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This paper gives a new version of Gronwall’s inequality on time scales. The method used in the proof is much different from that in
the literature. Finally, an application is presented to show the feasibility of the obtained Gronwall’s inequality.

1. Introduction and Motivation

Recently, an interesting field of research is to study the
dynamic equations on time scales, which have been exten-
sively studied. For example, one can see [1–17] and references
cited therein. A time scale T is an arbitrary nonempty closed
subset of the real numbersR.The forward and backward jump
operators are defined by 𝜎(𝑡) := inf{𝑠 ∈ T : 𝑠 > 𝑡}, 𝜌(𝑡) :=

sup{𝑠 ∈ T : 𝑠 > 𝑡}. A point 𝑡 ∈ T , 𝑡 > inf T , is said to be left
dense if 𝜌(𝑡) = 𝑡 and right dense if 𝑡 < inf T and 𝜎(𝑡) = 𝑡. The
mapping 𝜇 : T → R+ defined by 𝜇(𝑡) = 𝜎(𝑡) − 𝑡 is called
graininess. A function 𝑔 : T → R is said to be rd-continuous
provided 𝑔 is continuous at right-dense points. The set of
all such rd-continuous functions is denoted by Crd(T ,R). A
function𝑝 : T → R is regressive provided 1+𝜇(𝑡)𝑝(𝑡) ̸= 0 for
𝑡 ∈ T . DenoteR+(T ,R) := {𝑝 ∈ Crd(T ,R) : 1+𝜇(𝑡)𝑝(𝑡) > 0}.

One of important topics is the differential inequalities on
time scales. A nonlinear version of Gronwall’s inequality is
presented in [2, Theorem 6.4, pp 256]. This version is stated
as follows.

Theorem A. Let 𝑦, 𝑓 ∈ C
𝑟𝑑
R(T ,R), 𝑝(𝑡) ∈ R+(T ,R), and

𝑝(𝑡) ≥ 0. Then

𝑦 (𝑡) ≤ 𝑓 (𝑡) + ∫

𝑡

𝑡0

𝑦 (𝑠) 𝑝 (𝑠) Δ𝑠, ∀𝑡 ∈ T , (1)

implies

𝑦 (𝑡) ≤ 𝑓 (𝑡) + ∫

𝑡

𝑡0

𝑒
𝑝
(𝑡, 𝜎 (𝑠)) 𝑓 (𝑠) 𝑝 (𝑠) Δ𝑠, ∀𝑡 ∈ T . (2)

Taking 𝑓(𝑡) ≡ 𝛼, a classical version of Gronwall’s inequality
follows (see [2, Corollary 6.7, pp 257]).

Theorem B. Let 𝑝 ∈ R+(T ,R), 𝑝(𝑡) ≥ 0, 𝑦 ∈ C
𝑟𝑑
R(T ,R),

and 𝛼 ∈ R. Then

𝑦 (𝑡) ≤ 𝛼 + ∫

𝑡

𝑡0

𝑦 (𝑠) 𝑝 (𝑠) Δ𝑠, ∀𝑡 ∈ T , (3)

implies

𝑦 (𝑡) ≤ 𝛼𝑒
𝑝
(𝑡, 𝑡
0
) , ∀𝑡 ∈ T . (4)

This paper presents a new version of Gronwall’s inequality as
follows.

Theorem 1. Let −𝑝 ∈ R+(T ,R) and 𝑦 ∈ C
𝑟𝑑
R(T ,R).

Suppose that 𝑝(𝑡) ≥ 0, 𝑦(𝑡) ≥ 0, and 𝛼 > 0. Then

𝑦 (𝑡) ≤ 𝛼 +

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝑡0

𝑦 (𝑠) 𝑝 (𝑠) Δ𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

, ∀𝑡 ∈ T , (5)

implies

𝑦 (𝑡) ≤ {

𝛼𝑒
𝑝
(𝑡, 𝑡
0
) , for 𝑡 ∈ [ 𝑡

0
, +∞)

T
,

𝛼𝑒
−𝑝

(𝑡, 𝑡
0
) , for 𝑡 ∈ (−∞, 𝑡

0
]
T
.

(6)

Remark 2. Note that, for 𝑡 ∈ (−∞, 𝑡
0
]T , inequality (5) reduces

to

𝑦 (𝑡) ≤ 𝛼 − ∫

𝑡

𝑡0

𝑦 (𝑠) 𝑝 (𝑠) Δ𝑠, (7)
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which is different from inequality (3) in Theorem B. Since
Theorem B requires 𝑝(𝑡) ≥ 0, we see that Theorem B
cannot be applied to (7). Moreover, the method used to
prove Theorem A cannot be used to prove Theorem 1. To
explain this, recall the proof of Theorem A in [2]. Let 𝑧(𝑡) =

∫

𝑡

𝑡0

𝑦(𝑠)𝑝(𝑠)Δ𝑠. Then 𝑧(𝑡
0
) = 0 and

𝑧
Δ

= 𝑦 (𝑡) 𝑝 (𝑡)

≤ [𝑓 (𝑡) + 𝑧 (𝑡)] 𝑝 (𝑡) = 𝑝 (𝑡) 𝑧 (𝑡) + 𝑝 (𝑡) 𝑓 (𝑡) .

(8)

By comparing theorem and variation of constants formula,

𝑧 (𝑡) ≤ ∫

𝑡

𝑡0

𝑒
𝑝
(𝑡, 𝜎 (𝑠)) 𝑓 (𝑠) 𝑝 (𝑠) Δ𝑠, (9)

and henceTheorem A follows in view of 𝑦(𝑡) ≤ 𝑓(𝑡) + 𝑧(𝑡).
Now we try to adopt the same idea used in [2] to estimate

inequality (7). Let 𝑧(𝑡) = ∫

𝑡

𝑡0

𝑦(𝑠)𝑝(𝑠)Δ𝑠. Then 𝑧(𝑡
0
) = 0 and

𝑧
Δ

= 𝑦 (𝑡) 𝑝 (𝑡) ≤ [𝑓 (𝑡) − 𝑧 (𝑡)] 𝑝 (𝑡)

= −𝑝 (𝑡) 𝑧 (𝑡) + 𝑝 (𝑡) 𝑓 (𝑡)

= −𝑝 (𝑡) 𝑧
𝜎

+ (1 + 𝜇 (𝑡) 𝑝 (𝑡)) 𝑝 (𝑡) 𝑓 (𝑡) .

(10)

By comparing theorem and variation of constants formula,
we have

𝑧 (𝑡) ≤ ∫

𝑡

𝑡0

𝑒
⊖𝑝

(𝑡, 𝜎 (𝑠)) 𝑓 (𝑠) 𝑝 (𝑠) Δ𝑠, (11)

which implies

−𝑧 (𝑡) ≥ −∫

𝑡

𝑡0

𝑒
⊖𝑝

(𝑡, 𝜎 (𝑠)) 𝑓 (𝑠) 𝑝 (𝑠) Δ𝑠. (12)

If we were to use the same idea as in [2], we should combine
(12) with

𝑦 (𝑡) ≤ 𝑓 (𝑡) − 𝑧 (𝑡) . (13)

However, on one side, 𝑦(𝑡) ≤ ⋅ ⋅ ⋅ ; on the other side, 𝑓(𝑡) −

𝑧(𝑡) ≥ ⋅ ⋅ ⋅ . These two inequalities cannot lead us anywhere.
Therefore, some novel proof is employed to prove

Theorem 1. One can see the detailed proof in the next section.

2. Proof of Main Result

Before our proof of Theorem 1, we need some lemmas.

Lemma 3 (chain rule [2]). Assume 𝑔 : T → X is delta
differentiable on T . Assume further that 𝑓 : X → X is
continuously differentiable. Then 𝑓 ∘ 𝑔 : T → X is delta
differentiable and satisfies

(𝑓 ∘ 𝑔)
Δ

(𝑡) = {∫

1

0

𝑓
󸀠

(𝑔 (𝑡) + ℎ𝜇 (𝑡) 𝑔
Δ

(𝑡)) 𝑑ℎ}𝑔
Δ

(𝑡) .

(14)

Lemma4. Suppose that 𝑔 : T → R+ is positive delta differen-
tiable on T and 𝑔

Δ
(𝑡)/𝑔(𝑡) is regressive. Then 𝜉

𝜇(𝑡)
(𝑔
Δ
(𝑡)/𝑔(𝑡))

is a preantiderivative of function Log[𝑔(𝑡)], where 𝜉
ℎ
(𝑧) =

(1/ℎ)Log(1 + 𝑧ℎ) and Log is the principal logarithm function.

Proof. Let 𝑓(𝑥) = Log𝑥. Obviously, 𝑓 : R+ → R is
continuous onR+. To prove Lemma 4, it suffices to show that
[Log[𝑔(𝑡)]]

Δ

= 𝜉
𝜇(𝑡)

(𝑔
Δ
(𝑡)/𝑔(𝑡)). In fact, by using Lemma 3,

we have

[Log[𝑔(𝑡)]]
Δ

= (𝑓 ∘ 𝑔)
Δ

(𝑡) = {∫

1

0

𝑓
󸀠

(𝑔 (𝑡) + ℎ𝜇 (𝑡) 𝑔
Δ

(𝑡)) 𝑑ℎ}𝑔
Δ

(𝑡)

= {∫

1

0

1

𝑔 (𝑡) + ℎ𝜇 (𝑡) 𝑔
Δ
(𝑡)

𝑑ℎ} 𝑔
Δ

(𝑡)

= {

1

𝜇 (𝑡) 𝑔
Δ
(𝑡)

Log [𝑔 (𝑡) + ℎ𝜇 (𝑡) 𝑔
Δ

(𝑡)]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

ℎ=1

ℎ=0

}𝑔
Δ

(𝑡)

=

{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{

{

1

𝜇 (𝑡)

{Log [𝑔 (𝑡) + 𝜇 (𝑡) 𝑔
Δ

(𝑡)] − Log [𝑔 (𝑡)]}

if 𝜇 (𝑡) ̸= 0,

𝑔
Δ

(𝑡)

𝑔 (𝑡)

if 𝜇 (𝑡) = 0

=

{
{
{
{

{
{
{
{

{

1

𝜇 (𝑡)

{Log
𝑔 (𝑡) + 𝜇 (𝑡) 𝑔

Δ

(𝑡)

𝑔 (𝑡)

} if 𝜇 (𝑡) ̸= 0,

𝑔
Δ

(𝑡)

𝑔 (𝑡)

if 𝜇 (𝑡) = 0

=

1

𝜇 (𝑡)

Log{1 + 𝜇 (𝑡)

𝑔
Δ

(𝑡)

𝑔 (𝑡)

}

= 𝜉
𝜇(𝑡)

(

𝑔
Δ

(𝑡)

𝑔 (𝑡)

) .

(15)

Proof of Theorem 1. To proveTheorem 1, we divide it into two
cases.

Case 1. For 𝑡 ∈ [𝑡
0
, +∞)T , in this case, we have

𝑦 (𝑡) ≤ 𝛼 +

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝑡0

𝑦 (𝑠) 𝑝 (𝑠) Δ𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 𝛼 + ∫

𝑡

𝑡0

𝑦 (𝑠) 𝑝 (𝑠) Δ𝑠,

for 𝑡 ∈ [𝑡
0
, +∞)

T
.

(16)

Hence, it is easy to conclude that 𝑦(𝑡) ≤ 𝛼𝑒
𝑝
(𝑡, 𝑡
0
) for 𝑡 ∈

[𝑡
0
, +∞)T .
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Case 2. For 𝑡 ∈ (−∞, 𝑡
0
]T , let 𝑧(𝑡) = ∫

𝑡

𝑡0

𝑦(𝑠)𝑝(𝑠)Δ𝑠. For any
𝑠 ∈ [𝑡, 𝑡

0
]T , we have

𝑦 (𝑠) ≤ 𝛼 +

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑠

𝑡0

𝑦 (𝜏) 𝑝 (𝜏) Δ𝜏

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 𝛼 − ∫

𝑠

𝑡0

𝑦 (𝜏) 𝑝 (𝜏) Δ𝜏 = 𝛼 − 𝑧 (𝑠) .

(17)

Noting that 𝑦 ≥ 0, 𝑝 ≥ 0, 𝛼 > 0, we have 𝛼 − 𝑧(𝑠) > 0. Thus,
we have

𝑦 (𝑠)

𝛼 − 𝑧 (𝑠)

≤ 1. (18)

Multiplied by −𝑝(𝑠) on both sides of the above inequality, it
follows that

−𝑦 (𝑠) 𝑝 (𝑠)

𝛼 − 𝑧 (𝑠)

≥ −𝑝 (𝑠) , (19)

or

[𝛼 − 𝑧(𝑠)]
Δ

𝛼 − 𝑧 (𝑠)

≥ −𝑝 (𝑠) . (20)

Since −𝑝 ∈ R+, −𝑝 ≤ [𝛼 − 𝑧(𝑠)]
Δ

/(𝛼 − 𝑧(𝑠)) ∈ R+. Using
the fact that 𝜉

𝜇(𝑡)
(𝑧) is nondecreasing with respect to 𝑧 for 𝑧 ∈

R+, we have

𝜉
𝜇(𝑠)

[

(𝛼 − 𝑧 (𝑠))
Δ

𝛼 − 𝑧 (𝑠)

] ≥ 𝜉
𝜇(𝑠)

[−𝑝 (𝑠)] . (21)

An integration of the above inequality over [𝑡, 𝑡
0
]T leads to

∫

𝑡0

𝑡

𝜉
𝜇(𝑠)

[

(𝛼 − 𝑧 (𝑠))
Δ

𝛼 − 𝑧 (𝑠)

] Δ𝑠 ≥ ∫

𝑡0

𝑡

𝜉
𝜇(𝑠)

[−𝑝 (𝑠)] Δ𝑠. (22)

It follows from Lemma 4 that

Log[𝛼 − 𝑧(𝑠)]
󵄨
󵄨
󵄨
󵄨

𝑡0

𝑡
≥ ∫

𝑡0

𝑡

𝜉
𝜇(𝑠)

[−𝑝 (𝑠)] Δ𝑠, (23)

or

Log𝛼 − Log [𝛼 − 𝑧 (𝑡)] ≥ ∫

𝑡0

𝑡

𝜉
𝜇(𝑡)

[−𝑝 (𝑠)] Δ𝑠, (24)

which leads to

𝛼 − 𝑧 (𝑡) ≤ 𝛼 exp(−∫

𝑡0

𝑡

𝜉
𝜇(𝑠)

[−𝑝 (𝑠)] Δ𝑠)

= 𝛼 exp(∫

𝑡

𝑡0

𝜉
𝜇(𝑠)

[−𝑝 (𝑠)] Δ𝑠) = 𝛼𝑒
−𝑝

(𝑡, 𝑡
0
) .

(25)

Therefore, 𝑦(𝑡) ≤ 𝛼 − 𝑧(𝑡) ≤ 𝑒
−𝑝

(𝑡, 𝑡
0
) for 𝑡 ∈ (−∞, 𝑡

0
]T . This

completes the proof of Theorem 1.

3. An Application

Inequality (5) has many potential applications. For instance,
it can be used to study the property of the solutions to the
dynamic systems. Consider the following linear system:

𝑥
Δ

= 𝐴 (𝑡) 𝑥. (26)

Let 𝑋(𝑡, 𝑡
0
, 𝑥
0
) and 𝑋(𝑡, 𝑡

0
, 𝑥
0
) be two solutions of (26)

satisfying the initial conditions 𝑋(𝑡
0
) = 𝑥

0
and 𝑋(𝑡

0
) = 𝑥

0
,

respectively.

Theorem 5. Suppose that 𝐴(𝑡) is bounded on T . Then one has

󵄩
󵄩
󵄩
󵄩
𝑋 (𝑡, 𝑡

0
, 𝑥
0
) − 𝑋 (𝑡, 𝑡

0
, 𝑥
0
)
󵄩
󵄩
󵄩
󵄩

≤ {

󵄩
󵄩
󵄩
󵄩
𝑥
0
− 𝑥
0

󵄩
󵄩
󵄩
󵄩
𝑒
𝑝1

(𝑡, 𝑡
0
) , for 𝑡 ∈ [𝑡

0
, +∞)

T
,

󵄩
󵄩
󵄩
󵄩
𝑥
0
− 𝑥
0

󵄩
󵄩
󵄩
󵄩
𝑒
−𝑝1

(𝑡, 𝑡
0
) , for 𝑡 ∈ (−∞, 𝑡

0
]
T
,

(27)

where 𝑝
1
(𝑡) ≡ 𝑀.

Proof. Integrating (7) over [𝑡
0
, 𝑡], we have

𝑋(𝑡, 𝑡
0
, 𝑥
0
)

= 𝑥
0
+ ∫

𝑡

𝑡0

[𝐴 (𝑠)𝑋 (𝑠, 𝑡
0
, 𝑥
0
) + 𝑓 (𝑠, 𝑋 (𝑠, 𝑡

0
, 𝑥
0
))] Δ𝑠.

(28)

Denoting 𝑀 = sup
𝑡∈T‖𝐴(𝑡)‖, simple computation leads us to

󵄩
󵄩
󵄩
󵄩
𝑋 (𝑡, 𝑡

0
, 𝑥
0
) − 𝑋 (𝑡, 𝑡

0
, 𝑥
0
)
󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑥
0
− 𝑥
0

󵄩
󵄩
󵄩
󵄩
+ 𝑀

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝑡0

󵄩
󵄩
󵄩
󵄩
𝑋 (𝑠, 𝑡

0
, 𝑥
0
) − 𝑋 (𝑠, 𝑡

0
, 𝑥
0
)
󵄩
󵄩
󵄩
󵄩
Δ𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

.

(29)

ByTheorem 1, it follows from (29) that

󵄩
󵄩
󵄩
󵄩
𝑋 (𝑡, 𝑡

0
, 𝑥
0
) − 𝑋 (𝑡, 𝑡

0
, 𝑥
0
)
󵄩
󵄩
󵄩
󵄩

≤ {

󵄩
󵄩
󵄩
󵄩
𝑥
0
− 𝑥
0

󵄩
󵄩
󵄩
󵄩
𝑒
𝑝1

(𝑡, 𝑡
0
) , for 𝑡 ∈ [𝑡

0
, +∞)

T
,

󵄩
󵄩
󵄩
󵄩
𝑥
0
− 𝑥
0

󵄩
󵄩
󵄩
󵄩
𝑒
−𝑝1

(𝑡, 𝑡
0
) , for 𝑡 ∈ (−∞, 𝑡

0
]
T
.

(30)

Remark 6. One can see that, for the case 𝑡 ∈ (−∞, 𝑡
0
]T , (29)

reduces to

󵄩
󵄩
󵄩
󵄩
𝑋 (𝑡, 𝑡

0
, 𝑥
0
) − 𝑋 (𝑡, 𝑡

0
, 𝑥
0
)
󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑥
0
− 𝑥
0

󵄩
󵄩
󵄩
󵄩
− 𝑀∫

𝑡

𝑡0

[
󵄩
󵄩
󵄩
󵄩
𝑋 (𝑠, 𝑡

0
, 𝑥
0
) − 𝑋 (𝑠, 𝑡

0
, 𝑥
0
)
󵄩
󵄩
󵄩
󵄩
] Δ𝑠.

(31)

As you see, Theorem B cannot be used to (31) because the
essential condition inTheorem B is 𝑝(𝑡) ≥ 0.
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