝐹 (𝑋) = 𝛾
𝑛+𝑚

∏
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𝑋
𝑓
𝑒

𝑒
, (10)
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subject to satisfying:
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In this representation, both of the constraints (11) and (12)
involve a special structure in the form of signomial function.
This kind of optimization problems as shown in (10)–(13)
belongs to a truly nonconvex class of problems known as
signomial geometric programming (SGP) [29, 30], that is,
difficult to solve for global optimality.

3.2. Improved Geometric Programming Method. In this sub-
section, we propose to convert SGP problem (10)–(13) into
a sequence of standard GP problems that can be efficiently
solved to reach a global solution.
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𝑙
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functions. Then optimization problem (10)–(13) can be writ-
ten as the following formulation:

max𝐹 (𝑋) = 𝛾
𝑛+𝑚

∏

𝑒=1

𝑋
𝑓
𝑒

𝑒
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In this problem, constraint (16) has a special structure in
the form of a ratio between two posynomials. This type of
constraint gives rise to some difficulties in solving problem
(15)–(18) for global optimality. To deal with this issue, we
rewrite optimization problem (15)–(18) as

min 1
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+ ∑
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0 ≤ 𝑡𝑖 < 1, 𝑖 ∈ 𝐼2 ∪ 𝐼3 ∪ 𝐼4, (30)

by relaxing equality constraints (16) with constraints (20)–
(26). Here 𝑤𝑖 > 0 are the weighting factors with sufficiently
large values, and index sets 𝐼1, 𝐼2, 𝐼3, 𝐼4,𝐿1, and𝐿2 are defined,
respectively, as

𝐼1 = {𝑖 | 𝑖 ∈ 𝐼, 𝑝
+

𝑖
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𝑖
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𝑖
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𝑙
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(31)

with 𝐼 = {1, 2, . . . , 𝑛} and 𝐿 = {1, 2, . . . , 𝑑}. It can be easily
verified that, as the auxiliary variables 𝑡𝑖 decrease from 1 to
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0, the feasible region of problem (19)–(30) decreases. When
the variables 𝑡𝑖 = 0, the feasible region of relaxed program
(19)–(30) is exactly the one of original problem.

The variables 𝑡𝑖 in problem (19)–(30) do not meet the
implicit constraint that the optimization variables are positive
in any standard GP [29], but we can use some transformation
techniques to transform them into other positive ones. In this
study, we propose to transform variable 𝑡𝑖 into a new one in
the following representation:

𝑠𝑖 = 𝑡𝑖 + 𝜃, 𝑖 ∈ 𝐼2 ∪ 𝐼3 ∪ 𝐼4, (32)

where 𝜃 is a positive constant and 𝜃 ≤ 𝑠𝑖 < 1+𝜃.Thenwe have
the following equivalent representation of problem (19)–(30):
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+ ∑
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≤ 1, 𝑙 ∈ 𝐿1 (41)

𝐺
+

𝑙
(𝑋)

𝐺
−

𝑙
(𝑋)

≤ 1, 𝑙 ∈ 𝐿2 (42)

𝑋
𝐿

𝑒
≤ 𝑋𝑒 ≤ 𝑋

𝑈

𝑒
, 𝑒 = 1, 2, . . . , 𝑚 + 𝑛 (43)

𝜃 ≤ 𝑠𝑖 < 1 + 𝜃, 𝑖 ∈ 𝐼2 ∪ 𝐼3 ∪ 𝐼4. (44)

It can be observed that optimization problem (33)–(44) is
equivalent to original problem (1)–(4) when 𝑠𝑖 = 𝜃. In
problem (33)–(44), every denominator of constrains (36),
(38)–(40), and (42) is posynomials. These posynomials can

be approximated, respectively, with monomials by using the
following arithmetic-geometric mean approximation:

𝐻
+

𝑖
(𝑋) + 𝑠𝑖𝐻

−

𝑖
(𝑋)

=

𝑝
+

𝑖

∑

𝑗=1

(𝜇
+

𝑖𝑗
𝛼
+

𝑖𝑗

𝑛+𝑚

∏

𝑒=1

𝑋
𝑔
+

𝑖𝑗𝑒

𝑒 ) + 𝜇
−

𝑖1
𝛼
−

𝑖1
𝑠𝑖

𝑛+𝑚

∏

𝑒=1

𝑋
𝑔
−

𝑖1𝑒

𝑒

≥

𝑝
+

𝑖

∏

𝑗=1

(

𝜇
+

𝑖𝑗
𝛼
+

𝑖𝑗
∏
𝑛+𝑚

𝑒=1
𝑋
𝑔
+

𝑖𝑗𝑒

𝑒

𝜌
+
𝑖𝑗

)

𝜌
+

𝑖𝑗

⋅ (
𝜇
−

𝑖1
𝛼
−

𝑖1
𝑠𝑖∏
𝑛+𝑚

𝑒=1
𝑋
𝑔
−

𝑖1𝑒

𝑒

𝜌
−
𝑖1

)

𝜌
−

𝑖1

= 𝐻̂
+

2𝑖
(𝑋, 𝑠𝑖) , 𝑖 ∈ 𝐼2,

𝐻
−

𝑖
(𝑋) + 𝑠𝑖𝐻

+

𝑖
(𝑋)

=

𝑝
−

𝑖

∑

𝑘=1

(𝜇
−

𝑖𝑘
𝛼
−

𝑖𝑘

𝑛+𝑚

∏

𝑒=1

𝑋
𝑔
−

𝑖𝑘𝑒

𝑒
) + 𝜇

+

𝑖1
𝛼
+

𝑖1
𝑠𝑖

𝑛+𝑚

∏

𝑒=1

𝑋
𝑔
+

𝑖1𝑒

𝑒

≥

𝑝
−

𝑖

∏

𝑘=1

(
𝜇
−

𝑖𝑘
𝛼
−

𝑖𝑘
∏
𝑛+𝑚

𝑒=1
𝑋
𝑔
−

𝑖𝑘𝑒

𝑒

𝜌
−

𝑖𝑘

)

𝜌
−

𝑖𝑘

⋅ (
𝜇
+

𝑖1
𝛼
+

𝑖1
𝑠𝑖∏
𝑛+𝑚

𝑒=1
𝑋
𝑔
+

𝑖1𝑒

𝑒

𝜌
+
𝑖1

)

𝜌
+

𝑖1

= 𝐻̂
−

3𝑖
(𝑋, 𝑠𝑖) , 𝑖 ∈ 𝐼3,

𝐻
−

𝑖
(𝑋) =

𝑝
−

𝑖

∑

𝑘=1

(𝜇
−

𝑖𝑘
𝛼
−

𝑖𝑘

𝑛+𝑚

∏

𝑒=1

𝑋
𝑔
−

𝑖𝑘𝑒

𝑒
)

≥

𝑝
−

𝑖

∏

𝑘=1

(
𝜇
−

𝑖𝑘
𝛼
−

𝑖𝑘
∏
𝑛+𝑚

𝑒=1
𝑋
𝑔
−

𝑖𝑘𝑒

𝑒

𝜌
−

𝑖𝑘

)

𝜌
−

𝑖𝑘

= 𝐻̂
−

4𝑖
(𝑋, 𝑠𝑖) , 𝑖 ∈ 𝐼4,

𝐻
+

𝑖
(𝑋) + 𝑠𝑖𝐻

−

𝑖
(𝑋)

=

𝑝
+

𝑖

∑

𝑗=1

(𝜇
+

𝑖𝑗
𝛼
+

𝑖𝑗

𝑛+𝑚

∏

𝑒=1

𝑋
𝑔
+

𝑖𝑗𝑒

𝑒 ) + 𝑠𝑖

𝑝
−

𝑖

∑

𝑘=1

(𝜇
−

𝑖𝑘
𝛼
−

𝑖𝑘

𝑛+𝑚

∏

𝑒=1

𝑋
𝑔
−

𝑖𝑘𝑒

𝑒
)

≥

𝑝
+

𝑖

∏

𝑗=1

(

𝜇
+

𝑖𝑗
𝛼
+

𝑖𝑗
∏
𝑛+𝑚

𝑒=1
𝑋
𝑔
+

𝑖𝑗𝑒

𝑒

𝜌
+
𝑖𝑗

)

𝜌
+

𝑖𝑗

⋅

𝑝
−

𝑖

∏

𝑘=1

(
𝜇
−

𝑖𝑘
𝛼
−

𝑖𝑘
𝑠𝑖∏
𝑛+𝑚

𝑒=1
𝑋
𝑔
−

𝑖𝑘𝑒

𝑒

𝜌
−

𝑖𝑘𝑠

)

𝜌
−

𝑖𝑘𝑠

= 𝐻̂
+

4𝑖
(𝑋, 𝑠𝑖) , 𝑖 ∈ 𝐼4,
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𝐺
−

𝑙
(𝑋) =

𝑞
−

𝑙

∑

V=1
(𝜆
−

𝑙V𝛽
−

𝑙V

𝑛+𝑚

∏

𝑒=1

𝑋
ℎ
−

𝑙V𝑒
𝑒
)

≥

𝑞
−

𝑙

∏

V=1
(
𝜆
−

𝑙V𝛽
−

𝑙V∏
𝑛+𝑚

𝑒=1
𝑋
ℎ
−

𝑙V𝑒
𝑒

𝜌
−

𝑙V
)

𝜌
−

𝑙V

= 𝐺
−

𝑙
(𝑋) , 𝑙 ∈ 𝐿2,

(45)

where the parameters 𝜌+
𝑖𝑗
(𝑖 ∈ 𝐼2), 𝜌

−

𝑖1
(𝑖 ∈ 𝐼2), 𝜌

−

𝑖𝑘
(𝑖 ∈ 𝐼3),

𝜌
+

𝑖1
(𝑖 ∈ 𝐼3), 𝜌

−

𝑖𝑘
(𝑖 ∈ 𝐼4), 𝜌

+

𝑖𝑗
(𝑖 ∈ 𝐼4), 𝜌

−

𝑖𝑘𝑠
(𝑖 ∈ 𝐼4), and 𝜌

−

𝑙V

(𝑙 ∈ 𝐿2) can be computed as follows for some given 𝑋 and 𝑠𝑖
(𝑖 ∈ 𝐼2 ∪ 𝐼3 ∪ 𝐼4) values:

𝜌
+

𝑖𝑗
=

𝜇
+

𝑖𝑗
𝛼
+

𝑖𝑗
∏
𝑛+𝑚

𝑒=1
𝑋
𝑔
+

𝑖𝑗𝑒

𝑒

𝐻
+
𝑖
(𝑋) + 𝑠𝑖𝐻

−
𝑖
(𝑋)

, 𝑖 ∈ 𝐼2,

𝜌
−

𝑖1
=

𝜇
−

𝑖1
𝛼
−

𝑖1
𝑠𝑖∏
𝑛+𝑚

𝑒=1
𝑋
𝑔
−

𝑖1𝑒

𝑒

𝐻
+
𝑖
(𝑋) + 𝑠𝑖𝐻

−
𝑖
(𝑋)

, 𝑖 ∈ 𝐼2,

𝜌
−

𝑖𝑘
=

𝜇
−

𝑖𝑘
𝛼
−

𝑖𝑘
∏
𝑛+𝑚

𝑒=1
𝑋
𝑔
−

𝑖𝑘𝑒

𝑒

𝐻
−
𝑖
(𝑋) + 𝑠𝑖𝐻

+
𝑖
(𝑋)

, 𝑖 ∈ 𝐼3,

𝜌
+

𝑖1
=

𝜇
+

𝑖1
𝛼
+

𝑖1
𝑠𝑖∏
𝑛+𝑚

𝑒=1
𝑋
𝑔
+

𝑖1𝑒

𝑒

𝐻
−
𝑖
(𝑋) + 𝑠𝑖𝐻

+
𝑖
(𝑋)

, 𝑖 ∈ 𝐼3,

𝜌
−

𝑖𝑘
=
𝜇
−

𝑖𝑘
𝛼
−

𝑖𝑘
∏
𝑛+𝑚

𝑒=1
𝑋
𝑔
−

𝑖𝑘𝑒

𝑒

𝐻
−
𝑖
(𝑋)

, 𝑖 ∈ 𝐼4,

𝜌
+

𝑖𝑗
=

𝜇
+

𝑖𝑗
𝛼
+

𝑖𝑗
∏
𝑛+𝑚

𝑒=1
𝑋
𝑔
+

𝑖𝑗𝑒

𝑒

𝐻
+
𝑖
(𝑋) + 𝑠𝑖𝐻

−
𝑖
(𝑋)

, 𝑖 ∈ 𝐼4,

𝜌
−

𝑖𝑘𝑠
=
𝜇
−

𝑖𝑘
𝛼
−

𝑖𝑘
𝑠𝑖∏
𝑛+𝑚

𝑒=1
𝑋
𝑔
−

𝑖𝑘𝑒

𝑒

𝐻
+
𝑖
(𝑋) + 𝑠𝑖𝐻

−
𝑖
(𝑋)

, 𝑖 ∈ 𝐼4,

𝜌
−

𝑙V =
𝜆
−

𝑙V𝛽
−

𝑙V∏
𝑛+𝑚

𝑒=1
𝑋
ℎ
−

𝑙V𝑒
𝑒

𝐺
−

𝑙
(𝑋)

, 𝑙 ∈ 𝐿2.

(46)

Applying the method above to each denominator of
constrains (36), (38)–(40), and (42), we obtain the following
optimization problem:

min 1
𝛾

𝑛+𝑚

∏

𝑒=1

𝑋
−𝑓
𝑒

𝑒
+ ∑

𝑖∈𝐼
2
∪𝐼
3
∪𝐼
4

𝑤𝑖𝑠𝑖, (47)

subject to satisfying

𝐻
+

𝑖
(𝑋)

𝐻
−
𝑖
(𝑋)

= 1, 𝑖 ∈ 𝐼1

𝐻
+

𝑖
(𝑋)

𝐻
−
𝑖
(𝑋)

≤ 1, 𝑖 ∈ 𝐼2

(1 + 𝜃)𝐻
−

𝑖
(𝑋)

𝐻̂
+
2𝑖
(𝑋, 𝑠𝑖)

≤ 1, 𝑖 ∈ 𝐼2

𝐻
−

𝑖
(𝑋)

𝐻
+
𝑖
(𝑋)

≤ 1, 𝑖 ∈ 𝐼3

(1 + 𝜃)𝐻
+

𝑖
(𝑋)

𝐻̂
−
3𝑖
(𝑋, 𝑠𝑖)

≤ 1, 𝑖 ∈ 𝐼3

𝐻
+

𝑖
(𝑋)

𝐻̂
−
4𝑖
(𝑋, 𝑠𝑖)

≤ 1, 𝑖 ∈ 𝐼4

(1 + 𝜃)𝐻
−

𝑖
(𝑋)

𝐻̂
+
4𝑖
(𝑋, 𝑠𝑖)

≤ 1, 𝑖 ∈ 𝐼4

𝐺
+

𝑙
(𝑋)

𝐺
−

𝑙
(𝑋)

≤ 1, 𝑙 ∈ 𝐿1

𝐺
+

𝑙
(𝑋)

𝐺
−

𝑙
(𝑋)

≤ 1, 𝑙 ∈ 𝐿2

𝑋
𝐿

𝑒
≤ 𝑋𝑒 ≤ 𝑋

𝑈

𝑒
, 𝑒 = 1, 2, . . . , 𝑚 + 𝑛

𝜃 ≤ 𝑠𝑖 < 1 + 𝜃, 𝑖 ∈ 𝐼2 ∪ 𝐼3 ∪ 𝐼4.

(48)

This is a standardGP that can be transformed into a nonlinear
convex problem.

We now present the following successive geometric pro-
gramming algorithm for steady-state optimization of bio-
chemical systems in this work.

Step 0. Given initial steady-state 𝑋(0), positive constant 𝜃,
initial values of auxiliary variables 𝑠(0)

𝑖
(𝜃 ≤ 𝑠

(0)

𝑖
< 1 + 𝜃,

𝑖 ∈ 𝐼2 ∪ 𝐼3 ∪ 𝐼4), initial weights 𝑤
(0)

𝑖
, and solution accuracy

𝜀 > 0, set iteration counter 𝑟 = 0.

Step 1. For 𝑋 = 𝑋
(𝑟−1) and 𝑠𝑖 = 𝑠

(𝑟−1)

𝑖
, solve the standard GP

(47)-(48) to obtain𝑋(𝑟) and 𝑠(𝑟)
𝑖

with weighting factors𝑤(𝑟−1)
𝑖

.

Step 2. If ‖𝑋(𝑟)−𝑋(𝑟−1)‖ ≤ 𝜀 and ‖𝑠(𝑟)−𝑠(𝑟−1)‖ ≤ 𝜀 (𝑠 is a vector
whose elements are 𝑠𝑖), then stop.

Step 3. Update the weighting coefficients 𝑤(𝑟)
𝑖

with

𝑤
(𝑟)

𝑖
= 𝑊(𝑤

(𝑟−1)

𝑖
) , 𝑖 ∈ 𝐼2 ∪ 𝐼3 ∪ 𝐼4, (49)

where𝑊 is a monotonically increasing function of𝑤(𝑟−1)
𝑖

. Set
𝑟 = 𝑟 + 1 and continue from Step 1.
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Remark 1. In the similar thought of [14], we can easily prove
that the sequent solutions of problem (47)-(48) converge to a
point satisfying the KKT conditions of the original problem.

Remark 2. The proposed algorithm requires fewer iterations
to obtain the global optimum of a biochemical system than
the approach used in [14] does. See Section 4.

Remark 3. We can borrow from the theory and practice of
penalty function methods to select an appropriate weighting
factor 𝑤(𝑟)

𝑖
.

4. Case Studies

In this section, two case studies are presented to illustrate
the calculation algorithm in terms of computational exper-
iments. These systems were optimized using the MATLAB
based software GGPLAB [31] on a PC with Intel (R) Core
(TM) i5-3230M Processor 2.60GHz CPU.The default solver
of software GGPLAB was set to be MOSEK [32].

4.1. Case Study 1: Tryptophan Biosynthesis in Escherichia
coli. We first apply the proposed method to tryptophan
biosynthesis in Escherichia coli. A complete description of
this metabolic pathway can be found in [33]. The differential
equations in dimensionless variables are given as

𝑑𝑋1

𝑑𝑡
= 𝑉
+

11
− 𝑉
−

11
,

𝑑𝑋2

𝑑𝑡
= 𝑉
+

21
− 𝑉
−

21
,

𝑑𝑋3

𝑑𝑡
= 𝑉
+

31
− (𝑉
−

31
+ 𝑉
−

32
+ 𝑉
−

33
) .

(50)

Here, 𝑋1 is used for mRNA concentration, 𝑋2 is used
for enzyme concentration, and 𝑋3 is used for tryptophan
concentration, respectively. At the basal steady state (see
Table 1), the rate equations in (50) are transformed into the
following power-law forms, respectively [14]:

𝑉
+

11
= 0.6403𝑋

−5.87×10
−4

3
𝑋
−0.8332

5
,

𝑉
−

11
= 1.0233𝑋1𝑋

0.0035

4
𝑋
0.9965

11
,

𝑉
+

21
= 𝑋1,

𝑉
−

21
= 1.4854𝑋2𝑋

0.1349

4
𝑋
0.8651

12
,

𝑉
+

31
= 0.5534𝑋2𝑋

−0.5573

3
𝑋
0.5573

6
,

𝑉
−

31
= 𝑋3𝑋4,

𝑉
−

32
= 0.9942𝑋

7.0426×10
−4

3
𝑋7,

𝑉
−

33
= 0.8925𝑋

3.5×10
−6

3
𝑋
0.9760

4
𝑋8𝑋
−0.0240

9
𝑋
−3.5×10

−6

10
.

(51)

Table 1: Optimal solution of Case study 1 obtained by using the
proposed approach (𝑠(0)

3
= 1.99).

Variables Initial steady state Optimized solution
𝑋1 0.184654 0.221585
𝑋2 7.986756 8.908299
𝑋3 1418.931944 1135.145557
𝑋4 0.00312 0.005361
𝑋5 5 4.010578
𝑋6 2283 5000
𝑋8 430 1000
𝐹 1.310202 5.169027

The reaction 𝑉−
33

can be selected as the optimized objec-
tive function [5]. Then we have the following steady-state
optimization problem:

max𝐹 = 𝑉−
33
, (52)

subject to satisfying

𝑉
+

11
− 𝑉
−

11
= 0,

𝑉
+

21
− 𝑉
−

21
= 0,

𝑉
+

31
− (𝑉
−

31
+ 𝑉
−

32
+ 𝑉
−

33
) = 0,

0.8𝑋
(0)

𝑒
≤ 𝑋𝑒 ≤ 1.2𝑋

(0)

𝑒
, 𝑒 = 1, 2, 3,

0 < 𝑋4 ≤ 0.00624,

(53)

4 ≤ 𝑋5 ≤ 10,

500 ≤ 𝑋6 ≤ 5000,

𝑋7 = 0.0022𝑋5,

0 < 𝑋8 ≤ 1000

(𝑋9, 𝑋10, 𝑋11, 𝑋12, 𝑋13) = (7.5, 0.005, 0.9, 0.02, 0) .

(54)

The following algorithm parameters were chosen in the
implementation of the proposed method: 𝑤(0)

3
= 1, 𝑤(𝑟)

3
=

1 + 𝑟 (𝑟 ≥ 1), 𝜃 = 1, 𝑠(0)
3

= 1.95, and 𝜀 = 10
−6.

The proposed algorithm uses about 1.6-second CPU time to
perform 5 iterations and reach an optimal solution with the
objective value 5.169027 starting from the initial steady state
given in Table 1. The optimized results are given in Table 1.
The optimal objective value 5.169027 is higher than the
results given by [6]. Table 2 provides us with the comparison
between the proposed approach and the reported method
[14] for Case study 1. The calculation results shown in
this table were obtained by setting the following algorithm
parameters: 𝑤(0)

3
= 1, 𝑤(𝑟)

3
= 1 + 𝑟 (𝑟 ≥ 1), 𝜃 = 1, and 𝜀 =

10
−6. As can be seen in Table 2, both optimization strategies

obtain a rate of tryptophan production increased more than
3.96 times its initial steady state. But our proposed approach
requires fewer iterations to find the global optimum of Case
study 1 than the method in [14] does. One can also conclude
from Table 2 that, as the value of initial auxiliary variable
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𝑠
(0)

3
increases from 1.0 to 1.99, the iterations required for the

proposed algorithm decrease. This suggests that we should
choose a larger 𝑠(0)

𝑖
value to promote the evolution rate of the

proposed approach.

4.2. Case Study 2: Maximization of Ethanol Production in
Saccharomyces cerevisiae. In this case study, we will apply
the proposed approach to the production of ethanol by
Saccharomyces cerevisiae. The dynamics of this system are
described as the following formulations [34]:

𝑑𝑋1

𝑑𝑡
= 𝑉in − 𝑉HK,

𝑑𝑋2

𝑑𝑡
= 𝑉HK − 𝑉PFK − 𝑉Pol,

𝑑𝑋3

𝑑𝑡
= 𝑉PFK − 𝑉GAPD − 0.5𝑉Gol,

𝑑𝑋4

𝑑𝑡
= 2𝑉GAPD − 𝑉PK,

𝑑𝑋5

𝑑𝑡
= 2𝑉GAPD + 𝑉PK − 𝑉HK − 𝑉Pol − 𝑉PFK − 𝑉ATPase,

(55)

where 𝑋𝑖 represent the following intermediate metabolite
concentrations:𝑋1 is the intracellular glucose concentration,
𝑋2 represents glucose 6-phosphate, 𝑋3 codes for fructose
1, 6-diphosphate,𝑋4 is phosphoenolpyruvate, and 𝑋5 repre-
sents ATP. The indexed quantities 𝑉 represent the following
fluxes: 𝑉in denotes the sugar transport into the cells, 𝑉HK
summarizes all hexokinases,𝑉PFK is the phosphofructokinase
reaction,𝑉GAPD represents glyceraldehyde 3-phosphate dehy-
drogenase, 𝑉PK represents pyruvate kinase, 𝑉Pol describes
glycogen synthetase, 𝑉Gol, the glycerol 3-phosphate dehy-
drogenase is proportional to 𝑉PK, and 𝑉ATPase summarizes
collectively the use of ATP. At the initial steady state shown
in Table 3, these fluxes can be represented as the following
power-law expressions, respectively [35]:

𝑉in = 0.8122𝑋
−0.2344

2
𝑋6,

𝑉HK = 2.8632𝑋
0.7464

1
𝑋
0.0243

5
𝑋7,

𝑉PFK = 0.5232𝑋
0.7318

2
𝑋
−0.3941

5
𝑋8,

𝑉Pol = 0.0009𝑋
8.6107

2
𝑋11,

𝑉GAPD = 0.011𝑋
0.6159

3
𝑋
0.1308

5
𝑋9𝑋
−0.6088

14
,

𝑉Gol = 0.04725𝑋
0.05

3
𝑋
0.533

4
𝑋
−0.0822

5
𝑋12,

𝑉PK = 0.0945𝑋
0.05

3
𝑋
0.533

4
𝑋
−0.0822

5
𝑋10,

𝑉ATPase = 𝑋5𝑋13.

(56)

The performance index describing the rate of ethanol
production is given directly by the flux through the pyruvate
kinase, 𝑉PK. Then we have the following optimization prob-
lem [3, 36]:

max𝐹 = 𝑉PK, (57)

subject to satisfying

𝑉in − 𝑉HK = 0,

𝑉HK − 𝑉PFK − 𝑉Pol = 0,

𝑉PFK − 𝑉GAPD − 0.5𝑉Gol = 0,

2𝑉GAPD − 𝑉PK = 0,

2𝑉GAPD + 𝑉PK − 𝑉HK − 𝑉Pol − 𝑉PFK − 𝑉ATPase = 0,

0.8𝑋
(0)

𝑒
≤ 𝑋𝑒 ≤ 1.2𝑋

(0)

𝑒
, 𝑒 = 1, 2, 3, 4, 5,

𝑋
(0)

𝑒
≤ 𝑋𝑒 ≤ 50𝑋

(0)

𝑒
, 𝑒 = 6, 7, 8, 9, 10, 13,

𝑉PK ≤ 2𝑉in,

(𝑋11, 𝑋12, 𝑋14) = (14.31, 203, 0.042) .

(58)

This problem has three signomial equality constrains that can
be rewritten as follows:

𝑉PFK + 𝑉Pol
𝑉HK

= 1,

𝑉GAPD + 0.5𝑉Gol
𝑉PFK

= 1,

𝑉HK + 𝑉Pol + 𝑉PFK + 𝑉ATPase
2𝑉GAPD + 𝑉PK

= 1.

(59)

Thus, three weighting coefficients 𝑤(𝑟)
𝑖

(𝑟 ≥ 0 and 𝑖 = 2, 3, 5)
should be chosen in the implementation of the proposed
method. To deal with this issue, we first solve two simple GPs
as shown in

max𝐹 = 0.0945𝑋0.05
3
𝑋
0.533

4
𝑋
−0.0822

5
𝑋10

subject to satisfying:

0.8𝑋
(0)

𝑒
≤ 𝑋𝑒 ≤ 1.2𝑋

(0)

𝑒
, 𝑒 = 1, 2, 3, 4, 5,

𝑋
(0)

𝑒
≤ 𝑋𝑒 ≤ 50𝑋

(0)

𝑒
, 𝑒 = 6, 7, 8, 9, 10, 13,

min𝐹 = 0.0945𝑋0.05
3
𝑋
0.533

4
𝑋
−0.0822

5
𝑋10

subject to satisfying:

0.8𝑋
(0)

𝑒
≤ 𝑋𝑒 ≤ 1.2𝑋

(0)

𝑒
, 𝑒 = 1, 2, 3, 4, 5,

𝑋
(0)

𝑒
≤ 𝑋𝑒 ≤ 50𝑋

(0)

𝑒
, 𝑒 = 6, 7, 8, 9, 10, 13.

(60)

The optimal objective values of optimization problems (60)
can be easily obtained as follows, respectively:

𝐹max = 0.0945(1.2𝑋
(0)

3
)
0.05

(1.2𝑋
(0)

4
)
0.533

× (0.8𝑋
(0)

5
)
−0.0822

(50𝑋
(0)

10
) = 1731,

𝐹min = 0.0945(0.8𝑋
(0)

3
)
0.05

(0.8𝑋
(0)

4
)
0.533

× (1.2𝑋
(0)

5
)
−0.0822

(𝑋
(0)

10
) = 23.0803.

(61)
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Table 2: Comparisons between our proposed algorithm and the method in [14] for Case study 1.

Proposed method [14]
Initial auxiliary
variable 𝑠(0)

3

Iterations Objective value Initial auxiliary
variable 𝑡(0)

3

Iterations Objective value

1 9 5.169027 0a — —
1.1 9 5.169027 0.1 14 5.169027
1.2 5 5.169027 0.2 14 5.169027
1.3 5 5.169027 0.3 14 5.169027
1.4 5 5.169027 0.4 14 5.169027
1.5 5 5.169027 0.5 14 5.169027
1.6 5 5.169027 0.6 14 5.169027
1.7 5 5.169027 0.7 14 5.169027
1.8 5 5.169027 0.8 14 5.169027
1.9 5 5.169027 0.9 14 5.169027
1.99 5 5.169027 0.99 14 5.169027
aThe method in [14] does not allow 𝑡(0)

3
= 0 because of the auxiliary variable 𝑡3 > 0 being imposed in the implementation of this algorithm.

Table 3: Optimal solution of Case study 2 obtained by using the
proposed approach.

Variables Initial steady state Optimized solution
𝑋1 0.0345 0.038025
𝑋2 1.0111 1.057148
𝑋3 9.1437 10.393273
𝑋4 0.0095 0.010454
𝑋5 1.1278 1.255394
𝑋6 19.7 985
𝑋7 68.5 3147.937162
𝑋8 31.7 1585
𝑋9 49.9 2389.028728
𝑋10 3440 172000
𝑋13 25.1 1255
𝐹 30.1124 1577.4227

Then we get an approximate interval [23.0803, 1731] for
objective function 𝐹 of original problem (58). So we choose
the weighting coefficients 𝑤(𝑟)

𝑖
(𝑟 ≥ 0) as

𝑤
(𝑟)

𝑖
=
𝑤𝑖

𝜃
, 𝑖 = 2, 3, 5, (62)

where 𝑤𝑖 ∈ [1/1731, 1/23.0803] ≈ [0.0006, 0.0433].
The following algorithm parameters were firstly used

in the implementation of the proposed algorithm: 𝑤(𝑟)
𝑖

=

0.0006 (𝑟 ≥ 0), 𝜃 = 1, 𝑠(0)
𝑖
= 1.99, and 𝜀 = 10−6. The proposed

method spends about 3.1-second CPU time to perform 5
iterations and reach an optimal solution with the objective
value 1577.4227 starting from the initial steady state given
in Table 3. The detailed results are shown in Table 3. Table 4
presents a comparison of these results and those obtained by
other reportedmethods [14] for Case study 2.The calculation
results presented in this table were attained by using the

following algorithm parameters: 𝑤(𝑟)
𝑖

= 0.0006 (𝑟 ≥ 0),
𝜃 = 1, and 𝜀 = 10

−6. From Table 4, it can be seen that
both optimizationmethods yield a rate of ethanol production
increased more than 52.38 times its initial steady state. But
the proposed approach in this work requires fewer iterations
to find the global optimum of Case study 2 than the method
in [14] does.

To illustrate the influence of variable 𝜃 on the perfor-
mance of our proposed algorithm, ten computational exper-
iments with different 𝜃 values were performed with the
following algorithm parameters: 𝑤(𝑟)

𝑖
= 0.0006 (𝑟 ≥ 0),

𝑠
(0)

𝑖
= 𝜃 + 0.9, and 𝜀 = 10−6. Table 5 compares the influence

of different 𝜃 values on the performance of the proposed
approach. In this table it can be seen that the proposed
algorithm with 10 different 𝜃 values successfully obtains the
same rate of ethanol production increased more than 52.38
times its initial steady state, but it requires fewer iterations to
find the global optimum of Case study 2, when we select a
larger 𝜃 value.

Next we investigate the influence of weighting coefficients
𝑤
(𝑟)

𝑖
(𝑟 ≥ 0) on the performance of our proposed algorithm.

Ten computational experiments with different weighting
coefficients 𝑤(𝑟)

𝑖
(𝑤(𝑟)
𝑖

∈ [0.0006, 0.0433] and 𝑟 ≥ 0)
were performed with the following algorithm parameters:
𝜃 = 1, 𝑠(0)

𝑖
= 1.99, and 𝜀 = 10

−6. Table 6 compares the
influence of different weighting coefficients 𝑤(𝑟)

𝑖
(𝑟 ≥ 0) on

the performance of the proposed approach. In this table it
can be observed that the proposed algorithmwith 10 different
weighting coefficients attains the global optimum of Case
study 2, but it requires fewer iterations to accomplish this
optimization task when the weighting coefficient𝑤(𝑟)

𝑖
(𝑟 ≥ 0)

is chosen as a smaller value. This suggests that we should
choose a small 𝑤(𝑟)

𝑖
(𝑟 ≥ 0) value in the implementation of

the proposed algorithm.
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Table 4: Comparisons between the proposed algorithm and the method in [14] for Case study 2.

Proposed method [14]
Initial auxiliary
variable 𝑠(0)

𝑖

Iterations Objective value Initial auxiliary
variable 𝑡(0)

𝑖

Iterations Objective value

1 5 1577.4227 0b — —
1.1 5 1577.4227 0.1 15 1577.422623
1.2 5 1577.4227 0.2 15 1577.422627
1.3 5 1577.4227 0.3 15 1577.422632
1.4 5 1577.4227 0.4 15 1577.422625
1.5 5 1577.4227 0.5 15 1577.422626
1.6 5 1577.4227 0.6 15 1577.422629
1.7 5 1577.4227 0.7 15 1577.422629
1.8 5 1577.4227 0.8 15 1577.422625
1.9 5 1577.4227 0.9 15 1577.422631
1.99 5 1577.4227 0.99 15 1577.422630
bThe method in [14] does not allow 𝑡(0)

𝑖
= 0 (𝑖 = 2, 3, 5) because of the auxiliary variables 𝑡𝑖 > 0 being imposed in the implementation of this algorithm.

Table 5: Comparisons of effects of 10 different 𝜃 values on the
proposed algorithm.

𝜃 Iterations Objective value
0.02 15 1577.4227
0.1 8 1577.4227
0.2 6 1577.4227
0.6 6 1577.4227
0.8 5 1577.4227
1.0 5 1577.4227
1.4 5 1577.4227
2 5 1577.4227
3 5 1577.4227
4 5 1577.4227

Table 6: Comparisons of effects of 10 differentweighting coefficients
on the proposed algorithm.

Weight coefficient (𝑤(𝑟)
𝑖
, 𝑟 ≥ 0) Iterations Objective value

0.0006 5 1577.4227
0.001 5 1577.4227
0.005 6 1577.4227
0.01 5 1577.4227
0.015 10 1577.4227
0.025 7 1577.4227
0.03 7 1577.4227
0.035 8 1577.4227
0.04 17 1577.4227
0.0433 10 1577.4227

5. Conclusions

In this work, we have presented an improvedGP approach for
steady-state optimization of biochemical systems. The origi-
nal nonlinear, nonconvex optimization problem with GMA
formalism can be easily transformed into a set of standard

GPs that can be solved very efficiently for global optimality.
The proposed algorithm has been applied to two benchmark
systems. Compared with the current GP method for steady-
state optimization of biochemical systems, the presented
approach rapidly and successfully obtains a globally optimal
production rate of these systems. This conclusion shows the
tractability and effectiveness of the improved GP approach
in solving steady-state optimization of nonlinear biochemical
systems with GMAmodels.
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“Outer approximation-based algorithm for biotechnology stud-
ies in systems biology,” Computers & Chemical Engineering, vol.
34, no. 10, pp. 1719–1730, 2010.

[10] C. Pozo, G. Guillén-Gosálbez, A. Sorribas, and L. Jiménez, “A
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