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The conservation laws of the (3 + 1)-dimensional Zakharov-Kuznetsov equation were obtained using Noether’s theorem after an
interesting substitution 𝑢 = V

𝑥
to the equation.Then, with the aid of an obtained conservation law, the generalized double reduction

theorem was applied to this equation. It can be verified that the reduced equation is a second order nonlinear ODE. Finally, some
exact solutions of the Zakharov-Kuznetsov equation were constructed after solving the reduced equation.

1. Introduction

As we know that conservation laws play an important
role in the study of nonlinear partial differential equations
(NLPDEs) [1–3], especially in the reduction and solution of
a NLPDE, an elegant and constructive way to derive con-
servation laws is Noether’s approach [4, 5]. The application
of Noether’s approach depends on a suitable Lagrangian. Yet
there also exists some PDEs which do not have a Lagrangian,
for example, the scalar evolution differential equations. Also
there have several methods which do not relay on the
knowledge of a Lagrangian. The most recent approach, due
to Kara and Mahomed, is partial Noether’s approach [6]. It
works like the Noether’s approach for PDEs with or without
a Lagrangian. Different approaches to construct conservation
laws were discussed in detail [7].

The fundamental relationship between symmetries and
conservation laws of a PDE was given out by Kara and
Mahomed in [8]. For the case of a PDEwith two independent
variables, using the definition of the association of symme-
tries with conservation laws, Sjöberg developed a theorem
called double reduction method [9] which leads from a 𝑞th
order PDE to a 𝑞 − 1th order ordinary differential equation
(ODE). Recently, this method has been generalized in [10]
and applied to a (1 + 2)-dimensional wave equation [11].

In this paper, we focus on an equation presented in [12]
which shows that

𝑢
𝑡
+ 𝑎𝑢𝑢

𝑥
+ 𝑏𝑢
𝑥𝑥𝑥

+ 𝑢
𝑥𝑦𝑦

+ 𝑢
𝑥𝑧𝑧

= 0. (1)

In [12], the authors investigated an isothermal multicom-
ponent magnetized plasma and firstly derived this equation.
In a very recent paper [13], the authors firstly studied the
symmetry group of this equation. The one-, two-, and three-
parameter optimal systems of group-invariant solutions were
also given out. Then, based on the obtained optimal system,
they derived the reductions and some new solutions of this
equation.

This paper is arranged as follows: in Section 2, we first
briefly present some notation and pertinent results which
will be used in this paper. In Section 3, the conservation
laws of this equation will be constructed by using Noether’s
approach after an interesting substituting. Then in Section 4,
with the aid of an obtained conservation law and its associated
symmetries, the generalized double reduction method will
be applied to the Zakharov-Kuznetsov equation. And in
Section 5, some exact solutions will be constructed after
solving the corresponding reduced nonlinear ODE. Finally,
some conclusions and discussions are given in Section 6.
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2. Notation and Preliminaries

We briefly present the notation and pertinent results which
we utilize below. In this section, the summation convention
is used whenever appropriate.

2.1. Fundamental Operators andTheir Relationship. Consider
that a 𝑘-order system of PDEs with 𝑛 independent variables
𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) and 𝑚 dependent variables 𝑢 =

(𝑢1, 𝑢2, . . . , 𝑢𝑚) reads

𝐸
𝛼
(𝑥, 𝑢, 𝑢

(1)
, . . . , 𝑢

(𝑘)
) = 0, 𝛼 = 1, 2, . . . , 𝑚 (2)

which is assumed to be of maximal rank and locally solvable.
The collection of 𝑟th-order derivatives is denoted by 𝑢

(𝑟)
,

and the derivatives of 𝑢𝛼 with respect to 𝑥𝑖 are 𝑢𝛼
𝑖
= 𝐷
𝑖
(𝑢𝛼),

𝑢𝛼
𝑖𝑗
= 𝐷
𝑗
𝐷
𝑖
(𝑢𝛼), where

𝐷
𝑖
=

𝜕

𝜕𝑥𝑖
+ 𝑢
𝛼

𝑖

𝜕

𝜕𝑢𝛼
+ 𝑢
𝛼

𝑖𝑗

𝜕

𝜕𝑢𝛼
𝑗

+ ⋅ ⋅ ⋅ , 𝑖 = 1, 2, . . . , 𝑛 (3)

is the total derivative operator with respect to 𝑥𝑖.
The following results are well known which can be found

in many literatures.
The Euler-Lagrange operator is defined as

𝛿

𝛿𝑢𝛼
=

𝜕

𝜕𝑢𝛼
+

∞

∑
𝑗=1

(−1)
𝑗

𝐷
𝑖
1

⋅ ⋅ ⋅ 𝐷
𝑖
𝑗

𝜕

𝜕𝑢𝛼
𝑖
1
⋅⋅⋅𝑖
𝑗

, 𝛼 = 1, 2, . . . , 𝑚

(4)

and the Lie-Bäcklund operator is given by

𝑋 = 𝜉
𝑖
𝜕

𝜕𝑥𝑖
+ 𝜂
𝛼

𝜕

𝜕𝑢𝛼
+

∞

∑
𝑗=1

𝜁
𝛼

𝑖
1
𝑖
2
⋅⋅⋅𝑖
𝑗

𝜕

𝜕𝑢𝛼
𝑖
1
⋅⋅⋅𝑖
𝑗

, (5)

where 𝜁𝛼
𝑖
1
𝑖
2
⋅⋅⋅𝑖
𝑗

are determined by the following formulation:

𝜁
𝛼

𝑖
= 𝐷
𝑖
(𝜂
𝛼

) − 𝑢
𝛼

𝑠
𝐷
𝑖
(𝜉
𝑠

) ,

𝜁
𝛼

𝑖
1
𝑖
2
⋅⋅⋅𝑖
𝑗

= 𝐷
𝑖
𝑗

(𝜁
𝛼

𝑖
1
𝑖
2
⋅⋅⋅𝑖
𝑗−1

) − 𝑢
𝛼

𝑠𝑖
1
𝑖
2
⋅⋅⋅𝑖
𝑗−1

𝐷
𝑖
𝑗

(𝜉
𝑠

) , 𝑗 > 1.
(6)

And a Lie-Bäcklund operator can also be written in charac-
teristic form as

𝑋 = 𝜉
𝑖

𝐷
𝑖
+𝑊
𝛼

𝜕

𝜕𝑢𝛼
+

∞

∑
𝑗=1

𝐷
𝑖
1

⋅ ⋅ ⋅ 𝐷
𝑖
𝑗

(𝑊
𝛼

)
𝜕

𝜕𝑢𝛼
𝑖
1
⋅⋅⋅𝑖
𝑗

, (7)

where 𝑊𝛼 = 𝜂𝛼 − 𝜉𝑗𝑢𝛼
𝑗
, 𝛼 = 1, 2, . . . , 𝑚. are the Lie char-

acteristic functions.
A Noether operator associated with a Lie-Bäcklund oper-

ator𝑋 is defined as

𝑁
𝑖

= 𝜉
𝑖

+𝑊
𝛼

𝛿

𝛿𝑢𝛼
𝑖

+

∞

∑
𝑗=1

𝐷
𝑖
1

⋅ ⋅ ⋅ 𝐷
𝑖
𝑗

(𝑊
𝛼

)
𝛿

𝛿𝑢𝛼
𝑖𝑖
1
⋅⋅⋅𝑖
𝑗

,

𝑖 = 1, 2, . . . , 𝑛

(8)

in which, the Euler-Lagrange operators with respect to
derivatives of 𝑢𝛼 can be achieved by replacing 𝑢𝛼 with

the corresponding derivatives. For example, the Euler-
Lagrange operator 𝛿/𝛿𝑢𝛼

𝑖
is given by

𝛿

𝛿𝑢𝛼
𝑖

=
𝜕

𝜕𝑢𝛼
𝑖

+

∞

∑
𝑗=1

(−1)
𝑗

𝐷
𝑖
1

⋅ ⋅ ⋅ 𝐷
𝑖
𝑗

𝜕

𝜕𝑢𝛼
𝑖𝑖
1
⋅⋅⋅𝑖
𝑗

,

𝑖 = 1, 2, . . . , 𝑛, 𝛼 = 1, 2, . . . , 𝑚,

(9)

and the other Euler-Lagrange operatorswith respect to higher
order derivatives can be derived in the similar way.

2.2. Conservation Law. An 𝑛-tuple 𝑇 = (𝑇1, 𝑇2, . . . , 𝑇𝑛), 𝑇𝑖 ∈
𝜗, 𝑖 = 1, 2, . . . , 𝑛, is a conserved vector of the system (2) if 𝑇𝑖
satisfies

𝐷
𝑖
𝑇
𝑖
󵄨󵄨󵄨󵄨󵄨(2)

= 0, (10)

where 𝜗 is the space of differential functions.

2.3. Noether’s Theorem. If there exists a function 𝐿 =

𝐿(𝑥, 𝑢, 𝑢
(1)
, . . . , 𝑢

(𝑙)
), 𝑙 ≤ 𝑘, such that (2) is equivalent to

𝛿𝐿

𝛿𝑢𝛼
= 0, 𝛼 = 1, 2, . . . , 𝑚 (11)

then 𝐿 is called a Lagrangian of (2) and (11) is the correspond-
ing Euler-Lagrange system.

If a Lie-Bäcklund operator𝑋 defined in (5) satisfies

𝑋 (𝐿) + 𝐿𝐷
𝑖
(𝜉
𝑖

) = 𝐷
𝑖
(𝐵
𝑖

) (12)

for some vectors 𝐵 = (𝐵1, 𝐵2, . . . , 𝐵𝑛), 𝐵𝑖(𝑥1, . . . , 𝑥𝑛, 𝑢1,
. . . , 𝑢
𝑚

) ∈ 𝜗, 𝑖 = 1, 2, . . . , 𝑛, then it is a Noether symmetry
generator associated with the corresponding Lagrangian 𝐿.

Having determined the Noether symmetry generators,
conservation laws of the Euler-Lagrange system can be
constructed through the following theorem in an elegant way.

Theorem 1. If a Lie-Bäcklund operator 𝑋 defined in (5) is a
Noether symmetry generator associated with a Lagrangian 𝐿

of an Euler-Lagrange system, then there corresponds a vector
𝑇 = (𝑇

1, 𝑇2, . . . , 𝑇𝑛) with 𝑇𝑖 given by

𝑇
𝑖

= 𝐵
𝑖

− 𝑁
𝑖

𝐿 = 𝐵
𝑖

− 𝜉
𝑖

𝐿 −𝑊
𝛼
𝛿𝐿

𝛿𝑢𝛼
𝑖

−

∞

∑
𝑗=1

D
𝑖
1

⋅ ⋅ ⋅ 𝐷
𝑖
𝑗

(𝑊
𝛼

)
𝛿𝐿

𝛿𝑢𝛼
𝑖𝑖
1
⋅⋅⋅𝑖
𝑗

, 𝑖 = 1, 2, . . . , 𝑛

(13)

which is a conserved vector of the Euler-Lagrange system,where
the characteristics 𝑊 = (𝑊1,𝑊2, . . . ,𝑊𝑚),𝑊𝑖 ∈ 𝜗 of the
Noether symmetry generator are also the characteristics of the
obtained conservation law.

2.4. Generalized Double Reduction Theorem

Definition 2 (see [8]). A Lie-Bäcklund symmetry generator𝑋
defined in (5) is said to be associated with a conserved vector
𝑇 of the system (2) if𝑋 and 𝑇 satisfy the following identity:

𝑋(𝑇
𝑖

) + 𝑇
𝑖

𝐷
𝑘
(𝜉
𝑘

) − 𝑇
𝑘

𝐷
𝑘
(𝜉
𝑖

) = 0, 𝑖 = 1, . . . , 𝑛. (14)
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Theorem 3 (see [14]). Suppose that 𝑋 is any Lie-Bäcklund
symmetry generator of the system (2) and 𝑇𝑖, 𝑖 = 1, . . . , 𝑛 are
the components of conserved vector of (2). Then

𝑇
∗𝑖

= [𝑇
𝑖

, 𝑋] = 𝑋 (𝑇
𝑖

) + 𝑇
𝑖

𝐷
𝑗
(𝜉
𝑗

) − 𝑇
𝑗

𝐷
𝑗
(𝜉
𝑖

) ,

𝑖 = 1, . . . , 𝑛

(15)

also constitute the components of a conserved vector for (2);
that is,

𝐷
𝑖
𝑇
∗𝑖
󵄨󵄨󵄨󵄨󵄨(2)

= 0. (16)

Theorem4 (see [10]). Suppose that𝐷
𝑖
𝑇𝑖 = 0 is a conservation

law of the system (2). Then, under a contact transformation,
there exists function 𝑇̃𝑖 such that 𝐽𝐷

𝑖
𝑇𝑖 = 𝐷

𝑖
𝑇̃𝑖, where 𝑇̃𝑖 is

given by the following formula:

(

𝑇̃1

𝑇̃2

...
𝑇̃𝑛

) = 𝐽(𝐴
−1

)
𝑇

(

𝑇1

𝑇2

...
𝑇𝑛

),

𝐽(

𝑇1

𝑇2

...
𝑇𝑛

) = 𝐴
𝑇

(

𝑇̃1

𝑇̃2

...
𝑇̃𝑛

)

(17)

in which

𝐴 = (

𝐷
1
𝑥
1
𝐷
1
𝑥
2
⋅ ⋅ ⋅ 𝐷

1
𝑥
𝑛

𝐷
2
𝑥
1
𝐷
2
𝑥
2
⋅ ⋅ ⋅ 𝐷

2
𝑥
𝑛

...
...

...
...

𝐷
𝑛
𝑥
1
𝐷
𝑛
𝑥
2
⋅ ⋅ ⋅ 𝐷

𝑛
𝑥
𝑛

),

𝐴
−1

= (

𝐷
1
𝑥
1
𝐷
1
𝑥
2
⋅ ⋅ ⋅ 𝐷

1
𝑥
𝑛

𝐷
2
𝑥
1
𝐷
2
𝑥
2
⋅ ⋅ ⋅ 𝐷

2
𝑥
𝑛

...
...

...
...

𝐷
𝑛
𝑥
1
𝐷
𝑛
𝑥
2
⋅ ⋅ ⋅ 𝐷

𝑛
𝑥
𝑛

)

(18)

and 𝐽 = det (𝐴).

Theorem 5 (fundamental theorem on generalized double
reduction [10]). Suppose that 𝐷

𝑖
𝑇𝑖 = 0 is a conservation law

of the system (2). Then, under a similarity transformation of a
symmetry𝑋 of the system (2), there exist functions 𝑇̃𝑖 such that
𝑋 is still a symmetry for the PDE𝐷

𝑖
𝑇̃𝑖 = 0 and

(

𝑋𝑇̃1

𝑋𝑇̃
2

...
𝑋𝑇̃𝑛

) = 𝐽(𝐴
−1

)
𝑇

(

[𝑇
1, 𝑋]

[𝑇2, 𝑋]

...
[𝑇𝑛, 𝑋]

) , (19)

in which

𝐴 = (

D̃
1
𝑥
1
𝐷
1
𝑥
2
⋅ ⋅ ⋅ 𝐷

1
𝑥
𝑛

𝐷
2
𝑥
1
𝐷
2
𝑥
2
⋅ ⋅ ⋅ 𝐷

2
𝑥
𝑛

...
...

...
...

𝐷
𝑛
𝑥
1
𝐷
𝑛
𝑥
2
⋅ ⋅ ⋅ 𝐷

𝑛
𝑥
𝑛

),

𝐴
−1

= (

𝐷
1
𝑥
1
𝐷
1
𝑥
2
⋅ ⋅ ⋅ 𝐷

1
𝑥
𝑛

𝐷
2
𝑥
1
𝐷
2
𝑥
2
⋅ ⋅ ⋅ 𝐷

2
𝑥
𝑛

...
...

...
...

𝐷
𝑛
𝑥
1
𝐷
𝑛
𝑥
2
⋅ ⋅ ⋅ 𝐷

𝑛
𝑥
𝑛

),

(20)

and 𝐽 = det (𝐴).

Corollary 6 (necessary and sufficient condition for reduced
conserved form [10]). The conserved form 𝐷

𝑖
𝑇𝑖 = 0 of the

system (2) can be reduced under a similarity transformation
of a symmetry 𝑋 to a reduced conserved form 𝐷

𝑖
𝑇̃𝑖 = 0 if

and only if 𝑋 is associated with the conservation law 𝑇; that
is, [𝑇,𝑋]|

(2)
= 0.

Corollary 7 (generalized double reduction theorem [10]). A
nonlinear system of 𝑞th order PDEs with 𝑛 independent and𝑚
dependent variables, which admits a nontrivial conserved form
that has at least one associated symmetry in every reduction
from the 𝑛 reductions (the first step of double reduction) can be
reduced to a (𝑞 − 1)th order nonlinear system of ODEs.

3. Conservation Laws of
the Zakharov-Kuznetsov Equation

Making a substitution 𝑢 = V
𝑥
to (1), we have

V
𝑡𝑥
+ 𝑎V
𝑥
V
𝑥𝑥

+ 𝑏V
𝑥𝑥𝑥𝑥

+ V
𝑥𝑥𝑦𝑦

+ V
𝑥𝑥𝑧𝑧

= 0. (21)

A Lagrangian for (21) satisfying the Euler-Lagrange equation
𝛿𝐿/𝛿V = 0 is given as

𝐿 = −
1

2
V
𝑡
V
𝑥
−
𝑎

6
V3
𝑥
+
𝑏

2
V2
𝑥𝑥

+
1

2
V
𝑥𝑥
V
𝑦𝑦

+
1

2
V
𝑥𝑥
V
𝑧𝑧
, (22)

where the Euler-Lagrange operator 𝛿/𝛿V is given by

𝛿

𝛿V
=

𝜕

𝜕V
− 𝐷
𝑡

𝜕

𝜕V
𝑡

− 𝐷
𝑥

𝜕

𝜕V
𝑥

− 𝐷
𝑦

𝜕

𝜕V
𝑦

− 𝐷
𝑧

𝜕

𝜕V
𝑧

+ 𝐷
2

𝑥

𝜕

𝜕V
𝑥𝑥

+ 𝐷
2

𝑦

𝜕

𝜕V
𝑦𝑦

+ 𝐷
2

𝑧

𝜕

𝜕V
𝑧𝑧

+ ⋅ ⋅ ⋅ .

(23)

The Lie-Bäcklund operator is (invoking (5) up to third order
derivatives together with (6))

𝑋 = 𝜉
1

(𝑡, 𝑥, 𝑦, 𝑧, V)
𝜕

𝜕𝑡
+ 𝜉
2

(𝑡, 𝑥, 𝑦, 𝑧, V)
𝜕

𝜕𝑥

+ 𝜉
3

(𝑡, 𝑥, 𝑦, 𝑧, V)
𝜕

𝜕𝑦
+ 𝜉
4

(𝑡, 𝑥, 𝑦, 𝑧, V)
𝜕

𝜕𝑧
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+ 𝜂 (𝑡, 𝑥, 𝑦, 𝑧, V)
𝜕

𝜕V
+ 𝜂
(1)

𝑡

𝜕

𝜕V
𝑡

+ 𝜂
(1)

𝑥

𝜕

𝜕V
𝑥

+ 𝜂
(2)

𝑥𝑥

𝜕

𝜕V
𝑥𝑥

+ 𝜂
(2)

𝑦𝑦

𝜕

𝜕V
𝑦𝑦

+ 𝜂
(2)

𝑧𝑧

𝜕

𝜕V
𝑧𝑧

,

(24)

in which 𝜂(1)
𝑡

= 𝐷
𝑡
(𝜂) − V

𝑖
𝐷
𝑡
(𝜉𝑖), 𝜂(1)

𝑥
= 𝐷
𝑥
(𝜂) − V

𝑖
𝐷
𝑥
(𝜉𝑖),

𝜂(1)
𝑦

= 𝐷
𝑦
(𝜂) − V

𝑖
𝐷
𝑦
(𝜉𝑖),

𝜂
(2)

𝑥𝑥
= 𝐷
𝑥
(𝜂
(1)

𝑥
) − V
𝑖𝑥
𝐷
𝑥
(𝜉
𝑖

) ,

𝜂
(2)

𝑦𝑦
= 𝐷
𝑦
(𝜂
(1)

𝑦
) − V
𝑖𝑦
𝐷
𝑦
(𝜉
𝑖

) ,

𝜂
(2)

𝑧𝑧
= 𝐷
𝑧
(𝜂
(1)

𝑧
) − V
𝑖𝑧
𝐷
𝑧
(𝜉
𝑖

) .

(25)

The Lie-Bäcklund operator 𝑋 is a Noether symmetry gener-
ator associated with the Lagrangian 𝐿 (22) if there exists a
vector 𝐵 = (𝐵1, 𝐵2, 𝐵3, 𝐵4), such that

𝑋(𝐿) + 𝐿 [𝐷
𝑡
(𝜉
1

) + 𝐷
𝑥
(𝜉
2

) + 𝐷
𝑦
(𝜉
3

) + 𝐷
𝑧
(𝜉
4

)]

= 𝐷
𝑡
(𝐵
1

) + 𝐷
𝑥
(𝐵
2

) + 𝐷
𝑦
(𝐵
3

) + 𝐷
𝑧
(𝐵
4

) ,

(26)

where 𝐵1(𝑡, 𝑥, 𝑦, 𝑧, V), 𝐵2(𝑡, 𝑥, 𝑦, 𝑧, V), 𝐵3(𝑡, 𝑥, 𝑦, 𝑧, V), and
𝐵
4

(𝑡, 𝑥, 𝑦, 𝑧, V) are the gauge terms.
The expansion of (26) yields

−
1

2
V
𝑥
𝜂
(1)

𝑡
−
1

2
(V
𝑡
+ 𝑎V2
𝑥
) 𝜂
(1)

𝑥
+
1

2
(2𝑏V
𝑥𝑥

+ V
𝑦𝑦

+ V
𝑧𝑧
) 𝜂
(2)

𝑥𝑥

+
1

2
V
𝑥𝑥
𝜂
(2)

𝑦𝑦
+
1

2
V
𝑥𝑥
𝜂
(2)

𝑧𝑧

+ (−
1

2
V
𝑡
V
𝑥
−
𝑎

6
V3
𝑥
+
𝑏

2
V2
𝑥𝑥

+
1

2
V
𝑥𝑥
V
𝑦𝑦

+
1

2
V
𝑥𝑥
V
𝑧𝑧
)

× (𝜉
1

𝑡
+ V
𝑡
𝜉
1

V + 𝜉
2

𝑥
+ V
𝑥
𝜉
2

V + 𝜉
3

𝑦
+ V
𝑦
𝜉
3

V + 𝜉
4

𝑧
+ V
𝑧
𝜉
4

V)

= 𝐵
1

𝑡
+ V
𝑡
𝐵
1

V + 𝐵
2

𝑥
+ V
𝑥
𝐵
2

V + 𝐵
3

𝑦
+ V
𝑦
𝐵
3

V + 𝐵
4

𝑧
+ V
𝑧
𝐵
4

V .

(27)

Splitting (27) with respect to derivatives of V results in an
overdetermined system of equations for 𝜉1, 𝜉2, 𝜉3, 𝜉4,
𝜂, 𝐵1, 𝐵2, 𝐵3, and 𝐵4. The solutions of this system yield the
following Noether symmetries and gauge terms:

𝜉
1

= 3𝑐
1
𝑡 + 𝑐
5
, 𝜉

2

= 𝑐
1
𝑥 + 𝑐
6
𝑡 + 𝑐
7
,

𝜉
3

= 𝑐
1
𝑦 + 𝑐
2
𝑧 + 𝑐
3
, 𝜉

4

= 𝑐
1
𝑧 − 𝑐
2
𝑦 + 𝑐
4
,

𝜂 = −𝑐
1
V +

1

𝑎
𝑐
6
𝑥 + 𝛼 (𝑡, 𝑧 − 𝑦𝑖) + 𝛽 (𝑡, 𝑧 + 𝑦𝑖) ,

𝐵
1

= −
1

2𝑎
𝑐
6
V + 𝛾
1

(𝑡, 𝑥, 𝑦, 𝑧) ,

𝐵
2

= −
1

2
(𝛼
𝑡
+ 𝛽
𝑡
) V + 𝛾

2

(𝑡, 𝑥, 𝑦, 𝑧) ,

𝐵
3

= 𝛾
3

(𝑡, 𝑥, 𝑦, 𝑧) , 𝐵
4

= 𝛾
4

(𝑡, 𝑥, 𝑦, 𝑧) ,

𝛾
1

𝑡
+ 𝛾
2

𝑥
+ 𝛾
3

𝑦
+ 𝛾
4

𝑧
= 0,

(28)

where 𝑐
𝑖
, 𝑖 = 1, 2, . . . , 7 are constants, 𝛼(𝑡, 𝑧 − 𝑦𝑖) and

𝛽(𝑡, 𝑧 +𝑦𝑖) are two functions of their gauge terms. We can set
𝛾
1(𝑡, 𝑥, 𝑦, 𝑧) = 𝛾2(𝑡, 𝑥, 𝑦, 𝑧) = 𝛾3(𝑡, 𝑥, 𝑦, 𝑧) = 𝛾4(𝑡, 𝑥, 𝑦, 𝑧) = 0

as they contribute to the trivial part of the conserved vector.
Invoking (13) together with the inverse transformation

V = ∫𝑢𝑑𝑥 yields the following independent conservation
laws of the (3 + 1)-dimensional Zakharov-Kuznetsov equa-
tion:

𝑇
1
= (𝑇
𝑡

1
, 𝑇
𝑥

1
, 𝑇
𝑦

1
, 𝑇
𝑧

1
) , (𝑐

1
= 1) (29)

in which

𝑇
𝑡

1
= 𝑎𝑡𝑢

3

− 𝑥𝑢
2

− 𝑢(∫𝑢𝑑𝑥 + 𝑦∫𝑢
𝑦
𝑑𝑥 + 𝑧∫𝑢

𝑧
𝑑𝑥)

− 3𝑡𝑢
𝑥
(𝑏𝑢
𝑥
+ ∫𝑢
𝑦𝑦
𝑑𝑥 + ∫𝑢

𝑧𝑧
𝑑𝑥)

𝑇
𝑥

1

= −(𝑎𝑢
2

+ 2𝑏𝑢
𝑥𝑥

+ 𝑢
𝑦𝑦

+ 𝑢
𝑧𝑧
+ ∫𝑢
𝑡
𝑑𝑥)

× (𝑥𝑢 + ∫𝑢𝑑𝑥 + 3𝑡 ∫ 𝑢
𝑡
𝑑𝑥 + 𝑦∫𝑢

𝑦
𝑑𝑥 + 𝑧∫𝑢

𝑧
𝑑𝑥)

+ (2𝑢 + 3𝑡𝑢
𝑡
+ 𝑥𝑢
𝑥
+ 𝑦𝑢
𝑦
+ 𝑧𝑢
𝑧
)

× (2𝑏𝑢
𝑥
+ ∫𝑢
𝑦𝑦
𝑑𝑥 + ∫𝑢

𝑧𝑧
𝑑𝑥)

+ 𝑥(
1

3
𝑎𝑢
3

+ 𝑢∫𝑢
𝑡
𝑑𝑥 − 𝑢

𝑥

× (𝑏𝑢
𝑥
+ ∫𝑢
𝑦𝑦
𝑑𝑥 + ∫𝑢

𝑧𝑧
𝑑𝑥))

𝑇
𝑦

1

= 𝑦(
1

3
𝑎𝑢
3

− 𝑢
𝑥
(𝑏𝑢 + ∫𝑢

𝑦𝑦
𝑑𝑥 + ∫𝑢

𝑧𝑧
𝑑𝑥) + 𝑢∫𝑢

𝑡
𝑑𝑥)

− 𝑢
𝑥𝑦
(𝑥𝑢 + ∫𝑢𝑑𝑥 + 3𝑡 ∫ 𝑢

𝑡
𝑑𝑥 + 𝑦∫𝑢

𝑦
𝑑𝑥 + 𝑧∫𝑢

𝑧
𝑑𝑥)

+ 𝑢
𝑥
(𝑥𝑢
𝑦
+ 2∫𝑢

𝑦
𝑑𝑥 + 3𝑡 ∫ 𝑢

𝑡𝑦
𝑑𝑥

+ 𝑦∫𝑢
𝑦𝑦
𝑑𝑥 + 𝑧∫𝑢

𝑦𝑧
𝑑𝑥)

𝑇
𝑧

1

= 𝑧 (
1

3
𝑎𝑢
3

− 𝑢
𝑥
(𝑏𝑢
𝑥
+ ∫𝑢
𝑦𝑦
𝑑𝑥 + ∫𝑢

𝑧𝑧
𝑑𝑥) + 𝑢∫𝑢

𝑡
𝑑𝑥)

− 𝑢
𝑥𝑧
(𝑥𝑢 + ∫𝑢𝑑𝑥 + 3𝑡 ∫ 𝑢

𝑡
𝑑𝑥 + 𝑦∫𝑢

𝑦
𝑑𝑥 + 𝑧∫𝑢

𝑧
𝑑𝑥)

+ 𝑢
𝑥
(𝑥𝑢
𝑧
+ 2∫𝑢

𝑧
𝑑𝑥 + 3𝑡 ∫ 𝑢

𝑡𝑧
𝑑𝑥

+𝑦∫𝑢
𝑦𝑧
𝑑𝑥 + 𝑧∫𝑢

𝑧𝑧
𝑑𝑥)
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𝑇
2
= (𝑢 (𝑦∫𝑢

𝑧
𝑑𝑥 − 𝑧∫𝑢

𝑦
𝑑𝑥) , 𝑇

𝑥

2
, 𝑇
𝑦

2
, 𝑇
𝑧

2
) ,

(𝑐
2
= 1)

(30)

in which

𝑇
𝑥

2
= (𝑎𝑢

2

+ 2𝑏𝑢
𝑥𝑥

+ 𝑢
𝑦𝑦

+ 𝑢
𝑧𝑧
+ ∫𝑢
𝑡
𝑑𝑥)

× (𝑦∫𝑢
𝑧
𝑑𝑥 − 𝑧∫𝑢

𝑦
𝑑𝑥)

− (𝑦𝑢
𝑧
− 𝑧𝑢
𝑦
) (2𝑏𝑢

𝑥
+ ∫𝑢
𝑦𝑦
𝑑𝑥 + ∫𝑢

𝑧𝑧
𝑑𝑥)

𝑇
𝑦

2
=
1

3
𝑎𝑧𝑢
3

+ 𝑧𝑢∫𝑢
𝑡
𝑑𝑥 + 𝑢

𝑥𝑦
(𝑦∫𝑢

𝑧
𝑑𝑥 − 𝑧∫𝑢

𝑦
𝑑𝑥)

− 𝑢
𝑥
(𝑏𝑧𝑢
𝑥
+ ∫𝑢
𝑧
𝑑𝑥 + 𝑦∫𝑢

𝑦𝑧
𝑑𝑥 + 𝑧∫𝑢

𝑧𝑧
𝑑𝑥)

𝑇
𝑧

2
= −

1

3
𝑎𝑦𝑢
3

− 𝑦𝑢∫𝑢
𝑡
𝑑𝑥 + 𝑢

𝑥𝑧
(𝑦∫𝑢

𝑧
𝑑𝑥 − 𝑧∫𝑢

𝑦
𝑑𝑥)

+ 𝑢
𝑥
(𝑏𝑦𝑢
𝑥
+ ∫𝑢
𝑦
𝑑𝑥 + 𝑧∫𝑢

𝑦𝑧
𝑑𝑥 + 𝑦∫𝑢

𝑦𝑦
𝑑𝑥)

𝑇
3
= (−𝑢∫𝑢

𝑦
𝑑𝑥, 𝑇
𝑥

3
, 𝑇
𝑦

3
, 𝑢
𝑥
∫𝑢
𝑦𝑧
𝑑𝑥 − 𝑢

𝑥𝑧
∫𝑢
𝑦
𝑑𝑥) ,

(𝑐
3
= 1)

(31)

in which

𝑇
𝑥

3
= 𝑢
𝑦
(2𝑏𝑢
𝑥
+ ∫𝑢
𝑦𝑦
𝑑𝑥 + ∫𝑢

𝑧𝑧
𝑑𝑥)

− (𝑎𝑢
2

+ 2𝑏𝑢
𝑥𝑥

+ 𝑢
𝑦𝑦

+ 𝑢
𝑧𝑧
+ ∫𝑢
𝑡
𝑑𝑥)∫𝑢

𝑦
𝑑𝑥

𝑇
𝑦

3
=
1

3
𝑎𝑢
3

+ 𝑢∫𝑢
𝑡
𝑑𝑥 − 𝑢

𝑥
(𝑏𝑢
𝑥
+ ∫𝑢
𝑧𝑧
𝑑𝑥) − 𝑢

𝑥𝑦
∫𝑢
𝑦
𝑑𝑥

𝑇
4
= (−𝑢∫𝑢

𝑧
𝑑𝑥, 𝑇
𝑥

4
, 𝑢
𝑥
∫𝑢
𝑦𝑧
𝑑𝑥 − 𝑢

𝑥𝑦
∫𝑢
𝑧
𝑑𝑥, 𝑇
𝑧

4
) ,

(𝑐
4
= 1)

(32)

in which

𝑇
𝑥

4
= 𝑢
𝑧
(2𝑏𝑢
𝑥
+ ∫𝑢
𝑦𝑦
𝑑𝑥 + ∫𝑢

𝑧𝑧
𝑑𝑥)

− (𝑎𝑢
2

+ 2𝑏𝑢
𝑥𝑥

+ 𝑢
𝑦𝑦

+ 𝑢
𝑧𝑧
+ ∫𝑢
𝑡
𝑑𝑥)∫𝑢

𝑧
𝑑𝑥

𝑇
𝑧

4
=

1

3
𝑎𝑢
3

+ 𝑢∫𝑢
𝑡
𝑑𝑥 − 𝑢

𝑥
(𝑏𝑢
𝑥
+ ∫𝑢
𝑦𝑦
𝑑𝑥)

− 𝑢
𝑥𝑧
∫𝑢
𝑧
𝑑𝑥

𝑇
5
= (𝑇

𝑡

5
, 𝑇
𝑥

5
, 𝑢
𝑥
∫𝑢
𝑡𝑦
𝑑𝑥 − 𝑢

𝑥𝑦
∫𝑢
𝑡
𝑑𝑥, 𝑢
𝑥
∫𝑢
𝑡𝑧
𝑑𝑥

−𝑢
𝑥𝑧
∫𝑢
𝑡
𝑑𝑥) ,

(𝑐
5
= 1)

(33)

in which

𝑇
𝑡

5
=
1

3
𝑎𝑢
3

− 𝑢
𝑥
(𝑏𝑢
𝑥
+ ∫𝑢
𝑦𝑦
𝑑𝑥 + ∫𝑢

𝑧𝑧
𝑑𝑥)

𝑇
𝑥

5
= 𝑢
𝑡
(2𝑏𝑢
𝑥
+ ∫𝑢
𝑦𝑦
𝑑𝑥 + ∫𝑢

𝑧𝑧
𝑑𝑥)

− (𝑎𝑢
2

+ 2𝑏𝑢
𝑥𝑥

+ 𝑢
𝑦𝑦

+ 𝑢
𝑧𝑧
+ ∫𝑢
𝑡
𝑑𝑥)∫𝑢

𝑡
𝑑𝑥

𝑇
6
= (𝑥𝑢 − 𝑎𝑡𝑢

2

− ∫𝑢𝑑𝑥, 𝑇
𝑥

6
, 𝑎𝑡𝑢
𝑥
𝑢
𝑦
+ (𝑥 − 𝑎𝑡𝑢) 𝑢

𝑥𝑦
,

𝑎𝑡𝑢
𝑥
𝑢
𝑧
+ (𝑥 − 𝑎𝑡𝑢) 𝑢

𝑥𝑧
) ,

(𝑐
6
= 1)

(34)

in which

𝑇
𝑥

6
= 𝑥(𝑎𝑢

2

+ 2𝑏𝑢
𝑥𝑥

+ 𝑢
𝑦𝑦

+ 𝑢
𝑧𝑧
+ ∫𝑢
𝑡
𝑑𝑥)

− ∫𝑢
𝑦𝑦
𝑑𝑥 − ∫𝑢

𝑧𝑧
𝑑𝑥

− 𝑎𝑡 (
2

3
𝑎𝑢
3

+ 2𝑏𝑢𝑢
𝑥𝑥

+ 𝑢𝑢
𝑦𝑦

+ 𝑢𝑢
𝑧𝑧
− 𝑏𝑢
2

𝑥
)

𝑇
7
= (−𝑢

2

, 𝑇
𝑥

7
, 𝑢
𝑥
𝑢
𝑦
− 𝑢𝑢
𝑥𝑦
, 𝑢
𝑥
𝑢
𝑧
− 𝑢𝑢
𝑥𝑧
)

(𝑐
7
= 1)

(35)

in which

𝑇
𝑥

7
= 𝑏𝑢
2

𝑥
−
2

3
𝑎𝑢
3

− 𝑢 (2𝑏𝑢
𝑥𝑥

+ 𝑢
𝑦𝑦

+ 𝑢
𝑧𝑧
)

𝑇
8
= ((𝛼 + 𝛽) 𝑢, 𝑇

𝑥

8
, (𝛼 + 𝛽) 𝑢

𝑥𝑦
− 𝑖 (𝛼
2
− 𝛽
2
) 𝑢
𝑥
,

(𝛼 + 𝛽) 𝑢
𝑥𝑧
− (𝛼
2
+ 𝛽
2
) 𝑢
𝑥
)

(36)

in which

𝑇
𝑥

8
= (𝛼 + 𝛽) (𝑎𝑢

2

+ 2𝑏𝑢
𝑥𝑥

+ 𝑢
𝑦𝑦

+ 𝑢
𝑧𝑧
+ ∫𝑢
𝑡
𝑑𝑥)

− (𝛼
1
+ 𝛽
1
) ∫ 𝑢𝑑𝑥

(37)

and 𝛼
1
, 𝛼
2
are the derivatives of 𝛼(𝑡, 𝑧−𝑦𝑖)with respect to the

first and second gauge terms, respectively.The similiar case is
𝛽
1
,𝛽
2
.

Note that (35) is a local conservation law, while the
others are nonlocal conservation laws. We have verified that
there exist infinite many conservation laws for the Zakharov-
Kuznetsov equation.
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4. Double Reduction of the Zakharov-
Kuznetsov Equation via (35)

In this section, the generalized double reduction method
will be applied to the Zakharov-Kuznetsov equation by using
the obtained local conservation law (35) and its associated
symmetries.

In the paper [13], the authors give out the following seven
infinitesimal generators of this equation:

𝑋
1
=

𝜕

𝜕𝑥
, 𝑋

2
=

𝜕

𝜕𝑦
, 𝑋

3
=

𝜕

𝜕𝑧
, 𝑋

4
=

𝜕

𝜕𝑡
,

𝑋
5
= 𝑧

𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑧
, 𝑋

6
= 𝑎𝑡

𝜕

𝜕𝑥
+

𝜕

𝜕𝑢
,

𝑋
7
= 𝑥

𝜕

𝜕𝑥
+ 𝑦

𝜕

𝜕𝑦
+ 𝑧

𝜕

𝜕𝑧
+ 3𝑡

𝜕

𝜕𝑡
− 2𝑢

𝜕

𝜕𝑢
.

(38)

We first determine which of these seven symmetries are asso-
ciated with the conservation law (35) through the following
formula:

𝑋(

𝑇
𝑡

𝑇𝑥

𝑇𝑦

𝑇𝑧

)−(

𝐷
𝑡
𝜉𝑡 𝐷

𝑥
𝜉𝑡 𝐷

𝑦
𝜉𝑡 𝐷

𝑧
𝜉𝑡

𝐷
𝑡
𝜉𝑥 𝐷

𝑥
𝜉𝑥 𝐷

𝑦
𝜉𝑥 𝐷

𝑧
𝜉𝑥

𝐷
𝑡
𝜉𝑦 𝐷

𝑥
𝜉𝑦 𝐷

𝑦
𝜉𝑦 𝐷

𝑧
𝜉𝑦

𝐷
𝑡
𝜉𝑧 𝐷

𝑥
𝜉𝑧 𝐷

𝑦
𝜉𝑧 𝐷

𝑧
𝜉𝑧

)(

𝑇𝑡

𝑇𝑥

𝑇𝑦

𝑇𝑧

)

+ (𝐷
𝑡
𝜉
𝑡

+ 𝐷
𝑥
𝜉
𝑥

+ 𝐷
𝑦
𝜉
𝑦

+ 𝐷
𝑧
𝜉
𝑧

)(

𝑇𝑡

𝑇𝑥

𝑇𝑦

𝑇𝑧

) = 0.

(39)

It can be shown that the associated symmetries are
𝑋
1
, 𝑋
2
, 𝑋
3
, 𝑋
4
, and 𝑋

5
, but for simplicity we adopt

the combination of 𝑋 = 𝑋
4
+ 𝑐
1
𝑋
1
+ 𝑐
2
𝑋
2
+ 𝑐
3
𝑋
3

=

𝜕/𝜕𝑡 + 𝑐
1
(𝜕/𝜕𝑥) + 𝑐

2
(𝜕/𝜕𝑦) + 𝑐

3
(𝜕/𝜕𝑧) to reduce the conserved

vector, in which 𝑐
1
, 𝑐
2
, and 𝑐

3
are three constants, where the

generator𝑋 has a canonical form𝑋 = 𝜕/𝜕𝑞 if

𝑑𝑡

1
=
𝑑𝑥

𝑐
1

=
𝑑𝑦

𝑐
2

=
𝑑𝑧

𝑐
3

=
𝑑𝑢

0
=
𝑑𝑟

0
=
𝑑𝑠

0
=
𝑑𝑝

0
=
𝑑𝑞

1
=
𝑑𝑤

0

(40)
or

𝑟 = 𝑥 − 𝑐
1
𝑡, 𝑠 = 𝑦 − 𝑐

2
𝑡, 𝑝 = 𝑧 − 𝑐

3
𝑡,

𝑞 = 𝑡, 𝑤 (𝑟, 𝑠, 𝑝) = 𝑢.
(41)

Using the following formula, we can achieve the reduced
conserved vector

(

𝑇
𝑟

𝑇
𝑠

𝑇𝑝

𝑇𝑞

) = 𝐽(𝐴
−1

)
𝑇

(

𝑇𝑡

𝑇𝑥

𝑇𝑦

𝑇𝑧

), (42)

in which

𝐴
−1

= (

𝐷
𝑡
𝑟 𝐷
𝑡
𝑠 𝐷
𝑡
𝑝 𝐷
𝑡
𝑞

𝐷
𝑥
𝑟 𝐷
𝑥
𝑠 𝐷
𝑥
𝑝 𝐷
𝑥
𝑞

𝐷
𝑦
𝑟 𝐷
𝑦
𝑠 𝐷
𝑦
𝑝 𝐷
𝑦
𝑞

𝐷
𝑧
𝑟 𝐷
𝑧
𝑠 𝐷
𝑧
𝑝 𝐷
𝑧
𝑞

) , 𝐽 = det (𝐴) . (43)

Then the reduced conserved vector is

𝐷
𝑟
𝑇
𝑟

+ 𝐷
𝑠
𝑇
𝑠

+ 𝐷
𝑝
𝑇
𝑝

= 0, (44)

where

𝑇
𝑟

= − 𝑐
1
𝑤
2

+
2

3
𝑎𝑤
3

− 𝑏𝑤
2

𝑟
+ 𝑤 (2𝑏𝑤

𝑟𝑟
+ 𝑤
𝑠𝑠
+ 𝑤
𝑝𝑝
) ,

𝑇
𝑠

= 𝑤𝑤
𝑟𝑠
− 𝑤
𝑟
𝑤
𝑠
− 𝑐
2
𝑤
2

,

𝑇
𝑝

= 𝑤𝑤
𝑟𝑝
− 𝑤
𝑟
𝑤
𝑝
− 𝑐
3
𝑤
2

,

𝑇
𝑞

= 𝑤
2

.

(45)

Similarly, we can determine the associated symmetry with
the reduced conserved vector (44) through the following
formula:

𝑌(

𝑇𝑟

𝑇𝑠

𝑇𝑝
) −(

𝐷
𝑟
𝜉𝑟 𝐷

𝑠
𝜉𝑟 𝐷

𝑝
𝜉𝑟

𝐷
𝑟
𝜉𝑠 𝐷

𝑠
𝜉𝑠 𝐷

𝑝
𝜉𝑠

𝐷
𝑟
𝜉𝑝 𝐷

𝑠
𝜉𝑝 𝐷

𝑝
𝜉𝑝
)(

𝑇𝑟

𝑇𝑠

𝑇𝑝
)

+ (𝐷
𝑟
𝜉
𝑟

+ 𝐷
𝑠
𝜉
𝑠

+ 𝐷
𝑝
𝜉
𝑝

)(

𝑇𝑟

𝑇𝑠

𝑇𝑝
) = 0.

(46)

One can verify that the associated symmetries are

𝑌
1
=

𝜕

𝜕𝑟
, 𝑌

2
=

𝜕

𝜕𝑠
, 𝑌

3
=

𝜕

𝜕𝑝
. (47)

So we can get further reduced conserved vector by the
combination of 𝑌 = 𝑌

1
+ 𝑑
1
𝑌
2
+ 𝑑
2
𝑌
3
= 𝜕/𝜕𝑟 + 𝑑

1
(𝜕/𝜕𝑠) +

𝑑
2
(𝜕/𝜕𝑝), (𝑑

1
, 𝑑
2
are two constants), and the generator 𝑌 has

a canonical form 𝑌 = 𝜕/𝜕ℎ if

𝑑𝑟

1
=
𝑑𝑠

𝑑
1

=
𝑑𝑝

𝑑
2

=
𝑑𝑤

0
=
𝑑𝑓

0
=
𝑑𝑔

0
=
𝑑ℎ

1
=
𝑑𝜙

0
(48)

or

𝑓 = 𝑠 − 𝑑
1
𝑟, 𝑔 = 𝑝 − 𝑑

2
𝑟, ℎ = 𝑟, 𝜙 (𝑓, 𝑔) = 𝑤.

(49)

Through the following formula, we can get the reduced
conserved vector:

(

𝑇𝑓

𝑇𝑔

𝑇ℎ
) = 𝐽(𝐴

−1

)
𝑇

(

𝑇𝑟

𝑇𝑠

𝑇𝑞
) , (50)

in which

𝐴
−1

= (

𝐷
𝑟
𝑓 𝐷
𝑟
𝑔 𝐷
𝑟
ℎ

𝐷
𝑠
𝑓 𝐷
𝑠
𝑔 𝐷
𝑠
ℎ

𝐷
𝑝
𝑓 𝐷
𝑝
𝑔 𝐷
𝑝
ℎ
) , 𝐽 = det (𝐴) . (51)

And the reduced conserved vector is

𝐷
𝑓
𝑇
𝑓

+ 𝐷
𝑔
𝑇
𝑔

= 0, (52)
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where

𝑇
𝑓

= (𝑐
1
𝑑
1
− 𝑐
2
) 𝜙
2

−
2

3
𝑎𝑑
1
𝜙
3

+ (𝑑
1
𝜙
𝑓
+ 𝑑
2
𝜙
𝑔
)

× (𝑏𝑑
1
𝑑
2
𝜙
𝑔
+ (1 + 𝑏𝑑

2

1
) 𝜙
𝑓
)

− 𝜙 (𝑑
1
(1 + 2𝑏𝑑

2

2
) 𝜙
𝑔𝑔

+ 𝑑
2
(1 + 4𝑏𝑑

2

1
) 𝜙
𝑓𝑔

+2𝑑
1
(1 + 𝑏𝑑

2

1
) 𝜙
𝑓𝑓
) ,

𝑇
𝑔

= (𝑐
1
𝑑
2
− 𝑐
3
) 𝜙
2

−
2

3
𝑎𝑑
2
𝜙
3

+ (𝑑
1
𝜙
𝑓
+ 𝑑
2
𝜙
𝑔
)

× (𝑏𝑑
1
𝑑
2
𝜙
𝑓
+ (1 + 𝑏𝑑

2

2
) 𝜙
𝑔
)

− 𝜙 (𝑑
2
(1 + 2𝑏𝑑

2

1
) 𝜙
𝑓𝑓

+ 𝑑
1
(1 + 4𝑏𝑑

2

2
) 𝜙
𝑓𝑔

+2𝑑
2
(1 + 𝑏𝑑

2

2
) 𝜙
𝑔𝑔
) ,

𝑇
ℎ

= −𝑐
1
𝜙
2

+
2

3
𝑎𝜙
3

− 𝑏(𝑑
1
𝜙
𝑓
+ 𝑑
2
𝜙
𝑔
)
2

+ 𝜙 ((1 + 2𝑏𝑑
2

1
) 𝜙
𝑓𝑓

+ 4𝑏𝑑
1
𝑑
2
𝜙
𝑓𝑔
+ (1 + 2𝑏𝑑

2

2
) 𝜙
𝑔𝑔
) .

(53)

Similarly, one can determine the associated symmetry
with the reduced conserved vector (52) through the same
formula, here we omit. One can verify that the associated
symmetries with (52) are

𝑍
1
=

𝜕

𝜕𝑓
, 𝑍

2
=

𝜕

𝜕𝑔
. (54)

So we can get further reduced conserved vector by the
combination of 𝑍 = 𝑍

1
+ 𝑒
1
𝑍
2
= 𝜕/𝜕𝑓 + 𝑒

1
(𝜕/𝜕𝑔), (𝑒

1
is a

constant), and the generator𝑍 has a canonical form𝑍 = 𝜕/𝜕𝜆

if

𝑑𝑓

1
=
𝑑𝑔

𝑒
1

=
𝑑𝜙

0
=
𝑑𝜃

0
=
𝑑𝜆

1
=
𝑑𝜓

0
(55)

or

𝜃 = 𝑔 − 𝑒
1
𝑓, 𝜆 = 𝑓, 𝜓 (𝜃) = 𝜙. (56)

We can achieve the reduced conserved vector as follows:

𝐷
𝜃
𝑇
𝜃

+ 𝐷
𝜆
𝑇
𝜆

= 0, (57)

in which

𝑇
𝜃

= (𝑐
3
− 𝑐
2
𝑒
1
− (𝑑
2
− 𝑑
1
𝑒
1
) 𝑐
1
) 𝜓
2

+
2

3
𝑎 (𝑑
2
− 𝑑
1
𝑒
1
) 𝜓
3

− (𝑑
2
− 𝑑
1
𝑒
1
) (1 + 𝑒

2

1
+ 𝑏(𝑑
2
− 𝑑
1
𝑒
1
)
2

) 𝜓
󸀠2

+ 2 (𝑑
2
− 𝑑
1
𝑒
1
) (1 + 𝑒

2

1
+ 𝑏(𝑑
2
− 𝑑
1
𝑒
1
)
2

) 𝜓𝜓
󸀠󸀠

,

𝑇
𝜆

= (𝑐
2
− 𝑐
1
𝑑
1
) 𝜓
2

+
2

3
𝑎𝑑
1
𝜓
3

+ (𝑑
2
− 𝑑
1
𝑒
1
)

× (𝑒
1
− 𝑏𝑑
1
(𝑑
2
− 𝑑
1
𝑒
1
)) 𝜓
󸀠2

+ ((1 + 2𝑏𝑑
2

2
) 𝑑
1
− (1 + 4𝑏𝑑

2

1
) 𝑑
2
𝑒
1

+2 (1 + 𝑏𝑑
2

1
) 𝑑
1
𝑒
2

1
) 𝜓𝜓
󸀠󸀠

.

(58)

The last step of double reduction gives the following
equation:

2𝐴𝜓𝜓
󸀠󸀠

− 𝐴𝜓
󸀠2

+ 𝐵𝜓
3

+ 𝐶𝜓
2

= 𝐷. (59)

It is a second order nonlinear ODE, in which

𝐴 = (𝑑
2
− 𝑑
1
𝑒
1
) (1 + 𝑒

2

1
+ 𝑏(𝑑
2
− 𝑑
1
𝑒
1
)
2

) ,

𝐵 =
2

3
𝑎 (𝑑
2
− 𝑑
1
𝑒
1
) , 𝐶 = 𝑐

3
− 𝑐
2
𝑒
1
− (𝑑
2
− 𝑑
1
𝑒
1
) 𝑐
1
,

(60)

and𝐷 is a constant.
It also has 𝑢(𝑡, 𝑥, 𝑦, 𝑧) = 𝜓(𝜃), 𝜃 = ((𝑑

2
− 𝑑
1
𝑒
1
)𝑐
1
− 𝑐
3
+

𝑐
2
𝑒
1
)𝑡 − (𝑑

2
− 𝑑
1
𝑒
1
)𝑥 − 𝑒

1
𝑦 + 𝑧.

5. Exact Solutions for
the Zakharov-Kuznetsov Equation

If we have solved the obtained nonlinear ODE (59), then
exact solutions for the Zakharov-Kuznetsov equation can be
obtained after substituting the original variables.

Note that (59) can be rewritten as

𝜓
󸀠󸀠

=
𝜓󸀠2

2𝜓
−

𝐵

2𝐴
𝜓
2

−
𝐶

2𝐴
𝜓 +

𝐷

2𝐴

1

𝜓
. (61)

Under the transformation 𝜓󸀠 = 𝜒(𝜓), (55) becomes

𝜒
󸀠

(𝜓) =
1

2𝜓
𝜒 + (

𝐷

2𝐴

1

𝜓
−

𝐵

2𝐴
𝜓
2

−
𝐶

2𝐴
𝜓)𝜒
−1

, (62)

which is a Bernoulli equation. Its general solution is given by

𝜒
2

(𝜓) = −
𝐷

𝐴
+ 𝐾𝜓 −

𝐶

𝐴
𝜓
2

−
𝐵

2𝐴
𝜓
3 (63)

in which 𝐾 is an integral constant.
Recall that 𝜓󸀠 = 𝜒(𝜓), so we have

𝜓
󸀠

(𝜃) = ±√−
𝐷

𝐴
+ 𝐾𝜓 −

𝐶

𝐴
𝜓2 −

𝐵

2𝐴
𝜓3. (64)

Note that Fan once obtained some exact solutions for the
following more general nonlinear ODE:

𝑑𝜙 (𝜉)

𝑑𝜉
= 𝜀√

4

∑
𝑖=0

𝑐
𝑖
𝜙𝑖, (65)

where 𝜀 = ±1, 𝑐
𝑖
(𝑖 = 0, 1, 2, 3, 4) are constants.
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For this knowledge, we refer readers to [15]. But for
volumes, they are not presented here.

Next, exact solutions of (64) will be constructed with
the aid of the obtained results by Fan, and thus they are
also solutions of the Zakharov-Kuznetsov equation after
substituting the original variables.

Two particular cases will be investigated as follows.

Case 1 (𝐷 = 𝐾 = 0). This case can be further divided into
three subclasses as follows.

(1) If 𝐶/𝐴 < 0, we have

𝑢 (𝑡, 𝑥, 𝑦, 𝑧) = −
2𝐶

𝐵
secℎ2 (1

2
√−

𝐶

𝐴
𝜃) . (66)

(2) If 𝐶/𝐴 > 0, we have

𝑢 (𝑡, 𝑥, 𝑦, 𝑧) = −
2𝐶

𝐵
sec2 (1

2
√
𝐶

𝐴
𝜃) . (67)

(3) If 𝐶 = 0, we have

𝑢 (𝑡, 𝑥, 𝑦, 𝑧) = −
2𝐴

𝐵𝜃2
. (68)

Which are the bell-shape soliton solution, the periodic tri-
angular function solution and the rational function solution,
respectively.

Case 2 (𝐵/𝐴 < 0). In this case, we achieve a solution

𝑢 (𝑡, 𝑥, 𝑦, 𝑧) = ℘(
1

2
√−

𝐵

2𝐴
𝜃, 𝑔
2
, 𝑔
3
) , (69)

in which 𝑔
2
= 8𝐴𝐾/𝐵, 𝑔

3
= 16𝐷/𝐵. This a Weierstrass

elliptic function solution.

In all of the obtained solutions, 𝐴 = (𝑑
2
− 𝑑
1
𝑒
1
)(1 + 𝑒2

1
+

𝑏(𝑑
2
− 𝑑
1
𝑒
1
)
2

), 𝐵 = (2/3)𝑎(𝑑
2
− 𝑑
1
𝑒
1
), 𝐶 = 𝑐

3
− 𝑐
2
𝑒
1
− (𝑑
2
−

𝑑
1
𝑒
1
)𝑐
1
, and 𝜃 = ((𝑑

2
− 𝑑
1
𝑒
1
)𝑐
1
− 𝑐
3
+ 𝑐
2
𝑒
1
)𝑡 − (𝑑

2
− 𝑑
1
𝑒
1
)𝑥 −

𝑒
1
𝑦 + 𝑧.

Remark 8. If we substitute (64) into (61) and eliminate 𝜓󸀠 in
(61), then we can get the following equation:

𝜓
󸀠󸀠

(𝜃) =
𝐾

2
−
𝐶

𝐴
𝜓 −

3𝐵

4𝐴
𝜓
2

. (70)

Solving (70) can also help us find solutions to the Zakharov-
Kuznetsov equation, which will be discussed in our future
research paper.

6. Conclusion

In this work, in order to apply the Noether’s approach to
construct conservation laws for the (3 + 1)-dimensional
Zakharov-Kuznetsov equation, the transformation 𝑢 = V

𝑥

is utilized. It is of interest to find that a standard Lagrangian
exists for the transformed equation.ThenNoether’s approach

is used to derive the conservation laws. Finally, conservation
laws for the Zakharov-Kuznetsov equation are obtained
under the inverse transformation V = ∫𝑢𝑑𝑥, which involves
local and nonlocal conservation laws. Many infinite con-
servation laws of this equation are also obtained, which
shows the strong integrability of this equation. Then, with
the aid of the local conservation law, the generalized double
reduction theorem is applied to the Zakharov-Kuznetsov
equation. It has been shown that the reduced equation is
a second order nonlinear ODE. Some exact solutions of
the Zakharov-Kuznetsov equation are obtained after solving
the nonlinear ODE. In addition, Xia and Xiong [16] took
an interesting approach to investigate soliton solutions of
nonlinear equations, which induces us to consider some exact
solutions of (1).
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