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Weprove aKastler-Kalau-Walze type theorem for perturbations ofDirac operators on compactmanifoldswith orwithout boundary.
As a corollary, we give two kinds of operator-theoretic explanations of the gravitational action on boundary. We also compute the
spectral action for Dirac operators with two-form perturbations on 4-dimensional compact manifolds.

1. Introduction

The noncommutative residue found in [1, 2] plays a promi-
nent role in noncommutative geometry. In [3], Connes
used the noncommutative residue to derive a conformal 4-
dimensional Polyakov action analogy. In [4], Connes proved
that the noncommutative residue on a compact manifold
𝑀 coincided with Dixmier’s trace on pseudodifferential
operators of order − dim𝑀. Several years ago, Connes
made a challenging observation that the noncommutative
residue of the square of the inverse of the Dirac operator
was proportional to the Einstein-Hilbert action, which is
called the Kastler-Kalau-Walze theorem now. In [5], Kastler
gave a brute-force proof of this theorem. In [6], Kalau and
Walze proved this theorem by the normal coordinates way
simultaneously. In [7], Ackermann gave a note on a new proof
of this theoremby the heat kernel expansionway.TheKastler-
Kalau-Walze theorem had been generalized to some cases, for
example, Dirac operators with torsion [8], CR manifolds [9],
and R𝑛 [10] (see also [11, 12]).

On the other hand, Fedosov et al. defined a noncommu-
tative residue on Boutet de Monvel’s algebra and proved that
it was the unique continuous trace in [13]. In [14], Schrohe
gave the relation between the Dixmier trace and the non-
commutative residue formanifolds with boundary. In [15, 16],

we gave an operator-theoretic explanation of the gravitational
action for manifolds with boundary and proved a Kastler-
Kalau-Walze type theorem for Dirac operators and signature
operators on manifolds with boundary.

Perturbations of Dirac operators were investigated by
several authors. In [17], Sitarz and Zajac investigated the
spectral action for scalar perturbations of Dirac operators.
In [18, p. 305], Iochum and Levy computed the heat kernel
coefficients for Dirac operators with one-form perturbations.
In [19], Hanisch et al. derived a formula for the gravita-
tional part of the spectral action for Dirac operators on
4-dimensional spin manifolds with totally antisymmetric
torsion and this is a perturbation with three forms of Dirac
operators. On the other hand, in [20], Connes andMoscovici
considered the conformal perturbations of Dirac operators.
Investigating the perturbations of Dirac operators has some
significance (see [18, 19, 21]). Motivated by [17–19], we study
the Dirac operators with general form perturbations. We
prove a Kastler-Kalau-Walze type theorem for general form
perturbations and the conformal perturbations of Dirac
operators for compact manifolds with or without boundary.
We also compute the spectral action for Dirac operators
with two-form perturbations on 4-dimensional compact
manifolds and give detailed computations of spectral action
for scalar perturbations of Dirac operators in [17].
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This paper is organized as follows. In Section 2, we
prove the Lichnerowicz formula for perturbations of Dirac
operators and prove a Kastler-Kalau-Walze type theorem for
perturbations of Dirac operators on 4-dimensional compact
manifolds with or without boundary. In Section 3, we prove
a Kastler-Kalau-Walze type theorem for conformal perturba-
tions of Dirac operators on compact manifolds with or with-
out boundary. In Section 4, we compute the spectral action
for Dirac operators with scalar and two-form perturbations
on 4-dimensional compact manifolds.

2. A Kastler-Kalau-Walze Type Theorem for
Perturbations of Dirac Operators

2.1. A Kastler-Kalau-Walze Type Theorem for Perturbations
of Dirac Operators on Manifolds without Boundary. Let 𝑀
be a smooth compact Riemannian 𝑛-dimensional manifold
without boundary and let 𝑉 be a vector bundle on𝑀. Recall
that a differential operator 𝑃 is of Laplace type if it has locally
the form

𝑃 = − (𝑔
𝑖𝑗

𝜕
𝑖
𝜕
𝑗
+ 𝐴

𝑖

𝜕
𝑖
+ 𝐵) , (1)

where 𝜕
𝑖
is a natural local frame on 𝑇𝑀, 𝑔

𝑖,𝑗
= 𝑔(𝜕

𝑖
, 𝜕

𝑗
) and

(𝑔
𝑖𝑗

)
1≤𝑖,𝑗≤𝑛

is the inverse matrix associated with the metric
matrix (𝑔

𝑖,𝑗
)
1≤𝑖,𝑗≤𝑛

on 𝑀, and 𝐴𝑖 and 𝐵 are smooth sections
of End(𝑉) on 𝑀 (endomorphism). If 𝑃 is a Laplace type
operator of the form (1), then (see [22]) there is a unique
connection ∇ on 𝑉 and a unique endomorphism 𝐸 such that

𝑃 = − [𝑔
𝑖𝑗

(∇
𝜕𝑖
∇
𝜕𝑗
− ∇

∇
𝐿

𝜕𝑖
𝜕𝑗
) + 𝐸] , (2)

where ∇𝐿 denotes the Levi-Civita connection on 𝑀. More-
over (with local frames of 𝑇∗

𝑀 and 𝑉), ∇
𝜕𝑖
= 𝜕

𝑖
+ 𝜔

𝑖
and 𝐸

are related to 𝑔𝑖𝑗, 𝐴𝑖, and 𝐵 through

𝜔
𝑖
=
1

2
𝑔
𝑖𝑗
(𝐴

𝑗

+ 𝑔
𝑘𝑙

Γ
𝑗

𝑘𝑙
𝐼𝑑) ,

𝐸 = 𝐵 − 𝑔
𝑖𝑗

(𝜕
𝑖
(𝜔

𝑗
) + 𝜔

𝑖
𝜔
𝑗
− 𝜔

𝑘
Γ
𝑘

𝑖𝑗
) ,

(3)

where Γ𝑘
𝑖𝑗
are the Christoffel coefficients of ∇𝐿.

Now, we let 𝑀 be an 𝑛-dimensional oriented spin man-
ifold with Riemannian metric 𝑔. We recall that the Dirac
operator𝐷 is locally given as follows in terms of orthonormal
frames 𝑒

𝑖
, 1 ≤ 𝑖 ≤ 𝑛, and natural frames 𝜕

𝑖
of 𝑇𝑀:

𝐷 = ∑

𝑖,𝑗

𝑔
𝑖𝑗

𝑐 (𝜕
𝑖
) ∇

𝑆

𝜕𝑗

= ∑

𝑖

𝑐 (𝑒
𝑖
) ∇

𝑆

𝑒𝑖

, (4)

where 𝑐(𝑒
𝑖
) denotes the Clifford action which satisfies the

relation

𝑐 (𝑒
𝑖
) 𝑐 (𝑒

𝑗
) + 𝑐 (𝑒

𝑗
) 𝑐 (𝑒

𝑖
) = −2𝛿

𝑗

𝑖
,

∇
𝑆

𝜕𝑖

= 𝜕
𝑖
+ 𝜎

𝑖
,

𝜎
𝑖
=
1

4
∑

𝑗,𝑘

⟨∇
𝐿

𝜕𝑖

𝑒
𝑗
, 𝑒

𝑘
⟩ 𝑐 (𝑒

𝑗
) 𝑐 (𝑒

𝑘
) .

(5)

Let

𝜕
𝑗

= 𝑔
𝑖𝑗

𝜕
𝑖
, 𝜎

𝑖

= 𝑔
𝑖𝑗

𝜎
𝑗
, Γ

𝑘

= 𝑔
𝑖𝑗

Γ
𝑘

𝑖𝑗
. (6)

By (6a) in [5], we have

𝐷
2

= − 𝑔
𝑖𝑗

𝜕
𝑖
𝜕
𝑗
− 2𝜎

𝑗

𝜕
𝑗
+ Γ

𝑘

𝜕
𝑘

− 𝑔
𝑖𝑗

[𝜕
𝑖
(𝜎

𝑗
) + 𝜎

𝑖
𝜎
𝑗
− Γ

𝑘

𝑖𝑗
𝜎
𝑘
] +

1

4
𝑠,

(7)

where 𝑠 is the scalar curvature. LetΨ be a smooth differential
form on𝑀 and we also denote the associated Clifford action
by Ψ. We will compute𝐷2

Ψ
:= (𝐷 + Ψ)

2. We note that

(𝐷 + Ψ)
2

= 𝐷
2

+ 𝐷Ψ + Ψ𝐷 + Ψ
2

, (8)

𝐷Ψ + Ψ𝐷 = ∑

𝑖𝑗

𝑔
𝑖𝑗

(𝑐 (𝜕
𝑖
) Ψ + Ψ𝑐 (𝜕

𝑖
)) 𝜕

𝑗

+∑

𝑖𝑗

𝑔
𝑖𝑗

(𝑐 (𝜕
𝑖
) 𝜕

𝑗
(Ψ) + 𝑐 (𝜕

𝑖
) 𝜎

𝑗
Ψ

+Ψ𝑐 (𝜕
𝑖
) 𝜎

𝑗
) .

(9)

By (7)–(9), we have

𝐷
2

Ψ
= − 𝑔

𝑖𝑗

𝜕
𝑖
𝜕
𝑗
+ (−2𝜎

𝑗

+ Γ
𝑗

+ 𝑐 (𝜕
𝑗

)Ψ + Ψ𝑐 (𝜕
𝑗

)) 𝜕
𝑗

+ 𝑔
𝑖𝑗

[−𝜕
𝑖
(𝜎

𝑗
) − 𝜎

𝑖
𝜎
𝑗
+ Γ

𝑘

𝑖𝑗
𝜎
𝑘
+ 𝑐 (𝜕

𝑖
) 𝜕

𝑗
(Ψ)

+ 𝑐 (𝜕
𝑖
) 𝜎

𝑗
Ψ + Ψ𝑐 (𝜕

𝑖
) 𝜎

𝑗
] +

1

4
𝑠 + Ψ

2

.

(10)

By (10) and (3), we have

𝜔
𝑖
= 𝜎

𝑖
−
1

2
[𝑐 (𝜕

𝑖
) Ψ + Ψ𝑐 (𝜕

𝑖
)] ,

𝐸 = − 𝑐 (𝜕
𝑖
) 𝜕

𝑖

(Ψ) − 𝑐 (𝜕
𝑖
) 𝜎

𝑖

Ψ − Ψ𝑐 (𝜕
𝑖
) 𝜎

𝑖

−
1

4
𝑠 − Ψ

2

+
1

2
𝜕
𝑗

[𝑐 (𝜕
𝑗
)Ψ + Ψ𝑐 (𝜕

𝑗
)]

−
1

2
Γ
𝑘

[𝑐 (𝜕
𝑘
) Ψ + Ψ𝑐 (𝜕

𝑘
)] +

1

2
𝜎
𝑗

[𝑐 (𝜕
𝑗
)Ψ + Ψ𝑐 (𝜕

𝑗
)]

+
1

2
[𝑐 (𝜕

𝑗
)Ψ + Ψ𝑐 (𝜕

𝑗
)] 𝜎

𝑗

−
𝑔
𝑖𝑗

4
[𝑐 (𝜕

𝑖
) Ψ + Ψ𝑐 (𝜕

𝑖
)] [𝑐 (𝜕

𝑗
)Ψ + Ψ𝑐 (𝜕

𝑗
)] .

(11)

For a smooth vector field𝑋 on𝑀, let 𝑐(𝑋) denote the Clifford
action. So,

∇
𝑋
= ∇

𝑆

𝑋
−
1

2
[𝑐 (𝑋)Ψ + Ψ𝑐 (𝑋)] . (12)

Since 𝐸 is globally defined on 𝑀, so we can perform
computations of 𝐸 in normal coordinates. Taking normal



Abstract and Applied Analysis 3

coordinates about 𝑥
0
, then, 𝜎𝑖(𝑥

0
) = 0, 𝜕

𝑗

[𝑐(𝜕
𝑗
)](𝑥

0
) =

0, Γ
𝑘

(𝑥
0
) = 0, 𝑔

𝑖𝑗

(𝑥
0
) = 𝛿

𝑗

𝑖
, so that

𝐸 (𝑥
0
) = −

1

4
𝑠 − Ψ

2

+
1

2
[𝜕

𝑗

(Ψ) 𝑐 (𝜕
𝑗
) − 𝑐 (𝜕

𝑗
) 𝜕

𝑗

(Ψ)]

−
1

4
[𝑐 (𝜕

𝑖
) Ψ + Ψ𝑐 (𝜕

𝑖
)]

2

(𝑥
0
)

= −
1

4
𝑠 − Ψ

2

+
1

2
[𝑒

𝑗
(Ψ) 𝑐 (𝑒

𝑗
) − 𝑐 (𝑒

𝑗
) 𝑒

𝑗
(Ψ)]

−
1

4
[𝑐 (𝑒

𝑖
) Ψ + Ψ𝑐 (𝑒

𝑖
)]

2

(𝑥
0
)

= −
1

4
𝑠 − Ψ

2

+
1

2
[∇

𝑆

𝑒𝑗

(Ψ) 𝑐 (𝑒
𝑗
) − 𝑐 (𝑒

𝑗
) ∇

𝑆

𝑒𝑗

(Ψ)]

−
1

4
[𝑐 (𝑒

𝑖
) Ψ + Ψ𝑐 (𝑒

𝑖
)]

2

(𝑥
0
) .

(13)

We get the following Lichnerowicz formula.

Proposition 1. Let Ψ be a smooth differential form on𝑀 and
𝐷

Ψ
:= 𝐷 + Ψ; then

𝐷
2

Ψ
= − [𝑔

𝑖𝑗

(∇
𝜕𝑖
∇
𝜕𝑗
− ∇

∇
𝐿

𝜕𝑖
𝜕𝑗
)] +

1

4
𝑠 + Ψ

2

−
1

2
[∇

𝑆

𝑒𝑗

(Ψ) 𝑐 (𝑒
𝑗
) − 𝑐 (𝑒

𝑗
) ∇

𝑆

𝑒𝑗

(Ψ)]

+
1

4
[𝑐 (𝑒

𝑖
) Ψ + Ψ𝑐 (𝑒

𝑖
)]

2

,

(14)

where ∇
𝜕𝑖
is defined by (12) and 𝑋 = 𝜕

𝑖
.

We see two special cases of Proposition 1. When Ψ = 𝑓,
where 𝑓 is a smooth function on𝑀, we have

∇
𝑋
= ∇

𝑆

𝑋
− 𝑓𝑐 (𝑋) , 𝐸 = −

1

4
𝑠 + (𝑛 − 1) 𝑓

2

. (15)

Corollary 2. When Ψ = 𝑓, one has

𝐷
2

𝑓
= − [𝑔

𝑖𝑗

(∇
𝜕𝑖
∇
𝜕𝑗
− ∇

∇
𝐿

𝜕𝑖
𝜕𝑗
)] +

1

4
𝑠 + (1 − 𝑛) 𝑓

2

. (16)

Let 𝜂 = 𝑎
𝑖
𝑒
𝑖 be a one form, where 𝑎

𝑖
is a smooth real

function, let 𝑒𝑖 be a dual orthonormal frame by parallel
transport along geodesic, and let 𝑋 = 𝑎

𝑖
𝑒
𝑖
be the dual

vector field of 𝜂. When Ψ = √−1𝑐(𝜂), by (12), we have

∇
𝑌
= ∇

𝑆

𝑌
+ √−1𝑔(𝑋, 𝑌), where 𝑌 is a smooth vector field on

𝑀. By 𝑒
𝑗
(𝑐(𝑒

𝑖
)) = 0 and 𝑑𝑒𝑙(𝑥

0
) = 0 (see [15]), we have

𝐸 (𝑥
0
) = −

1

4
𝑠 − |𝑋|

2

+
√−1

2

× [𝑒
𝑗
(𝑎

𝑘

) 𝑐 (𝑒
𝑘
) 𝑐 (𝑒

𝑗
) − 𝑐 (𝑒

𝑗
) 𝑐 (𝑒

𝑘
) 𝑒

𝑗
(𝑎

𝑘

)]

+
1

4
[𝑐 (𝑒

𝑖
) 𝑐 (𝑋) + 𝑐 (𝑋) 𝑐 (𝑒

𝑖
)]

2

= −
1

4
𝑠 +

√−1

2
𝑒
𝑗
(𝑎

𝑘

) [𝑐 (𝑒
𝑘
) 𝑐 (𝑒

𝑗
) − 𝑐 (𝑒

𝑗
) 𝑐 (𝑒

𝑘
)]

= −
1

4
𝑠 + √−1∑

𝑘 ̸= 𝑗

𝑒
𝑗
(𝑎

𝑘

) 𝑐 (𝑒
𝑘
) 𝑐 (𝑒

𝑗
) (𝑥

0
)

= −
1

4
𝑠 − √−1𝑐 (𝑑𝜂) (𝑥

0
) .

(17)

Corollary 3. For a one-form 𝜂 and the Clifford action 𝑐(𝜂), one
has

(𝐷 + √−1𝑐 (𝜂))
2

= − [𝑔
𝑖𝑗

(∇
𝜕𝑖
∇
𝜕𝑗
− ∇

∇
𝐿

𝜕𝑖
𝜕𝑗
)]

+
1

4
𝑠 + √−1𝑐 (𝑑𝜂) .

(18)

When Ψ is a two-form, we let Ψ = 2∑
𝑘<𝑙

𝑎
𝑘𝑙
𝑒
𝑘

∧ 𝑒
𝑙

=

∑𝑎
𝑘𝑙
𝑒
𝑘

∧ 𝑒
𝑙, where 𝑎

𝑘𝑙
= −𝑎

𝑙𝑘
, and 𝑐(Ψ) = ∑𝑎

𝑘𝑙
𝑐(𝑒

𝑘
)𝑐(𝑒

𝑙
). So,

∇
𝑒𝑖
= 𝑒

𝑖
+
1

4
∑

𝑠,𝑡

𝜔
𝑠𝑡
(𝑒

𝑖
) 𝑐 (𝑒

𝑠
) 𝑐 (𝑒

𝑡
) − ∑

𝑘,𝑙 ̸= 𝑖

𝑎
𝑘𝑙
𝑐 (𝑒

𝑘
) 𝑐 (𝑒

𝑙
) 𝑐 (𝑒

𝑖
) ,

(19)

where 𝜔
𝑠𝑡
(𝑒

𝑖
) denotes the connection coefficient. By (13),

𝐸 = −
1

4
𝑠 − [𝑎

𝑘𝑙
𝑐 (𝑒

𝑘
) 𝑐 (𝑒

𝑙
)]

2

+
1

2
{𝑒

𝑗
(𝑎

𝑘𝑙
) [𝑐 (𝑒

𝑘
) 𝑐 (𝑒

𝑙
) 𝑐 (𝑒

𝑗
) − 𝑐 (𝑒

𝑗
) 𝑐 (𝑒

𝑘
) 𝑐 (𝑒

𝑙
)]}

−
1

4
[𝑎

𝑘𝑙
(𝑐(𝑒

𝑖
)𝑐(𝑒

𝑘
)𝑐(𝑒

𝑙
) + 𝑐(𝑒

𝑘
)𝑐(𝑒

𝑙
)𝑐(𝑒

𝑖
))]

2

.

(20)

Let 𝑆(𝑇𝑀) be the spinor bundle on𝑀 and dim(𝑆(𝑇𝑀)) = 𝑑

and Tr(𝐴) denote the trace of 𝐴, for 𝐴 ∈ End(𝑆(𝑇𝑀)). Since,
for 𝑘 ̸= 𝑙, 𝑘̃ ̸= 𝑙̃,

Tr [𝑐 (𝑒
𝑘
) 𝑐 (𝑒

𝑙
) 𝑐 (𝑒̃

𝑘
) 𝑐 (𝑒̃

𝑙
)] = 𝑑 (−𝛿

̃
𝑘

𝑘
𝛿
̃
𝑙

𝑙
+ 𝛿

̃
𝑙

𝑘
𝛿
̃
𝑘

𝑙
) , (21)

we have

Tr {[𝑎
𝑘𝑙
𝑐 (𝑒

𝑘
) 𝑐 (𝑒

𝑙
)]

2

} = −2𝑑𝑎
2

𝑘𝑙
. (22)
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Since the trace of the product of oddClifford elements is zero,
we have

Tr [1
2
{𝑒

𝑗
(𝑎

𝑘𝑙
) [𝑐 (𝑒

𝑘
) 𝑐 (𝑒

𝑙
) 𝑐 (𝑒

𝑗
) − 𝑐 (𝑒

𝑗
) 𝑐 (𝑒

𝑘
) 𝑐 (𝑒

𝑙
)]}] = 0,

(23)

Tr {[𝑎
𝑘𝑙
(𝑐 (𝑒

𝑖
) 𝑐 (𝑒

𝑘
) 𝑐 (𝑒

𝑙
) + 𝑐 (𝑒

𝑘
) 𝑐 (𝑒

𝑙
) 𝑐 (𝑒

𝑖
))]

2

}

= 𝑎
𝑘𝑙
𝑎̃
𝑘
̃
𝑙
Tr [𝑐 (𝑒

𝑘
) 𝑐 (𝑒

𝑙
) 𝑐 (𝑒̃

𝑘
) 𝑐 (𝑒̃

𝑙
) 𝑐(𝑒

𝑖
)
2

+ 𝑐 (𝑒
𝑘
) 𝑐 (𝑒

𝑙
) 𝑐(𝑒

𝑖
)
2

𝑐 (𝑒̃
𝑘
) 𝑐 (𝑒̃

𝑙
)

+ 𝑐 (𝑒
𝑖
) 𝑐 (𝑒

𝑘
) 𝑐 (𝑒

𝑙
) 𝑐 (𝑒

𝑖
) 𝑐 (𝑒̃

𝑘
) 𝑐 (𝑒̃

𝑙
)

+ 𝑐 (𝑒
𝑘
) 𝑐 (𝑒

𝑙
) 𝑐 (𝑒

𝑖
) 𝑐 (𝑒̃

𝑘
) 𝑐 (𝑒̃

𝑙
) 𝑐 (𝑒

𝑖
) ]

= −2𝑛𝑑𝑎
𝑘𝑙
𝑎̃
𝑘
̃
𝑙
(−𝛿

̃
𝑘

𝑘
𝛿
̃
𝑙

𝑙
+ 𝛿

̃
𝑙

𝑘
𝛿
̃
𝑘

𝑙
)

− 2 ∑

𝑖 ̸= 𝑘,𝑙

𝑎
𝑘𝑙
𝑎̃
𝑘
̃
𝑙
Tr [𝑐 (𝑒

𝑘
) 𝑐 (𝑒

𝑙
) 𝑐 (𝑒̃

𝑘
) 𝑐 (𝑒̃

𝑙
)]

+ 2∑

𝑖=𝑘

𝑎
𝑘𝑙
𝑎̃
𝑘
̃
𝑙
Tr [𝑐 (𝑒

𝑘
) 𝑐 (𝑒

𝑙
) 𝑐 (𝑒̃

𝑘
) 𝑐 (𝑒̃

𝑙
)]

+ 2∑

𝑖=𝑙

𝑎
𝑘𝑙
𝑎̃
𝑘
̃
𝑙
Tr [𝑐 (𝑒

𝑘
) 𝑐 (𝑒

𝑙
) 𝑐 (𝑒̃

𝑘
) 𝑐 (𝑒̃

𝑙
)]

= 4𝑛𝑑𝑎
2

𝑘𝑙
+ (𝑛 − 2) 4𝑑𝑎

2

𝑘𝑙
− 4𝑑𝑎

2

𝑘𝑙
− 4𝑑𝑎

2

𝑘𝑙

= 8 (𝑛 − 2) 𝑑𝑎
2

𝑘𝑙
.

(24)

By (20) and (22)–(24), we have

Tr𝐸 = 𝑑(−
1

4
𝑠 + (6 − 2𝑛) |Ψ|

2

) (25)

and we get the following.

Corollary 4. Let Ψ = ∑𝑎
𝑘𝑙
𝑒
𝑘

∧ 𝑒
𝑙 and 𝑎

𝑘𝑙
= −𝑎

𝑙𝑘
; then tr 𝐸 =

𝑑(−(1/4)𝑠 + (6 − 2𝑛)|Ψ|
2

).

For a general differential form Ψ, by (13) and Tr(𝐴𝐵) =
Tr(𝐵𝐴), we have

Tr (𝐸) = Tr [−1
4
𝑠 − Ψ

2

−
1

4
[𝑐 (𝑒

𝑖
)Ψ + Ψ𝑐 (𝑒

𝑖
)]

2

]

= Tr [−1
4
𝑠 −

1

2
Ψ𝑐 (𝑒

𝑖
) Ψ𝑐 (𝑒

𝑖
) + (

𝑛

2
− 1)Ψ

2

] .

(26)

By the Kastler-Kalau-Walze theorem (see [5, 6]), we have

Wres (𝐷−𝑛+2

Ψ
) =

(2𝜋)
𝑛/2

(𝑛/2 − 2)!
∫
𝑀

Tr [1
6
𝑠 + 𝐸] 𝑑V𝑜𝑙

𝑀
, (27)

where Wres denotes the noncommutative residue (see [2]).
By (26) and (27), we have the following.

Theorem 5. For even 𝑛-dimensional compact spin manifolds
without boundary and a general formΨ, the following equality
holds:

Wres (𝐷−𝑛+2

Ψ
)

=
(2𝜋)

𝑛/2

(𝑛/2 − 2)!

× ∫
𝑀

Tr [− 1

12
𝑠

−
1

2
𝑐 (Ψ) 𝑐 (𝑒

𝑖
) 𝑐 (Ψ) 𝑐 (𝑒

𝑖
)

+ (𝑛/2 − 1) 𝑐(Ψ)
2

] 𝑑V𝑜𝑙
𝑀
.

(28)

By Corollary 2, we have the following.

Corollary 6. For even 𝑛-dimensional compact spin manifolds
without boundary and a smooth function𝑓 on𝑀, the following
equality holds:

Wres (𝐷−𝑛+2

𝑓
) =

(2𝜋)
𝑛/2

𝑑

(𝑛/2 − 2)!
∫
𝑀

[−
1

12
𝑠 + (𝑛 − 1) 𝑓

2

] 𝑑V𝑜𝑙
𝑀
.

(29)

By Corollary 3, we have the following.

Corollary 7. For even 𝑛-dimensional compact spin manifolds
without boundary and a one-form Ψ, the following equality
holds:

Wres (𝐷−𝑛+2

Ψ
) = −

(2𝜋)
𝑛/2

𝑑

12 × (𝑛/2 − 2)!
∫
𝑀

𝑠 𝑑V𝑜𝑙
𝑀
. (30)

By Corollary 4 and (27), we have the following.

Corollary 8. For even 𝑛-dimensional compact spin manifolds
without boundary and a two-form Ψ, the following equality
holds:

Wres (𝐷−𝑛+2

Ψ
) =

(2𝜋)
𝑛/2

𝑑

(𝑛/2 − 2)!

× ∫
𝑀

Tr [− 1

12
𝑠 + (6 − 2𝑛) |Ψ|

2

] 𝑑V𝑜𝑙
𝑀
.

(31)

2.2. A Kastler-Kalau-Walze TypeTheorem for Perturbations of
Dirac Operators on Manifolds with Boundary. We now let𝑀
be a compact 4-dimensional spin manifold with boundary
𝜕𝑀 and let 𝑈 ⊂ 𝑀 be the collar neighborhood of 𝜕𝑀
which is diffeomorphic to 𝜕𝑀 × [0, 1). And we will compute
the noncommutative residue for manifolds with boundary of
(𝜋

+

𝐷
−1

Ψ
)
2. That is, we will compute W̃res[(𝜋+𝐷−1

Ψ
)
2

] (for the
related definitions, see [15]) and we take the metric as in [15].
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Let (𝑥󸀠, 𝑥
𝑛
) ∈ 𝑈, where 𝑥󸀠 ∈ 𝜕𝑀 and 𝑥

𝑛
denotes the normal

direction coordinate. By (2.2.4) in [15], we have

W̃res [(𝜋+𝐷−1

Ψ
)
2

]

= ∫
𝑀

∫
|𝜉|=1

trace
𝑆(𝑇𝑀)

[𝜎
−4
(𝐷

−2

Ψ
)] 𝜎 (𝜉) 𝑑𝑥

+ ∫
𝜕𝑀

Φ,

(32)

where

Φ

= ∫
|𝜉
󸀠
|=1

∫

+∞

−∞

∞

∑

𝑗,𝑘=0

∑
(−𝑖)

|𝛼|+𝑗+𝑘+1

𝛼! (𝑗 + 𝑘 + 1)!

× trace
𝑆(𝑇𝑀)

[𝜕
𝑗

𝑥𝑛

𝜕
𝛼

𝜉
󸀠𝜕

𝑘

𝜉𝑛

𝜎
+

𝑟
(𝐷

−1

Ψ
) (𝑥

󸀠

, 0, 𝜉
󸀠

, 𝜉
𝑛
)

× 𝜕
𝛼

𝑥
󸀠𝜕

𝑗+1

𝜉𝑛

𝜕
𝑘

𝑥𝑛

𝜎
𝑙
(𝐷

−1

Ψ
)

× (𝑥
󸀠

, 0, 𝜉
󸀠

, 𝜉
𝑛
) ] 𝑑𝜉

𝑛
𝜎 (𝜉

󸀠

) 𝑑𝑥
󸀠

,

(33)

where the sum is taken over 𝑟−𝑘−|𝛼|+𝑙−𝑗−1 = −4, 𝑟, 𝑙 ≤ −1,
and 𝜎+

𝑟
(𝐷

−1

Ψ
) = 𝜋

+

𝜉𝑛

𝜎
𝑟
(𝐷

−1

Ψ
) (for the definition of 𝜋+, see [15]).

ByTheorem 5, we have

∫
𝑀

∫
|𝜉|=1

tr [𝜎
−4
(𝐷

−2

Ψ
)] 𝜎 (𝜉) 𝑑𝑥

= 4𝜋
2

∫
𝑀

Tr [− 1

12
𝑠 −

1

2
Ψ𝑐 (𝑒

𝑖
)Ψ𝑐 (𝑒

𝑖
)

+ (
𝑛

2
− 1)Ψ

2

] 𝑑V𝑜𝑙
𝑀
.

(34)

So, we only need to compute ∫
𝜕𝑀

Φ. In analogy with Lemma
2.1 of [15], we can prove the following useful result.

Lemma 9. The symbolic calculus of pseudodifferential opera-
tors yields

𝑞
−1
(𝐷

−1

Ψ
) =

√−1𝑐 (𝜉)

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

2
,

𝑞
−2
(𝐷

−1

Ψ
) = 𝑞

−2
(𝐷

−1

) +
𝑐 (𝜉) Ψ𝑐 (𝜉)

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

4
.

(35)

Similar to the computations in Section 2.2.2 in [15], we
can split Φ into the sum of five terms. Since 𝑞

−1
(𝐷

−1

Ψ
) =

𝑞
−1
(𝐷

−1

), then terms (a) (I), (a) (II), and (a) (III) in our case

are the same as the terms (a) (I), (a) (II), and (a) (III) in [15],
so

term (a) (I)

= −∫
|𝜉
󸀠
|=1

∫

+∞

−∞

∑

|𝛼|=1

trace [𝜕𝛼
𝜉
󸀠𝜋

+

𝜉𝑛

𝑞
−1

× 𝜕
𝛼

𝑥
󸀠𝜕

𝜉𝑛
𝑞
−1
]

× (𝑥
0
) 𝑑𝜉

𝑛
𝜎 (𝜉

󸀠

) 𝑑𝑥
󸀠

= 0,

term (a) (II)

= −
1

2
∫
|𝜉
󸀠
|=1

∫

+∞

−∞

trace [𝜕
𝑥𝑛
𝜋
+

𝜉𝑛

𝑞
−1

× 𝜕
2

𝜉𝑛

𝑞
−1
]

× (𝑥
0
) 𝑑𝜉

𝑛
𝜎 (𝜉

󸀠

) 𝑑𝑥
󸀠

= −
3

8
𝜋ℎ

󸀠

(0)Ω
3
𝑑𝑥

󸀠

,

term (a) (III)

= −
1

2
∫
|𝜉
󸀠
|=1

∫

+∞

−∞

trace [𝜕
𝜉𝑛
𝜋
+

𝜉𝑛

𝑞
−1

× 𝜕
𝜉𝑛
𝜕
𝑥𝑛
𝑞
−1
]

× (𝑥
0
) 𝑑𝜉

𝑛
𝜎 (𝜉

󸀠

) 𝑑𝑥
󸀠

=
3

8
𝜋ℎ

󸀠

(0)Ω
3
𝑑𝑥

󸀠

.

(36)

Then, we only need to compute term (b) and term (c). By
Lemma 9,

term (b)

:= −𝑖 ∫
|𝜉
󸀠
|=1

∫

+∞

−∞

trace [𝜋+
𝜉𝑛

𝑞
−2
(𝐷

−1

)

× 𝜕
𝜉𝑛
𝑞
−1
(𝐷

−1

)]

× (𝑥
0
) 𝑑𝜉

𝑛
𝜎 (𝜉

󸀠

) 𝑑𝑥
󸀠

− 𝑖 ∫
|𝜉
󸀠
|=1

∫

+∞

−∞

trace[𝜋+
𝜉𝑛

(
𝑐 (𝜉)Ψ𝑐 (𝜉)

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

4
)

× 𝜕
𝜉𝑛
𝑞
−1
(𝐷

−1

) ]

× (𝑥
0
) 𝑑𝜉

𝑛
𝜎 (𝜉

󸀠

) 𝑑𝑥
󸀠

.

(37)



6 Abstract and Applied Analysis

By term (b) in [15], we have

− 𝑖 ∫
|𝜉
󸀠
|=1

∫

+∞

−∞

trace [𝜋+
𝜉𝑛

𝑞
−2
(𝐷

−1

)

× 𝜕
𝜉𝑛
𝑞
−1
(𝐷

−1

)]

× (𝑥
0
) 𝑑𝜉

𝑛
𝜎 (𝜉

󸀠

) 𝑑𝑥
󸀠

=
9

8
𝜋ℎ

󸀠

(0)Ω
3
𝑑𝑥

󸀠

,

(38)

where Ω
3
is the canonical volume of 3-dimensional unit

sphere. Moreover,

𝜋
+

𝜉𝑛

(
𝑐 (𝜉)Ψ𝑐 (𝜉)

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

4
)(𝑥

0
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨|𝜉󸀠|=1

= 𝜋
+

𝜉𝑛

[

[𝑐 (𝜉
󸀠

) + 𝜉
𝑛
𝑐 (𝑑𝑥

𝑛
)]Ψ [𝑐 (𝜉

󸀠

) + 𝜉
𝑛
𝑐 (𝑑𝑥

𝑛
)]

(1 + 𝜉2
𝑛
)
2

]

=
1

2𝜋𝑖
∫
Γ
+

(( (𝑐 (𝜉
󸀠

)Ψ𝑐 (𝜉
󸀠

) + 𝑐 (𝑑𝑥
𝑛
) Ψ𝑐 (𝜉

󸀠

) 𝜂
𝑛

+ 𝑐 (𝜉
󸀠

)Ψ𝑐 (𝑑𝑥
𝑛
) 𝜂

𝑛

+ 𝑐 (𝑑𝑥
𝑛
) Ψ𝑐 (𝑑𝑥

𝑛
) 𝜂

2

𝑛
)

× ((𝜂
𝑛
+ 𝑖)

2

(𝜉
𝑛
− 𝜂

𝑛
))

−1

)

× ((𝜂
𝑛
− 𝑖)

2

)
−1

)𝑑𝜂
𝑛

= [ (𝑐 (𝜉
󸀠

)Ψ𝑐 (𝜉
󸀠

) + 𝑐 (𝑑𝑥
𝑛
) Ψ𝑐 (𝜉

󸀠

) 𝜂
𝑛

+ 𝑐 (𝜉
󸀠

)Ψ𝑐 (𝑑𝑥
𝑛
) 𝜂

𝑛
+ 𝑐 (𝑑𝑥

𝑛
) Ψ𝑐 (𝑑𝑥

𝑛
) 𝜂

2

𝑛
)

× ((𝜂
𝑛
+ 𝑖)

2

(𝜉
𝑛
− 𝜂

𝑛
))

−1

]

(1)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜂𝑛=𝑖

= −
𝑖𝜉
𝑛
+ 2

4(𝜉
𝑛
− 𝑖)

2
𝑐 (𝜉

󸀠

)Ψ𝑐 (𝜉
󸀠

)

−
𝑖

4(𝜉
𝑛
− 𝑖)

2
[𝑐 (𝑑𝑥

𝑛
) Ψ𝑐 (𝜉

󸀠

) + 𝑐 (𝜉
󸀠

)Ψ𝑐 (𝑑𝑥
𝑛
)]

−
𝑖𝜉
𝑛

4(𝜉
𝑛
− 𝑖)

2
𝑐 (𝑑𝑥

𝑛
) Ψ𝑐 (𝑑𝑥

𝑛
) ,

𝜕
𝜉𝑛
𝑞
−1

󵄨󵄨󵄨󵄨󵄨|𝜉󸀠|=1
= √−1[

1 − 𝜉
2

𝑛

(1 + 𝜉2
𝑛
)
2
𝑐 (𝑑𝑥

𝑛
) −

2𝜉
𝑛

(1 + 𝜉2
𝑛
)
2
𝑐 (𝜉

󸀠

)] .

(39)

By (39) and

𝑐(𝜉
󸀠

)
2󵄨󵄨󵄨󵄨󵄨󵄨|𝜉󸀠|=1

= −1, 𝑐(𝑑𝑥
𝑛
)
2

= −1,

𝑐 (𝜉
󸀠

) 𝑐 (𝑑𝑥
𝑛
) = −𝑐 (𝑑𝑥

𝑛
) 𝑐 (𝜉

󸀠

) , Tr (𝐴𝐵) = Tr (𝐵𝐴) ,
(40)

we get

trace[𝜋+
𝜉𝑛

(
𝑐 (𝜉)Ψ𝑐 (𝜉)

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

4
) × 𝜕

𝜉𝑛
𝑞
−1
(𝐷

−1

)] (𝑥
0
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨|𝜉󸀠|=1

=
√−1

2(1 + 𝜉2
𝑛
)
2
Tr [𝑐 (𝑑𝑥

𝑛
) Ψ]

+
1

2(1 + 𝜉2
𝑛
)
2
Tr [𝑐 (𝜉󸀠)Ψ] .

(41)

Considering, for 𝑖 < 𝑛, ∫
|𝜉
󸀠
|=1

𝜉
𝑖
𝜎(𝜉

󸀠

) = 0, then

− 𝑖 ∫
|𝜉
󸀠
|=1

∫

+∞

−∞

trace[𝜋+
𝜉𝑛

(
𝑐 (𝜉)Ψ𝑐 (𝜉)

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

4
)

×𝜕
𝜉𝑛
𝑞
−1
(𝐷

−1

) ]

× (𝑥
0
) 𝑑𝜉

𝑛
𝜎 (𝜉

󸀠

) 𝑑𝑥
󸀠

=
𝜋

4
Ω

3
Tr [𝑐 (𝑑𝑥

𝑛
) Ψ] 𝑑𝑥

󸀠

,

term (b) = 9

8
𝜋ℎ

󸀠

(0)Ω
3
𝑑𝑥

󸀠

+
𝜋

4
Ω

3
Tr [𝑐 (𝑑𝑥

𝑛
) Ψ] 𝑑𝑥

󸀠

.

(42)

Similarly, we have

term (c) = −
9

8
𝜋ℎ

󸀠

(0)Ω
3
𝑑𝑥

󸀠

−
𝜋

4
Ω

3
Tr [𝑐 (𝑑𝑥

𝑛
) Ψ] 𝑑𝑥

󸀠

.

(43)

Then, the sum of terms (b) and (c) is zero andΦ is zero.Then,
we get the following.

Theorem 10. Let 𝑀 be a 4-dimensional compact spin mani-
fold with boundary 𝜕𝑀 and the metric 𝑔𝑀 (see (1.3) in [15]).
Let Ψ be a general differential form on𝑀. Then,

W̃res [(𝜋+𝐷−1

Ψ
)
2

]

= 4𝜋
2

∫
𝑀

Tr [− 1

12
𝑠 −

1

2
𝑐 (Ψ) 𝑐 (𝑒

𝑖
) 𝑐 (Ψ) 𝑐 (𝑒

𝑖
)

+ 𝑐(Ψ)
2

] 𝑑V𝑜𝑙
𝑀
.

(44)

In [16], we proved a Kastler-Kalau-Walze theorem associ-
ated with Dirac operators for 6-dimensional spin manifolds
with boundary. In fact, our computations hold for general
Laplacians. This implies the following.

Proposition 11 (see [16]). Let𝑀 be a 6-dimensional compact
Riemannian manifold with boundary 𝜕𝑀 and the metric 𝑔𝑀
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(see (1.3) in [15]). Let Δ be a general Laplacian acting on
sections of the vector bundle 𝑉. Then,

W̃res [(𝜋+Δ−1

)
2

] = 8𝜋
3

∫
𝑀

Tr [ 𝑠
6
+ 𝐸] 𝑑V𝑜𝑙

𝑀
. (45)

Since𝐷2

Ψ
is a general Laplacian, thenwe get the following.

Corollary 12. Let𝑀 be a 6-dimensional compact spin mani-
fold with boundary 𝜕𝑀 and the metric 𝑔𝑀. Let Ψ be a general
differential form on𝑀. Then,

W̃res [(𝜋+𝐷−2

Ψ
)
2

]

= 8𝜋
3

∫
𝑀

Tr [− 1

12
𝑠 −

1

2
Ψ𝑐 (𝑒

𝑖
) Ψ𝑐 (𝑒

𝑖
) + 2Ψ

2

] 𝑑V𝑜𝑙
𝑀
.

(46)

In the above two cases, the boundary terms vanish. In the
following, we will give a boundary term nonvanishing case
and compute Wres((𝐷

Ψ
𝐷)

−1

). We have

𝐷
Ψ
𝐷 = − 𝑔

𝑖𝑗

𝜕
𝑖
𝜕
𝑗
+ (−2𝜎

𝑗

+ Γ
𝑗

+ Ψ𝑐 (𝜕
𝑗

)) 𝜕
𝑗

+ 𝑔
𝑖𝑗

[−𝜕
𝑖
(𝜎

𝑗
) − 𝜎

𝑖
𝜎
𝑗
+ Γ

𝑘

𝑖𝑗
𝜎
𝑘
+ Ψ𝑐 (𝜕

𝑖
) 𝜎

𝑗
]

+
1

4
𝑠,

𝜔
𝑖
= 𝜎

𝑖
−
1

2
Ψ𝑐 (𝜕

𝑖
) ,

𝐸 = − Ψ𝑐 (𝜕
𝑖
) 𝜎

𝑖

−
1

4
𝑠 +

1

2
𝜕
𝑗

[Ψ𝑐 (𝜕
𝑗
)] −

1

2
Γ
𝑘

Ψ𝑐 (𝜕
𝑘
)

+ 𝑔
𝑖𝑗

[
1

2
𝜎
𝑖
Ψ𝑐 (𝜕

𝑗
) +

1

2
Ψ𝑐 (𝜕

𝑖
) 𝜎

𝑗
−
1

4
Ψ𝑐 (𝜕

𝑖
) Ψ𝑐 (𝜕

𝑗
)] .

(47)

Similar to the proof of (13), we have

𝐸 = −
1

4
𝑠 +

1

2
∇
𝑆

𝑒𝑖

(Ψ) 𝑐 (𝑒
𝑖
) −

1

4
Ψ𝑐 (𝑒

𝑖
) Ψ𝑐 (𝑒

𝑖
) . (48)

So,

𝐷
Ψ
𝐷 = − [𝑔

𝑖𝑗

(∇
𝜕𝑖
∇
𝜕𝑗
− ∇

∇
𝐿

𝜕𝑖
𝜕𝑗
)]

+
1

4
𝑠 −

1

2
∇
𝑆

𝑒𝑖

(Ψ) 𝑐 (𝑒
𝑖
) +

1

4
Ψ𝑐 (𝑒

𝑖
) Ψ𝑐 (𝑒

𝑖
) .

(49)

Then, we get the following.

Proposition 13. Let 𝑀 be a 4-dimensional compact spin
manifold without boundary. Then,

Wres [(𝐷
Ψ
𝐷)

−1

]

= 4𝜋
2

∫
𝑀

Tr [− 1

12
𝑠 +

1

2
∇
𝑆

𝑒𝑖

(Ψ) 𝑐 (𝑒
𝑖
)

−
1

4
Ψ𝑐 (𝑒

𝑖
) Ψ𝑐 (𝑒

𝑖
)] 𝑑V𝑜𝑙

𝑀
.

(50)

WhenΨ is a one-form, we can get the following corollary.

Corollary 14. Let𝑀 be a 4-dimensional compact spin mani-
fold without boundary and let Ψ be a one-form on𝑀. Then,

Wres [(𝐷
Ψ
𝐷)

−1

]

= 16𝜋
2

∫
𝑀

[−
1

12
𝑠 +

1

2
𝛿 (Ψ) − 2|Ψ|

2

] 𝑑V𝑜𝑙
𝑀
.

(51)

Now, we compute W̃res[𝜋+𝐷−1

Ψ
𝜋
+

𝐷
−1

]. We have that
terms (a) and (b) are the same as in Theorem 10, and since
term (c) = −(9/8)𝜋ℎ

󸀠

(0)Ω
3
𝑑𝑥

󸀠, we get

∫
𝜕𝑀

Φ =
𝜋

4
Ω

3
∫
𝜕𝑀

Tr [𝑐 (𝑑𝑥
𝑛
) Ψ] 𝑑V𝑜𝑙

𝜕𝑀
(52)

and the following.

Proposition 15. Let 𝑀 be a 4-dimensional compact spin
manifold with boundary. Then,

W̃res [𝜋+𝐷−1

Ψ
𝜋
+

𝐷
−1

]

= 4𝜋
2

∫
𝑀

Tr [− 1

12
𝑠 +

1

2
𝑒
𝑖
(Ψ) 𝑐 (𝑒

𝑖
)

−
1

4
Ψ𝑐 (𝑒

𝑖
) Ψ𝑐 (𝑒

𝑖
)] 𝑑V𝑜𝑙

𝑀

+
𝜋

4
Ω

3
∫
𝜕𝑀

Tr [𝑐 (𝑑𝑥
𝑛
) Ψ] 𝑑V𝑜𝑙

𝜕𝑀
.

(53)

Remark 16. When Ψ is not a one-form, then the boundary
term vanishes. When Ψ = 𝐾𝑑𝑥

𝑛
near the boundary, where

𝐾 is the extrinsic curvature, then the boundary term is
proportional to the gravitational action on the boundary. In
fact, the reason for the boundary term being not zero is that
𝜋
+

𝐷
Ψ
and 𝜋+𝐷 are not symmetric.

3. A Kastler-Kalau-Walze Type
Theorem for Conformal Perturbations of
Dirac Operators

In [20], Connes and Moscovici defined a twisted spectral
triple and considered the conformal Dirac operator 𝑒ℎ𝐷𝑒ℎ,
where ℎ is a smooth function on a manifold 𝑀 without
boundary. We want to compute Wres[(𝑒ℎ𝐷𝑒ℎ)−2]. We know
that

Wres [(𝑒ℎ𝐷𝑒ℎ)
−2

] = Wres [𝑒−ℎ𝐷−1

𝑒
−2ℎ

𝐷
−1

𝑒
−ℎ

]

= Wres [𝑒−2ℎ𝐷−1

𝑒
−2ℎ

𝐷
−1

] .

(54)

In the following, we will compute the more general case, that
is, Wres[𝑓𝐷−1

𝑔𝐷
−1

], for nonzero smooth functions 𝑓 and 𝑔,
and prove a Kastler-Kalau-Walze type theorem for conformal
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Dirac operators. When 𝑓 = 𝑔 = 𝑒
−2ℎ, we get the expression

of Wres[(𝑒ℎ𝐷𝑒ℎ)−2]. We have

Wres [𝑓𝐷−1

𝑔𝐷
−1

]

= Wres [(𝑓−1

𝐷𝑔
−1

𝐷)
−1

]

= Wres {(𝑓−1

𝑔
−1

𝐷
2

+ 𝑓
−1

[𝐷, 𝑔
−1

]𝐷)
−1

}

= ∫
𝑀

𝑓𝑔wres [(𝐷2

− 𝑔
−1

𝑐 (𝑑𝑔)𝐷)
−1

] ,

(55)

where Wres denotes the residue density, and we note that
the Kastler-Kalau-Walze theorem holds at the residue density
level. Some computations show that

𝐷
2

− 𝑔
−1

𝑐 (𝑑𝑔)𝐷

= −𝑔
𝑖𝑗

𝜕
𝑖
𝜕
𝑗
+ [−2𝜎

𝑗

+ Γ
𝑗

− 𝑔
−1

𝑐 (𝑑𝑔) 𝑐 (𝜕
𝑗

)] 𝜕
𝑗

+ [−𝜕
𝑗

𝜎
𝑗
− 𝜎

𝑗

𝜎
𝑗
+ Γ

𝑘

𝜎
𝑘
+
1

4
𝑠 − 𝑔

−1

𝑐 (𝑑𝑔) 𝑐 (𝜕
𝑗

) 𝜎
𝑗
] ,

𝜔
𝑖
= 𝜎

𝑖
+
1

2
𝑔
−1

𝑐 (𝑑𝑔) 𝑐 (𝜕
𝑖
) ,

𝐸 = −
𝑠

4
+ 𝑔

−1

𝑐 (𝑑𝑔) 𝑐 (𝜕
𝑗

) 𝜎
𝑗

− 𝜕
𝑗

[
1

2
𝑔
−1

𝑐 (𝑑𝑔) 𝑐 (𝜕
𝑗
)]

−
1

2
𝜎
𝑗

𝑔
−1

𝑐 (𝑑𝑔) 𝑐 (𝜕
𝑗
) −

1

2
𝑔
−1

𝑐 (𝑑𝑔) 𝑐 (𝜕
𝑖
) 𝜎

𝑖

−
1

4
𝑔
𝑖𝑗

𝑔
−1

𝑐 (𝑑𝑔) 𝑐 (𝜕
𝑖
) 𝑔

−1

𝑐 (𝑑𝑔) 𝑐 (𝜕
𝑗
)

+
1

2
𝑔
−1

𝑐 (𝑑𝑔) 𝑐 (𝜕
𝑘
) Γ

𝑘

.

(56)

Since 𝐸 is globally defined, we can compute it in the
normal coordinates. Then, we have

Tr (𝐸) (𝑥
0
)

= Tr [− 𝑠
4
−
1

2
𝜕
𝑗
(𝑔

−1

𝑐 (𝑑𝑔)) 𝑐 (𝜕
𝑗
)

−
1

4
𝑔
−1

𝑐 (𝑑𝑔) 𝑐 (𝜕
𝑖
) 𝑔

−1

𝑐 (𝑑𝑔) 𝑐 (𝜕
𝑖
)] (𝑥

0
) ,

Tr [𝑔−1𝑐 (𝑑𝑔) 𝑐 (𝜕
𝑖
) 𝑔

−1

𝑐 (𝑑𝑔) 𝑐 (𝜕
𝑖
)] (𝑥

0
)

= 𝑔
−2 Tr[∑

𝑖,𝑘,𝑙

𝜕𝑔

𝜕𝑥
𝑘

𝜕𝑔

𝜕𝑥
𝑙

𝑐 (𝜕
𝑘
) 𝑐 (𝜕

𝑖
) 𝑐 (𝜕

𝑙
) 𝑐 (𝜕

𝑖
)]

= 𝑔
−2 Tr[∑

𝑖,𝑘

(
𝜕𝑔

𝜕𝑥
𝑘

)

2

𝑐 (𝜕
𝑘
) 𝑐 (𝜕

𝑖
) 𝑐 (𝜕

𝑘
) 𝑐 (𝜕

𝑖
)]

= 𝑔
−2 Tr[∑

𝑖 ̸= 𝑘

(
𝜕𝑔

𝜕𝑥
𝑘

)

2

𝑐 (𝜕
𝑘
) 𝑐 (𝜕

𝑖
) 𝑐 (𝜕

𝑘
) 𝑐 (𝜕

𝑖
)

+∑

𝑘

(
𝜕𝑔

𝜕𝑥
𝑘

)

2

𝑐(𝜕
𝑘
)
4

]

= −2𝑔
−2

∑

𝑘

(
𝜕𝑔

𝜕𝑥
𝑘

)

2

Tr [𝐼𝑑] .

(57)

Similarly,

Tr [𝜕
𝑗
(𝑔

−1

𝑐 (𝑑𝑔)) 𝑐 (𝜕
𝑗
)] = ∑

𝑗

[
1

𝑔2
(
𝜕𝑔

𝜕𝑥
𝑗

)

2

− 𝑔
−1
𝜕
2

𝑔

𝜕𝑥
2

𝑗

] .

(58)

So,

Tr [ 𝑠
6
+ 𝐸] = −

𝑠

3
+ 2𝑔

−1

∑

𝑗

𝜕
2

𝑔

𝜕𝑥
2

𝑗

= −
𝑠

3
− 2𝑔

−1

Δ (𝑔) . (59)

By

∫
𝑀

𝑓Δ (𝑔) 𝑑V𝑜𝑙
𝑀
= ∫

𝑀

⟨𝑑𝑓, 𝑑𝑔⟩ 𝑑V𝑜𝑙
𝑀
, (60)

we get the following.

Theorem17. Let𝑀 be a 4-dimensional compact spinmanifold
without boundary; then

Wres [𝑓𝐷−1

𝑔𝐷
−1

] = −4𝜋
2

∫
𝑀

[
𝑓𝑔𝑠

3
+ 2 ⟨𝑑𝑓, 𝑑𝑔⟩] 𝑑V𝑜𝑙

𝑀
.

(61)

Remark 18. In Theorem 17, when 𝑓 = 𝑔 = 𝑒
−2ℎ, we get a

Kastler-Kalau-Walze theorem for conformal Dirac operators.
In fact, Theorem 17 holds true for any choice of the smooth
functions 𝑓 and 𝑔, since we can prove (61) by means of
the symbolic calculus of pseudodifferential operators without
using (55), and it is not essential that 𝑓 and 𝑔 are nowhere
vanishing.

Now, we consider manifolds with boundary and we will
compute W̃res[𝜋+(𝑓𝐷−1

)𝜋
+

(𝑔𝐷
−1

)]. As in [15], we have five
terms as follows:

term (a) (I) = −𝑓𝑔∫
|𝜉
󸀠
|=1

∫

+∞

−∞

∑

|𝛼|=1

trace [𝜕𝛼
𝜉
󸀠𝜋

+

𝜉𝑛

𝑞
−1

× 𝜕
𝛼

𝑥
󸀠𝜕

𝜉𝑛
𝑞
−1
]

× (𝑥
0
) 𝑑𝜉

𝑛
𝜎 (𝜉

󸀠

) 𝑑𝑥
󸀠
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− 𝑓∑

𝑗<𝑛

𝜕
𝑗
(𝑔) ∫

|𝜉
󸀠
|=1

∫

+∞

−∞

∑

|𝛼|=1

trace [𝜕
𝜉𝑗
𝜋
+

𝜉𝑛

× 𝑞
−1
𝜕
𝜉𝑛

× 𝑞
−1
]

× (𝑥
0
) 𝑑𝜉

𝑛
𝜎 (𝜉

󸀠

) 𝑑𝑥
󸀠

= 0,

term (a) (II) = −
1

2
𝑓𝑔∫

|𝜉
󸀠
|=1

∫

+∞

−∞

trace [𝜕
𝑥𝑛
𝜋
+

𝜉𝑛

𝑞
−1

× 𝜕
2

𝜉𝑛

𝑞
−1
]

× (𝑥
0
) 𝑑𝜉

𝑛
𝜎 (𝜉

󸀠

) 𝑑𝑥
󸀠

−
1

2
𝑔𝜕

𝑥𝑛
𝑓

× ∫
|𝜉
󸀠
|=1

∫

+∞

−∞

trace [𝜋+
𝜉𝑛

𝑞
−1

× 𝜕
2

𝜉𝑛

𝑞
−1
]

× (𝑥
0
) 𝑑𝜉

𝑛
𝜎 (𝜉

󸀠

) 𝑑𝑥
󸀠

= −
3

8
𝜋ℎ

󸀠

(0)Ω
3
𝑓𝑔𝑑𝑥

󸀠

−
𝜋𝑖

2
Ω

3
𝑔𝜕

𝑥𝑛
(𝑓) 𝑑𝑥

󸀠

,

term (a) (III) = 3

8
𝜋ℎ

󸀠

(0)Ω
3
𝑓𝑔𝑑𝑥

󸀠

+
𝜋𝑖

2
Ω

3
𝑓𝜕

𝑥𝑛
(𝑔) 𝑑𝑥

󸀠

.

(62)

As in [15], we have

term (b) = −𝑖 ∫
|𝜉
󸀠
|=1

∫

+∞

−∞

trace [𝜋+
𝜉𝑛

𝑞
−2

× 𝜕
𝜉𝑛
𝑞
−1
]

× (𝑥
0
) 𝑑𝜉

𝑛
𝜎 (𝜉

󸀠

) 𝑑𝑥
󸀠

=
9

8
𝑓𝑔𝜋ℎ

󸀠

(0)Ω
3
𝑑𝑥

󸀠

,

term (c) = −𝑖 ∫
|𝜉
󸀠
|=1

∫

+∞

−∞

trace [𝜋+
𝜉𝑛

𝑞
−1

× 𝜕
𝜉𝑛
𝑞
−2
]

× (𝑥
0
) 𝑑𝜉

𝑛
𝜎 (𝜉

󸀠

) 𝑑𝑥
󸀠

= −
9

8
𝑓𝑔𝜋ℎ

󸀠

(0)Ω
3
𝑑𝑥

󸀠

.

(63)

So, the sum of terms (b) and (c) is zero. Then, we obtain

∫
𝜕𝑀

Φ =
𝜋𝑖Ω

3

2
∫
𝜕𝑀

[𝑓𝜕
𝑥𝑛
(𝑔) − 𝑔𝜕

𝑥𝑛
(𝑓)]

𝑥𝑛=0

𝑑V𝑜𝑙
𝜕𝑀
. (64)

By the definition of the noncommutative residue for man-
ifolds with boundary, we have that the interior term of
W̃res[𝜋+(𝑓𝐷−1

)𝜋
+

(𝑔𝐷
−1

)] equals Wres[𝑓𝐷−1

𝑔𝐷
−1

]. Then,
byTheorem 17 and (64), we get the following.

Theorem19. Let𝑀 be a 4-dimensional compact spinmanifold
with boundary. Then,

W̃res [𝜋+ (𝑓𝐷−1

) 𝜋
+

(𝑔𝐷
−1

)]

= −4𝜋
2

∫
𝑀

[
𝑓𝑔𝑠

3
+ 2 ⟨𝑑𝑓, 𝑑𝑔⟩] 𝑑V𝑜𝑙

𝑀

+
𝜋𝑖Ω

3

2
∫
𝜕𝑀

[𝑓𝜕
𝑥𝑛
(𝑔) − 𝑔𝜕

𝑥𝑛
(𝑓)]

󵄨󵄨󵄨󵄨󵄨𝑥𝑛=0
𝑑V𝑜𝑙

𝜕𝑀
.

(65)

When 𝑓 = 1 and 𝑔 = 𝑥
𝑛
𝐾 near the boundary, we have

that the boundary term is proportional to the gravitational
action on the boundary.

4. The Spectral Action for Perturbations of
Dirac Operators

In [18], Iochum and Levy computed heat kernel coefficients
for Dirac operators with one-form perturbations and proved
that there are no tadpoles for compact spinmanifolds without
boundary. In [17], they investigated the spectral action for
scalar perturbations of Dirac operators. In [19], Hanisch
et al. derived a formula for the gravitational part of the
spectral action for Dirac operators on 4-dimensional spin
manifolds with totally antisymmetric torsion. In fact, Dirac
operators with totally antisymmetric torsion are three-form
perturbations of Dirac operators. In this section, we will
give some details on the spectral action for Dirac operators
with scalar perturbations. We also compute the spectral
action for Dirac operators with two-form perturbations on
4-dimensional compact spin manifolds without boundary.

For the perturbed self-adjoint Dirac operator𝐷
Ψ
, we will

calculate the bosonic part of the spectral action. It is defined
to be the number of eigenvalues of𝐷

Ψ
in the interval [−∧, ∧]

with ∧ ∈ R+. It is expressed as

𝐼 = Tr𝐹(
𝐷

2

Ψ

∧2
) . (66)

Here, Tr denotes the operator trace in the 𝐿2 completion of
Γ(𝑀, 𝑆(𝑇𝑀)) and 𝐹 : R+

→ R+ is a cut-off function with
support in the interval [0, 1]which is constant near the origin.
Let dim𝑀 = 𝑛. By Lemma 1.7.4 in [22], we have the heat
trace asymptotics, for 𝑡 → 0,

Tr (𝑒−𝑡𝐷
2

Ψ) ∼ ∑

𝑚≥0

𝑡
𝑚−𝑛/2

𝑎
2𝑚
(𝐷

2

Ψ
) . (67)
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One uses the Seeley-DeWitt coefficients 𝑎
2𝑚
(𝐷

2

Ψ
) and 𝑡 =

∧
−2 to obtain an asymptotics for the spectral action when

dim𝑀 = 4

𝐼 = tr𝐹(
𝐷

2

Ψ

∧2
) ∼ ∧

4

𝐹
4
𝑎
0
(𝐷

2

Ψ
)

+ ∧
2

𝐹
2
𝑎
2
(𝐷

2

Ψ
) + ∧

0

𝐹
0
𝑎
4
(𝐷

2

Ψ
) as ∧ 󳨀→ ∞

(68)

with the first threemoments of the cut-off function which are
given by 𝐹

4
= ∫

∞

0

𝑠𝐹(𝑠)𝑑𝑠, 𝐹
2
= ∫

∞

0

𝐹(𝑠)𝑑𝑠, and 𝐹
0
= 𝐹(0).

Let

Ω
𝑖𝑗
= ∇

𝑒𝑖
∇
𝑒𝑗
− ∇

𝑒𝑗
∇
𝑒𝑖
− ∇

[𝑒𝑖 ,𝑒𝑗]
. (69)

We use [22, Thm 4.1.6] to obtain the first three coefficients of
the heat trace asymptotics:

𝑎
0
(𝐷

Ψ
) = (4𝜋)

−𝑛/2

∫
𝑀

Tr (𝐼𝑑) 𝑑V𝑜𝑙, (70)

𝑎
2
(𝐷

Ψ
) = (4𝜋)

−𝑛/2

∫
𝑀

Tr [ 𝑠
6
+ 𝐸] 𝑑V𝑜𝑙, (71)

𝑎
4
(𝐷

Ψ
)

=
(4𝜋)

−𝑛/2

360

× ∫
𝑀

Tr [−12𝑅
𝑖𝑗𝑖𝑗,𝑘𝑘

+ 5𝑅
𝑖𝑗𝑖𝑗
𝑅
𝑘𝑙𝑘𝑙

− 2𝑅
𝑖𝑗𝑖𝑘
𝑅
𝑙𝑗𝑙𝑘

+ 2𝑅
𝑖𝑗𝑘𝑙
𝑅
𝑖𝑗𝑘𝑙

− 60𝑅
𝑖𝑗𝑖𝑗
𝐸

+ 180𝐸
2

+ 60𝐸
,𝑘𝑘

+ 30Ω
𝑖𝑗
Ω

𝑖𝑗
] 𝑑V𝑜𝑙.

(72)

When Ψ = 𝑓, by (15) and (71),

𝑎
2
(𝐷

𝑓
) = (2𝜋)

−𝑛/2

[−
𝑠

12
+ (𝑛 − 1) 𝑓

2

] , (73)

5𝑠
2

+ 60𝑠𝐸 + 180𝐸
2

=
5

4
𝑠
2

− 30 (𝑛 − 1) 𝑠𝑓
2

+ 180(𝑛 − 1)
2

𝑓
4

.

(74)

Tr[Ω
𝑖𝑗
Ω

𝑖𝑗
] is globally defined; thus we only compute it in

normal coordinates about 𝑥
0
and the local orthonormal

frame 𝑒
𝑖
obtained by parallel transport along geodesics from

𝑥
0
. Then,

𝜔
𝑠𝑡
(𝑥

0
) = 0, 𝜕

𝑖
(𝑐 (𝑒

𝑗
)) = 0, [𝑒

𝑖
, 𝑒

𝑗
] (𝑥

0
) = 0.

(75)

We know that the curvature of the canonical spin connection
is

𝑅
𝑆

(𝑒
𝑖
, 𝑒

𝑗
) = −

1

4

𝑛

∑

𝑠,𝑡=1

𝑅
𝑀

𝑖𝑗𝑠𝑡
𝑐 (𝑒

𝑠
) 𝑐 (𝑒

𝑡
) . (76)

Then, we have

Ω(𝑒
𝑖
, 𝑒

𝑗
) (𝑥

0
)

= [𝑒
𝑖
+
1

4
∑

𝑠,𝑡

𝜔
𝑠𝑡
(𝑒

𝑖
) 𝑐 (𝑒

𝑠
) 𝑐 (𝑒

𝑡
) − 𝑓𝑐 (𝑒

𝑖
)]

× [𝑒
𝑗
+
1

4
∑

𝑠,𝑡

𝜔
𝑠𝑡
(𝑒

𝑗
) 𝑐 (𝑒

𝑠
) 𝑐 (𝑒

𝑡
) − 𝑓𝑐 (𝑒

𝑗
)]

− [𝑒
𝑗
+
1

4
∑

𝑠,𝑡

𝜔
𝑠𝑡
(𝑒

𝑗
) 𝑐 (𝑒

𝑠
) 𝑐 (𝑒

𝑡
) − 𝑓𝑐 (𝑒

𝑖
)]

× [𝑒
𝑖
+
1

4
∑

𝑠,𝑡

𝜔
𝑠𝑡
(𝑒

𝑖
) 𝑐 (𝑒

𝑠
) 𝑐 (𝑒

𝑡
) − 𝑓𝑐 (𝑒

𝑖
)]

= −
1

4

𝑛

∑

𝑠,𝑡=1

𝑅
𝑀

𝑖𝑗𝑠𝑡
𝑐 (𝑒

𝑠
) 𝑐 (𝑒

𝑡
) − 𝑒

𝑖
(𝑓) 𝑐 (𝑒

𝑗
)

+ 𝑒
𝑗
(𝑓) 𝑐 (𝑒

𝑖
) + 2𝑓

2

𝑐 (𝑒
𝑖
) 𝑐 (𝑒

𝑗
) , for 𝑖 ̸= 𝑗.

(77)

So,

Tr [Ω
𝑖𝑗
Ω

𝑖𝑗
] (𝑥

0
)

= ∑

𝑖 ̸= 𝑗

Tr{ 1

16

𝑛

∑

𝑠,𝑡,𝑠1 ,𝑡1=1

𝑅
𝑀

𝑖𝑗𝑠𝑡
𝑅
𝑀

𝑖𝑗𝑠1𝑡1

𝑐 (𝑒
𝑠
)

× 𝑐 (𝑒
𝑡
) 𝑐 (𝑒

𝑠1
) 𝑐 (𝑒

𝑡1
)

+ 𝑒
𝑖
(𝑓)

2

𝑐(𝑒
𝑗
)
2

+ 𝑒
𝑗
(𝑓)

2

𝑐(𝑒
𝑖
)
2

+ 4𝑓
4

𝑐 (𝑒
𝑖
) 𝑐 (𝑒

𝑗
) 𝑐 (𝑒

𝑖
) 𝑐 (𝑒

𝑗
)

−
𝑓
2

2

𝑛

∑

𝑠,𝑡=1

𝑅
𝑀

𝑖𝑗𝑠𝑡
[𝑐 (𝑒

𝑠
) 𝑐 (𝑒

𝑡
) 𝑐 (𝑒

𝑖
) 𝑐 (𝑒

𝑗
)

+ 𝑐 (𝑒
𝑖
) 𝑐 (𝑒

𝑗
) 𝑐 (𝑒

𝑠
) 𝑐 (𝑒

𝑡
)]

− 𝑒
𝑖
(𝑓) 𝑒

𝑗
(𝑓) [𝑐 (𝑒

𝑗
) 𝑐 (𝑒

𝑖
) + 𝑐 (𝑒

𝑖
) 𝑐 (𝑒

𝑗
)]} .

(78)

By (21), we obtain

𝑛

∑

𝑖,𝑗,𝑠,𝑡,𝑠1,𝑡1=1

Tr [ 1

16
𝑅
𝑀

𝑖𝑗𝑠𝑡
𝑅
𝑀

𝑖𝑗𝑠1𝑡1

𝑐 (𝑒
𝑠
) 𝑐 (𝑒

𝑡
) 𝑐 (𝑒

𝑠1
) 𝑐 (𝑒

𝑡1
)]

= −
𝑑

8

𝑛

∑

𝑖,𝑗,𝑠,𝑡=1

(𝑅
𝑀

𝑖𝑗𝑠𝑡
)
2

,

(79)

∑

𝑖 ̸= 𝑗

Tr [𝑒
𝑖
(𝑓)

2

𝑐(𝑒
𝑗
)
2

+ 𝑒
𝑗
(𝑓)

2

𝑐(𝑒
𝑖
)
2

]

= 2𝑑 (1 − 𝑛)∑

𝑖

𝑒
𝑖
(𝑓)

2

= 2𝑑 (1 − 𝑛)
󵄨󵄨󵄨󵄨𝑑𝑓

󵄨󵄨󵄨󵄨

2

,

(80)
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∑

𝑖 ̸= 𝑗

Tr [4𝑓4

𝑐 (𝑒
𝑖
) 𝑐 (𝑒

𝑗
) 𝑐 (𝑒

𝑖
) 𝑐 (𝑒

𝑗
)] = −4𝑑𝑛 (𝑛 − 1) 𝑓

4

, (81)

∑

𝑖 ̸= 𝑗

Tr [−𝑒
𝑖
(𝑓) 𝑒

𝑗
(𝑓) (𝑐 (𝑒

𝑗
) 𝑐 (𝑒

𝑖
) + 𝑐 (𝑒

𝑖
) 𝑐 (𝑒

𝑗
))] = 0, (82)

∑

𝑖 ̸= 𝑗

Tr{−
𝑓
2

2
𝑅
𝑀

𝑖𝑗𝑠𝑡
[𝑐 (𝑒

𝑠
) 𝑐 (𝑒

𝑡
) 𝑐 (𝑒

𝑖
) 𝑐 (𝑒

𝑗
)

+ 𝑐 (𝑒
𝑖
) 𝑐 (𝑒

𝑗
) 𝑐 (𝑒

𝑠
) 𝑐 (𝑒

𝑡
)] }

= −2𝑓
2

𝑑𝑠.

(83)

By (78)–(83), we obtain

Tr [Ω
𝑖𝑗
Ω

𝑖𝑗
] = −

𝑑

8
(𝑅

𝑀

𝑖𝑗𝑠𝑡
)
2

+ 2𝑑 (1 − 𝑛)
󵄨󵄨󵄨󵄨𝑑𝑓

󵄨󵄨󵄨󵄨

2

− 2𝑓
2

𝑑𝑠 − 4𝑑𝑛 (𝑛 − 1) 𝑓
4

.

(84)

By (72), (74), and (84), we get the following.

Proposition 20 (see [17]). The following equality holds:

𝑎
4
(𝐷

𝑓
) =

𝑑

360 × (4𝜋)
𝑛/2

× [3Δ𝑠 +
5

4
𝑠
2

− 30 (𝑛 + 1) 𝑠𝑓
2

+ 60 (𝑛 − 1) (𝑛 − 3) 𝑓
4

− 2𝑅
𝑖𝑗𝑖𝑘
𝑅
𝑙𝑗𝑙𝑘

−
7

4
𝑅
2

𝑖𝑗𝑠𝑡

+ 60 (1 − 𝑛)
󵄨󵄨󵄨󵄨𝑑𝑓

󵄨󵄨󵄨󵄨

2

− 60 (𝑛 − 1) Δ (𝑓
2

) ] .

(85)

In the following, we assume that dim𝑀 = 4 and 𝑑 = 4.
We let Ψ be a two-form; namely, Ψ = ∑

𝑘,𝑙
𝑎
𝑘𝑙
𝑒
𝑘

∧ 𝑒
𝑙, where

𝑎
𝑘𝑙
= −𝑎

𝑙𝑘
. Wemay consider√−1Ψ for self-adjoint perturbed

Dirac operators. By Corollary 4, we obtain

𝑎
2
(𝐷

Ψ
) = 𝑑(4𝜋)

−𝑛/2

[−
𝑠

12
+ (6 − 2𝑛) |Ψ|

2

]

=
−1

4𝜋2
[
𝑠

12
+ 2|Ψ|

2

] .

(86)

Firstly, we compute Tr(𝐸2

). By (20) and (75),

∑

𝑗,𝑘,𝑙

𝑒
𝑗
(𝑎

𝑘𝑙
) [𝑐 (𝑒

𝑘
) 𝑐 (𝑒

𝑙
) 𝑐 (𝑒

𝑗
) − 𝑐 (𝑒

𝑗
) 𝑐 (𝑒

𝑘
) 𝑐 (𝑒

𝑙
)]

= 4𝑒
𝑘
(𝑎

𝑘𝑙
) 𝑐 (𝑒

𝑙
) ,

(87)

𝑎
𝑘𝑙
[𝑐 (𝑒

𝑖
) 𝑐 (𝑒

𝑘
) 𝑐 (𝑒

𝑙
) + 𝑐 (𝑒

𝑘
) 𝑐 (𝑒

𝑙
) 𝑐 (𝑒

𝑖
)]

× 𝑎
𝑘1𝑙1

[𝑐 (𝑒
𝑖
) 𝑐 (𝑒

𝑘1
) 𝑐 (𝑒

𝑙1
)

+ 𝑐 (𝑒
𝑘1
) 𝑐 (𝑒

𝑙1
) 𝑐 (𝑒

𝑖
)]

= ∑

𝑖 ̸= 𝑘,𝑙

2𝑎
𝑘𝑙
𝑐 (𝑒

𝑘
) 𝑐 (𝑒

𝑙
) 𝑐 (𝑒

𝑖
)

× ∑

𝑖 ̸= 𝑘1 ,𝑙1

2𝑎
𝑘1𝑙1

𝑐 (𝑒
𝑖
) 𝑐 (𝑒

𝑘1
) 𝑐 (𝑒

𝑙1
)

= −4 ∑

𝑖 ̸= 𝑘,𝑙,𝑘1 ,𝑙1

𝑎
𝑘𝑙
𝑎
𝑘1𝑙1

𝑐 (𝑒
𝑘
)

× 𝑐 (𝑒
𝑙
) 𝑐 (𝑒

𝑘1
) 𝑐 (𝑒

𝑙1
)

= −4( ∑

𝑘=𝑘1 ,𝑙 ̸= 𝑙1

+ ∑

𝑘=𝑙1 ,𝑙 ̸= 𝑘1

+ ∑

𝑙=𝑘1 ,𝑘 ̸= 𝑙1

+ ∑

𝑙=𝑙1 ,𝑘 ̸= 𝑘1

+ ∑

𝑘=𝑘1 ,𝑙=𝑙1

+ ∑

𝑘=𝑙1 ,𝑙=𝑘1

)

× [𝑎
𝑘𝑙
𝑎
𝑘1𝑙1

𝑐 (𝑒
𝑘
) 𝑐 (𝑒

𝑙
) 𝑐 (𝑒

𝑘1
) 𝑐 (𝑒

𝑙1
)]

= −16∑

𝑙 ̸= 𝑙1

𝑎
𝑘𝑙
𝑎
𝑘𝑙1
𝑐 (𝑒

𝑙
) 𝑐 (𝑒

𝑙1
) + 16𝑎

2

𝑘𝑙
.

(88)

Similar to (88), we have

[𝑎
𝑘𝑙
𝑐 (𝑒

𝑘
) 𝑐 (𝑒

𝑙
)]

2

= ∑

𝑘 ̸= 𝑙 ̸= 𝑘1 ̸= 𝑙1

𝑎
𝑘𝑙
𝑎
𝑘1𝑙1

𝑐 (𝑒
𝑘
) 𝑐 (𝑒

𝑙
) 𝑐 (𝑒

𝑘1
) 𝑐 (𝑒

𝑙1
)

+ 4∑

𝑙 ̸= 𝑙1

𝑎
𝑘𝑙
𝑎
𝑘𝑙1
𝑐 (𝑒

𝑙
) 𝑐 (𝑒

𝑙1
) − 2𝑎

2

𝑘𝑙
.

(89)

Then,

𝐸 = −
𝑠

4
+ 2𝑒

𝑘
(𝑎

𝑘𝑙
) 𝑐 (𝑒

𝑙
) − ∑

𝑘 ̸= 𝑙 ̸= 𝑘1 ̸= 𝑙1

𝑎
𝑘𝑙
𝑎
𝑘1𝑙1

× 𝑐 (𝑒
𝑘
) 𝑐 (𝑒

𝑙
) 𝑐 (𝑒

𝑘1
) 𝑐 (𝑒

𝑙1
) − 2𝑎

2

𝑘𝑙
.

(90)

Now, we can compute Tr(𝐸2

). Consider

Tr [2𝑒
𝑘
(𝑎

𝑘𝑙
) 𝑐 (𝑒

𝑙
) 2𝑒

𝑘1
(𝑎

𝑘1𝑙1
) 𝑐 (𝑒

𝑙1
)]

= −4𝑑𝑒
𝑘
(𝑎

𝑘𝑙
) 𝑒

𝑘1
(𝑎

𝑘1𝑙
) = −4|𝛿Ψ|

2

(𝑥
0
) ,

(91)

where 𝛿 is the adjoint operator of 𝑑. We have

Tr [(− 𝑠
4
− 2|Ψ|

2

)

2

] = 4 [
𝑠
2

16
+ 𝑠|𝑋|

2

+ 4|𝑋|
4

] , (92)

∑

𝑘 ̸= 𝑙 ̸= 𝑘1 ̸= 𝑙1

∑

𝑝 ̸= 𝑞 ̸= 𝑟 ̸= 𝑡

Tr [𝑎
𝑘𝑙
𝑎
𝑘1𝑙1

𝑐 (𝑒
𝑘
) 𝑐 (𝑒

𝑙
) 𝑐 (𝑒

𝑘1
)

× 𝑐 (𝑒
𝑙1
) 𝑎

𝑝𝑞
𝑎
𝑟𝑡
𝑐 (𝑒

𝑝
)

× 𝑐 (𝑒
𝑞
) 𝑐 (𝑒

𝑟
) 𝑐 (𝑒

𝑡
)]
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= ∑

{𝑘,𝑙,𝑘1 ,𝑙1}={𝑝,𝑞,𝑟,𝑡}

Tr [𝑎
𝑘𝑙
𝑎
𝑘1𝑙1

𝑐 (𝑒
𝑘
) 𝑐 (𝑒

𝑙
)

× 𝑐 (𝑒
𝑘1
) 𝑐 (𝑒

𝑙1
) 𝑎

𝑝𝑞
𝑎
𝑟𝑡

× 𝑐 (𝑒
𝑝
) 𝑐 (𝑒

𝑞
) 𝑐 (𝑒

𝑟
) 𝑐 (𝑒

𝑡
)]

= 8𝑑|Ψ|
4

− 16𝑑𝑎
𝑘𝑙
𝑎
𝑘1𝑙1

𝑎
𝑘𝑘1
𝑎
𝑙𝑙1

= 32|Ψ|
4

− 4𝑖
𝑒𝑘
𝑖
𝑒𝑙
(Ψ) 𝑖

𝑒𝑘1

𝑖
𝑒𝑙1

× (Ψ) 𝑖
𝑒𝑘
𝑖
𝑒𝑘1

(Ψ) 𝑖
𝑒𝑙
𝑖
𝑒𝑙1

(Ψ) .

(93)

By (90)–(93), we get

Tr (𝐸2

) = 4 [−|𝛿Ψ|
2

+
𝑠
2

16
+ 𝑠|Ψ|

2

+ 12|Ψ|
4

− 𝑖
𝑒𝑘
𝑖
𝑒𝑙
(Ψ) 𝑖

𝑒𝑘1

𝑖
𝑒𝑙1

(Ψ) 𝑖
𝑒𝑘
𝑖
𝑒𝑘1

(Ψ) 𝑖
𝑒𝑙
𝑖
𝑒𝑙1

(Ψ) ] .

(94)

In the following, we compute Tr[Ω(𝑒
𝑖
, 𝑒

𝑗
)Ω(𝑒

𝑖
, 𝑒

𝑗
)]. By

(12), we have

Ω(𝑒
𝑖
, 𝑒

𝑗
) = 𝑅

𝑆(𝑇𝑀)

(𝑒
𝑖
, 𝑒

𝑗
)

−
1

4
∇
𝑆(𝑇𝑀)

𝑒𝑖

(𝑐 (𝑒
𝑗
)Ψ + Ψ𝑐 (𝑒

𝑗
))

+
1

4
∇
𝑆(𝑇𝑀)

𝑒𝑗

(𝑐 (𝑒
𝑖
)Ψ + Ψ𝑐 (𝑒

𝑖
))

+
1

4
[𝑐 ([𝑒

𝑖
, 𝑒

𝑗
])Ψ + Ψ𝑐 ([𝑒

𝑖
, 𝑒

𝑗
])] .

(95)

Since∇𝑆(𝑇𝑀) is a Clifford connection and∇𝑇𝑀 has no torsion,
we get

Ω(𝑒
𝑖
, 𝑒

𝑗
) = 𝑅

𝑆(𝑇𝑀)

(𝑒
𝑖
, 𝑒

𝑗
) −

1

4
∇
𝑆(𝑇𝑀)

𝑒𝑖

(Ψ) 𝑐 (𝑒
𝑗
)

−
1

4
𝑐 (𝑒

𝑗
) ∇

𝑆(𝑇𝑀)

𝑒𝑖

(Ψ)

+
1

4
∇
𝑆(𝑇𝑀)

𝑒𝑗

(Ψ) 𝑐 (𝑒
𝑖
) +

1

4
𝑐 (𝑒

𝑖
) ∇

𝑆(𝑇𝑀)

𝑒𝑗

(Ψ) .

(96)

Since the trace of the odd Clifford elements is zero and

Tr[

[

𝑛

∑

𝑖,𝑗=1

(
1

4

𝑛

∑

𝑠,𝑡=1

𝑅
𝑀

𝑖𝑗𝑠𝑡
𝑐 (𝑒

𝑠
) 𝑐 (𝑒

𝑡
))

2

]

]

= −
1

2

𝑛

∑

𝑖,𝑗,𝑠,𝑡=1

𝑅
2

𝑖𝑗𝑠𝑡
,

(97)

we get

Tr
𝑛

∑

𝑖,𝑗=1

[Ω
2

𝑖,𝑗
]

= −
1

2

𝑛

∑

𝑖,𝑗,𝑠,𝑡=1

𝑅
2

𝑖𝑗𝑠𝑡

+
1

16
Tr[

[

𝑛

∑

𝑖,𝑗=1

( − ∇
𝑆(𝑇𝑀)

𝑒𝑖

(Ψ) 𝑐 (𝑒
𝑗
)

− 𝑐 (𝑒
𝑗
) ∇

𝑆(𝑇𝑀)

𝑒𝑖

(Ψ) + ∇
𝑆(𝑇𝑀)

𝑒𝑗

(Ψ)

× 𝑐 (𝑒
𝑖
) + 𝑐(𝑒

𝑖
)∇

𝑆(𝑇𝑀)

𝑒𝑗

(Ψ))

2

]

]

.

(98)

By (72), (94), and (98), we obtain the following.

Proposition 21. Let Ψ be a two-form and let 𝑀 be a 4-
dimensional compact spin manifold without boundary. Then,

𝑎
4
(𝐷

Ψ
) =

1

1440𝜋2

{

{

{

Δ(3𝑠 + 120|Ψ|
2

) +
5

4
𝑠
2

− 2

𝑛

∑

𝑖,𝑙,𝑗,𝑘=1

𝑅
𝑖𝑗𝑖𝑘

× 𝑅
𝑙𝑗𝑙𝑘

−
7

4

𝑛

∑

𝑖,𝑗,𝑘,𝑙=1

𝑅
2

𝑖𝑗𝑘𝑙
+ 60𝑠|Ψ|

2

− 180|𝛿Ψ|
2

+ 2160|Ψ|
4

− 180

𝑛

∑

𝑘,𝑙,𝑘1 ,𝑙1=1

𝑖
𝑒𝑘
𝑖
𝑒𝑙

× (Ψ) 𝑖
𝑒𝑘1

𝑖
𝑒𝑙1

(Ψ) 𝑖
𝑒𝑘
𝑖
𝑒𝑘1

(Ψ) 𝑖
𝑒𝑙
𝑖
𝑒𝑙1

(Ψ)

+
15

8
Tr[

[

𝑛

∑

𝑖,𝑗=1

(−∇
𝑆(𝑇𝑀)

𝑒𝑖

(Ψ) 𝑐 (𝑒
𝑗
)

− 𝑐 (𝑒
𝑗
) ∇

𝑆(𝑇𝑀)

𝑒𝑖

(Ψ)

+ ∇
𝑆(𝑇𝑀)

𝑒𝑗

(Ψ) 𝑐 (𝑒
𝑖
)

+ 𝑐 (𝑒
𝑖
) ∇

𝑆(𝑇𝑀)

𝑒𝑗

× (Ψ))
2

]

]

}

}

}

.

(99)
Remark 22. In fact, Proposition 21 holds true, under analo-
gous hypotheses for manifolds of arbitrary dimension and a
general two-form Ψ after revising some coefficients.
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