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This paper studies the optimal hub routing problem ofmerged tasks in collaborative transportation.This problem allows all carriers’
transportation tasks to reach the destinations optionally passing through 0, 1, or 2 hubswithin limited distance, while a cost discount
on arcs in the hub route could be acquired after paying fixed charges. The problem arises in the application of logistics, postal
services, airline transportation, and so forth. We formulate the problem as a mixed-integer programming model, and provide two
heuristic approaches, respectively, based on Lagrangian relaxation and Benders decomposition. Computational experiments show
that the algorithms work well.

1. Introduction

With the rapid growth of manufacturing industry and E-
commerce in recent years, logistics industry is constantly
expanding. However, many carriers still show small scale and
low load ratio in developing countries such as China. At the
same time, a number of consignors choose multibatch less-
than-truck-loads instead of single-batch full-truck-loads in
order to adapt to flexible production plans, which increases
logistics costs. One promising way of improvement is a
new transportation model called collaborative transporta-
tion (CT), which integrates all transportation demands and
transportation resources to achieve economies of scale. For
example, if transport tasks shown in Figure 1 dealt with a CT
program as shown in Figure 2, then routing costs could be
reduced by combing several transportation flows on a few
arcs. A transportation task from node 𝑖 to 𝑗 is called O-D
flow 𝑖 → 𝑗. The route passing through no more than 2 hubs,
such as 𝑖 → 𝑘 → 𝑚 → 𝑗, is called hub route. An arc
(𝑘,𝑚) is called hub arc if it carries enough O-D flows and
produces a freight cost discount on the arc due to economies
of scale, which is the most favourable feature of CT. However,
two unfavourable characteristics exist in CT. First, O-D flows
may increase touring distance. For instance, the distance of
route A–B–E–D is obviously longer than the direct distance

of route A–D. Second, to achieve discount, we have to pay a
fixed charge to build hub arc, such as building railroad instead
of highroad or buying heavy trucks to replace light-vans.
Therefore, hub route with merging flows obtains discount on
hub arc at the expense of additional transportation range and
fixed charge.This encourages us to seek the optimal hub route
of merging flows to maximize the profit of CT.

Flow merging and hub routing problem of collaborative
transportation exists in many practices. For example, flight
courses between small cities can be integrated into hub arcs
of big cities, such as hub route small city—big city—big city—
small city. In road line between twoChinese citiesGuangzhou
and Hong Kong, a logistics company may quote 2700 yuan,
3000 yuan, 3400 yuan, and 3600 yuan for full-truck-loads
of 3 tons, 5 tons, 10 tons, and 12 tons, respectively, and
the expenses per ton are 900 yuan, 600 yuan, 340 yuan, and
300 yuan. Petroleum exploitation companies in north China
considered whether and where to build a railway to convey
merging materials and reduce costs. The above applications
indicate that larger vehicles loading larger flows generate
cheaper transport costs. In other applications of CT where
high response speed is required, we need to consider the dis-
tance constraints. For example, in express delivery business,
customers require that the total transportation time of O-D
flow is less than the promised hour such as 24-hour delivery
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Figure 1: Transportation task I.
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Figure 2: Collaborative transportation.

or 48-hour delivery. But in order to save transportation
costs, most O-D flows have to give up the direct paths
and select longer hub routes. How to generate the saving-
and-fast transportation plan with distance constraints? To
reach this, we research flow merging and hub route problem
in collaborative transportation (FMRICT) which finds the
optimal hub route of merged flows within limited detouring
distance, while hub arc can cut cost from discount if paid a
fixed charge.

At present study of CT, the optimized route can be catego-
rized into fleet’s route and flow’s hub route. Literatures about
multidepot arc routing problem (MDARP) and multidepot
pickup and delivery problem (MDPDP) are researches on
fleet’s route. A fleet finished a task 𝑖 → 𝑗 in MDARP
if its tour starting and ending a depot directly passed arc
(𝑖, 𝑗). But to finish a task 𝑖 → 𝑗 in MDPDP, fleet needs
to find a minimal cost tour while node 𝑖 is before but not
necessary last to node 𝑗, which means picking up freight at 𝑖
and delivering it at 𝑗. Obviously, MDPDP can achieve a lower
cost than MDARP as shown in Figures 3, 4, and 5. However,
MDPDP is more complex and extremely harder to solve large
scale instances thanMDARP.Most researches onMDPDPare
tested on instances with single depot. Reference [1] tries to
solve MDARP with 200 tasks by particle swarm optimization
but does not provide the benchmark of computational time
and solution quality. To the best of our knowledge there
are no other efficient approaches with benchmark to large
scale MDPDP, while MDARP with more than 1000 tasks
can be solved with good benchmark in [2–4]. As shown
in Figure 6, a promising innovation is the two-stage CT
program which takes full advantage of scale effect and
decreases the complexity. The first stage merges the flows,
and the second stage obtains the fleet’s tour by solving a
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Figure 3: Transportation task II.
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MDARP which already has good heuristics. Accordingly, it
is an important step to find the optimal hub route of merging
flow.

Current studies on O-D flow’s hub route of CT focus
on the hub-and-spoke network design problem (HASNDP).
Assuming that all arcs between hubs have transportation
discount and requiring that all the O-D flows have to pass
one or two hubs, HASNDP seeks the best selecting of hub and
arranges the right hub routes of O-D flows to minimize the
total cost. HASNDP was initially proposed by O’Kelly (1988)
who built a quadratic programming model and provided two
types of heuristic algorithms. In recent years, many studies
are devoted to improve the model and the solution [5–8],
while some scholars concentrate on the extension problem of
HASNDP [9–16]. HASNDP and hub location problem have
gained much attention. However, there still exist two defects.
Firstly, requiring all the O-D flows passing hubs may cause
lots of detouring. For instance, in the conclusion ofWeng [7],
Xi’an was chosen as hub in Chinese airline Lhasa → Xi’ning
according to the result of HASNDP, which is obviously not
right due to over detouring. Secondly, current researches of
HASNDP emphasize on nodes’ cost while neglect arcs’ cost
and the demand of incremental flows. HASNDP assumes that
all arcs between hubs can automatically obtain economies of
scale as long as hub costs are paid and O-D flows pass one or
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Figure 6: Two-stage CT program.
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Figure 7: Transportation task III.

two hubs, which conflicts some practice. For example, tasks
shown in Figure 7will be designed as hub-and-spoke network
shown in Figure 8. Nodes 𝐻, 𝐼, and 𝐽 are chosen as hubs
and all arcs between them enjoy discount of transportation
costs. However, as we can see from Figure 8, no incremental
flows pass through arc (𝐻, 𝐼) and it should not be given the
transportation discount. In fact, the economies of scale for
hub arcs need other two conditions including the incremental
flows and the fixed charge to build more economic transport
facilities. Researches [17–20] also find that some hub arcs do
not have quantity strength after paying the hub costs while
they still require tasks passing hubs and neglect the detouring
distance limitation, which are distinguished from our work.

This paper is organized as follows. In Section 2, we for-
mulate the mixed-integer programming model for FMRICT.
Sections 3 and 4 provide two heuristic approaches, respec-
tively, based on Lagrangian relaxation and Benders decom-
position. Section 5 shows test performance of the algorithms.
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2. Formulation

Consider a connected network 𝐺(𝑁,𝐴), where 𝐴 is the set
of edges and 𝑁 = {1, 2, . . . , 𝑛} is the set of nodes. For all
𝑖 ̸= 𝑗, let ℎ

𝑖𝑗
denote the O-D flow from 𝑖 to 𝑗.𝐷

𝑖𝑗
is the limited

detouring distance of flow 𝑖 → 𝑗. 𝑐
𝑘𝑚

is the unit flow cost of
arc (𝑘,𝑚), and𝑓

𝑘𝑚
is the fixed cost when arc (𝑘,𝑚) is selected

as a hub arc. 𝑎 (0 < 𝑎 < 1) denotes the transportation cost
discount of hub arcs. Binary decision variable 𝑌

𝑘𝑚
= 1 if arc

(𝑘,𝑚) is selected as a hub arc and 0 otherwise. 𝑋𝑘𝑚
𝑖𝑗

is the
quantity of flow 𝑖 → 𝑗 on non-hub-arc (𝑘,𝑚). 𝑊𝑘𝑚

𝑖𝑗
is the

quantity of flow 𝑖 → 𝑗 on hub arc (𝑘,𝑚). Binary variable



4 Journal of Applied Mathematics

𝑍
𝑘𝑚

𝑖𝑗
= 1 if flow 𝑖 → 𝑗 chooses route 𝑖 → 𝑘 → 𝑚 → 𝑗 and

0 otherwise. FMRICT model could be formulated as (P1),

(P1) min ∑

𝑖

∑

𝑗

∑

𝑘

∑

𝑚

(𝑋
𝑘𝑚

𝑖𝑗
𝑐
𝑘𝑚

+ 𝑎𝑊
𝑘𝑚

𝑖𝑗
𝑐
𝑘𝑚
)

+∑

𝑘

∑

𝑚

𝑓
𝑘𝑚
𝑌
𝑘𝑚
,

(1)

S.T. ∑

𝑘∉𝑖,𝑗

∑

𝑚∉𝑖,𝑗

(𝑋
𝑘𝑚

𝑖𝑗
+𝑊
𝑘𝑚

𝑖𝑗
) + 𝑋

𝑖𝑗

𝑖𝑗
+𝑊
𝑖𝑗

𝑖𝑗
= ℎ
𝑖𝑗

∀𝑖, 𝑗 ∈ 𝑁; 𝑖 ̸= 𝑗,

(2)

∑

𝑚∉𝑖,𝑗

(𝑋
𝑘𝑚

𝑖𝑗
+𝑊
𝑘𝑚

𝑖𝑗
) = 𝑋

𝑖𝑘

𝑖𝑗
+𝑊
𝑖𝑘

𝑖𝑗

∀𝑖, 𝑗, 𝑘 ∈ 𝑁; 𝑖 ̸= 𝑗; 𝑘 ∉ 𝑖, 𝑗,

(3)

∑

𝑚∉𝑖,𝑗

(𝑋
𝑘𝑚

𝑖𝑗
+𝑊
𝑘𝑚

𝑖𝑗
= 𝑋
𝑚𝑗

𝑖𝑗
+𝑊
𝑚𝑗

𝑖𝑗
)

∀𝑖, 𝑗, 𝑚 ∈ 𝑁; 𝑖 ̸= 𝑗; 𝑚 ∉ 𝑖, 𝑗,

(4)

𝑤
𝑘𝑚

𝑖𝑗
≤ 𝑌
𝑘𝑚
ℎ
𝑖𝑗

∀𝑖, 𝑗, 𝑘, 𝑚 ∈ 𝑁; 𝑖 ̸= 𝑗; 𝑘 ̸= 𝑗; 𝑚 ̸= 𝑖,

(5)

𝑍
𝑖𝑘

𝑖𝑗
𝑐
𝑖𝑘
+ 𝑍
𝑘𝑚

𝑖𝑗
𝑐
𝑘𝑚

+ 𝑍
𝑚𝑗

𝑖𝑗
𝑐
𝑚𝑗
− 𝐷
𝑖𝑗
≤ 0

∀𝑖 ̸= 𝑗; 𝑘 ̸= 𝑗; 𝑚 ̸= 𝑖,

(6)

𝑋
𝑘𝑚

𝑖𝑗
+𝑊
𝑘𝑚

𝑖𝑗
= 𝑍
𝑘𝑚

𝑖𝑗
ℎ
𝑖𝑗

∀𝑖, 𝑗, 𝑘, 𝑚 ∈ 𝑁; 𝑖 ≤ 𝑗; 𝑘 ≤ 𝑗; 𝑚 ≤ 𝑖,

(7)

𝑊
𝑘𝑚

𝑖𝑗
, 𝑋
𝑘𝑚

𝑖𝑗
≥ 0; 𝑍

𝑘𝑚

𝑖𝑗
, 𝑌
𝑖𝑗
= 0, 1

∀𝑖, 𝑗, 𝑘, 𝑚 ∈ 𝑁, 𝑘 ≤ 𝑗; 𝑚 ≤ 𝑖.

(8)

In (P1), objective function (1) accounts for the minimiza-
tion of total routing costs plus fixed costs. Constraint (2)
requires all tasks be finished. Constraint (3) and constraint
(4) ensure the flow balance. If flow 𝑖 → 𝑗 goes through the
hub 𝑘 (𝑘 ∉ {𝑖, 𝑗}), then the flow going in 𝑘must equal the flow
going out of 𝑘. Constraint (5) restricts𝑊𝑘𝑚

𝑖𝑗
to be 0 if arc (𝑘,𝑚)

is not selected as hub arc. 𝑘 ̸= 𝑗 and 𝑚 ̸= 𝑖 in constraints (5)
and (6) are to avoid roundabout transportation. For instance,
route 𝑖 → 𝑗 → 𝑖 → 𝑗 and route 𝑖 → 𝑗 → 𝑘 → 𝑗

are not acceptable. Constraint (6) controls the route distance,
and constraint (7) is to define 𝑍𝑘𝑚

𝑖𝑗
.

Compared to HASNDP which neglects detouring dis-
tance, (P1) makes tasks choose detour routes instead of direct
routes if only they are more saving and control the distance
by constraint (6). (P1) also helps the incremental flows of hub
arcs by importing fixed charge as shown in Lemma 1. Define
𝑍
𝑘𝑚

= ∑
𝑖
∑
𝑗
(𝑋
𝑘𝑚

𝑖𝑗
+𝑊
𝑘𝑚

𝑖𝑗
) as the total flow on arc (𝑘,𝑚).

Lemma 1. In optimal solution of FMRICT, if (𝑘,𝑚) is selected
as a hub arc, then 𝑍

𝑘𝑚
≥ 𝑓
𝑘𝑚
/(1 − 𝑎)𝑐

𝑘𝑚
.

Proof. When 𝑌
𝑘𝑚

= 1, we can decrease the transportation
costs of (1 − 𝑎)𝑍

𝑘𝑚
𝑐
𝑘𝑚

but increase fixed charge of 𝑓
𝑘𝑚
.

For every selected hub arc (𝑘,𝑚), it is optimal only if (1 −
𝑎)𝑍
𝑘𝑚
𝑐
𝑘𝑚

≥ 𝑓
𝑘𝑚
; otherwise we can decrease costs by set

𝑌
𝑘𝑚

= 0 and it is a contradiction to optimal solution.
Therefore, the optimal flow on hub arc must satisfy 𝑍

𝑘𝑚
≥

𝑓
𝑘𝑚
/(1 − 𝑎)𝑐

𝑘𝑚
.

3. Heuristic Algorithm Based on
Lagrange Relaxation

(P1) is a complicated mixed-integer programming model
that possesses about 3𝑛4 + 𝑛

2 variables and 5𝑛4 + 2𝑛
3
+ 𝑛
2

constraints. The decision variables and constraints would
be more than 50 thousands only if 10 nodes are included.
FMRICT can be proven NP hard since it is an extension
of fixed charge multicommodity network flow problem.
Therefore, heuristic is needed for large scaled FMRICT. This
section proposes a heuristic procedure based on Lagrange
relaxation. The procedure uses the idea of relaxing parts of
constraints by bringing them into the objective function with
associated vector 𝜆 called the Lagrange multiplier and builds
relaxed problem called Lagrangian dual problem which is
relatively easily solved. A lower bound can be obtained from
the solution of the Lagrangian dual problem, and an upper
boundwas foundby refining the solution to a feasible solution
of the original problem. The heuristic iteratively reduces the
gap between upper bound and lower bound by updating the
Lagrange multiplier. The main algorithm elements include
the way of building relaxed problem called Lagrange dual
problem, the way of constructing feasible solution, and the
way of updating Lagrangian multipliers.

If we relax constraint (5) in (P1) and define 𝜆𝑘𝑚
𝑖𝑗

as the
Lagrangian multiplier of corresponding constraint, then the
Lagrange dual problem (P2) can be obtained as follows:

(P2) min ∑

𝑖

∑

𝑗

∑

𝑘

∑

𝑚

𝑋
𝑘𝑚

𝑖𝑗
𝑐
𝑘𝑚

+∑

𝑖

∑

𝑗

∑

𝑘

∑

𝑚

𝑊
𝑘𝑚

𝑖𝑗
(𝛼𝑐
𝑘𝑚

+ 𝜆
𝑘𝑚

𝑖𝑗
)

+∑

𝑘

∑

𝑚

𝑌
𝑘𝑚
(𝑓
𝑘𝑚

−∑

𝑖

∑

𝑗

𝜆
𝑘𝑚

𝑖𝑗
ℎ
𝑖𝑗
)

S.T. Constraints (2) – (4) , (6) – (8) .
(9)

Given 𝜆𝑘𝑚
𝑖𝑗
, we can easily minimize the objective of (P2).

For fixed costs, if 𝑓
𝑘𝑚
−∑
𝑖
∑
𝑗
𝜆
𝑘𝑚

𝑖𝑗
ℎ
𝑖𝑗
< 0, then 𝑌

𝑘𝑚
= 1, and 0

otherwise. For transportation costs, O-D flow will select the
shortest hub route. Let isarc𝑘𝑚

𝑖𝑗
= 1 if flow 𝑖 → 𝑗 going

through hub arc (𝑘,𝑚), and isarc𝑘𝑚
𝑖𝑗

= 0 otherwise. Let 𝑙𝑘
be the objective of (P2). The approaching procedure can be
constructed as Algorithm 2.

The first step is to calculate the cost of arc (𝑘,𝑚) for flow
𝑖 → 𝑗. The second step is to find the optimal hub route
𝑖 → 𝑘

∗
→ 𝑚

∗
→ 𝑗 that satisfies distance constraints

and to determine 𝑊𝑖𝑗
𝑘𝑚
. The last step is to find hub arcs. 𝑙𝑘
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is the optimal solution of (P2) and also becomes the lower
bound of (P1). In this heuristic, we will augment lower bound
to approach optimal value by subgradient optimization.

Algorithm 2 (solving the relaxed problem). (1) For ∀𝑖, 𝑗, 𝑘, 𝑚
that satisfy 𝑖 ̸= 𝑗, 𝑘 ̸= 𝑗 and 𝑚 ̸= 𝑖, let 𝐶𝑘𝑚

𝑖𝑗
= min(𝑐

𝑘𝑚
, 𝛼𝑐
𝑘𝑚

+

𝜆
𝑘𝑚

𝑖𝑗
), and

isarc𝑘𝑚
𝑖𝑗

= {
1 if 𝐶𝑘𝑚

𝑖𝑗
= 𝛼𝑐
𝑘𝑚

+ 𝜆
𝑘𝑚

𝑖𝑗

0 else;
(10)

𝑙𝑘 = 0,𝑊𝑘𝑚
𝑖𝑗

= 0.
(2) For ∀𝑖 ̸= 𝑗: find (𝑘∗, 𝑚∗) = arg min{𝐶𝑖𝑘

𝑖𝑗
+ 𝐶
𝑘𝑚

𝑖𝑗
+ 𝐶
𝑚𝑗

𝑖𝑗
|

𝑐
𝑖𝑘
+ 𝑐
𝑘𝑚

+ 𝑐
𝑚𝑗
≤ 𝐷
𝑖𝑗
, 𝑘 ̸= 𝑗, 𝑚 ̸= 𝑖}; let 𝑙𝑘 = 𝑙𝑘 + 𝐶𝑖𝑘

∗

𝑖𝑗
+ 𝐶
𝑘
∗

𝑚
∗

𝑖𝑗
+

𝐶
𝑚
∗

𝑗

𝑖𝑗
; if isarc𝑖𝑘

∗

𝑖𝑗
= 1, then𝑊𝑖𝑘

∗

𝑖𝑗
= ℎ
𝑖𝑗
; if isarc𝑘

∗

𝑚
∗

𝑖𝑗
= 1, then

𝑊
𝑘
∗

𝑚
∗

𝑖𝑗
= ℎ
𝑖𝑗
; if isarc𝑚

∗

𝑗

𝑖𝑗
= 1, then𝑊𝑚

∗

𝑗

𝑖𝑗
= ℎ
𝑖𝑗
.

(3) For ∀𝑘 ̸=𝑚, if 𝑓
𝑘𝑚

− ∑
𝑖
∑
𝑗
𝜆
𝑘𝑚

𝑖𝑗
ℎ
𝑖𝑗
< 0, then 𝑌

𝑘𝑚
= 1,

𝑙𝑘 = 𝑙𝑘 + 𝑓
𝑘𝑚

− ∑
𝑖
∑
𝑗
𝜆
𝑘𝑚

𝑖𝑗
ℎ
𝑖𝑗
, else 𝑌

𝑘𝑚
= 0.

Algorithm 3 (construct feasible solution). (1) 𝑢𝑘 = 0, 𝑊̂𝑘𝑚
𝑖𝑗

=

0,𝑋𝑘𝑚
𝑖𝑗

= 0, 𝐹𝑘𝑚
𝑖𝑗

= 0.
(2) For ∀𝑘 ̸=𝑚, let 𝑌̂

𝑘𝑚
= 𝑌
𝑘𝑚

while 𝑌
𝑘𝑚

is the result of
step (3) of Algorithm 2. If 𝑌̂

𝑘𝑚
= 1, then 𝑢𝑘 = 𝑢𝑘 + 𝑓

𝑘𝑚
.

(3) For ∀𝑖, 𝑗, 𝑘, 𝑚 having 𝑘 ̸= 𝑗,𝑚 ̸= 𝑖, let

𝐶
𝑘𝑚

𝑖𝑗
= {

𝑎𝑐
𝑘𝑚

if 𝑌̂
𝑘𝑚

= 1

𝑐
𝑘𝑚

else.
(11)

(4) For ∀𝑖 ̸= 𝑗, find (𝑘∗, 𝑚∗) = argmin{𝐶𝑖𝑘
𝑖𝑗
+ 𝐶
𝑘𝑚

𝑖𝑗
+ 𝐶
𝑚𝑗

𝑖𝑗
|

𝑐
𝑖𝑘
+ 𝑐
𝑘𝑚

+ 𝑐
𝑚𝑗

≤ 𝐷
𝑖𝑗
, 𝑘 ̸= 𝑗, 𝑚 ̸= 𝑖}; let 𝐹𝑖𝑘

∗

𝑖𝑗
= ℎ
𝑖𝑗
, 𝐹𝑘
∗

𝑚
∗

𝑖𝑗
= ℎ
𝑖𝑗
,

𝐹
𝑚
∗

𝑗

𝑖𝑗
= ℎ
𝑖𝑗
, 𝑢𝑘 = 𝑢𝑘 + 𝐶𝑖𝑘

𝑖𝑗
+ 𝐶
𝑘𝑚

𝑖𝑗
+ 𝐶
𝑚𝑗

𝑖𝑗
.

However, the optimal solution of (P2)may not be feasible
to FMRICT by violating constraint (5) such as𝑊𝑘𝑚

𝑖𝑗
> 𝑌
𝑘𝑚
ℎ
𝑖𝑗
.

Consequently, solution of (P2) will be adapted to feasible
solution of the original problem. Let 𝑋𝑘𝑚

𝑖𝑗
, 𝑊̂𝑘𝑚
𝑖𝑗

, and 𝑌̂
𝑘𝑚

be
the feasible solution of 𝑋𝑘𝑚

𝑖𝑗
,𝑊𝑘𝑚
𝑖𝑗

, and 𝑌
𝑘𝑚
, respectively. Let

𝐹
𝑘𝑚

𝑖𝑗
denote the quantity of flow 𝑖 → 𝑗 going through arc

(𝑘,𝑚). The definition means that 𝑊̂𝑘𝑚
𝑖𝑗

= 𝐹
𝑘𝑚

𝑖𝑗
and 𝑋𝑘𝑚

𝑖𝑗
= 0

if (𝑘, 𝑚) is hub arc; else 𝑊̂𝑘𝑚
𝑖𝑗

= 0 and 𝑋𝑘𝑚
𝑖𝑗

= 𝐹
𝑘𝑚

𝑖𝑗
. Let 𝑢𝑘

be the objective value of feasible solution. Algorithm 3 is the
procedure of obtaining feasible solution. After initialization
in the first step, the second step is to determine the hub arc
and to count fixed costs. The third step is to calculate the
transportation costs of tasks in all arcs, and the last step is
to make O-D flow select the shortest hub route.

For given Lagrangian multiplier 𝜆𝑘𝑚
𝑖𝑗
, both upper bound

𝑢𝑘 and lower bound 𝑙𝑘 could be obtained from Algorithms 2
and 3. Updating Lagrangian multiplier is to adjust the value
of 𝜆𝑘𝑚
𝑖𝑗

so that the upper bound and the lower bound would
be more and more closer to the optimal value. Subgradient
algorithm is such a method to update 𝜆𝑘𝑚

𝑖𝑗
.

Let 𝑙𝑡 be the step length of iteration 𝑡 and be computed as

𝑙
𝑡
=

𝛼
𝑡
(UB − 𝑙𝑘)

∑
𝑖
∑
𝑗
∑
𝑘
∑
𝑚
(𝑌
𝑘𝑚
ℎ
𝑖𝑗
−𝑊
𝑘𝑚

𝑖𝑗
)
2
. (12)

In (12), 𝛼𝑡 is the step length parameter at iteration 𝑡,
and 𝛼

1 is usually initialized by 2. Let UB be the current
best upper bound and let 𝑌

𝑘𝑚
and 𝑊𝑘𝑚

𝑖𝑗
be solutions of the

relaxed problem at current iteration. Lagrangian multiplier is
updated as formula (13) to heighten the lower bound,

𝜆
𝑘𝑚

𝑖𝑗
= max {0, 𝜆𝑘𝑚

𝑖𝑗
− 𝑙
𝑡
(𝑌
𝑘𝑚
ℎ
𝑖𝑗
−𝑊
𝑘𝑚

𝑖𝑗
)} . (13)

Themain programof Lagrangian relaxation algorithm for
solving FMRICT is as follows.

Algorithm 4 (Lagrangian relaxation algorithm for solving
FMRICT). (1) Initialize the parameters. Let 𝑡 = 1, 𝜆𝑘𝑚

𝑖𝑗
= 𝑐
𝑘𝑚
,

𝛼
𝑡
= 2, and UB = ∞. Set the current optimal lower bound

LB = −∞.
(2) Solve Lagrangian relaxation problem with

Algorithm 2 to get 𝑊
𝑘𝑚

𝑖𝑗
, 𝑌
𝑘

𝑖𝑗
, and 𝑙𝑘. Update LB =

max(LB, 𝑙𝑘).
(3) According to Algorithm 3, acquire the feasible solu-

tion 𝑌̂
𝑘

𝑖𝑗
and 𝐹

𝑘𝑚

𝑖𝑗
and compute objective function (1) to get

𝑢𝑘. Update UB = max(UB, 𝑢𝑘).
(4)Update step length parameter𝛼𝑘. If LB is not improved

within 65 steps, then let 𝛼𝑘+1 = 𝛼𝑘/2.
(5) Update Lagrangian multiplier according to (12) and

(13).
(6) Determine if it has reached the termination criterion.

End algorithm if any one of the following three criterions is
established to be true: (1)UB − LB ≤ 0.1, (2) 𝑙𝑡 ≤ 0.0001, and
(3) 𝑡 = 1000.

(7) Update iteration numbers 𝑡 = 𝑡 + 1 and return to step
(2).

4. Heuristic Algorithm Based on
Benders Decomposition

This section approaches FMRICTwith anothermethod based
on Benders decomposition to compare performance with
Algorithm 4. By fixing some variables of the original prob-
lem, Benders decomposition partitions the original problem
into master problem and subproblem which are easy to
solve. Solve the subproblem to produce the upper bound and
increase Benders’ cut to the master problem based on the
solution of dual variable of the subproblem, and then solve the
master problem to acquire the lower bound. The algorithm
will iteratively reduce the gap between upper bound and
lower bound.

For model (P1), fix all 𝑌
𝑘𝑚

to 𝑌
𝑘𝑚

at the iteration 𝑡; then
the subproblem is shown as in (P3),

(P3) min ∑

𝑖,𝑗,𝑘,𝑚

𝑋
𝑘𝑚

𝑖𝑗
𝑐
𝑘𝑚

+ ∑

𝑖,𝑗,𝑘,𝑚

𝑎𝑊
𝑘𝑚

𝑖𝑗
𝑐
𝑘𝑚

+ ∑

𝑘,𝑚

𝑓
𝑘𝑚
𝑌
𝑘𝑚
,

(14)
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S.T. − 𝑤
𝑘𝑚

𝑖𝑗
⩾ −𝑌
𝑘𝑚
ℎ
𝑖𝑗

∀𝑖 ̸= 𝑗; 𝑘 ̸= 𝑗; 𝑚 ̸= 𝑖, (15)

Constraints (2) – (4) , (6) – (8)

𝑊
𝑘𝑚

𝑖𝑗
, 𝑋
𝑘𝑚

𝑖𝑗
, 𝑍
𝑘𝑚

𝑖𝑗
⩾ 0 ∀𝑘 ̸= 𝑗; 𝑚 ̸= 𝑖.

(16)

(P3) is easy to solve, and we only need to make all O-D
flows select theminimum cost hub route within distance lim-
itations. Let 𝑈𝑡

𝑖𝑗𝑘𝑚
and V𝑡
𝑖𝑗
be the dual variables of constraints

(15) and (2) of (P3) at the iteration 𝑡.
Feasible solution of 𝑈𝑡

𝑖𝑗𝑘𝑚
and V𝑡

𝑖𝑗
could be obtained

according to duality theory, as shown in (17),

𝑉
𝑡

𝑖𝑗
= min
∀𝑘 ̸= 𝑗,𝑚 ̸= 𝑖

(𝑅
𝑖𝑘
+ 𝑅
𝑘𝑚

+ 𝑅
𝑚𝑗
𝑑
𝑘𝑚

𝑖𝑗
≤ 𝐷
𝑖𝑗
) ,

𝑈
𝑡

𝑖𝑗𝑘𝑚

=

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

max [0, 𝑉
𝑖𝑗
−min
𝑚

(𝑎𝑑
𝑖𝑘
+ 𝑅
𝑘𝑚

+ 𝑅
𝑚𝑗
| 𝑑
𝑘𝑚

𝑖𝑗
≤ 𝐷
𝑖𝑗
)]

if 𝑘 = 𝑖
max [0, 𝑉

𝑖𝑗
−min
𝑘

(𝑅
𝑖𝑘
+ 𝑅
𝑘𝑚

+ 𝑎𝑑
𝑚𝑗
| 𝑑
𝑘𝑚

𝑖𝑗
≤ 𝐷
𝑖𝑗
)]

if𝑚 = 𝑗

max [0, 𝑉
𝑖𝑗
− 𝑅
𝑖𝑘
− 𝑅
𝑚𝑗
− 𝑎𝑑
𝑚𝑘

| 𝑑
𝑘𝑚

𝑖𝑗
≤ 𝐷
𝑖𝑗
]

if 𝑘 ̸= 𝑖, 𝑚 ̸= 𝑗

0 otherwise.
(17)

In (17),

𝑅
𝑘𝑚

= {
𝑎𝑑
𝑘𝑚

if 𝑌̂
𝑘𝑚

= 1

𝑑
𝑘𝑚

if 𝑌̂
𝑘𝑚

= 0,
(18)

𝑑
𝑘𝑚

𝑖𝑗
= 𝑑
𝑖𝑘
+ 𝑑
𝑘𝑚

+ 𝑑
𝑚𝑗
. The economic meaning of 𝑉𝑡

𝑖𝑗
is the

incremental costs for adding one unit flow 𝑖 → 𝑗. And 𝑈𝑡
𝑖𝑗𝑘𝑚

denotes the cutting route costs for unit flow 𝑖 → 𝑗 when
(𝑘,𝑚) is selected as hub arc.

Benders’ cut at iteration 𝑡 is𝛽
𝑡
(𝑌) = ∑

𝑖,𝑗
𝑉
𝑡

𝑖𝑗
+∑
𝑖,𝑗,𝑘,𝑚

(𝑓
𝑘𝑚
−

𝑈
𝑡

𝑖𝑗𝑘𝑚
)𝑌
𝑘𝑚
. And the master problem at iteration 𝑘 can be

designed as model (P4),

(P4) min 𝑧

(19)

s.t. 𝑧 ≥ ∑

𝑖,𝑗

𝑉
𝑡

𝑖𝑗
+ ∑

𝑖,𝑗,𝑘,𝑚

(𝑓
𝑘𝑚

− 𝑈
𝑡

𝑖𝑗𝑘𝑚
) 𝑌
𝑘𝑚

∀𝑡 ∈ 1, 2, . . . , 𝑇,

(20)

𝑌
𝑘𝑚

= 0, 1; 𝑧 > 0. (21)

In the iterative process, Benders decomposition gradually
increases Benders’ cut by constraints (20), rather than consid-
ering all constraints at once, so that the algorithm efficiency
is improved. Solving the master problem (P4) gives us the
updated variables {𝑌

𝑘𝑚
} to try out for the next iteration,

while solving the subproblem of (P3) provides us new trying
schemes. Let 𝑙𝑘, 𝑢𝑘 be the objective value of (P4) and (P3)

at iteration 𝑡. And let LB, UB be the current best lower
bound and upper bound. The procedure is designed as in
Algorithm 5.

Algorithm 5 (Benders decomposition method for solving
FMRICT). (1) Initialize parameters, UB = ∞, LB = −∞,
and 𝑡 = 1. Initialize hub arcs, and let 𝑌

𝑘𝑚
= 0 for ∀(𝑘,𝑚),

which means that no hub arcs are selected at iteration 1.
Initialize constraints in model (P4) by setting constraint (20)
to be empty at first.

(2) Calculate the dual variables of model (P3) according
to (17). Compute 𝑢𝑘 = ∑

𝑖𝑗
𝑉
𝑡

𝑖𝑗
+ ∑
𝑘
∑
𝑚
∑
𝑖
∑
𝑗
(𝑓 − 𝑘𝑚 −

𝑈
𝑡

𝑖𝑗𝑘𝑚
)𝑌
𝑘𝑚
. If 𝑢𝑘 < UB, then UB = 𝑢𝑘.

(3) Add Benders cut constraint 𝑧 ≥ ∑
𝑖𝑗
𝑉
𝑡

𝑖𝑗
+

∑
𝑘
∑
𝑚
∑
𝑖
∑
𝑗
(𝑓−𝑘𝑚−𝑈

𝑡

𝑖𝑗𝑘𝑚
)𝑌
𝑘𝑚

tomodel (P4) and solve (P4)
to get the lower bound 𝑙𝑘. If 𝑙𝑘 > LB, then LB = 𝑙𝑘. If there is
no solution to (P4), then the original problem is unsolvable
and the algorithm is terminated.

(4)Determine if it has reached the termination criterions.
End algorithm if any one of the following two criterions is
true: (1) UB − 𝑙𝑏 ≤ 0.01, (2) 𝑡 = 20.

(5)Update {𝑌
𝑘𝑚
} according to the solution ofmodel (P4).

Update 𝑡 = 𝑡 + 1 and return to step two.

5. Computational Experiments

We code the algorithms in c♯ based on the VS2008 and
run them on ThinkPad x60 notebook computer which is
equipped with 2.1 GHZ Core2 CPU. In the procedure of
Algorithm 5, we call Gurobi to solve model (P3). The test
instances are from AP data package that can be downloaded
from http://people.brunel.ac.uk/mastjjb and includes postal
flow data and distances data of 200 cities in Australia. With
data about ℎ

𝑖𝑗
, 𝑐
𝑖𝑗
, and so forth, AP data package has become

a very famous algorithm testing platform for hub-and-spoke
network design, while still lacking data about 𝑓

𝑘𝑚
and 𝐷

𝑖𝑗
.

In our experiments, we let 𝑓
𝑘𝑚

= 2ℎ
𝑘𝑚
𝑐
𝑘𝑚
(1 − 𝑎) so that

flow quantity of hub arcs is at least twice as much as directed
flow quantity according to Lemma 1. Let 𝐷

𝑖𝑗
= 1.2𝑑

𝑖𝑗
, which

means that the length of hub route is nomore than 20 percent
of the directed route. Moreover, the first 10, 15, 20, 25, and 30
nodes were taken as instances in the AP data package, and the
discount number 𝑎 is set by 0.6, 0.7, or 0.8. At first, we apply
Gurobi’s𝐵𝑟𝑎𝑛𝑐ℎ&𝐶𝑢𝑡 algorithm to obtain the exact solution
of test cases, as shown in Table 1. We find that decision
variables and constraints in the mixed-integer programming
model (P1) would exceed 1510 thousands when 𝑛 ≥ 25,
which is too large to solve by 𝐵𝑟𝑎𝑛𝑐ℎ & 𝐶𝑢𝑡 algorithm on
Gurobi. Then all the cases are tested with Algorithms 4 and
5. The result is shown in Table 2, in which the gap between
upper bound and lower bound is defined by gap = 100(UB −
LB)/LB.

The experiment indicates that Algorithms 4 and 5, com-
pared to 𝐵𝑟𝑎𝑛𝑐ℎ& 𝐶𝑢𝑡 algorithm on Gurobi, are much more
time-saving and capable of solving large scaled instances
with more than 25 nodes. Upper bounds obtained from
Algorithm 5 have already reached the optimal solution in
most instances. For all tested instances, maximum gaps
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Table 1: Problem parameters of AP data package and computational result of Branch & Cut algorithm.

Problem parameters Branch & Cut algorithm

Problem 𝑎 𝑛
Number of

transportation tasks Optimal solution Time (s)

AP10-6 0.6 10 90 251524 2.55
AP15-6 0.6 15 210 337655 62.59
AP20-6 0.6 20 380 1214739 255.85
AP25-6 0.6 25 600 — —
AP30-6 0.6 30 870 — —
AP10-7 0.7 10 90 281348 2.43
AP15-7 0.7 15 210 379664 24.82
AP20-7 0.7 20 380 1384638 86.78
AP25-7 0.7 25 600 — —
AP30-7 0.7 30 870 — —
AP10-8 0.8 10 90 311134 1.05
AP15-8 0.8 15 210 421537 5.27
AP20-8 0.8 20 380 1553251 21.62
AP25-8 0.8 25 600 — —
AP30-8 0.8 30 870 — —

Table 2: Computational result of Algorithms 4 and 5 for AP data package.

Instance Algorithm 4 Algorithm 5
UB LB Gap Time (s) UB LB Gap Time (s)

AP10-6 254741 251370 1.34 2.45 251524 250711 0.32 3.26
AP15-6 343625 334800 2.63 12.50 338031 334540 1.03 16.19
AP20-6 1243835 1197288 3.88 51.21 1221368 1204513 1.38 53.80
AP25-6 1588608 1487350 6.80 40.17 1557496 1522760 2.23 185.26
AP30-6 2607031 2457319 6.09 15.49 2581828 2477115 4.05 283.75
AP10-7 281812 278790 1.08 2.18 281348 280792 0.20 3.51
AP15-7 384132 377457 1.76 15.21 380079 377841 0.58 15.78
AP20-7 1412754 1370593 3.07 50.01 1390699 1375812 1.07 53.28
AP25-7 1795345 1720306 4.36 20.91 1767833 1745691 1.25 128.3
AP30-7 2950418 2830074 4.25 15.1 2926752 2847984 2.69 292.95
AP10-8 311723 311068 0.21 2.30 311128 310799 0.11 3.32
AP15-8 425198 420009 1.23 13.4 422749 420408 0.55 17.28
AP20-8 1574894 1548196 1.72 17.08 1556208 1545625 0.68 52.4
AP25-8 1998599 1959522 1.99 7.3 1980503 1965095 0.77 132.11
AP30-8 3274275 3219604 1.69 14.01 3267612 3213814 1.64 283.20

obtained from Algorithms 4 and 5 are 6.8% and 4.05%,
averagely 2.86% and 1.24%, respectively. It is clear that both
Benders decomposition method and Lagrangian relaxation
algorithm possess pretty good performances on solving
FMRICT problems.

As shown in Table 2, for small scaled instances with less
than 15 nodes, Benders decompositionmethod could give the
gap between upper bound and lower bound that is no more
than 2.7% within 16 seconds, while Lagrangian relaxation
algorithm no more than 1.03% within 63 seconds. For larger
scaled problemswithmore than 20nodes, Benders decompo-
sition method gives the gap that is no more than 6.9%within
52 seconds, while Lagrangian relaxation algorithm no more

than 4.05% within 293 seconds. It implies that Algorithm 4
solves FMRICT problem faster, while Algorithm 5 gives
better solutions.

6. Conclusion

The current collaborative transportation researches mainly
consider the nodes cost of hubs, while ignore detouring cost,
hub arcs cost, or incremental flows. FMRICT seeks a way of
cutting down detouring route and building infrastructure or
conveyances for hub arc and at the same time satisfies the
demand of incremental flows by charge costs of building hub
arc according to Lemma 1. All of them are very important
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in practice and are foundations of achieving economies of
scale in collaborative transportation. We build a mixed-
integer programming model of FMRICT and then construct
Lagrangian relaxation algorithm and Benders decomposition
method to solve FMRICT.The experiments indicate that both
algorithms have pretty good computational performance.
However, FMRICT considers only one discount rate. Inmany
cases, flow quantity and transportation cost show a piecewise
linear relationship, so that different scales of flow quantity
and transportation tools produce different discount rates.
Therefore, collaborative transportation routing problem with
piecewise linear relationship between flow quantity and
transportation costs is prospective for the next research.
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[6] M. Köksalan and B. Soylu, “Bicriteria 𝑝-hub location problems
and evolutionary algorithms,” INFORMS Journal onComputing,
vol. 22, no. 4, pp. 528–542, 2010.

[7] K. R. Weng, Research on Location and Routing Optimization
for Hub-and-Spoke Logistics Network Design, University of
Eluctronic Science and Technology Press, 2009, (Chinese).

[8] M. R. Silva and C. B. Cunha, “New simple and efficient
heuristics for the uncapacitated single allocation hub location
problem,” Computers & Operations Research, vol. 36, no. 12, pp.
3152–3165, 2009.

[9] M. Randall, “Solution approaches for the capacitated single
allocation hub location problem using ant colony optimisation,”
Computational Optimization and Applications, vol. 39, no. 2, pp.
239–261, 2008.

[10] I. Contreras, J. A. Dı́az, and E. Fernández, “Lagrangean relax-
ation for the capacitated hub location problem with single
assignment,”OR Spectrum. Quantitative Approaches inManage-
ment, vol. 31, no. 3, pp. 483–505, 2009.
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