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We present a new stabilized finite element method for incompressible flows based on Brezzi-Pitkdranta stabilized method. The
stability and error estimates of finite element solutions are derived for classical one-level method. Combining the techniques of two-
level discretizations, we propose two-level Stokes/Oseen/Newton iteration methods corresponding to three different linearization
methods and show the stability and error estimates of these three methods. We also propose a new Newton correction scheme
based on the above two-level iteration methods. Finally, some numerical experiments are given to support the theoretical results
and to check the efficiency of these two-level iteration methods.

1. Introduction

In this paper, we consider steady Navier-Stokes equations
with homogeneous Dirichlet boundary conditions:

—uAu+w-V)u-Vp=f, inQ,
divu =0, in Q, €]
u=0, on 0Q,

where QO ¢ R? is a bounded convex domain with bound-
ary 0Q. u > 0 represents the viscous coefficient. u =
(u,(x), uy(x)) denotes the velocity vector, p = p(x) the
pressure, and f = (f;(x), f,(x)) the prescribed body force
vector. The solenoidal condition divi# = 0 means that the
flows are incompressible.

In computational fluid dynamics, it is very important
in searching the appropriate mixed finite element approxi-
mation to solve the numerical solutions of the problem (1)
quickly and efficiently. Roughly speaking, the selected finite
element spaces are required to satisfy the inf-sup condition,
such as the finite element space constructed by the P,— P, pair.
However, from the computational cost point of view, the P, —
P, pair is of practical importance in scientific computation
with the lower computational cost. Therefore, much attention
has been attracted by the P, — P, pair for simulating

the incompressible flow. But, in this case, the inf-sup con-
dition is not satisfied. A usual technique is to introduce
the stabilized term in the finite element variational equa-
tion such that the inf-sup condition is enforced. There
exist many stabilized methods, such as Brezzi-Pitkdranta
stabilized method [1], locally stabilized method [2, 3], pres-
sure stabilized method [4], stream upwind Petrov-Galerkin
method [5], Douglas-Wang absolutely stabilized method [6],
and pressure projection stabilized method [7, 8] and the
references cited therein. Most of these stabilized methods
necessarily introduce the stabilized parameters. Moreover,
some of these methods are conditionally stable; that is, the
stabilized parameters must satisfy some stable condition.
Therefore, the development of stabilized methods free from
stabilized parameters has become increasingly important.

In this paper, we combine the Brezzi-Pitkiranta stabilized
method, which is unconditionally stable [9], with techniques
of two-level discretizations to solve the numerical solution of
the problem (1) under the uniqueness condition. Two-level
discretization method has become a powerful tool in solving
nonlinear partial differential equations. The basic idea is to
capture “large eddies” by computing the initial approximation
on the coarse mesh and then to obtain the fine approximation
by solving a linearized problem corresponding to nonlinear
partial differential equations on the fine mesh. More details
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can be referred to in the works of Xu [10, 11]. There exists
a large amount of references about two-level finite element
method for Navier-Stokes equations. For details, please see
the works of An and Qiu [12], Ervin et al. [13], Franca and
Nesliturk [14], de Frutos et al. [15, 16], Girault and Lions [17],
Goswami and Damadzio [18], He [19], He and Li [20], He
and Wang [21], He et al. [22], Huang et al. [23], Layton [24],
Layton and Tobiska [25], Li [26], Li and An [27, 28], Liu and
Hou [29], and Zhu and Chen [30] and the references cited
therein.

Based on the Brezzi-Pitkdranta stabilized finite element
method, in this paper, we solve the nonlinear Navier-Stokes
equations on the coarse mesh with mesh size H in Step I and
then solve a linear system according to Stokes/Oseen/Newton
iterative method on the fine mesh with mesh size / in Step II.
Denote by (u", p") the finite element approximation solution
on the fine mesh. If we suppose (u, p) € (H*(Q)*, HY(Q)),
then the error estimate derived is

e =, + o= "] = c(hr 1), @

where ¢ > 0 is independent of i and H and the norms | - ||y,
and || - || are defined in the next section. It is obvious that if
we choose H = O(h'/?), then two-level method discussed
in this paper provides the same convergence order as the
classical one-level method. Finally, we propose a Newton
correction scheme on the fine mesh. The numerical solution
(uh , ph) in Step Il is as the iterative initial value. Then the finite
element approximation solution (uﬁ, p;*’) is solved in terms
of Newton iterative scheme on the fine mesh in Step III. The
error estimate derived for this Newton correction scheme is

“u—uﬁ < c(h+H4). (3)

S R

Thus, if H = O(h"*), then this new two-level method also
is of the same convergence order as the classical one-level
method.

This paper is organized as follows. In Section 2, we
introduce some function spaces and some classical results
about Navier-Stokes equations. In Section 3, the Brezzi-
Pitkdranta stabilized finite element approximation will be
applied and the error estimates about the velocity in H'-norm
and L?-norm and the pressure in L*-norm are derived. In
Section 4, the two-level discretization finite element methods
are proposed and the error estimates (2) and (3) are shown.
In the final section, the numerical experiments are displaced
to support the theoretical results.

2. Navier-Stokes Equations

In what follows, we employ the standard notation H I(Q) (or
H'(Q)?),1 > 0, for the Sobolev spaces of all functions having
square integrable derivatives up to order I in Q). Denote the
standard Sobolev norm by |- [|;. If I = 0, we write L*(Q)
(or L*(©)*) and | - || instead of H°(Q) (or H*(Q)?) and
Il - llp, respectively. The symbol ¢ always denotes some positive
constant which is independent of the mesh parameters h
and H and can be a different constant even in the same
formulation.
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Introduce the following spaces usually used in this paper:

V=H\(QA  M=I3(Q)= {q e ? (Q);J qdx = o} .
Q
(4)
The space V is equipped with the norm
1/2
[vlly = (J |Vv|2dx> , YveV. (5)
Q

It is well known that ||v[|y, is equivalent to ||v||; due to Poincaré
inequality. Introduce the following bilinear and trilinear
forms:

a(u,v)zyj Vu-Vvdx, VYu,veV,
Q

d(v.q) = quivvdx, YvevV, geM,

b (u,v,w)

J (u-V)v'wdx—lJ- divuv - wdx
Q 2 Ja

ﬂwawwM—ngwwww.
©)

It is easy to check that this trilinear form satisfies the following
important properties [20, 31]:

bu,v,w) = -bWw,w,v), (7)

b (u, v,w) < Nlully Il lwlly, 8)
N
bm%wsywmww

1/2 1/2 1/2 1/2
x (Il lwl 2wy + lwly vl Iviy?)
)
for all u,v,w € V and
1b (4, v, )| + b (v, 16, w)] + [b (w, 11, v)]| < Nllually VIl ],

(10)

forallu € V,v € HX(Q)? and w € L*(Q)* where N > 0
depends only on Q.

Given f € L2(Q)% under the above notations, the
variational formulation of the problem (1) reads as follows:
find (u, p) € (V, M) such that for all (v,q) € (V, M)

a@w,v)+bw,u,v)—d(v,p)=(fiv),
d(u,q) = 0.
Define a generalized bilinear form on (V, M) x (V, M) by
B, psv,q)=awv)—d(v,p)+d(u,q); (12)
then the problem (11) also takes the following form:

B (u, p;v,q) +bwu,v) = (f,v), V(r.q) € (V,M).
(13)

(11)

The following existence, uniqueness, and regularity
results concerning the solution (u, p) to the problem (13) are
classical [32-34].
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Theorem 1. Assuming that y and f satisfy the following
uniqueness condition:

25N f] < 1, 14)

then the problem (13) exists a unique solution (u, p) € (V, M)
satisfying

1 u
llully < p Il <35 (15)

Furthermore, if 0Q) is of class C*, then the solution (u, p) to the
problem (13) satisfies the following regularity property:

lull, + || pll, < <]l £]- (16)

3. Stabilized Finite Flement Approximation

Let ), be a family of quasiuniform triangular partitions of
Q into triangles. The corresponding ordered triangles are
denoted by K, K,,...,K,,. Let h; = diam(K;),i = 1,...,n,
and h = max{h,,h,,...,h,}. For every K € T, let P.(K)
denote the space of the polynomials on K of degree at most
r. Consider the conforming finite element spaces V}, and M,
given by

Vi = {n e C(Q) nViwlc € [P (K, VK € 7.},
17)
My, ={q, € C(Q) N M,q,lx € P, (K),VK € T,}.
Then the Brezzi-Pitkiranta stabilized finite element approxi-
mation of (11) is as follows: find u;, € V,, and p, € M, such
that fOI‘ all (Vh, qh) € (Vh’ Mh)

a (up, vy) + b (s gy vi,) = d (v p) = (fivn) s
d (w,> q1) + Cp, (P> q) = 0,

(18)
where the stabilized term is defined by

Ch (Pwan) = “Zhiz L Vpn - Vaudx,  Vpp,q, € My (19)
i=1 i

with some positive constant & > 0. Define a mesh-dependent
norm [-], on M, by

2 1
[Qh]h = ach (@ dn)s Vg, € M, (20)

Then, it holds that Ch(ph’ qh) < “[Ph]h[qh]h for all pl’l’ qn €
M, and

C
d(v,q,) < 7 Il [gn],, YveV, g,eM, (21

which has been shown by Latché and Vola [35]. Moreover,
C,(p,q) also is defined for any couple of functions p,q €
H'(Q) and satisfies

[, < chlgl,, VaeH (Q). (22)

Introduce another generalized bilinear form 3,(:, ")
on (Vy,, M) x (V},, M},) defined by

By (s Prs Vi Gn) = B (s P13 Vi @) + Cry (P 1) - (23)
Then the discrete problem (18) can be rewritten as follows:
B, (s Pys Vi @) + b (o iy v) = (fivy) . (24)

Denoteby I, : H*(Q)*nV — V, and J,, : H'(Q)nM —
M, the standard interpolation operators satisfying

||v - Ihv" + h||v - Ihv"V < ch2||v||2, Vv € HX(Q)?*nV,

la-Judll < chllgll,, Vg eH' (@) nM.

(25)

Moreover, we suppose that the inverse inequalities hold:

IVaul, < chlaul> — 1Val <eh” gl 26)

First, we recall the following stable theorem [9].

Theorem 2. For any o > 0, there exist two positive constants
B and [3, independent of h such that B,,(-, -, -) on (V,, M) x
(V,,, M) satisfies the following continuous property:

By (Wi 135 V10 dn) < B (lwnlly + ) (Willy + laull) 27)

and the weakly coercive property:

B, (wh’ s Vh»‘ih)

Bo(lwnlly +Irul) < sup
S [vally + llan

(vt ) €(Vi-My,)

- (28)

A direct result of Theorem 2 is that the problem (24)
exists a unique solution. In order to derive the error estimate
between (u, p) and (uy, p,), we introduce the following
Galerkin projection operator (R, Q;,) : (V,M) — (V},, M}))
defined by

B, (Ryw, Qrswy, 1,) = B (w, 13w, 1y,) (29)

for each (w,r) € (V,M) and all (wy,,r,) € (V},, M,).
According to Theorem 2, it is easy to check that (R,w, Qyr)
is well defined. Moreover, there holds

By, (Ryw, Qs wy, 13,) = By, (w, 13wy, 1) = C (1 Vh)(- :
30

About the Galerkin projection operator (Rj,Qy), the
following approximation property has been derived in [9].

Theorem 3. For any w € H*(Q)* NV andr € H'(Q) N M,
there holds

oo Ryao] + = Ryl + R = Qur]
+hlr=Qurl, < o (lwly +Irl)

Next, we begin to show the error estimate for the one-level
finite element approximation solution (uy,, py,).



Theorem 4. Suppose that the uniqueness condition (14) holds.
If(u, p) € HX(Q)*nVxH (Q)NM and (uy,, p,) € (V;,, M},) are
the solutions of (13) and (24), respectively, then, for any o > 0,
the following optimal error estimate holds:

lu—willy, + 1P = pull + [P = 1], < che (32)

Proof. First, we estimate ||u,|,,. Setting v, = u;, and g, = py,
in (24), using (7) and Young inequality, we obtain

il = (hw) < Slll + S0P 09
Then under the uniqueness condition (14), u;, satisfies
1 H
lealy = 5 11 < - (4)
It follows from (30) that

e, — Ryl + el py - Qupl,
= By, (= Ryt py — Qpps uy — Ryths py — Qpp)
= By, (wy, = w, P, = st = Ryt pr, = Qup) (35)
+ By, (u— Ryu, p— Qps uy, — Ry, p, — Q,p)

= b (u,u,uy, — Ryu) — b (w,, wy, uy, — Ryu).
According to (7), (15), (34), and Young inequality, we get

b (u, u, uy, — Ryu) — b (wy,, uyy, 1y, — Ryu)
=b(u -y, u,uy, — Ryu) + b (wy,, u — wy, wy, — Ryut)
=b(u - Ryu,u,uy, — Ryu) + b (Ryu — uy, u, wy, — Ryut)
+ b (up,, u — Ryu, uy, — Ryu)
< N (lully + Junlly) i = Ryully fur, = Ryul,
+ Nluly i, - Ryl
< plu = Ryl — Rosaly + & o~ Ry

< Elow = Ryl + Sl = Ry, + s = Ry
(36)

Thus, from (31) we obtain

=l < Nl = Ryl + e, = Ry
(37)

< 3|u - Ryul, < ch.
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Next, we estimate || p,, — Q,, pll. It follows from (15), (28), (34),
and (37) that

B, || pn — Qupl

By, (g, — Ryths P, — Qpu s Vi 1)
vy + gl

< sup
(vt ) €(VisM,, )

= sup ( (ggh (up = v Py = 5 Vi G1)

(v ) €(VisM3,)

+By, (= Ryut, p = Qs v q1) )

(ol + ™) o
_ sup b (1, vy) = b (uy 4y )
(viodn)€(VioM;,) lvlly + llnl
B b(u—uy,u,vy,) +b (v —w,,vy)
" (aeion) ol + Tl
< pllu - |-
Moreover,
(P = pul, < [P~ Qupl, + [Pn - Qupl, 9)
<[p-Qupl, +c|u—-Ryul|, <ch.
O

Next, we give the L? error estimate |lu — u,|| by Aubin-
Nitsche technique. This error analysis is based on the regu-
larity assumption that the following linearized problem (40)
is (HX(Q)%, HY(Q)) regular. Given z € L*(Q)% find (w,7) €
(V, M) such that for all (v, q) € (V, M)

a(w,v)+bw,v,w)+bw,u,w)—d v, m) =(z,v),

(40)

d(w,q) = 0.
According to (7) and (15), it is easy to verify that the problem
(40) exists a unique solution (w, ) € (V, M). The assumption
that (40) is (H*(Q)*, H(Q)) regular means that (w, ) also
belongs to (H 2(Q)%, H'(Q)) and the following estimate holds:

lwlly + llzll, < cliz]. (41)

Under the above assumption, we prove the following theo-
rem.

Theorem 5. Suppose that the uniqueness condition (14) holds.
If (u, p) € (H*(Q)* NV, H'(Q) N M) and (w,, py) € (V},, M},)
are the solutions of (13) and (24), respectively, then, for any
« > 0, the following optimal L* error estimate holds:

= wy|| < ek, (42)
Proof. Setting z = v = u — uy, in the first equation of (40), it
yields

et = w|” = @ (w1t = 1ay) + b (14, 10 = 1y, w)
(43)
+b(u—upu,w)—d(u—w,mn).
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Subtracting (11) from (18) yields
a(u—up,vy) +b(uu,vy,) = b(uy, u,,vy,)

~d(vpp—pp) =0, Vv, €V, (44)

d (u—w,q4) = Cy (Proqn) = 0,

Taking v;, = R,w and g;, = Q7 in (44) and combining them
with (43), we obtain

th € Mh'

Ju =, ]* = @ (w = Ryw, v = ay) + b (1,1 - 1, w)
+b(u—upu,w) + b (uy, up, Ryw)
-b(uwu,Rw)+d(Rw-w, p-p,) (45
= d (u=wym - Qum) = Cy (1, Qur)

=1 +--+1
Using (31), (32), and (41), I, is estimated by
R L T
< b (lwly + Iel,) < ol Ju — .
Similarly, I; is estimated by
L=dRw-w,p-p,)—d(u—u,r-Q,n)
< [Ryw = wly llp = pull + = il e = Q] (47)
< ch? (|wl, + I7ll,) < ch® [l = way]| -
About I,, we rewrite it as
L=b(uu-u,w)+b(u-u,uw)
+b (w,, wy, R,w) = b (u, u, Rw)
=b(u—upu—upw)+b(u—u,u,w-Rw) (48)
+b(u,u—uyw - Rw)
+b(u—wyu—u, Rw-w).
Then it follows from (8), (15), (31), (32), and (41) that
I, < Nfju - w,[ly (lwl, + w - Rywl,)
+ Nlluly [u = wyy [ - Ryl (49)
< chzllwll2 < ch’ ||u - uh" .
Finally, using (22), (31), (32), and (41) we estimate I, by
Iy = =Cy (P Qurt) = Cp, (P = P Qur = 1) + Cy (p = ppo71)
+Cp, (o = Q) = Gy (ps71) < [p = pi)[Qu — 7],
+[p = pululml + [Pl = Qurl, + (][]

< ch® (Jlwl, + |I7ll,) < ek’ [l = w -
(50)

Combining these estimates for I, to I, with (45), we complete
the proof of (42). O

4, Two-Level Brezzi-Pitkiranta
Stabilized Methods

In this section, the two-level Brezzi-Pitkdranta stabilized
finite element methods for (13) are proposed in terms of
Oseen/Stokes/Newton iteration method. From now on, H
and h with h < H < 1 are two real positive parameters. The
coarse mesh triangulation I p; is made as like in Section 3.
And a fine mesh triangulation I, is generated by a mesh
refinement process to I . The conforming finite element
space pairs (V},, M},) and (Viy, M) € (V,, M},) corresponding
to the triangulations 7, and I p, respectively, are con-
structed as like in Section 3. With the above notations, we
propose the following two-level Brezzi-Pitkdranta stabilized
finite element methods in the next subsections.

4.1. Two-Level Oseen Iteration Method

Step 1. We solve (24) on the coarse mesh; that is, find
(upp> py) € (Vig, Myy) such that for all (v, qy) € (Vig, My)

B (U P Ver Gar) + b (g i vig) = (fiver) . (51)

Step II. We solve a discrete Oseen problem according to Oseen
iteration on the fine mesh; that is, find (1", ph) € (Vi,, M)
such that for all (v, q;,) € (V,,, M},)

By, (uh,ph;vh,qh) +b(uH, uh,vh) =(fiv,). (52)

First, we discuss the existence and uniqueness of the
solution to the problem (52) under the uniqueness condition
(14). In view of Theorem 2, the problem (51) exists a unique
solution (uy, pyy) € (Viy, My) with

1 [
luwlly < ;IIf I <55 (53)
Moreover, it follows from Theorems 4 and 5 that
et = ull + Hu = ugglly, + Hllp - pull < cH*.  (54)

On the other hand, setting v, = " and g, = p" in (52), it
yields

B (o8, s, ) b (i) = o, + ]
(55)

Then it is easy to show that the problem (52) also exists a
unique solution (uh, ph) € (V,,, M},) such that

"], < i 171 < 55 (56)

Next, we give the error estimate for the two-level Oseen
iteration method.



Theorem 6. Suppose that the uniqueness condition (14) holds.
If (u, p) € (H(Q) NV, H'(Q) N M) and (", p") € (V;,, M)
are the solutions of (13) and (52), respectively, then there holds

ot slo-lzcrem).
Proof. In terms of the definition %, (-,-;,-) and (30), we get
flu = R, + [ - Qup,
= By, (u" = Ryu, p" = Qupsud” = Ry, p" - Qp)
=By, (" —u, p" - psu - Ry, p" - Qyp) (58)

+ ‘%h (u - Rhu,P - th) uh - Rhu)ph - th)

=b (u, u,u - Rhu) -b (uH, ul ol - Rhu) .
We rewrite b(u, u, u - Ryu) — b(uyy, ' ul - R,u) as

b (u, wu" - Rhu) -b (uH, ul ol - Rhu)
= b(u — U, U, ul - Rhu) -b (uH, ul = - Rhu)

= b(u — Up, U, ul - Rhu) - b(uH, Ryu - wu - Rhu).

(59)
Then using (8), (10), and (53), we obtain
b (u, u,u" - Rhu) -b (uH, Wl - Rhu)
< Nllullzuuh - Rhu“v ||u - uH“
L M Y W

u 2 N
< EHuh - Rhu"V + 7||u||§||u - uH”2
+ L Rya =l
Thus, there holds

"uh - Rhu"V < c(u—ugl| + |Rpu—ul,) <c (h + HZ) ,
(61)

where we use (31) and (54). A direct consequence of the above
estimate is

“u—uhHV < c(h+H2). (62)

Abstract and Applied Analysis
From (28), (30), (54), and (62), we have

B |p" - Qup|

By, (uh = Ry, p* = Qs v ‘ih)
Ivilly + llan

< sup

(vt ) €(Vi-M,,)

= sup ((93;l (uh - u, ph - ps vh,qh)

(Vo) €(Vii,My,)
+By, (= Ry, p = Qs i q1) )
(vl + laal) ™)

b(u,u,v,) b (uH, ul, vh)

Ivally + lal

= sup
(vwan) € (VisMy,)

b(u—uguv,)+b (uH,u —u, vh)

[villy + laal

= sup
(vwan) €(VisMy,)

< c(“u —uy| + Hu - uhHV) < c(h + HZ) ,

(63)

which together with (31) yields
lo-p"|<c(h+H?). (64)
O

4.2. Two-Level Stokes Iteration Method

Step 1. We solve (24) on the coarse mesh; that is, find
(upp> pry) € (Vi Myy) such that for all (v, q) € (Vig, Myy)

By (g Prs Ve Q) + b (upp g vg) = (five) . (65)

Step II. We solve a discrete Stokes problem according to
Stokes iteration on the fine mesh; that is, find (", ph) €
(V3> M) such that for all (v, q;,) € (V;,, M},)

By, (”h’Ph§ Vh’Qh) + b (g upg vi,) = (fr ) - (66)

In this subsection, we assume that the following unique-
ness conditions hold:

3N | fl < 1. (67)

Proceeding the argument as in Section 4.1, the problem (65)
exists a unique solution (uy, pry) € (Vi M) and uyy satisfies
lugly, < A/wlfll < u/3N. According to the definition
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of %ABy,(-,++,), the discrete Stokes problem (66) also exists a
unique solution (", p*) € (V;,, M,). Moreover, u" satisfies

[l = 5 d+

1 1
< M Sl (68)
4 v

Then the error estimate for two-level Stokes iteration method
is derived in the following theorem.

Theorem 7. Suppose that the uniqueness condition (67) holds.
If (u, p) € (HX(Q)* NV, H'(Q) n M) and (", p") € (v, M)
are the solutions of (13) and (66), respectively, then one has

|lu=u"|, + o - 2" < c(n+H). (69)
Proof. Subtracting (13) from (66), we get

B, (uh —u Ph -p; Vh’Qh)
(70)
=b(u,u,v,) = b (g gy, vi) = Cp (P> 1) -

Then, from (10), (28), (30), and (54), we have

s (" = R, + " - Qup])
By, (u" = Ry, p = Qups vy )
< sup
SURNY VN T WS Y
= sup ((%’h (uh - u, Ph — PV Qh)

(v ) €(VisM3,)
+By, (u = Ry, p = Qu3 Vi G1) )
x(Ivilly + laal) ™)

b (u, u, v;,) = b (upy, gy, vy,)

Ivilly +

= sup
(vt ) €(ViMy,)

= sup ((b (= v u,vy) + b (u, v — gy, vy)

(vt ) €(ViMy,)
b (u— gy, v — gy, vp) )
Xl + lanl)™)

< 2N||u]l, ||u - uH|| + N||u - uH||f, < cH?,
(71)

which together with (31) completes the proof of (69). O

4.3. Two-Level Newton Iteration Method

Step I. We solve (24) on the coarse mesh; that is, find
(ugp> pr) € (Vig, Myy) such that for all (v, qy) € (Vig, My)

By (vpps Prps Vip Q) + b (g g vyg) = (five) . (72)

Step 1I. We solve discrete linearized Navier-Stokes equations
according to Newton iteration on the fine mesh; that is, find

", p") € (V,, M},) such that for all (v, qy,) € (V;,, M},)

By, (uh,ph; vh,qh) +b (uH, u", vh) +b (uh,uH, vh) o)
= (fsv) + b (ug s ) -
As in Section 4.2, we modify the uniqueness condition as
4N f] < 1. (74)
In this case, the solution uy; of the problem (72) satisfies

lugly, < (/WIfI < p/AN. Setting v, = u" and g, = p"
in (73), we have

B, (uh,ph; uh, ph) +b (uh,uH,uh) +b (uH,uh, uh)
> Wl + oy~ Nl [ (75)
> 21+ (ol

Moreover, we can estimate u by

[l = 5 0+ 5 bl
5 1+ §||uH||V 76)

“

= o < o

The error estimate for two-level Newton iteration method is
derived in the following theorem.

Theorem 8. Suppose that the uniqueness condition (74) holds.

If (u, p) € (HA(Q)> NV, H(Q) n M) and (", p") € (v, M},)
are the solutions of (13) and (73), respectively, then one has
lo-p"| <c(h+H?). (77)

o=, +

Proof. Proceeding as in the proof of Theorem 7, we have

ulu” - Rh”" [»" th]h
= B, (uh ~ Ry, p" — Qupsu — Ryu, p — Qup)
= B, (uh - u,ph - ps ul - Rhu,Ph - QhP)
(78)
+ ‘%h (u - Rhu,p - th; uh - Rhua Ph - th)
=b (u, wu - Rhu) -b (uH,uh, ul - Rhu>

-b (uh, Uy ul - Rhu) +b (uH, uH,uh - Rhu) .
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We rewrite the right-hand side of the above identity as
follows:

b (u, wu - Rhu) -b (uH, ul - Rhu)
-b (uh, uH,uh - Rhu) +b (uH, Uy ul - Rhu)

:b(u—uh,u,uh—Rhu) +b(uh,u—uh

' - Rhu)
+b (uh — U ul - Uy, ul - Rhu)
=b (u - Ryu,u, ul - Rhu) +b (Rhu " uu - Rhu)

+b (uh, u—Ryu, ul - Rhu)

+b(uh—uH,Rhu—uH,uh—Rhu) =] 4+,

(79)
Using (8) and (15), we have
Ji=b (u ~ Ryu, u,u — Rhu)
< N||u||V||u - Rhu”V”uh - Rhu”v
(80)

< g”u - Rhu"V"uh - Rhu"V
< ‘g”uh - Rhu“i + 8y||u - Rhu"f,.
Similarly, J, and J5 can be estimated, respectively, by
J,=b (Rhu —uM - Rhu)
= Nlaly o = Ry, < " = Ry,
J;=0b (uh, u— Ryu, ul - Rhu)

h : @
< NJul = Ryl " ~ Ry,
< g“” - Rhu”V“uh - Rhu“V
< gnuh - Rhu"f] + 8y||u - Rhu”‘z/.

Finally, we estimate J, by

J,=b (uh — Upp, Ryu — ugy, ul - Rhu)
=b (uh — Ryu, Ryu — uyy, ul - Rhu)
+b (Rhu — Upp, Ryu — uyy, ul - Rhu)
< N||Ru - uH||V|'uh - v

+ N||Ru - uH"%,"uh - Rhu”V

0 L L o R
(82)
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Combining these estimates for J; to J, with (79), for suffi-
ciently small H, we get

”uh - Rhu”V <c (”u - Rhu"V + ||Rhu - uH"f,)
< (Jlu = Ryully + Ry =l + |l = g7

Sc(h+H2), )
83

which implies that
Ju-u"|, <c(n+H). (84)
From (28) and (30), we have
Bollp" - ur]

B, (“h = Ry, " = Qs v Qh)
lvully + lanl

(% (”h —up" - p; Vi i)

< sup
(vwan) € (VisMy,)

= sup
(Vi) €(VisM,,)

+By, (4 = Ryt p = Qp s Vi q1) ) (85)
x(Ivilly + lanl) ™)

((b (w,u,v,) = b (uH, u", vh)

= sup
(Visqn) €(V3p,My,)

~b (" up>v,) + b (g g, v,))
<[l + lal) ™).
Since
b (ur 14, )
~b(ug i v,) = b (' g vy ) + b (U s vy)
=b(u-u" u,v,) +b(u,u~Ryu,vy)
~b(u-u" u-Ryu,v,) + b (" = up, Ryt — ugg, v,)
—b(ugu" - Ry, v
< Nlaly (Ju =], + Jue = Ryaally ) Il
+ Nl = [ e = Ry ol
+ Nlugly " = Ry vl
N (=], + = el

X (e = Ryully + 1 = ugelly) vl
(86)
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then using (31), (54), (83), and (84), we obtain

|p" - Qup|

< Nllully (Ju - "], + Ju - Ryull,)

# Nl = Ry Ny " = Ry,
o N (=l + =)
X (i = Ryl + u = glly) < e (h+ 1),
(87)
which together with (31) yields
lo-p"|<c(h+H?). (88)
O

4.4. Newton Correction Scheme. As a result of Theo-
rems 6-8, if we choose H = O(h'?), then two-level
Stokes/Oseen/Newton iteration methods in the above sub-
sections provide the same convergence order as the usual
one-level finite element method (24). In this subsection, we
propose a new Newton correction scheme. The error estimate
for this scheme implies that if H = O(h1/4), then this
correction scheme also provides the same convergence order
as the usual one-level finite element method (24).

Step L. Solve (uyy, py) € (Vig, Myy) on the coarse mesh by the
problem (51).

Step II. Solve (u", p") € (V,, M) on the fine mesh by the
problem (52) or (66) or (73).

Step III. Solve a Newton correction solution (1", p) on the
fine mesh; that is, find (", p") € (V,, M,,) such that for all
(Vi qn) € (Vi M)

B, (ull,pi’; Vi qh) +b (uh, ui’, vh) +b (uﬁ, ", vh)

=(fivp) +b(uh,uh, vh).

(89)

First, we discuss the existence and uniqueness of the
solution (uﬁ, p’: ) to the problem (89). In terms of (56), (83),
and (76), the solution " to the problem (52) or (66) or (73)
satisfies [u"[|, < u/2N. Then taking v, = u" and g, = p/" in
(89), we get

%h(uz,pf;ui,p*)+b(u uh u )+b(u u, uh)

> ]+ (P4, - N, (90)
g* o]

Thus, we conclude that the problem (89) exists a unique
solution (", p") € (V,,, My,). Moreover, it is easy to check
that 1" satisfies

u

*

3
<—||f||+—< N (o)

Theorem 9. Suppose that the uniqueness condition (14) or (67)
or (74) holds. If (uy,, p,) € (V},, M},) and (ME,PZ) € (Vi My,)
are the solutions of (24) and (89), respectively, then one has

S

”uh “Ph P* < C"”h
where u" is the solution to the problem (52) or (66) or (73).

Proof. Subtracting (24) from (89), we get

B, (”h - ”Z’Ph - Pilﬂ’h:%)
vh) +b (ulz, u”, vh) = b (wy, uy, vy)

-b (uh, u", vh) =b (uz

=b (uh, uﬁ,
(93)
— Uy, uh, Vh)

+b (uh, u’i - uy, vh) -b (uh -, uy, — u”, Vh) .

- pil in (93) and using (56),

Setting v, = u, — 1" and g, = py,

it yields
2
ulun —u
<b( uh,uh uy, — h)—b(uh—uh,uh—uh,uh—u&)
< N[, ||“h R R ¥ TR
< Sl - ”Iluh s S
(94)
Thus, we obtain
it = Dl o
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////
Iso value Iso value Iso value
H 0.000300702 H 0.000300702 W 0.05
W 0.000902107 W 0.000902107 W 0.15
W -0.00451054 W 0.00150351 B -0.00451054 W 0.00150351 W -0.75 W 0.25
W -0.00390913 W 0.00210492 W -0.00390913 W 0.00210492 W -0.65 W 0.35
W -0.00330773 W 0.00270632 W -0.00330773 W 0.00270632 W -0.55 W 0.45
W -0.00270632 W 0.00330773 W -0.00270632 W 0.00330773 W -0.45 W 0.55
W -0.00210492 W 0.00390913 W -0.00210492 W 0.00390913 W -0.35 W 0.65
H -0.00150351 W 0.00451054 W -0.00150351 W 0.00451054 W -0.25 W 0.75
W -0.000902107 W 0.00511194 W -0.000902107 W 0.00511194 W -0.15 W 0.85
W -0.000300702 W 0.00571335 W -0.000300702 W 0.00571335 W -0.05 W 095
(a) (b) (c)
FIGURE 1: Contour plots of exact solution. From left to right: two components of velocity and pressure.
///
4/—"//
Iso value Iso value Iso value
W 0.000301028 W 0.000300362 W 0.0499699
W 0.000902418 H 0.000901752 W 0.14991
W -0.00451009 W 0.00150381 B -0.00451075 W 0.00150314 W -0.749549 W 0.24985
W -0.0039087 W 0.0021052 W -0.00390936 W 0.00210453 B -0.649609 W 0.349789
W -0.00330731 W 0.00270659 W -0.00330797 W 0.00270592 B -0.549669 W 0.449729
W -0.00270592 H 0.00330798 W -0.00270658 W 0.00330731 W -0.449729 W 0.549669
W -0.00210453 W 0.00390937 W -0.0021052 H 0.0039087 W -0.349789 W 0.649609
W -0.00150314 W 0.00451075 B -0.00150381 W 0.00451009 W -0.24985 W 0.749549
W -0.000901751 W 0.00511214 W -0.000902417 W 0.00511148 W -0.14991 W 0.849489
W -0.000300361 W 0.00571353 W -0.000301027 W 0.00571287 W -0.0499699 W 0.949428
(a) (b) (©)

FIGURE 2: Contour plots of numerical solution by one-level stabilized method. From left to right: two components of velocity and pressure.
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1

Iso value Iso value Iso value
M 0.000301015 W 0.000300376 B 0.0499699
B 0.000902405 W 0.000901765 W 0.14991
W 0.00150379 W 0.00150315 W 0.24985
Bl -0.00390871 W 0.00210518 W -0.00390935 B 0.00210454 Bl -0.649609 W 0.349789
B 000330732 M 0.00270657 B —0.00330796 B 0.00270593 B 0549669 W 0.449729
Bl -0.00270593 W 0.00330796 Wl -0.00270657 W 0.00330732 W -0.449729 W 0.549669
H -0.00210454 W 0.00390935 W -0.00210518 H 0.00390871 W -0.349789 W 0.649609
Ml -0.00150315 W 0.00451074 W -0.00150379 W 0.0045101 W -0.24985 W 0.749549
B 0000901764 M 0.00511213 E 0000902403 W 0.00511149 B —0.14991 B 0.849489
W 0.00571352 W 0.00571288 W 0.949428
(@ (b) (©)
FIGURE 3: Contour plots of numerical solution by two-level Newton iteration method. From left to right: two components of velocity and
pressure.
TaBLE 1: Convergence of one-level method.
1/h 4 =yl e Rate Ip - pull/lpl Rate CPU (5)
4 5.05728e - 02 2.04342e - 01 / 7.00342¢ - 03 / 0.271
6’ 9.71970e - 03 2.0338 8.42186e — 02 1.0930 1.74965e — 03 1.7104 1.211
8’ 3.03424e - 03 2.0234 4.57602e — 02 1.0602 6.91717e — 04 1.6129 4.526
10 1.23515e - 03 2.0139 2.87904e — 02 1.0383 3.42162e - 04 1.5772 10.509
127 5.94367¢ - 04 2.0059 1.98039¢ — 02 1.0261 1.93897e — 04 1.5576 22.588
14 3.21053e - 04 1.9977 1.44653¢ — 02 1.0189 1.20442¢ - 04 1.5445 44.181
16 1.88826e — 04 1.9875 1.10329¢ - 02 1.0143 7.99308e - 05 1.5352 80.286
18 ouT OF MEMORY
TaBLE 2: Convergence of two-level Oseen iteration method.
1/H 1/h llee = w11/ Jul Rate llwe = "l /luall Rate Ip - p"I/1pl Rate CPU (s)
4 4 5.05858e — 02 / 2.04349¢ - 01 / 7.00341e - 03 / 0.179
6 6 9.73019¢ - 03 2.0328 8.42217e¢ - 02 1.0930 1.74965e — 03 1.7104 0.738
8 8’ 3.04358¢ - 03 2.0199 4.57618e — 02 1.0602 6.91725e — 04 1.6129 2.105
10 10 1.24408e - 03 2.0046 2.87914e - 02 1.0383 3.42169¢ - 04 1.5772 5.081
12 12° 6.03073e — 04 1.9858 1.98046¢ — 02 1.0261 1.93904¢e — 04 1.5575 10.546
14 14 3.29574e - 04 1.9599 1.44658¢e — 02 1.0189 1.20448e — 04 1.5444 19.846
16 16 1.97162¢ — 04 1.9238 1.10332¢ - 02 1.0143 7.99367e — 05 1.5352 36.305
18 187 1.26739¢ — 04 1.8759 8.69472¢ - 03 1.0112 5.57676e — 05 1.5284 56.658
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TaBLE 3: Convergence of two-level Stokes iteration method.

YH _ 1/h lu— " 1/lul Rate s — "l /Nl Rate lp— P I/lpl Rate CPU (5)
4 4? 5.05773e — 02 / 2.04346e — 01 / 7.00344e — 03 / 0.163
6° 9.72434e — 03 2.0333 8.42205e — 02 1.0930 1.74968e — 03 1.7103 0.606
8 82 3.03897e — 03 2.0215 4.57613e — 02 1.0602 6.91743e — 04 1.6128 1.808
10 10° 1.23981e — 03 2.0089 2.87911e — 02 1.0383 3.42185e — 04 1.5772 4.451
12 122 5.98991e — 04 1.9950 1.98044e — 02 1.0261 1.93918e — 04 1.5575 9.314
14 14? 3.25639¢ — 04 1.9768 1.44657e — 02 1.0189 1.20460e — 04 1.5443 17.481
16 16° 1.9335% — 04 1.9518 1.10331e — 02 1.0143 7.99470e — 05 1.5350 30.246
18 182 1.23069¢ — 04 1.9179 8.69461e — 03 1.0112 5.57768e — 05 1.5283 49.980

TaBLE 4: Convergence of two-level Newton iteration method.

1/H 1/h Nl = "1/ 1wl Rate Nl = "l /lully Rate lp - p"1/1pl Rate CPU (s)
4 5.05710e - 02 / 2.04342e - 01 / 7.00340e - 03 / 0.204
6> 9.71757e - 03 2.0340 8.42186e — 02 1.0930 1.74964e — 03 1.7104 0.848
8 8 3.03203e - 03 2.0243 4.57601e — 02 1.0602 6.91711e — 04 1.6129 2.768
10 10° 1.23292e - 03 2.0163 2.87903e — 02 1.0383 3.42158¢ - 04 1.5772 6.316
12 12? 5.92128e - 04 2.0113 1.98039¢ — 02 1.0261 1.93895e — 04 1.5576 13.269
14 14 3.18804¢ — 04 2.0083 1.44653e — 02 1.0189 1.20440e — 04 1.5445 24.717
16 16 1.86566e — 04 2.0062 1.10328e — 02 1.0143 7.99295e - 05 1.5352 42.030
18 187 1.16338e — 04 2.0049 8.69440e — 03 1.0112 5.57612e - 05 1.5285 69.469
It follows from (28), (93), and (95) that Theorem 10. Under the assumption in Theorem 9, if (u, p) €
(H*(Q)* NV, H'(Q) N M) and (", p") € (V,,, M},) are the
B, " Pu— p’: solutions of (13) and (89), respectively, then one has
e ap Dlbln-rine) O R 3 B Y
() (Vio) Ivilly + flan
5. Numerical Experiments
= sup ((b (u]: - uy, u", vh) +b (uh, u’; - uy, vh)
(o) €(VioM,) In this section, we make some numerical experiments to
support the theoretical results derived in Section 4. The body
-b (”h —u, u, — u", Vh)) force f is appropriately selected such that the exact solution

of the problem (1) is given by

x(Ivly +llanl)™)

< 2|,

u(xy) = (%y),u(xy), pluy)=x"-,
2 u () = (x -1’y (y-1) 2y - 1),

v 1y (%, y) = —x (x— 1) 2x - 1) y*(y - 1)°

N n?
y * N =",

< .”"”h - ui’ vt N"u;1 - uh”

2 (98)
< 3N.|uh - uh" .
v
(96) in the unit square Q = (0, 1) x (0, 1).
In all experiments, we choose the viscous coefficient y =
] 0.1 and stabilized parameter & = 0.01 in (18). According to

Theorems 6-8, we choose H = K 2. then two-level finite
Combining Theorem 9 with Theorems 6-8 and Theo- element approximation solution is of the following optimal
rem 4, we obtain the following error estimate between the ~ ©rTOr estimate:

solutions (u, p) and (uﬁ, pi) to the problems (13) and (89), h h
respectively. "” —u ”V + “P -p " < ch. (99)
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TaBLE 5: Convergence of two-level Newton correction scheme.

1/H 1/h e — o2/l Rate et = w2y /Nl Rate lp - piI/1pl Rate CPU (s)
2 42 5.05706e — 02 / 2.04341e - 01 / 7.00308e - 03 / 0.263
2 6 9.71752e — 03 2.0340 8.42185e — 02 1.0930 1.74964e - 03 1.7104 1.206
3 8? 3.03204e - 03 2.0243 4.57601e — 02 1.0602 6.91710e — 04 1.6129 3.729
3 10 1.23293e - 03 2.0163 2.87903e - 02 1.0383 3.42158e - 04 1.5772 9.294
3 12? 5.92131e - 04 2.0113 1.98039¢ — 02 1.0261 1.93895e — 04 1.5576 19.497
4 14 3.18806e — 04 2.0082 1.44653e — 02 1.0189 1.20440e — 04 1.5445 37133
4 16> 1.86567e — 04 2.0062 1.10328e - 02 1.0143 7.99295e - 05 1.5352 65.678
4 18 OUT OF MEMORY

Here we select eight fine mesh values h = 1 /42,1/6%,.. .,
1/18%. Then the corresponding coarse mesh values are
obtained. These fine mesh values also are used in the
numerical experiment for one-level finite element method.
The numerical results are displayed in Tables 1, 2, 3, and 4,
from which the observations and conclusions are presented
as follows.

(i) Based on Table 1, the numerical convergence orders
reach the optimal orders which coincide with the
theoretical results derived in Theorems 4 and 5,
namely, O(h) for the velocity in H'-norm and the
pressure in L*-norm and O(h?) for the velocity in L*-
norm. We also observe thatif h = 1/ 182, in this case,
the standard one-level method can not work and does
not obtain the predicted numerical results.

(ii) From Tables 2-4, we can see that if H = h'/?
all three two-level Stokes/Oseen/Newton iteration
methods can reach the optimal convergence orders
of O(h) for both velocity and pressure, in H'-norm
and L*-norm, respectively, as proven in Theorems 6-
8. Besides, we find that these methods can achieve the
optimal convergence orders of O(h?) for velocity in
the sense of L*-norm as expected.

(iii) From the view of computational cost, we can obvi-
ously observe by comparing Table 1 and Tables 2-
4 that these two-level iteration methods significantly
save CPU time compared with the one-level method
and, meanwhile, obtain nearly the same approxima-
tion results.

The numerical results for two-level Newton correction
method also are displayed in Table 5. Based on Theorem 10,
the optimal convergence order O(h) for the velocity in H'-
norm and the pressure in L*-norm can be reached as H =
W%, which has been reflected in Table 5. However, this
Newton correction method only can save about 85% CPU
time compared with the one-level method. The reason is that
the Newton correction method needs two-step computation
in the fine mesh.

Finally, we show the contour plots of the exact solution
and the numerical solution to exhibit the approximation
profiles. Figures 1 and 2 display the exact solution and the
numerical solution by one-level stabilized method. Besides,
as to the two-level method, here only the numerical solution

by Newton iteration method is displayed in Figure 3. From
these three groups of contour plots, we can observe the good
coincidence with each other to illustrate the stability of the
present stabilized methods.
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