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The purpose of this paper is to study modified Halpern type and Ishikawa type iteration for a semigroup of relatively nonexpansive
mappingsI = {𝑇(𝑠) : 𝑠 ∈ 𝑆} on a nonempty closed convex subset 𝐶 of a Banach space with respect to a sequence of asymptotically
left invariant means {𝜇

𝑛
} defined on an appropriate invariant subspace of 𝑙∞(𝑆), where 𝑆 is a semigroup. We prove that, given some

mild conditions, we can generate iterative sequences which converge strongly to a common element of the set of fixed points 𝐹(I),
where 𝐹(I) = ⋂{𝐹(𝑇(𝑠)) : 𝑠 ∈ 𝑆}.

1. Introduction

Let 𝐸 be a real Banach space with the topological dual 𝐸∗ and
let 𝐶 be a closed and convex subset of 𝐸. A mapping 𝑇 of 𝐶
into itself is called nonexpansive if ‖𝑇𝑥 − 𝑇𝑦‖ ≤ ‖𝑥 − 𝑦‖ for
each 𝑥, 𝑦 ∈ 𝐶.

Three classical iteration processes are often used to
approximate a fixed point of a nonexpansive mapping. The
first one is introduced byHalpern [1] and is defined as follows:

𝑥
0
= 𝑢 ∈ 𝐶, chosen arbitrarily,

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
, ∀𝑛 ≥ 1,

(1)

where {𝛼
𝑛
} is a sequence in [0, 1]. He pointed out that the

conditions lim
𝑛→∞

𝛼
𝑛
= 0 and ∑

∞

𝑛=1
𝛼
𝑛
= ∞ are necessary

in the sense that if the iteration (1) converges to a fixed point
of 𝑇, then these conditions must be satisfied. The second
iteration process is known as Mann’s iteration process [2]
which is defined as follows:

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
, ∀𝑛 ≥ 1, (2)

where the initial 𝑥
1
is taken in 𝐶 arbitrary and the sequence

{𝛼
𝑛
} is in [0, 1].

The third iteration process is referred to as Ishikawa’s
iteration process [3] which is defined as follows:

𝑦
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑇𝑥
𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑇𝑦
𝑛
, ∀𝑛 ≥ 1,

(3)

where the initial 𝑥
1
is taken in 𝐶 arbitrary and {𝛼

𝑛
} and {𝛽

𝑛
}

are sequences in [0, 1].
In 2007, Lau et al. [4] proposed the followingmodification

of Halpern’s iteration (1) for amenable semigroups of nonex-
pansive mappings in a Banach space.

Theorem 1. Let 𝑆 be a left reversible semigroup and let I =

{𝑇(𝑠) : 𝑠 ∈ 𝑆} be a representation of 𝑆 as nonexpansive
mappings from a compact convex subset 𝐶 of a strictly convex
and smooth Banach space 𝐸 into 𝐶, let 𝑋 be an amenable and
I-stable subspace of 𝑙∞(𝑆), and let {𝜇

𝑛
} be a strongly left regular

sequence of means on 𝑋. Let {𝛼
𝑛
} be a sequence in [0, 1] such

that lim
𝑛→∞

𝛼
𝑛
= 0 and∑∞

𝑛=1
𝛼
𝑛
= ∞. Let 𝑥

1
= 𝑥 ∈ 𝐶 and let

{𝑥
𝑛
} be the sequence defined by

𝑥
𝑛+1

= 𝛼
𝑛
𝑥 + (1 − 𝛼

𝑛
) 𝑇 (𝜇

𝑛
) 𝑥
𝑛
, 𝑛 ≥ 2. (4)

Then {𝑥
𝑛
} converges strongly to 𝑃𝑥, where 𝑃 denotes the unique

sunny nonexpansive retraction of 𝐶 onto 𝐹(I).

Let 𝐶 be a closed and convex subset of 𝐸 and let 𝑇 be a
mapping from𝐶 into itself.We denote by𝐹(𝑇) the set of fixed
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points of𝑇. Point 𝑝 in𝐶 is said to be an asymptotic fixed point
of𝑇 [5] if𝐶 contains a sequence {𝑥

𝑛
}which converges weakly

to 𝑝 such that the strong lim
𝑛→∞

(𝑇𝑥
𝑛
− 𝑥
𝑛
) = 0. The set

of asymptotic fixed points of 𝑇 will be denoted by ̂
𝐹(𝑇). A

mapping 𝑇 from 𝐶 into itself is called relatively nonexpansive
[6–8], if ̂𝐹(𝑇) = 𝐹(𝑇) and𝜙(𝑝, 𝑇𝑥) ≤ 𝜙(𝑝, 𝑥) for all 𝑥 ∈ 𝐶 and
𝑝 ∈ 𝐹(𝑇).The asymptotic behavior of relatively nonexpansive
mappings was studied in [6, 7, 9].

Recently, Kim [10] proved a strong convergence theorem
for relatively nonexpansive mappings in a Banach space by
using the shrinking method.

Theorem 2. Let 𝑆 be a left reversible semigroup and let I =

{𝑇(𝑠) : 𝑠 ∈ 𝑆} be a representation of 𝑆 as relatively nonexpansive
mappings from a nonempty, closed, and convex subset 𝐶 of a
uniformly convex and uniformly smooth Banach space 𝐸 into
𝐶with 𝐹(I) ̸= 0. Let𝑋 be a subspace of 𝑙∞(𝑆) and let {𝜇

𝑛
} be a

asymptotically left invariant sequence of means on 𝑋. Let {𝛼
𝑛
}

be a sequence in [0, 1] such that 0 < 𝛼
𝑛
< 1 and lim

𝑛→∞
𝛼
𝑛
=

0. Let {𝑥
𝑛
} be a sequence generated by the following algorithm:

𝑥
0
∈ 𝐶, 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑖𝑙𝑦,

𝐶
1
= 𝐶,

𝑥
1
= Π
𝐶
1

𝑥
0
,

𝑦
𝑛
= 𝐽

−1

(𝛼
𝑛
𝐽𝑥
1
+ (1 − 𝛼

𝑛
) 𝐽𝑇
𝜇
𝑛

𝑥
𝑛
) ,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
:

𝜙 (𝑧, 𝑦
𝑛
) ≤ 𝛼
𝑛
𝜙 (𝑧, 𝑥

1
) + (1 − 𝛼

𝑛
) 𝜙 (𝑧, 𝑥

𝑛
)} ,

𝑥
𝑛+1

= Π
𝐶
𝑛+1

𝑥
1
, ∀𝑛 ≥ 1.

(5)

Then {𝑥
𝑛
} converges strongly to Π

𝐹(I)𝑥1, where Π
𝐹(I) is the

generalized projection from 𝐶 onto 𝐹(I).

Let 𝑆 be a semigroup. The purpose of this paper is to
study modified Halpern type and Ishikawa type iterations
for a semigroup of relatively nonexpansive mappings I =

{𝑇(𝑠) : 𝑠 ∈ 𝑆} on a nonempty closed convex subset 𝐶 of a
Banach space with respect to a sequence of asymptotically left
invariantmeans {𝜇

𝑛
} defined on an appropriate invariant sub-

space of 𝑙∞(𝑆). We prove that, given some mild conditions,
we can generate iterative sequences which converge strongly
to a common element of the set of fixed points 𝐹(I), where
𝐹(I) = ⋂{𝐹(𝑇(𝑠)) : 𝑠 ∈ 𝑆}.

2. Preliminaries

A real Banach space 𝐸 is said to be strictly convex if ‖(𝑥 +

𝑦)/2‖ < 1 for all 𝑥, 𝑦 ∈ 𝐸 with ‖𝑥‖ = ‖𝑦‖ = 1 and 𝑥 ̸= 𝑦. It is
said to be uniformly convex if lim

𝑛→∞
‖𝑥
𝑛
− 𝑦
𝑛
‖ = 0 for any

two sequences {𝑥
𝑛
} and {𝑦

𝑛
} in 𝐸 such that ‖𝑥

𝑛
‖ = ‖𝑦

𝑛
‖ = 1

and lim
𝑛→∞

‖(𝑥
𝑛
+ 𝑦
𝑛
)/2‖ = 1. Let 𝑈 = {𝑥 ∈ 𝐸 : ‖𝑥‖ = 1}

be the unit sphere of 𝐸. Then the Banach space 𝐸 is said to be
smooth if

lim
𝑡→0

󵄩
󵄩
󵄩
󵄩

𝑥 + 𝑡𝑦

󵄩
󵄩
󵄩
󵄩

− ‖𝑥‖

𝑡

(6)

exists for each 𝑥, 𝑦 ∈ 𝑈. It is said to be uniformly smooth if the
limit is attained uniformly for 𝑥, 𝑦 ∈ 𝐸.

Let 𝐸 be a real Banach space with norm ‖ ⋅ ‖ and let 𝐸∗ be
the dual space of 𝐸. Denote by ⟨⋅, ⋅⟩ the duality product. We
denote by 𝐽 the normalized duality mapping from 𝐸 to 2

𝐸
∗

defined by

𝐽𝑥 = {𝑓

∗

∈ 𝐸

∗

: ⟨𝑥, 𝑓

∗

⟩ = ‖𝑥‖

2

=

󵄩
󵄩
󵄩
󵄩

𝑓

∗󵄩
󵄩
󵄩
󵄩

2

} , (7)

for 𝑥 ∈ 𝐸. A Banach space 𝐸 is said to have the Kadec-Klee
property if a sequence {𝑥

𝑛
} of 𝐸 satisfies that 𝑥

𝑛
⇀ 𝑥 and

‖𝑥
𝑛
‖ → ‖𝑥‖ and then 𝑥

𝑛
→ 𝑥, where⇀ and → denote the

weak convergence and the strong convergence, respectively.
We know the following:

(1) the dualitymapping 𝐽 ismonotone, that is, ⟨𝑥−𝑦, 𝑥∗−
𝑦

∗

⟩ ≥ 0 whenever 𝑥∗ ∈ 𝐽𝑥 and 𝑦

∗

∈ 𝐽𝑦;
(2) if 𝐸 is strictly convex, then 𝐽 is one-to-one; that is, if

𝐽𝑥 ∩ 𝐽𝑦 is nonempty, then 𝑥 = 𝑦;
(3) if 𝐸 is strictly convex, then 𝐽 is strictly monotone; that

is, 𝑥 = 𝑦 whenever ⟨𝑥 − 𝑦, 𝑥

∗

− 𝑦

∗

⟩ = 0, 𝑥∗ ∈ 𝐽𝑥 and
𝑦

∗

∈ 𝐽𝑦;
(4) if 𝐸 is uniformly convex, then 𝐸 has the Kadec-Klee

property;
(5) if𝐸 is uniformly convex, then𝐸 is reflexive and strictly

convex;
(6) if 𝐸 is smooth, then 𝐽 is single-valued and norm-to-

weak∗ continuous;
(7) if 𝐸 is uniformly smooth, then 𝐽 is uniformly norm-

to-norm continuous on bounded subsets of 𝐸;
(8) if 𝐸 is reflexive, then 𝐽 is onto;
(9) if 𝐸 is smooth and reflexive, then 𝐽 is norm-to-weak

continuous; that is, 𝐽𝑥
𝑛
⇀ 𝐽𝑥 whenever 𝑥

𝑛
→ 𝑥;

(10) if 𝐸 is smooth, strictly convex, and reflexive, then 𝐽

is single-valued, one-to-one and onto; in this case,
the inverse mapping 𝐽

−1 coincides with the duality
mapping on 𝐸;

(11) if 𝐸∗ is strictly convex, then 𝐽 is single-valued;
(12) the norm of 𝐸∗ is Fréchet differentiable if and only if

𝐸 is strictly convex and reflexive Banach space which
has the Kadec-Klee property.

For more details, see [11].
As well known, if 𝐶 is a nonempty, closed, and convex

subset of a Hilbert space 𝐻 and 𝑃
𝐶

: 𝐻 → 𝐶 is the
metric projection of 𝐻 onto 𝐶, then 𝑃

𝐶
is nonexpansive

(see, the reference therein). This fact actually characterizes
Hilbert spaces. Consequently, it is not true to more general
Banach spaces. In this connection, Alber [12] introduced
a generalized projection operator Π

𝐶
in a Banach space 𝐸

which is an analogue of the metric projection in Hilbert
spaces. Consider the function defined by

𝜙 (𝑥, 𝑦) = ‖𝑥‖

2

− 2 ⟨𝑥, 𝐽𝑦⟩ +

󵄩
󵄩
󵄩
󵄩

𝑦

󵄩
󵄩
󵄩
󵄩

2

, (8)
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for 𝑥, 𝑦 ∈ 𝐸. Observe that, in a Hilbert space 𝐻, (8) reduces
to

𝜙 (𝑥, 𝑦) =

󵄩
󵄩
󵄩
󵄩

𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

, (9)

for 𝑥, 𝑦 ∈ 𝐻. The generalized projection Π
𝐶

: 𝐸 → 𝐶

is a mapping that assigns an arbitrary point 𝑥 ∈ 𝐸 to the
minimum point of the functional 𝜙(𝑥, 𝑦); that is, Π

𝐶
𝑥 = 𝑥,

where 𝑥 is the solution to the minimization problem:

𝜙 (𝑥, 𝑥) = inf
𝑦∈𝐶

𝜙 (𝑦, 𝑥) . (10)

The existence and uniqueness of the operator Π
𝐶
follow

from the properties of the functional 𝜙(𝑥, 𝑦) and strict
monotonicity of themapping 𝐽 (see, e.g., [12, 13]). In aHilbert
space, Π

𝐶
= 𝑃
𝐶
. It is obvious from the definition of the

function 𝜙 that

(𝜙
1
) (‖𝑥‖ − ‖𝑦‖)

2

≤ 𝜙(𝑥, 𝑦) ≤ (‖𝑥‖ + ‖𝑦‖)

2 for all 𝑥, 𝑦 ∈ 𝐸,
(𝜙
2
) 𝜙(𝑥, 𝑦) = 𝜙(𝑥, 𝑧) + 𝜙(𝑧, 𝑦) + 2⟨𝑥 − 𝑧, 𝐽𝑧 − 𝐽𝑦⟩ for all
𝑥, 𝑦, 𝑧 ∈ 𝐸,

(𝜙
3
) 𝜙(𝑥, 𝑦) = ⟨𝑥, 𝐽𝑥 − 𝐽𝑦⟩ + ⟨𝑦 − 𝑥, 𝐽𝑦⟩ ≤ ‖𝑥‖‖𝐽𝑥 − 𝐽𝑦‖ +

‖𝑦 − 𝑥‖‖𝑦‖ for all 𝑥, 𝑦 ∈ 𝐸,
(𝜙
4
) if 𝐸 is a reflexive, strictly convex, and smooth Banach
space, then, for all 𝑥, 𝑦 ∈ 𝐸,

𝜙 (𝑥, 𝑦) = 0 iff 𝑥 = 𝑦. (11)

For more details see [14].
Let 𝑆 be a semigroup. We denote by 𝑙

∞

(𝑆) the Banach
space of all bounded real-valued functionals on 𝑆 with
supremum norm. For each 𝑠 ∈ 𝑆, we define the left and right
translation operators 𝑙(𝑠) and 𝑟(𝑠) on 𝑙

∞

(𝑆) by

(𝑙 (𝑠) 𝑓) (𝑡) = 𝑓 (𝑠𝑡) , (𝑟 (𝑠) 𝑓) (𝑡) = 𝑓 (𝑡𝑠) , (12)

for each 𝑡 ∈ 𝑆 and𝑓 ∈ 𝑙

∞

(𝑆), respectively. Let𝑋 be a subspace
of 𝑙∞(𝑆) containing 1. An element 𝜇 in the dual space𝑋∗ of𝑋
is said to be amean on𝑋 if ‖𝜇‖ = 𝜇(1) = 1. For 𝑠 ∈ 𝑆, we can
define a point evaluation 𝛿

𝑠
by 𝛿
𝑠
(𝑓) = 𝑓(𝑠) for each 𝑓 ∈ 𝑋.

It is well known that 𝜇 is mean on𝑋 if and only if

inf
𝑠∈𝑆

𝑓 (𝑠) ≤ 𝜇 (𝑓) ≤ sup
𝑠∈𝑆

𝑓 (𝑠) , (13)

for each 𝑓 ∈ 𝑋.
Let 𝑋 be a translation invariant subspace of 𝑙∞(𝑆) (i.e.,

𝑙(𝑠)𝑋 ⊂ 𝑋 and 𝑟(𝑠)𝑋 ⊂ 𝑋 for each 𝑠 ∈ 𝑆) containing 1.Then a
mean 𝜇 on𝑋 is said to be left invariant (resp., right invariant)
if

𝜇 (𝑙 (𝑠) 𝑓) = 𝜇 (𝑓) , (resp., 𝜇 (𝑟 (𝑠) 𝑓) = 𝜇 (𝑓)) (14)

for each 𝑠 ∈ 𝑆 and 𝑓 ∈ 𝑋. A mean 𝜇 on 𝑋 is said to be
invariant if 𝜇 is both left and right invariant [15–19].𝑋 is said
to be left (resp., right) amenable if 𝑋 has a left (resp., right)
invariant mean.𝑋 is amenable if𝑋 is left and right amenable.
We call a semigroup 𝑆 amenable if 𝑋 is amenable. Further,
amenable semigroups include all commutative semigroups

and solvable groups. However, the free group or semigroup
of two generators is not left or right amenable (see [20–22]).

A net {𝜇
𝛼
} of means on 𝑋 is said to be asymptotically left

(resp., right) invariant if

lim
𝛼

(𝜇
𝛼
(𝑙 (𝑠) 𝑓) − 𝜇

𝛼
(𝑓)) = 0,

(resp., lim
𝛼

(𝜇
𝛼
(𝑟 (𝑠) 𝑓) − 𝜇

𝛼
(𝑓)) = 0) ,

(15)

for each 𝑓 ∈ 𝑋 and 𝑠 ∈ 𝑆, and it is said to be left (resp., right)
strongly asymptotically invariant (or strong regular) if

lim
𝛼

󵄩
󵄩
󵄩
󵄩

𝑙

∗

(𝑠) 𝜇
𝛼
− 𝜇
𝛼

󵄩
󵄩
󵄩
󵄩

= 0,

(resp., lim
𝛼

󵄩
󵄩
󵄩
󵄩

𝑟

∗

(𝑠) 𝜇
𝛼
− 𝜇
𝛼

󵄩
󵄩
󵄩
󵄩

= 0) ,

(16)

for each 𝑠 ∈ 𝑆, where 𝑙∗(𝑠) and 𝑟

∗

(𝑠) are the adjoint operators
of 𝑙(𝑠) and 𝑟(𝑠), respectively. Such nets were first studied by
Day in [20] where theywere called𝑤𝑒𝑎𝑘

∗ invariant and norm
invariant, respectively.

It is easy to see that if a semigroup 𝑆 is left (resp., right)
amenable, then the semigroup 𝑆

󸀠

= 𝑆 ∪ {𝑒}, where 𝑒𝑠

󸀠

=

𝑠

󸀠

𝑒 = 𝑠

󸀠 for all 𝑠󸀠 ∈ 𝑆, is also left (resp., right) amenable and
converse.

From now on 𝑆 denotes a semigroup with an identity 𝑒. 𝑆
is called left reversible if any two right ideals of 𝑆 have nonvoid
intersection; that is, 𝑎𝑆 ∩ 𝑏𝑆 ̸= 0 for 𝑎, 𝑏 ∈ 𝑆. In this case,
(𝑆, ⪯) is a directed system when the binary relation “⪯” on 𝑆

is defined by 𝑎 ⪯ 𝑏 if and only if {𝑎} ∪ 𝑎𝑆 ⊇ {𝑏} ∪ 𝑏𝑆 for
𝑎, 𝑏 ∈ 𝑆. It is easy to see that 𝑡 ⪯ 𝑡𝑠 for all 𝑡, 𝑠 ∈ 𝑆. Further, if
𝑡 ⪯ 𝑠 then 𝑝𝑡 ⪯ 𝑝𝑠 for all 𝑝 ∈ 𝑆. The class of left reversible
semigroup includes all groups and commutative semigroups.
If a semigroup 𝑆 is left amenable, then 𝑆 is left reversible. But
the converse is not true [23–28].

Let 𝑆 be a semigroup and let 𝐶 be a closed and convex
subset of 𝐸. Let 𝐹(𝑇) denote the fixed point set of 𝑇. Then
I = {𝑇(𝑠) : 𝑠 ∈ 𝑆} is called a representation of 𝑆 as relatively
nonexpansivemappings on𝐶 if𝑇(𝑠) is relatively nonexpansive
with 𝑇(𝑒) = 𝐼 and 𝑇(𝑠𝑡) = 𝑇(𝑠)𝑇(𝑡) for each 𝑠, 𝑡 ∈ 𝑆. We
denote by 𝐹(I) the set of common fixed points of {𝑇(𝑠) : 𝑠 ∈
𝑆}; that is,

𝐹 (I) = ⋂

𝑠∈𝑆

𝐹 (𝑇 (𝑠)) = ⋂

𝑠∈𝑆

{𝑥 ∈ 𝐶 : 𝑇 (𝑠) 𝑥 = 𝑥} . (17)

We know that if 𝜇 is a mean on𝑋 and if for each 𝑥

∗

∈ 𝐸

∗

the function 𝑠 󳨃→ ⟨𝑇(𝑠)𝑥, 𝑥

∗

⟩ is contained in 𝑋 and 𝐶 is
weakly compact, then there exists a unique point 𝑥

0
of 𝐸 such

that 𝜇⟨𝑇(⋅)𝑥, 𝑥∗⟩ = ⟨𝑥
0
, 𝑥

∗

⟩ for each 𝑥

∗

∈ 𝐸

∗. We denote
such a point 𝑥

0
by 𝑇
𝜇
𝑥. Note that 𝑇

𝜇
𝑥 is contained in the

closure of the convex hull of {𝑇(𝑠)𝑥 : 𝑠 ∈ 𝑆} for each 𝑥 ∈ 𝐶.
Note that 𝑇

𝜇
𝑧 = 𝑧 for each 𝑧 ∈ 𝐹(I); see [29–31].

3. Lemmas

We need the following lemmas for the proof of our main
results.

Lemma 3 (see [9]). Let 𝐸 be a strictly convex and smooth
Banach space, let 𝐶 be a closed convex subset of 𝐸, and let 𝑇
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be a relatively nonexpansive mapping from 𝐶 into itself. Then
𝐹(𝑇) is closed and convex.

Lemma 4 (see [12, 32]). Let 𝐸 be a reflexive, strictly convex,
and smooth Banach space and let𝐶 be a nonempty, closed, and
convex subset of 𝐸 and 𝑥 ∈ 𝐸. Then

𝜙 (𝑦,Π
𝐶
𝑥) + 𝜙 (Π

𝐶
𝑥, 𝑥) ≤ 𝜙 (𝑦, 𝑥) , (18)

for all 𝑦 ∈ 𝐶.

Lemma 5 (see [32]). Let 𝐸 be a uniformly convex and smooth
Banach space and let {𝑥

𝑛
}, {𝑦
𝑛
} be two sequences of 𝐸. If

lim
𝑛→∞

𝜙(𝑥
𝑛
, 𝑦
𝑛
) = 0 and either {𝑥

𝑛
} or {𝑦

𝑛
} is bounded, then

lim
𝑛→∞

‖𝑥
𝑛
− 𝑦
𝑛
‖ = 0.

Lemma 6 (see [4, 33]). Let 𝜇 be a left invariant mean on 𝑋.
Then 𝐹(I) = 𝐹(𝑇

𝜇
) ∩ 𝐶
𝑎
, where 𝐶

𝑎
denotes the set of almost

periodic elements in 𝐶; that is, all 𝑥 ∈ 𝐶 such that {𝑇(𝑠)𝑥 : 𝑠 ∈

𝑆} is relatively compact in the norm topology of 𝐸.

Lemma7 (cf. [4, 10]). Let {𝜇
𝑛
} be an asymptotically left invari-

ant sequence of means on𝑋. If 𝑧 ∈ 𝐶
𝑎
and lim inf

𝑛→∞
‖𝑇
𝜇
𝑛

𝑧−

𝑧‖ = 0, then 𝑧 is a common fixed point of I.

4. Strong Convergence Theorems

In this section, wewill establish two strong convergence theo-
rems of various iterative sequences for finding common fixed
point of relatively nonexpansive mappings in a uniformly
convex and uniformly smooth Banach spaces (cf. [34–36]).

We begin with a strong convergence theorem of modified
Halpern’s type.

Theorem 8. Let 𝑆 be a left reversible semigroup and let I =

{𝑇(𝑠) : 𝑠 ∈ 𝑆} be a representation of 𝑆 as relatively nonexpansive
mappings from a nonempty, closed, and convex subset 𝐶 of
a uniformly convex and uniformly smooth Banach space 𝐸

into itself. Let 𝑋 be a subspace of 𝑙∞(𝑆) and let {𝜇
𝑛
} be an

asymptotically left invariant sequence of means on 𝑋. Let {𝛼
𝑛
}

be a sequence in (0, 1) such that lim
𝑛→∞

𝛼
𝑛
= 0. Let {𝑥

𝑛
} be a

sequence generated by the following algorithm:

𝑥
0
∈ 𝐶, 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑖𝑙𝑦,

𝑥
𝑛+1

= Π
𝐶
𝐽

−1

(𝛼
𝑛
𝐽𝑥
0
+ (1 − 𝛼

𝑛
) 𝐽𝑇
𝜇
𝑛

𝑥
𝑛
) , ∀𝑛 ≥ 0.

(19)

If the interior of 𝐹(I) is nonempty, then {𝑥
𝑛
} converges

strongly to some common fixed point 𝐹(I).

Proof. We show first that the sequence {𝑥
𝑛
} converges

strongly in 𝐶.
From Lemma 3, we know 𝐹(𝑇) is closed and convex. So,

we can define the generalized projectionΠ
𝐶
onto 𝐹(I). Most

of all, we have

󵄩
󵄩
󵄩
󵄩
󵄩

𝑇
𝜇
𝑛

𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

= sup {󵄨󵄨󵄨
󵄨
󵄨

⟨𝑇
𝜇
𝑛

𝑥
𝑛
, 𝑥

∗

⟩

󵄨
󵄨
󵄨
󵄨
󵄨

: 𝑥

∗

∈ 𝐸

∗

,

󵄩
󵄩
󵄩
󵄩

𝑥

∗󵄩
󵄩
󵄩
󵄩

= 1}

= sup {󵄨󵄨󵄨
󵄨

(𝜇
𝑛
)

𝑠
⟨𝑇 (𝑠) 𝑥

𝑛
, 𝑥

∗

⟩

󵄨
󵄨
󵄨
󵄨

: 𝑥

∗

∈ 𝐸

∗

,

󵄩
󵄩
󵄩
󵄩

𝑥

∗󵄩
󵄩
󵄩
󵄩

= 1}

≤ sup {(𝜇
𝑛
)

𝑠
(

󵄩
󵄩
󵄩
󵄩

𝑇 (𝑠) 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩

𝑥

∗󵄩
󵄩
󵄩
󵄩

) : 𝑥

∗

∈ 𝐸

∗

,

󵄩
󵄩
󵄩
󵄩

𝑥

∗󵄩
󵄩
󵄩
󵄩

= 1}

= (𝜇
𝑛
)

𝑠

󵄩
󵄩
󵄩
󵄩

𝑇 (𝑠) 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

.

(20)

Then, from the definition of relatively nonexpansive, we
have

𝜙 (𝑢, 𝑇
𝜇
𝑛

𝑥
𝑛
) = ‖𝑢‖

2

− 2 ⟨𝑢, 𝐽𝑇
𝜇
𝑛

𝑥
𝑛
⟩ +

󵄩
󵄩
󵄩
󵄩
󵄩

𝑇
𝜇
𝑛

𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

= ‖𝑢‖

2

− 2 (𝜇
𝑛
)

𝑠
⟨𝑢, 𝐽𝑇 (𝑠) 𝑥

𝑛
⟩

+ (𝜇
𝑛
)

𝑠

󵄩
󵄩
󵄩
󵄩

𝑇(𝑠)𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2

= (𝜇
𝑛
)

𝑠
𝜙 (𝑢, 𝑇 (𝑠) 𝑥

𝑛
)

≤ (𝜇
𝑛
)

𝑠
𝜙 (𝑢, 𝑥

𝑛
) = 𝜙 (𝑢, 𝑥

𝑛
) ,

(21)

for all 𝑢 ∈ 𝐹(I). From the convexity of ‖ ⋅ ‖2 and (21), we get

𝜙 (𝑢, 𝑥
𝑛+1

)

= 𝜙 (𝑢, Π
𝐶
𝐽

−1

(𝛼
𝑛
𝐽𝑥
0
+ (1 − 𝛼

𝑛
) 𝐽𝑇
𝜇
𝑛

𝑥
𝑛
))

≤ 𝜙 (𝑢, 𝐽

−1

(𝛼
𝑛
𝐽𝑥
0
+ (1 − 𝛼

𝑛
) 𝐽𝑇
𝜇
𝑛

𝑥
𝑛
))

= ‖𝑢‖

2

− 2 ⟨𝑢, 𝛼
𝑛
𝐽𝑥
0
+ (1 − 𝛼

𝑛
) 𝐽𝑇
𝜇
𝑛

𝑥
𝑛
⟩

+

󵄩
󵄩
󵄩
󵄩
󵄩

𝛼
𝑛
𝐽𝑥
0
+ (1 − 𝛼

𝑛
) 𝐽𝑇
𝜇
𝑛

𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ ‖𝑢‖

2

− 2𝛼
𝑛
⟨𝑢, 𝐽𝑥

0
⟩ − 2 (1 − 𝛼

𝑛
) ⟨𝑢, 𝐽𝑇

𝜇
𝑛

𝑥
𝑛
⟩

+ 𝛼
𝑛

󵄩
󵄩
󵄩
󵄩

𝑥
0

󵄩
󵄩
󵄩
󵄩

2

+ (1 − 𝛼
𝑛
)

󵄩
󵄩
󵄩
󵄩
󵄩

𝑇
𝜇
𝑛

𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

= 𝛼
𝑛
𝜙 (𝑢, 𝑥

0
) + (1 − 𝛼

𝑛
) 𝜙 (𝑢, 𝑇

𝜇
𝑛

𝑥
𝑛
)

≤ 𝛼
𝑛
𝜙 (𝑢, 𝑥

0
) + (1 − 𝛼

𝑛
) 𝜙 (𝑢, 𝑥

𝑛
) .

(22)

So, we have

(1 − 𝛼
𝑛
) {𝜙 (𝑢, 𝑥

𝑛+1
) − 𝜙 (𝑢, 𝑥

𝑛
)}

≤ 𝛼
𝑛
{𝜙 (𝑢, 𝑥

0
) − 𝜙 (𝑢, 𝑥

𝑛+1
)}

≤ 𝛼
𝑛
𝜙 (𝑢, 𝑥

0
) .

(23)

Since lim
𝑛→∞

𝛼
𝑛
= 0, we obtain

lim
𝑛→∞

{𝜙 (𝑢, 𝑥
𝑛+1

) − 𝜙 (𝑢, 𝑥
𝑛
)} ≤ 0. (24)

Therefore {𝜙(𝑢, 𝑥
𝑛
)} is bounded and lim

𝑛→∞
𝜙(𝑢, 𝑥

𝑛
) exists.

Then {𝑥
𝑛
} is also bounded. This implies that {𝑇

𝜇
𝑛

𝑥
𝑛
} is

bounded. Since the interior of 𝐹(I) is nonempty, there exist
𝑝 ∈ 𝐹(I) and 𝑟 > 0 such that

𝑝 + 𝑟𝑞 ∈ 𝐹 (I) , (25)

whenever ‖𝑞‖ ≤ 1. By (𝜙
2
), we have

𝜙 (𝑢, 𝑥
𝑛
) = 𝜙 (𝑢, 𝑥

𝑛+1
) + 𝜙 (𝑥

𝑛+1
, 𝑥
𝑛
)

+ 2 ⟨𝑢 − 𝑥
𝑛+1

, 𝐽𝑥
𝑛+1

− 𝐽𝑥
𝑛
⟩ ,

(26)
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for any 𝑢 ∈ 𝐹(I). This implies

⟨𝑥
𝑛+1

− 𝑢, 𝐽𝑥
𝑛
− 𝐽𝑥
𝑛+1

⟩ +

1

2

𝜙 (𝑥
𝑛+1

, 𝑥
𝑛
)

=

1

2

(𝜙 (𝑢, 𝑥
𝑛
) − 𝜙 (𝑢, 𝑥

𝑛+1
)) .

(27)

Also, we have

⟨𝑥
𝑛+1

− 𝑝, 𝐽𝑥
𝑛
− 𝐽𝑥
𝑛+1

⟩

= ⟨𝑥
𝑛+1

− (𝑝 + 𝑟𝑞) + 𝑟𝑞, 𝐽𝑥
𝑛
− 𝐽𝑥
𝑛+1

⟩

= ⟨𝑥
𝑛+1

− (𝑝 + 𝑟𝑞) , 𝐽𝑥
𝑛
− 𝐽𝑥
𝑛+1

⟩

+ 𝑟 ⟨𝑞, 𝐽𝑥
𝑛
− 𝐽𝑥
𝑛+1

⟩ .

(28)

On the other hand, by (24) and (25), we have that

𝜙 (𝑝 + 𝑟𝑞, 𝑥
𝑛+1

) ≤ 𝜙 (𝑝 + 𝑟𝑞, 𝑥
𝑛
) . (29)

From (27), we get

0 ≤

1

2

(𝜙 (𝑝 + 𝑟𝑞, 𝑥
𝑛
) − 𝜙 (𝑝 + 𝑟𝑞, 𝑥

𝑛+1
))

= ⟨𝑥
𝑛+1

− (𝑝 + 𝑟𝑞) , 𝐽𝑥
𝑛
− 𝐽𝑥
𝑛+1

⟩

+

1

2

𝜙 (𝑥
𝑛+1

, 𝑥
𝑛
)

= ⟨𝑥
𝑛+1

− 𝑝, 𝐽𝑥
𝑛
− 𝐽𝑥
𝑛+1

⟩

− 𝑟 ⟨𝑞, 𝐽𝑥
𝑛
− 𝐽𝑥
𝑛+1

⟩ +

1

2

𝜙 (𝑥
𝑛+1

, 𝑥
𝑛
) .

(30)

Then, by (27), we have

𝑟 ⟨𝑞, 𝐽𝑥
𝑛
− 𝐽𝑥
𝑛+1

⟩

≤ ⟨𝑥
𝑛+1

− 𝑝, 𝐽𝑥
𝑛
− 𝐽𝑥
𝑛+1

⟩ +

1

2

𝜙 (𝑥
𝑛+1

, 𝑥
𝑛
)

=

1

2

(𝜙 (𝑝, 𝑥
𝑛
) − 𝜙 (𝑝, 𝑥

𝑛+1
)) ,

(31)

for 𝑝 ∈ 𝐹(I). Hence

⟨𝑞, 𝐽𝑥
𝑛
− 𝐽𝑥
𝑛+1

⟩ ≤

1

2𝑟

(𝜙 (𝑝, 𝑥
𝑛
) − 𝜙 (𝑝, 𝑥

𝑛+1
)) . (32)

Since 𝑞 with ‖𝑞‖ ≤ 1 is arbitrary, by (24), we have

󵄩
󵄩
󵄩
󵄩

𝐽𝑥
𝑛
− 𝐽𝑥
𝑛+1

󵄩
󵄩
󵄩
󵄩

≤

1

2𝑟

(𝜙 (𝑝, 𝑥
𝑛
) − 𝜙 (𝑝, 𝑥

𝑛+1
)) . (33)

So, we have

󵄩
󵄩
󵄩
󵄩

𝐽𝑥
𝑛+𝑚

− 𝐽𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩

𝐽𝑥
𝑛+𝑚

− 𝐽𝑥
𝑛+𝑚−1

+ 𝐽𝑥
𝑛+𝑚−1

− ⋅ ⋅ ⋅ − 𝐽𝑥
𝑛+1

+ 𝐽𝑥
𝑛+1

− 𝐽𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

≤

𝑛+𝑚−1

∑

𝑖=𝑛

󵄩
󵄩
󵄩
󵄩

𝐽𝑥
𝑖
− 𝐽𝑥
𝑖+1

󵄩
󵄩
󵄩
󵄩

≤

1

2𝑟

𝑛+𝑚−1

∑

𝑖=𝑛

(𝜙 (𝑝, 𝑥
𝑖
) − 𝜙 (𝑝, 𝑥

𝑖+1
))

=

1

2𝑟

(𝜙 (𝑝, 𝑥
𝑛
) − 𝜙 (𝑝, 𝑥

𝑛+1
)) .

(34)

We know that {𝜙(𝑝, 𝑥
𝑛
)} converges. Hence, {𝐽𝑥

𝑛
} is a Cauchy

sequence. Since 𝐸

∗ is complete, {𝐽𝑥
𝑛
} converges strongly to

some point in 𝐸

∗. Since 𝐸 is uniformly convex, 𝐸∗ has a
Fréchet differentiable norm. Then 𝐽

−1 is continuous on 𝐸

∗.
Hence {𝑥

𝑛
} converges strongly to some point V in 𝐶.

Now, we show that V ∈ 𝐹(I), where V = lim
𝑛→∞

Π
𝐹(I)𝑥𝑛.

By (33) and the convergence of {𝜙(𝑝, 𝑥
𝑛
)}, we have

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩

𝐽𝑥
𝑛
− 𝐽𝑥
𝑛+1

󵄩
󵄩
󵄩
󵄩

= 0. (35)

Since 𝐽

−1 is uniformly norm-to-norm continuous on
bounded sets, it follows that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩

𝑥
𝑛
− 𝑥
𝑛+1

󵄩
󵄩
󵄩
󵄩

= 0. (36)

Let 𝑧
𝑛
= 𝐽

−1

(𝛼
𝑛
𝐽𝑥
0
+ (1 − 𝛼

𝑛
)𝐽𝑇
𝜇
𝑛

𝑥
𝑛
). Then, we have

󵄩
󵄩
󵄩
󵄩
󵄩

𝐽𝑧
𝑛
− 𝐽𝑇
𝜇
𝑛

𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩

𝛼
𝑛
𝐽𝑥
0
+ (1 − 𝛼

𝑛
) 𝐽𝑇
𝜇
𝑛

𝑥
𝑛
− 𝐽𝑇
𝜇
𝑛

𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

= 𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

𝐽𝑥
0
− 𝐽𝑇
𝜇
𝑛

𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

.

(37)

Since lim
𝑛→∞

𝛼
𝑛
= 0, we have

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩

𝐽𝑧
𝑛
− 𝐽𝑇
𝜇
𝑛

𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

= 0. (38)

Since 𝐽

−1 is uniformly norm-to-norm continuous on
bounded sets, we get

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩

𝑧
𝑛
− 𝑇
𝜇
𝑛

𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

= 0. (39)

From 𝑥
𝑛+1

= Π
𝐶
𝑧
𝑛
and Lemma 4, we have

𝜙 (𝑇
𝜇
𝑛

𝑥
𝑛
, 𝑥
𝑛+1

) + 𝜙 (𝑥
𝑛+1

, 𝑧
𝑛
)

= 𝜙 (𝑇
𝜇
𝑛

𝑥
𝑛
, Π
𝐶
𝑧
𝑛
) + 𝜙 (Π

𝐶
𝑧
𝑛
, 𝑧
𝑛
)

≤ 𝜙 (𝑇
𝜇
𝑛

𝑥
𝑛
, 𝑧
𝑛
) .

(40)
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Since

𝜙 (𝑇
𝜇
𝑛

𝑥
𝑛
, 𝑧
𝑛
)

= 𝜙 (𝑇
𝜇
𝑛

𝑥
𝑛
, 𝐽

−1

(𝛼
𝑛
𝐽𝑥
0
+ (1 − 𝛼

𝑛
) 𝐽𝑇
𝜇
𝑛

𝑥
𝑛
))

=

󵄩
󵄩
󵄩
󵄩
󵄩

𝑇
𝜇
𝑛

𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

− 2 ⟨𝑇
𝜇
𝑛

𝑥
𝑛
, 𝛼
𝑛
𝐽𝑥
0
+ (1 − 𝛼

𝑛
) 𝐽𝑇
𝜇
𝑛

𝑥
𝑛
⟩

+

󵄩
󵄩
󵄩
󵄩
󵄩

𝛼
𝑛
𝐽𝑥
0
+ (1 − 𝛼

𝑛
) 𝐽𝑇
𝜇
𝑛

𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩

𝑇
𝜇
𝑛

𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

− 2𝛼
𝑛
⟨𝑇
𝜇
𝑛

𝑥
𝑛
, 𝐽𝑥
0
⟩

− 2 (1 − 𝛼
𝑛
) ⟨𝑇
𝜇
𝑛

𝑥
𝑛
, 𝐽𝑇
𝜇
𝑛

𝑥
𝑛
⟩

+ 𝛼
𝑛

󵄩
󵄩
󵄩
󵄩

𝑥
0

󵄩
󵄩
󵄩
󵄩

2

+ (1 − 𝛼
𝑛
)

󵄩
󵄩
󵄩
󵄩
󵄩

𝑇
𝜇
𝑛

𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

= 𝛼
𝑛
𝜙 (𝑇
𝜇
𝑛

𝑥
𝑛
, 𝑥
0
) + (1 − 𝛼

𝑛
) 𝜙 (𝑇

𝜇
𝑛

𝑥
𝑛
, 𝑇
𝜇
𝑛

𝑥
𝑛
)

= 𝛼
𝑛
𝜙 (𝑇
𝜇
𝑛

𝑥
𝑛
, 𝑥
0
)

(41)

and lim
𝑛→∞

𝛼
𝑛
= 0, we have

lim
𝑛→∞

𝜙 (𝑇
𝜇
𝑛

𝑥
𝑛
, 𝑧
𝑛
) = 0. (42)

From (40), we get

Lim
𝑛→∞

𝜙 (𝑇
𝜇
𝑛

𝑥
𝑛
, 𝑥
𝑛+1

) = lim
𝑛→∞

𝜙 (𝑥
𝑛+1

, 𝑧
𝑛
) = 0. (43)

By Lemma 5, we obtain

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩

𝑇
𝜇
𝑛

𝑥
𝑛
− 𝑥
𝑛+1

󵄩
󵄩
󵄩
󵄩
󵄩

= lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩

𝑥
𝑛+1

− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

= 0. (44)

Since ‖𝑥
𝑛
−𝑇
𝜇
𝑛

𝑥
𝑛
‖ ≤ ‖𝑥

𝑛
−𝑥
𝑛+1

‖ + ‖𝑥
𝑛+1

−𝑧
𝑛
‖ + ‖𝑧
𝑛
−𝑇
𝜇
𝑛

𝑥
𝑛
‖,

from (36), (39), and (44), we have

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩

𝑥
𝑛
− 𝑇
𝜇
𝑛

𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

= 0. (45)

From Lemma 7, we have 𝑥
𝑛

∈ 𝐹(I). Since 𝐹(I) is closed
and lim

𝑛→∞
𝑥
𝑛

= V, we have V ∈ 𝐹(I), where V =

lim
𝑛→∞

Π
𝐹(I)𝑥𝑛.

We now establish a convergence theorem of modified
Ishikawa type.

Theorem 9. Let 𝑆 be a left reversible semigroup and let I =

{𝑇(𝑠) : 𝑠 ∈ 𝑆} be a representation of 𝑆 as relatively nonexpansive
mappings from a nonempty, closed, and convex subset 𝐶 of
a uniformly convex and uniformly smooth Banach space 𝐸

into itself. Let 𝑋 be a subspace of 𝑙∞(𝑆) and let {𝜇
𝑛
} be an

asymptotically left invariant sequence of means on 𝑋. Let {𝛼
𝑛
}

and {𝛽
𝑛
} be sequences of real numbers such that 𝛼

𝑛
, 𝛽
𝑛
∈ (0, 1)

and lim
𝑛→∞

𝛼
𝑛
= 0, lim

𝑛→∞
𝛽
𝑛
= 1. Let {𝑥

𝑛
} be a sequence

generated by the following algorithm:

𝑥
0
∈ 𝐶, 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑖𝑙𝑦,

𝑦
𝑛
= 𝐽

−1

(𝛽
𝑛
𝐽𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝐽𝑇
𝜇
𝑛

𝑥
𝑛
) ,

𝑥
𝑛+1

= Π
𝐶
𝐽

−1

(𝛼
𝑛
𝐽𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝐽𝑇
𝜇
𝑛

𝑦
𝑛
) , ∀𝑛 ≥ 0.

(46)

If the interior of𝐹(I) is nonempty, then {𝑥
𝑛
} converges strongly

to some common fixed point 𝐹(I).

Proof. Firstly, we show that {𝑥
𝑛
} converges strongly in 𝐶.

From Lemma 3, we know 𝐹(𝑇) is closed and convex. So,
we can define the generalized projection Π

𝐶
onto 𝐹(I). Let

𝑢 ∈ 𝐹(I). From the definition of relatively nonexpansive and
the convexity of ‖ ⋅ ‖2, from (21), we have

𝜙 (𝑢, 𝑦
𝑛
) = 𝜙 (𝑢, 𝐽

−1

(𝛽
𝑛
𝐽𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝐽𝑇
𝜇
𝑛

𝑥
𝑛
))

≤ 𝛽
𝑛
𝜙 (𝑢, 𝑥

𝑛
) + (1 − 𝛽

𝑛
) 𝜙 (𝑢, 𝑇

𝜇
𝑛

𝑥
𝑛
)

≤ 𝜙 (𝑢, 𝑥
𝑛
) ,

(47)

for all 𝑢 ∈ 𝐹(I). From (47), we obtain

𝜙 (𝑢, 𝑥
𝑛+1

)

= 𝜙 (𝑢, Π
𝐶
𝐽

−1

(𝛼
𝑛
𝐽𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝐽𝑇
𝜇
𝑛

𝑦
𝑛
))

≤ 𝜙 (𝑢, 𝐽

−1

(𝛼
𝑛
𝐽𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝐽𝑇
𝜇
𝑛

𝑦
𝑛
))

≤ 𝛼
𝑛
𝜙 (𝑢, 𝑥

𝑛
) + (1 − 𝛼

𝑛
) 𝜙 (𝑢, 𝑇

𝜇
𝑛

𝑦
𝑛
)

≤ 𝛼
𝑛
𝜙 (𝑢, 𝑥

𝑛
) + (1 − 𝛼

𝑛
) 𝜙 (𝑢, 𝑦

𝑛
)

≤ 𝜙 (𝑢, 𝑥
𝑛
) .

(48)

Hence, {𝜙(𝑢, 𝑥
𝑛
)} is bounded and lim

𝑛→∞
𝜙(𝑢, 𝑥

𝑛
) exists.

This implies that {𝑥
𝑛
}, {𝑇
𝜇
𝑛

𝑥
𝑛
}, and {𝑦

𝑛
} are bounded. Since

the interior of 𝐹(I) is nonempty, similar to the proof of
Theorem 8, we obtain that {𝑥

𝑛
} converges strongly to V in 𝐶.

Next, we show that V ∈ 𝐹(I), where V = lim
𝑛→∞

Π
𝐹(I)𝑥𝑛.

Let

𝑧
𝑛
= 𝐽

−1

(𝛼
𝑛
𝐽𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝐽𝑇
𝜇
𝑛

𝑦
𝑛
) . (49)

From Lemma 4, we have

𝜙 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝜙 (𝑥
𝑛+1

, 𝑧
𝑛
)

= 𝜙 (𝑥
𝑛
, Π
𝐶
𝑧
𝑛
) + 𝜙 (Π

𝐶
𝑧
𝑛
, 𝑧
𝑛
)

≤ 𝜙 (𝑥
𝑛
, 𝑧
𝑛
) .

(50)

Also,

𝜙 (𝑥
𝑛
, 𝑧
𝑛
) = 𝜙 (𝑥

𝑛
, 𝐽

−1

(𝛼
𝑛
𝐽𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝐽𝑇
𝜇
𝑛

𝑦
𝑛
))

≤ 𝛼
𝑛
𝜙 (𝑥
𝑛
, 𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝜙 (𝑥

𝑛
, 𝑇
𝜇
𝑛

𝑦
𝑛
)

≤ 𝛼
𝑛
𝜙 (𝑥
𝑛
, 𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝜙 (𝑥
𝑛
, 𝑦
𝑛
)

≤ 𝜙 (𝑥
𝑛
, 𝑦
𝑛
) ,

(51)

󵄩
󵄩
󵄩
󵄩

𝐽𝑥
𝑛
− 𝐽𝑦
𝑛

󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩

𝐽𝑥
𝑛
− (𝛽
𝑛
𝐽𝑥
𝑛
− (1 − 𝛽

𝑛
) 𝐽𝑇
𝜇
𝑛

𝑥
𝑛
)

󵄩
󵄩
󵄩
󵄩
󵄩

= (1 − 𝛽
𝑛
)

󵄩
󵄩
󵄩
󵄩
󵄩

𝐽𝑥
𝑛
− 𝐽𝑇
𝜇
𝑛

𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

.

(52)

From lim
𝑛→∞

𝛽
𝑛
= 1 and (52), we have

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩

𝐽𝑥
𝑛
− 𝐽𝑦
𝑛

󵄩
󵄩
󵄩
󵄩

= 0. (53)
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Since 𝐽−1 is uniformly norm-to-norm continuous, we obtain

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩

𝑥
𝑛
− 𝑦
𝑛

󵄩
󵄩
󵄩
󵄩

= 0. (54)

Hence,

𝜙 (𝑥
𝑛
, 𝑦
𝑛
) =

󵄩
󵄩
󵄩
󵄩

𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2

− 2 ⟨𝑥
𝑛
, 𝐽𝑦
𝑛
⟩ +

󵄩
󵄩
󵄩
󵄩

𝑦
𝑛

󵄩
󵄩
󵄩
󵄩

2

=

󵄩
󵄩
󵄩
󵄩

𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2

− 2 ⟨𝑥
𝑛
, 𝐽𝑦
𝑛
− 𝐽𝑥
𝑛
⟩

− 2 ⟨𝑥
𝑛
, 𝐽𝑥
𝑛
⟩ +

󵄩
󵄩
󵄩
󵄩

𝑦
𝑛

󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩

𝑦
𝑛

󵄩
󵄩
󵄩
󵄩

2

−

󵄩
󵄩
󵄩
󵄩

𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2

+ 2

󵄩
󵄩
󵄩
󵄩

𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩

𝐽𝑦
𝑛
− 𝐽𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩

𝑦
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

(

󵄩
󵄩
󵄩
󵄩

𝑦
𝑛

󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩

𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

)

+ 2

󵄩
󵄩
󵄩
󵄩

𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩

𝐽𝑦
𝑛
− 𝐽𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

.

(55)

By (53) and (54), we have

lim
𝑛→∞

𝜙 (𝑥
𝑛
, 𝑦
𝑛
) = 0. (56)

From (50) and (51), we obtain

lim
𝑛→∞

𝜙 (𝑥
𝑛
, 𝑥
𝑛+1

) = lim
𝑛→∞

𝜙 (𝑥
𝑛
, 𝑧
𝑛
) = 0. (57)

From Lemma 5, we get

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩

𝑥
𝑛
− 𝑥
𝑛+1

󵄩
󵄩
󵄩
󵄩

= lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩

𝑥
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

= 0. (58)

Since
󵄩
󵄩
󵄩
󵄩
󵄩

𝐽𝑧
𝑛
− 𝐽𝑇
𝜇
𝑛

𝑦
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩

𝛼
𝑛
𝐽𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝐽𝑇
𝜇
𝑛

𝑦
𝑛
− 𝐽𝑇
𝜇
𝑛

𝑦
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

= 𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

𝐽𝑥
𝑛
− 𝐽𝑇
𝜇
𝑛

𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

(59)

and lim
𝑛→∞

𝛼
𝑛
= 0, we have

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩

𝐽𝑧
𝑛
− 𝐽𝑇
𝜇
𝑛

𝑦
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

= 0. (60)

Since 𝐽−1 is uniformly norm-to-norm continuous, we obtain

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩

𝑧
𝑛
− 𝑇
𝜇
𝑛

𝑦
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

= 0. (61)

Since lim
𝑛→∞

‖𝑥
𝑛
−𝑧
𝑛
‖ = 0 and 𝐽 is uniformly norm-to-norm

continuous,

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩

𝐽𝑥
𝑛
− 𝐽𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

= 0. (62)

By (46) and (49), we have

𝐽𝑇
𝜇
𝑛

𝑥
𝑛
=

1

1 − 𝛽
𝑛

(𝐽𝑦
𝑛
− 𝛽
𝑛
𝐽𝑥
𝑛
) ,

𝐽𝑇
𝜇
𝑛

𝑦
𝑛
=

1

1 − 𝛼
𝑛

(𝐽𝑧
𝑛
− 𝛼
𝑛
𝐽𝑥
𝑛
) .

(63)

From (63), we obtain
󵄩
󵄩
󵄩
󵄩
󵄩

𝐽𝑇
𝜇
𝑛

𝑥
𝑛
− 𝐽𝑇
𝜇
𝑛

𝑦
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

1

1 − 𝛽
𝑛

(𝐽𝑦
𝑛
− 𝛽
𝑛
𝐽𝑥
𝑛
)

−

1

1 − 𝛼
𝑛

(𝐽𝑧
𝑛
− 𝛼
𝑛
𝐽𝑥
𝑛
)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝐽𝑦
𝑛
+

𝛽
𝑛

1 − 𝛽
𝑛

(𝐽𝑦
𝑛
− 𝐽𝑥
𝑛
)

− (𝐽𝑧
𝑛
+

𝛼
𝑛

1 − 𝛼
𝑛

(𝐽𝑧
𝑛
− 𝐽𝑥
𝑛
))

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩

𝐽𝑦
𝑛
− 𝐽𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩

𝐽𝑥
𝑛
− 𝐽𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

+

𝛽
𝑛

1 − 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩

𝐽𝑦
𝑛
− 𝐽𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

+

𝛼
𝑛

1 − 𝛼
𝑛

󵄩
󵄩
󵄩
󵄩

𝐽𝑧
𝑛
− 𝐽𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

=

1

1 − 𝛼
𝑛

󵄩
󵄩
󵄩
󵄩

𝐽𝑧
𝑛
− 𝐽𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

+

1

1 − 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩

𝐽𝑦
𝑛
− 𝐽𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

.

(64)

Combining (53), (62), and (64), we get

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩

𝐽𝑇
𝜇
𝑛

𝑥
𝑛
− 𝐽𝑇
𝜇
𝑛

𝑦
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

= 0. (65)

Since 𝐽−1 is uniformly norm-to-norm continuous, we have

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩

𝑇
𝜇
𝑛

𝑥
𝑛
− 𝑇
𝜇
𝑛

𝑦
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

= 0. (66)

Since
󵄩
󵄩
󵄩
󵄩
󵄩

𝑥
𝑛
− 𝑇
𝜇
𝑛

𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩

𝑥
𝑛
− 𝑧
𝑛

󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩

𝑧
𝑛
− 𝑇
𝜇
𝑛

𝑦
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩

𝑇
𝜇
𝑛

𝑦
𝑛
− 𝑇
𝜇
𝑛

𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

,

(67)

therefore, by (58), (61), (66), and (67), we obtain

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩

𝑥
𝑛
− 𝑇
𝜇
𝑛

𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

= 0. (68)

From Lemma 7, we have 𝑥
𝑛

∈ 𝐹(I). Since 𝐹(I) is closed
and lim

𝑛→∞
𝑥
𝑛

= V, we have V ∈ 𝐹(I), where V =

lim
𝑛→∞

Π
𝐹(I)𝑥𝑛.

If we set 𝛽
𝑛
= 1, then the iteration (46) reduces modified

Mann type. Hence we obtain the following corollary.

Corollary 10. Let 𝑆 be a left reversible semigroup and let
I = {𝑇(𝑠) : 𝑠 ∈ 𝑆} be a representation of 𝑆 as relatively
nonexpansive mappings from a nonempty, closed, and convex
subset 𝐶 of a uniformly convex and uniformly smooth Banach
space 𝐸 into itself. Let 𝑋 be a subspace of 𝑙∞(𝑆) and let {𝜇

𝑛
}

be an asymptotically left invariant sequence of means on 𝑋.
Let {𝛼

𝑛
} be a sequence of real number such that 𝛼

𝑛
∈ (0, 1)

and lim
𝑛→∞

𝛼
𝑛
= 0. Let {𝑥

𝑛
} be a sequence generated by the

following algorithm:

𝑥
0
∈ 𝐶, 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑖𝑙𝑦,

𝑥
𝑛+1

= Π
𝐶
𝐽

−1

(𝛼
𝑛
𝐽𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝐽𝑇
𝜇
𝑛

𝑥
𝑛
) , ∀𝑛 ≥ 0.

(69)

If the interior of𝐹(I) is nonempty, then {𝑥
𝑛
} converges strongly

to some common fixed point 𝐹(I).
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In a Hilbert space, 𝐽 is the identity operator. Theorems 8
and 9 reduce to the following.

Corollary 11. Let 𝑆 be a left reversible semigroup and let
I = {𝑇(𝑠) : 𝑠 ∈ 𝑆} be a representation of 𝑆 as relatively
nonexpansive mappings from a nonempty, closed, and convex
subset 𝐶 of a Hilbert space 𝐻 into itself. Let 𝑋 be a subspace
of 𝑙∞(𝑆) and let {𝜇

𝑛
} be an asymptotically left invariant

sequence of means on 𝑋. Let {𝛼
𝑛
} be a sequence in (0, 1) such

that lim
𝑛→∞

𝛼
𝑛
= 0. Let {𝑥

𝑛
} be a sequence generated by the

following algorithm:

𝑥
0
∈ 𝐶, 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑖𝑙𝑦,

𝑥
𝑛+1

= 𝑃
𝐶
(𝛼
𝑛
𝑥
0
+ (1 − 𝛼

𝑛
) 𝑇
𝜇
𝑛

𝑥
𝑛
) , ∀𝑛 ≥ 0.

(70)

If the interior of𝐹(I) is nonempty, then {𝑥
𝑛
} converges strongly

to some common fixed point 𝐹(I), where 𝑃
𝐶

is a metric
projection.

Corollary 12. Let 𝑆 be a left reversible semigroup and let
I = {𝑇(𝑠) : 𝑠 ∈ 𝑆} be a representation of 𝑆 as relatively
nonexpansive mappings from a nonempty, closed, and convex
subset 𝐶 of a Hilbert space𝐻 into itself. Let𝑋 be a subspace of
𝑙

∞

(𝑆) and let {𝜇
𝑛
} be an asymptotically left invariant sequence

of means on𝑋. Let {𝛼
𝑛
} and {𝛽

𝑛
} be sequences of real numbers

such that 𝛼
𝑛
, 𝛽
𝑛
∈ (0, 1) and lim

𝑛→∞
𝛼
𝑛
= 0, lim

𝑛→∞
𝛽
𝑛
= 1.

Let {𝑥
𝑛
} be a sequence generated by the following algorithm:

𝑥
0
∈ 𝐶, 𝑐ℎ𝑜𝑠𝑒𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑖𝑙𝑦,

𝑦
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑇
𝜇
𝑛

𝑥
𝑛
,

𝑥
𝑛+1

= 𝑃
𝐶
(𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑇
𝜇
𝑛

𝑦
𝑛
) , ∀𝑛 ≥ 0.

(71)

If the interior of𝐹(I) is nonempty, then {𝑥
𝑛
} converges strongly

to some common fixed point 𝐹(I), where 𝑃
𝐶

is a metric
projection.
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