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We establish the existence and uniqueness of a positive solution to the following fourth-order value problem: 𝑢(4)(𝑥) = 𝑎(𝑥)𝑢
𝜎
(𝑥),

𝑥 ∈ (0, 1) with the boundary conditions 𝑢(0) = 𝑢(1) = 𝑢
󸀠
(0) = 𝑢

󸀠
(1) = 0, where 𝜎 ∈ (−1, 1) and 𝑎 is a nonnegative continuous

function on (0, 1) that may be singular at 𝑥 = 0 or 𝑥 = 1. We also give the global behavior of such a solution.

1. Introduction

The purpose of this paper is to study the existence and
uniqueness with a precise global behavior of a positive
solution 𝑢 ∈ 𝐶

4
((0, 1)) ∩ 𝐶([0, 1]) for the following fourth-

order two-point boundary value problem:

𝑢
(4)

(𝑥) = 𝑎 (𝑥) 𝑢
𝜎
(𝑥) , 𝑥 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 𝑢
󸀠
(0) = 𝑢

󸀠
(1) = 0,

(1)

where−1 < 𝜎 < 1 and 𝑎 is a nonnegative continuous function
on (0, 1) that may be singular at 𝑥 = 0 or 𝑥 = 1 and satisfies
some hypotheses related to the class of Karamata regularly
varying functions.

There have been extensive studies on fourth-order
boundary value problems with diverse boundary conditions
via many methods; see, for example, [1–9] and the references
therein.

A naturel motivation for studying higher order boundary
value problems lies in their applications. For example, it
is well known that the deformation of an elastic beam in
equilibrium state, whose both ends clamped, can be described
by fourth-order boundary value problem

𝑢
(4)

(𝑥) = 𝑔 (𝑥, 𝑢 (𝑥)) , 𝑥 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 𝑢
󸀠
(0) = 𝑢

󸀠
(1) = 0.

(2)

Our aim in this paper is to give a contribution to the
study of these problems by exploiting the properties of the
Karamata class of functions.

To state our result, we need some notations.We denote by
𝐶([0, 1]) the set of all continuous functions𝑓on [0, 1], andwe
will useK to denote the set of Karamata functions 𝐿 defined
on (0, 𝜂] by

𝐿 (𝑡) := 𝑐 exp(∫

𝜂

𝑡

𝑧 (𝑠)

𝑠

𝑑𝑠) , (3)

for some 𝜂 > 1, where 𝑐 > 0 and 𝑧 ∈ 𝐶([0, 𝜂]) such that
𝑧(0) = 0. It is clear that a function 𝐿 is inK if and only if 𝐿 is
a positive function in 𝐶

1
((0, 𝜂]) such that

lim
𝑡→0+

𝑡𝐿
󸀠
(𝑡)

𝐿 (𝑡)

= 0. (4)

For two nonnegative functions𝑓 and 𝑔 defined on a set 𝑆,
the notation 𝑓(𝑥) ≈ 𝑔(𝑥), 𝑥 ∈ 𝑆, means that there exists 𝑐 > 0

such that (1/𝑐)𝑓(𝑥) ≤ 𝑔(𝑥) ≤ 𝑐𝑓(𝑥), for all 𝑥 ∈ 𝑆. We denote
by 𝑥
+
= max(𝑥, 0), 𝑥 ∧ 𝑡 = min(𝑥, 𝑡), 𝑥 ∨ 𝑡 = max(𝑥, 𝑡), for

𝑥, 𝑡 ∈ R, and 𝐵
+
((0, 1)) the set of all measurable functions

on (0, 1).
Throughout this paper, we assume that 𝑎 is nonnegative

on (0, 1) and satisfies the following condition:
(𝐻0) 𝑎 ∈ 𝐶((0, 1)) such that for 𝑡 ∈ (0, 1)

𝑎 (𝑡) ≈ 𝑡
−𝜆
𝐿1 (𝑡) (1 − 𝑡)

−𝜇
𝐿2 (1 − 𝑡) , (5)
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where 𝜆 ≤ 3 + 𝜎, 𝜇 ≤ 3 + 𝜎, 𝐿1, 𝐿2 ∈ K satisfying

∫

𝜂

0

𝑡
2+𝜎−𝜆

𝐿1 (𝑡) 𝑑𝑡 < ∞, ∫

𝜂

0

𝑡
2+𝜎−𝜇

𝐿2 (𝑡) 𝑑𝑡 < ∞. (6)

In the sequel, we introduce the function 𝜃𝜆,𝜇 defined on
(0, 1) by

𝜃𝜆,𝜇 (𝑥) = 𝑥
min(2,(4−𝜆)/(1−𝜎))

(𝐿̃1(𝑥))
1/(1−𝜎)

× (1 − 𝑥)
min(2,(4−𝜆)/(1−𝜎))

(𝐿̃2 (1 − 𝑥))

1/(1−𝜎)
,

(7)

where

𝐿̃1 (𝑥) =

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

1 if 𝜆 < 2 (1 + 𝜎) ,

∫

𝜂

𝑥

𝐿1 (𝑠)

𝑠

𝑑𝑠 if 𝜆 = 2 (1 + 𝜎) ,

𝐿1 (𝑥) if 2 (1 + 𝜎) < 𝜆 < 3 + 𝜎,

∫

𝑥

0

𝐿1 (𝑠)

𝑠

𝑑𝑠 if 𝜆 = 3 + 𝜎,

𝐿̃2 (𝑥) =

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

1 if 𝜇 < 2 (1 + 𝜎) ,

∫

𝜂

𝑥

𝐿2 (𝑠)

𝑠

𝑑𝑠 if 𝜇 = 2 (1 + 𝜎) ,

𝐿2 (𝑥) if 2 (1 + 𝜎) < 𝜇 < 3 + 𝜎,

∫

𝑥

0

𝐿2 (𝑠)

𝑠

𝑑𝑠 if 𝜇 = 3 + 𝜎.

(8)

Our main result is the following.

Theorem 1. Let 𝜎 ∈ (−1, 1) and assume that 𝑎 satisfies
(𝐻0). Then, problem (1) has a unique positive solution 𝑢 ∈

𝐶
4
((0, 1)) ∩ 𝐶([0, 1]) satisfying for 𝑥 ∈ (0, 1)

𝑢 (𝑥) ≈ 𝜃𝜆,𝜇 (𝑥) . (9)

This paper is organized as follows. Some preliminary
lemmas are stated and proved in the next section, involving
some already known results on Karamata functions. In
Section 3, we give the proof of Theorem 1.

2. Technical Lemmas

To let the paper be self-contained, we begin this section by
recapitulating some properties of Karamata regular variation
theory. The following is due to [10, 11].

Lemma 2. The following assertions hold.

(i) Let 𝐿 ∈ K and 𝜀 > 0; then, one has

lim
𝑡→0+

𝑡
𝜀
𝐿 (𝑡) = 0. (10)

(ii) Let 𝐿1, 𝐿2 ∈ K and let 𝑝 ∈ R. Then, one has 𝐿1 +𝐿2 ∈

K, 𝐿1𝐿2 ∈ K, and 𝐿
𝑝

1 ∈ K.

Example 3. Let 𝑚 be a positive integer. Let 𝑐 > 0, let
(𝜇1, 𝜇2, . . . , 𝜇𝑚) ∈ R𝑚, and let 𝑑 be a sufficiently large positive
real number such that the function

𝐿 (𝑡) = 𝑐

𝑚

∏

𝑘=1

(log𝑘 (
𝑑

𝑡

))

𝜇
𝑘

(11)

is defined and positive on (0, 𝜂], for some 𝜂 > 1, where
log𝑘𝑥 = log ∘ log ∘ ⋅ ⋅ ⋅ ∘ log𝑥 (𝑘 times). Then, 𝐿 ∈ K.

Applying Karamata’s theorem (see [10, 11]), we get the
following.

Lemma 4. Let 𝜇 ∈ R and let 𝐿 be a function inK defined on
(0, 𝜂]. One has the following:

(i) if 𝜇 < −1, then ∫

𝜂

0
𝑠
𝜇
𝐿(𝑠)𝑑𝑠 diverges and

∫

𝜂

𝑡
𝑠
𝜇
𝐿(𝑠)𝑑𝑠∼𝑡→0+ − (𝑡

1+𝜇
𝐿(𝑡)/(𝜇 + 1));

(ii) if 𝜇 > −1, then ∫

𝜂

0
𝑠
𝜇
𝐿(𝑠)𝑑𝑠 converges and

∫

𝑡

0
𝑠
𝜇
𝐿(𝑠)𝑑𝑠∼𝑡→0+(𝑡

1+𝜇
𝐿(𝑡)/(𝜇 + 1)).

Lemma 5 (see [12] or [13]). Let 𝐿 ∈ K be defined on (0, 𝜂].
Then, one has

lim
𝑡→0+

𝐿 (𝑡)

∫

𝜂

𝑡
(𝐿 (𝑠) /𝑠) 𝑑𝑠

= 0. (12)

If further ∫𝜂
0
(𝐿(𝑠)/𝑠)𝑑𝑠 converges, then one has

lim
𝑡→0+

𝐿 (𝑡)

∫

𝑡

0
(𝐿 (𝑠) /𝑠) 𝑑𝑠

= 0. (13)

Remark 6. Let 𝐿 ∈ K be defined on (0, 𝜂]; then, using (4) and
(12), we deduce that

𝑡 󳨀→ ∫

𝜂

𝑡

𝐿 (𝑠)

𝑠

𝑑𝑠 ∈ K. (14)

If further ∫𝜂
0
(𝐿(𝑠)/𝑠)𝑑𝑠 converges, we have by (12) that

𝑡 󳨀→ ∫

𝑡

0

𝐿 (𝑠)

𝑠

𝑑𝑠 ∈ K. (15)

Lemma 7. Given that 𝑓 ∈ 𝐶([0, 1]), then the unique
continuous solution of

𝑢
(4)

(𝑥) = 𝑓 (𝑥) , 𝑥 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 𝑢
󸀠
(0) = 𝑢

󸀠
(1) = 0

(16)

is given by

𝑢 (𝑥) = 𝐺𝑓 (𝑥) := ∫

1

0

𝐺 (𝑥, 𝑡) 𝑓 (𝑡) 𝑑𝑡, (17)

where
𝐺 (𝑥, 𝑡)

=

1

6

(𝑥 ∧ 𝑡)
2
(1 − 𝑥 ∨ 𝑡)

2
[3 (𝑥 ∨ 𝑡) − (𝑥 ∧ 𝑡) (1 + 2 (𝑥 ∨ 𝑡))]

(18)

is Green’s function for the boundary value problem (16).
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Remark 8. For 𝑥, 𝑡 ∈ (0, 1), we have 𝐺(1 − 𝑥, 1 − 𝑡) = 𝐺(𝑥, 𝑡).

In the following, we give some estimates on the Green
function 𝐺(𝑥, 𝑡) that will be used later.

Proposition 9. On (0, 1) × (0, 1), one has the following:

(i) (1/3)(𝑥 ∧ 𝑡)
2
(1 − 𝑥 ∨ 𝑡)

2
(𝑥 ∨ 𝑡)(1 − 𝑥 ∧ 𝑡) ≤ 𝐺(𝑥, 𝑡) ≤

(1/2)(𝑥 ∧ 𝑡)
2
(1 − 𝑥 ∨ 𝑡)

2
(𝑥 ∨ 𝑡)(1 − 𝑥 ∧ 𝑡);

(ii) (1/3)𝑥2(1−𝑥)2𝑡2(1−𝑡)2 ≤ 𝐺(𝑥, 𝑡) ≤ (1/2)𝑥(1−𝑥)𝑡
2
(1−

𝑡)
2.

Proof. (i) It follows from the fact that for 𝑥, 𝑡 ∈ (0, 1) × (0, 1)

we have

2 (𝑥 ∨ 𝑡) (1 − 𝑥 ∧ 𝑡) ≤ 3 (𝑥 ∨ 𝑡) − (𝑥 ∧ 𝑡) (1 + 2𝑥 ∨ 𝑡)

≤ 3 (𝑥 ∨ 𝑡) (1 − 𝑥 ∧ 𝑡) .

(19)

(ii) Since for 𝑥, 𝑡 ∈ (0, 1) we have 𝑥
2
(1 − 𝑥)

2
𝑡
2
(1 − 𝑡)

2
≤

(𝑥∧ 𝑡)
2
(1−𝑥∨ 𝑡)

2
(𝑥∨ 𝑡)(1−𝑥∧ 𝑡), the result follows from (i).

As a consequence of the assertion (ii) of Proposition 9, we
obtain the following.

Corollary 10. Let 𝑓 ∈ 𝐵
+
((0, 1)) and put 𝐺𝑓(𝑥) :=

∫

1

0
𝐺(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡, for 𝑥 ∈ (0, 1].
Then,

𝐺𝑓 (𝑥) < ∞

for 𝑥 ∈ (0, 1) iff ∫

1

0

𝑡
2
(1 − 𝑡)

2
𝑓 (𝑡) 𝑑𝑡 < ∞.

(20)

Proposition 11. Let 𝑓 be a measurable function such that the
function 𝑡 → 𝑡

2
(1 − 𝑡)

2
𝑓(𝑡) is continuous and integrable on

(0, 1). Then, 𝐺𝑓 is the unique solution in 𝐶
4
((0, 1)) ∩ 𝐶([0, 1])

of the problem

𝑢
(4)

(𝑥) = 𝑓 (𝑥) , 𝑥 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 𝑢
󸀠
(0) = 𝑢

󸀠
(1) = 0.

(21)

Proof. FromCorollary 10, the function𝐺𝑓 is defined on (0, 1)

and, by Proposition 9, we have

𝐺 (𝑓) (𝑥) ≤

1

2

𝑥 (1 − 𝑥)∫

1

0

𝑡
2
(1 − 𝑡)

2 󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡)

󵄨
󵄨
󵄨
󵄨
𝑑𝑡. (22)

Now, since 𝑡 → 𝑡
2
𝑓(𝑡) is integrable near 0 and 𝑡 → (1 −

𝑡)
2
𝑓(𝑡) is integrable near 1, then, for 𝑥 ∈ (0, 1), we have

𝐺𝑓 (𝑥) =

1

2

𝑥(1 − 𝑥)
2
∫

𝑥

0

𝑡
2
𝑓 (𝑡) 𝑑𝑡

+

1

2

𝑥
2
∫

1

𝑥

𝑡(1 − 𝑡)
2
𝑓 (𝑡) 𝑑𝑡

−

1

6

(1 + 2𝑥) (1 − 𝑥)
2
∫

𝑥

0

𝑡
3
𝑓 (𝑡) 𝑑𝑡

−

1

6

𝑥
3
∫

1

𝑥

(1 + 2𝑡) (1 − 𝑡)
2
𝑓 (𝑡) 𝑑𝑡.

(23)

This gives

(𝐺𝑓)
󸀠
(𝑥) =

1

2

(1 − 3𝑥) (1 − 𝑥) ∫

𝑥

0

𝑡
2
𝑓 (𝑡) 𝑑𝑡

+ 𝑥∫

1

𝑥

𝑡(1 − 𝑡)
2
𝑓 (𝑡) 𝑑𝑡+𝑥 (1 − 𝑥)∫

𝑥

0

𝑡
3
𝑓 (𝑡) 𝑑𝑡

−

1

2

𝑥
2
∫

1

𝑥

(1 + 2𝑡) (1 − 𝑡)
2
𝑓 (𝑡) 𝑑𝑡,

(𝐺𝑓)
󸀠󸀠
(𝑥) = (3𝑥 − 2) ∫

𝑥

0

𝑡
2
𝑓 (𝑡) 𝑑𝑡

+ ∫

1

𝑥

𝑡(1 − 𝑡)
2
𝑓 (𝑡) 𝑑𝑡 + (1 − 2𝑥) ∫

𝑥

0

𝑡
3
𝑓 (𝑡) 𝑑𝑡

− 𝑥∫

1

𝑥

(1 + 2𝑡) (1 − 𝑡)
2
𝑓 (𝑡) 𝑑𝑡,

(𝐺𝑓)
󸀠󸀠󸀠

(𝑥) = ∫

𝑥

0

(3𝑡
2
− 2𝑡
3
) 𝑓 (𝑡) 𝑑𝑡

− ∫

1

𝑥

(1 + 2𝑡) (1 − 𝑡)
2
𝑓 (𝑡) 𝑑𝑡,

(𝐺𝑓)
(4)

(𝑥) = 𝑓 (𝑥) .

(24)

Moreover, we have 𝐺𝑓(0) = 𝐺𝑓(1) = (𝐺𝑓)
󸀠
(0) =

(𝐺𝑓)
󸀠
(1) = 0.

Finally, we prove the uniqueness. Let 𝑢, V ∈ 𝐶
4
((0, 1)) ∩

𝐶([0, 1]) be two solutions of (21) and put 𝑤 = V − 𝑢. Then,
𝑤 ∈ 𝐶

4
((0, 1)) ∩ 𝐶([0, 1]) and 𝑤

(4)
= 0. Hence, it follows that

𝑤(𝑥) = 𝑎𝑥
3
+ 𝑏𝑥
2
+ 𝑐𝑥 + 𝑑. Using the fact that 𝑤(0) = 𝑤(1) =

𝑤
󸀠
(0) = 𝑤

󸀠
(1) = 0, we conclude that 𝑤 = 0 and so 𝑢 = V.

In the sequel, we assume that 𝛽 ≤ 3 and 𝛾 ≤ 3 and we put

𝑏 (𝑡) = 𝑡
−𝛽

𝐿3 (𝑡) (1 − 𝑡)
−𝛾
𝐿4 (1 − 𝑡) , (25)

where 𝐿3, 𝐿4 ∈ K satisfy

∫

𝜂

0

𝑡
2−𝛽

𝐿3 (𝑡) 𝑑𝑡 < ∞, ∫

𝜂

0

𝑡
2−𝛾

𝐿4 (𝑡) 𝑑𝑡 < ∞. (26)

So, we aim to give some estimates on the potential
function 𝐺𝑏(𝑥).



4 Abstract and Applied Analysis

We define the Karamata functions 𝜓𝛽, 𝜙𝛾 by

𝜓𝛽 (𝑥) =

{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{

{

∫

𝑥

0

𝐿3 (𝑡)

𝑡

𝑑𝑡 if 𝛽 = 3,

𝐿3 (𝑥) if 2 < 𝛽 ≤ 3,

∫

𝜂

𝑥

𝐿3 (𝑡)

𝑡

𝑑𝑡 if 𝛽 = 2,

1 if 𝛽 < 2,

𝜙𝛾 (𝑥) =

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

∫

𝑥

0

𝐿4 (𝑡)

𝑡

𝑑𝑡 if 𝛾 = 3,

𝐿4 (𝑥) if 2 < 𝛾 < 3,

∫

𝜂

𝑥

𝐿4 (𝑡)

𝑡

𝑑𝑡 if 𝛾 = 2,

1 if 𝛾 < 2.

(27)

Then, we have the following.

Proposition 12. For 𝑥 ∈ (0, 1),

𝐺𝑏 (𝑥) ≈ 𝑥
min(2,4−𝛽)

(1 − 𝑥)
min(2,4−𝛾)

𝜓𝛽 (𝑥) 𝜙𝛾 (1 − 𝑥) . (28)

Proof. Using Proposition 9, we have

𝐺𝑏 (𝑥) ≈ ∫

1

0

(1 − 𝑡)
−𝛾
𝑡
−𝛽

(𝑥 ∧ 𝑡)
2

× (1 − 𝑥 ∨ 𝑡)
2
(𝑥 ∨ 𝑡) (1 − 𝑥 ∧ 𝑡) 𝐿3 (𝑡) 𝐿4 (1−𝑡) 𝑑𝑡

≈ 𝑥(1 − 𝑥)
2
∫

𝑥

0

(1 − 𝑡)
1−𝛾

𝑡
2−𝛽

𝐿3 (𝑡) 𝐿4 (1 − 𝑡) 𝑑𝑡

+ 𝑥
2
(1 − 𝑥) ∫

1

𝑥

(1 − 𝑡)
2−𝛾

𝑡
1−𝛽

𝐿3 (𝑡) 𝐿4 (1 − 𝑡) 𝑑𝑡

= 𝑥(1 − 𝑥)
2
𝐼 (𝑥) + 𝑥

2
(1 − 𝑥) 𝐽 (𝑥) .

(29)

For 0 < 𝑥 ≤ 1/2, we have 𝐼(𝑥) ≈ ∫

𝑥

0
𝑡
2−𝛽

𝐿3(𝑡)𝑑𝑡. So, using
Lemma 4 and hypothesis (26), we deduce that

𝐼 (𝑥) ≈

{
{

{
{

{

∫

𝑥

0

𝐿3 (𝑡)

𝑡

𝑑𝑡 if 𝛽 = 3,

𝑥
3−𝛽

𝐿3 (𝑥) if 𝛽 < 3.

(30)

Now, we have

𝐽 (𝑥) ≈ ∫

1/2

𝑥

𝑡
1−𝛽

𝐿3 (𝑡) 𝑑𝑡 + ∫

1

1/2

(1 − 𝑡)
2−𝛾

𝐿4 (1 − 𝑡) 𝑑𝑡

≈ 1 + ∫

1/2

𝑥

𝑡
1−𝛽

𝐿3 (𝑡) 𝑑𝑡.

(31)

This implies by Lemma 4 that

𝐽 (𝑥) ≈

{
{
{
{

{
{
{
{

{

𝑥
2−𝛽

𝐿3 (𝑥) if 2 < 𝛽 ≤ 3,

∫

𝜂

𝑥

𝐿3 (𝑡)

𝑡

𝑑𝑡 if 𝛽 = 2,

1 if 𝛽 < 2.

(32)

Hence, it follows by Lemma 5 and hypothesis (26) that,
for 0 < 𝑥 ≤ 1/2, we get

𝐺𝑏 (𝑥) ≈

{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{

{

𝑥∫

𝑥

0

𝐿3 (𝑡)

𝑡

𝑑𝑡 if 𝛽 = 3,

𝑥
4−𝛽

𝐿3 (𝑥) if 2 < 𝛽 < 3,

𝑥
2
∫

𝜂

𝑥

𝐿3 (𝑡)

𝑡

𝑑𝑡 if 𝛽 = 2

𝑥
2 if 𝛽 < 2,

(33)

That is, for 0 < 𝑥 ≤ 1/2,

𝐺𝑏 (𝑥) ≈ 𝑥
min(2,4−𝛽)

𝜓𝛽 (𝑥) . (34)

Now, since𝐺(1−𝑥, 1− 𝑡) = 𝐺(𝑥, 𝑡), we use similar arguments
as above applied to 𝐿4 instead of 𝐿3 to obtain

𝐺𝑏 (𝑥) ≈ (1 − 𝑥)
min(2,4−𝛾)

𝜙𝛾 (1 − 𝑥) for 1

2

≤ 𝑥 ≤ 1. (35)

This togetherwith (34) implies that, for𝑥 ∈ (0, 1), we have

𝐺𝑏 (𝑥) ≈ 𝑥
min(2,4−𝛽)

(1 − 𝑥)
min(2,4−𝛾)

𝜓𝛽 (𝑥) 𝜙𝛾 (1 − 𝑥) . (36)

3. Proof of Theorem 1

In order to proveTheorem 1, we need the following lemma.

Lemma 13. Assume that the function 𝑎 satisfies (𝐻0) and put
𝜔(𝑡) = 𝑎(𝑡)(𝜃𝜆,𝜇(𝑡))

𝜎 for 𝑡 ∈ (0, 1).Then, one has, for𝑥 ∈ (0, 1),

𝐺𝜔 (𝑥) ≈ 𝜃𝜆,𝜇 (𝑥) . (37)

Proof. Put 𝑟 = min(2, (4 − 𝜆)/(1 − 𝜎)) and 𝑠 = min(2, (4 −

𝜇)/(1 − 𝜎)). Then, for 𝑡 ∈ (0, 1), we have

𝜔 (𝑡) = 𝑡
−𝜆+𝑟𝜎

𝐿1 (𝑡) (𝐿̃1(𝑡))
𝜎/(1−𝜎)

(1 − 𝑡)
−𝜇+𝑠𝜎

× 𝐿2 (1 − 𝑡) (𝐿̃2(1 − 𝑡))

𝜎/(1−𝜎)
.

(38)

Let 𝛽 = 𝜆 − 𝑟𝜎, 𝛾 = 𝜇 − 𝑠𝜎, 𝐿3(𝑡) = 𝐿1(𝑡)(𝐿̃1(𝑡))
𝜎/(1−𝜎),

and 𝐿4(𝑡) = 𝐿2(𝑡)(𝐿̃2(𝑡))
𝜎/(1−𝜎). Then, using Proposition 12,

we obtain by a simple computation that

𝐺 (𝜔) (𝑥) ≈ 𝜃𝜆,𝜇 (𝑥) . (39)

Proof of Theorem 1. From Lemma 13, there exists𝑀 > 1 such
that for each 𝑥 ∈ (0, 1)

1

𝑀

𝜃𝜆,𝜇 (𝑥) ≤ 𝐺𝜔 (𝑥) ≤ 𝑀𝜃𝜆,𝜇 (𝑥) , (40)

where 𝜔(𝑡) = 𝑎(𝑡)(𝜃𝜆,𝜇(𝑡))
𝜎.
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Put 𝑐0 = 𝑀
1/(1−|𝜎|) and let

Λ = {𝑢 ∈ 𝐶 ([0, 1]) :

1

𝑐0

𝜃𝜆,𝜇 ≤ 𝑢 ≤ 𝑐0𝜃𝜆,𝜇} . (41)

In order to use a fixed point theorem, we define the
operator 𝑇 on Λ by

𝑇𝑢 (𝑥) = 𝐺 (𝑎𝑢
𝜎
) (𝑥) = ∫

1

0

𝐺 (𝑥, 𝑡) 𝑎 (𝑡) 𝑢
𝜎
(𝑡) 𝑑𝑡. (42)

For this choice of 𝑐0, we can easily prove that, for 𝑢 ∈ Λ,
we have 𝑇𝑢 ≤ 𝑐0𝜃𝜆,𝜇 and 𝑇𝑢 ≥ (1/𝑐0)𝜃𝜆,𝜇.

Now, since the function (𝑥, 𝑡) → 𝐺(𝑥, 𝑡) is continuous
on [0, 1] × [0, 1] and, by Proposition 9, Corollary 10, and
Lemma 13, the function 𝑡 → 𝑡

2
(1 − 𝑡)

2
𝑎(𝑡)𝜃
𝜎
𝜆,𝜇(𝑡) is

integrable on (0, 1), we deduce that the operator𝑇 is compact
from Λ to itself. It follows by the Schauder fixed point
theorem that there exists 𝑢 ∈ Λ such that 𝑇𝑢 = 𝑢. Then,
𝑢 ∈ 𝐶([0, 1]) and 𝑢 satisfies the equation

𝑢 (𝑥) = 𝐺 (𝑎𝑢
𝜎
) (𝑥) . (43)

Since the function 𝑡 → 𝑡
2
(1 − 𝑡)

2
𝑎(𝑡)𝑢
𝜎
(𝑡) is continuous

and integrable on (0, 1), then by Proposition 11, the function
𝑢 is a positive solution in𝐶

4
((0, 1)) ∩𝐶([0, 1]) of problem (1).

Finally, let us prove that 𝑢 is the unique positive continu-
ous solution satisfying (9). To this aim, we assume that (1) has
two positive solutions 𝑢, V ∈ 𝐶

4
((0, 1)) ∩ 𝐶([0, 1]) satisfying

(9) and consider the nonempty set 𝐽 = {𝑚 ≥ 1 : 1/𝑚 ≤ 𝑢/V ≤

𝑚} and put 𝑐 = inf 𝐽.Then, 𝑐 ≥ 1 andwe have (1/𝑐)V ≤ 𝑢 ≤ 𝑐V.
It follows that 𝑢𝜎 ≤ 𝑐

|𝜎|V𝜎 and consequently

(𝑐
|𝜎|V − 𝑢)

(4)
= 𝑎 (𝑐

|𝜎|V𝜎 − 𝑢
𝜎
) := 𝑓 ≥ 0,

(𝑐
|𝜎|V − 𝑢) (0) = (𝑐

|𝜎|V − 𝑢) (1)

= (𝑐
|𝜎|V − 𝑢)

󸀠
(0)

= (𝑐
|𝜎|V − 𝑢)

󸀠
(1) = 0.

(44)

Since the function 𝑡 → 𝑡
2
(1 − 𝑡)

2
𝑓(𝑡) is continuous and

integrable on (0, 1), it follows by Proposition 11 that 𝑐|𝜎|V −

𝑢 = 𝐺(𝑎(𝑐
|𝜎|V𝜎 − 𝑢

𝜎
)) ≥ 0. By symmetry, we obtain also that

V ≤ 𝑐
|𝜎|

𝑢. Hence, 𝑐|𝜎| ∈ 𝐽 and 𝑐 ≤ 𝑐
|𝜎|. Since |𝜎| < 1, then

𝑐 = 1 and consequently 𝑢 = V.

Example 14. Let 𝜎 ∈ (−1, 1) and let 𝑎 be a positive continuous
function on (0, 1) such that

𝑎 (𝑡) ≈ 𝑡
−𝜆
(1 − 𝑡)

−𝜇 log( 2

1 − 𝑡

) , (45)

where𝜆 < 3+𝜎 and𝜇 < 3+𝜎.Then, usingTheorem 1, problem
(1) has a unique positive continuous solution 𝑢 satisfying the
following estimates:

𝑢 (𝑥) ≈ 𝑥
min(2,(4−𝜆)/(1−𝜎))

(𝐿̃1(𝑥))
1/(1−𝜎)

× (1 − 𝑥)
min(2,(4−𝜇)/(1−𝜎))

(𝐿̃2(1 − 𝑥))

1/(1−𝜎)
,

(46)

where

𝐿̃1 (𝑥) =

{

{

{

1 if 𝜆 ̸= 2 (1 + 𝜎) ,

log( 2

𝑥

) if 𝜆 = 2 (1 + 𝜎) ,

𝐿̃2 (𝑥) =

{
{
{
{
{
{

{
{
{
{
{
{

{

1 if 𝜇 < 2 (1 + 𝜎) ,

(log( 2

𝑥

))

2

if 𝜇 = 2 (1 + 𝜎) ,

log( 2

𝑥

) if 2 (1 + 𝜎) < 𝜇 < 3 + 𝜎.

(47)
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