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Suppose that F is a field and𝑚, 𝑛 ≥ 3 are integers. Denote by𝑀
𝑚𝑛
(F) the set of all𝑚×𝑛matrices over F and by𝑀

𝑛
(F) the set𝑀

𝑛𝑛
(F).

Let𝑓
𝑖𝑗
(𝑖 ∈ [1,𝑚], 𝑗 ∈ [1, 𝑛]) be functions on F , where [1, 𝑛] stands for the set {1, . . . , 𝑛}.We say that amap𝑓 : 𝑀

𝑚𝑛
(F) → 𝑀

𝑚𝑛
(F) is

induced by {𝑓
𝑖𝑗
} if 𝑓 is defined by𝑓 : [𝑎

𝑖𝑗
] 󳨃→ [𝑓

𝑖𝑗
(𝑎
𝑖𝑗
)]. We say that a map 𝑓 on𝑀

𝑛
(F) preserves similarity if𝐴 ∼ 𝐵 ⇒ 𝑓(𝐴) ∼ 𝑓(𝐵),

where 𝐴 ∼ 𝐵 represents that 𝐴 and 𝐵 are similar. A map 𝑓 on𝑀
𝑛
(F) preserving inverses of matrices means 𝑓(𝐴)𝑓(𝐴−1) = 𝐼

𝑛
for

every invertible𝐴 ∈ 𝑀
𝑛
(F). In this paper, we characterize inducedmaps preserving similarity and inverses ofmatrices, respectively.

1. Introduction

Suppose that F is a field and 𝑚, 𝑛 ≥ 3 are integers. Denote
by𝑀
𝑚𝑛
(F) the set of all𝑚 × 𝑛matrices over F and by𝑀

𝑛
(F)

the set𝑀
𝑛𝑛
(F). Let 𝑓

𝑖𝑗
(𝑖 ∈ [1,𝑚], 𝑗 ∈ [1, 𝑛]) be functions on

F , where [1, 𝑛] stands for the set {1, . . . , 𝑛}. We say that map
𝑓 : 𝑀

𝑚𝑛
(F) → 𝑀

𝑚𝑛
(F) is induced by {𝑓

𝑖𝑗
} if 𝑓 is defined by

𝑓 : 𝐴 = [𝑎
𝑖𝑗
] 󳨃󳨀→ [𝑓

𝑖𝑗
(𝑎
𝑖𝑗
)] , for every 𝐴 ∈ 𝑀

𝑚𝑛
(F) . (1)

It is easy to see that inducedmapmaynot be linear or additive.

Example 1. Let R be real field, 𝑓
11
(𝑥) = sin𝑥, 𝑓

12
(𝑥) =

exp(𝑥), 𝑓
21
(𝑥) = tan(𝑥), and 𝑓

22
(𝑥) = 𝑥

2

+ 1, then 𝑓 :

𝑀
2
(R) → 𝑀

2
(R) induced by {𝑓

𝑖𝑗
} is

𝑓([

𝑎 𝑏

𝑐 𝑑
]) = [

sin 𝑎 exp 𝑏
tan 𝑐 𝑑2 + 1] , ∀ [

𝑎 𝑏

𝑐 𝑑
] ∈ 𝑀

2
(R) . (2)

Example 2. The transpositionmap𝑋 󳨃→ 𝑋
𝑡 is not an induced

map on𝑀
𝑛
(F).

Example 3. Let 𝑃 ∈ 𝑀
𝑛
(F) be a matrix; then 𝑓 : 𝑋 󳨃→ 𝑃𝑋 is

an induced map on𝑀
𝑛
(F) if and only if 𝑃 is diagonal.

If 𝑓
𝑖𝑗
is independent of the choices of 𝑖 and 𝑗 (i.e., 𝑓

𝑖𝑗
≡ 𝜑,

for every 𝑖 ∈ [1,𝑚] and 𝑗 ∈ [1, 𝑛]), then 𝑓 is said to be

induced by the function 𝜑, and denote by 𝑓(𝐴) = 𝐴
𝜑

(=

[𝜑(𝑎
𝑖𝑗
)]). Denote by rank𝐴 the rank of matrix 𝐴. We say

that an induced map 𝑓 preserves rank-1 if rank𝑓(𝐴) = 1

whenever rank𝐴 = 1.
Preserver problem is a hot area in matrix and operator

algebra; there are many results about this area. Kalinowski
[1] showed that an induced map 𝑓(Θ) = Θ

𝜑, where 𝜑 is
a monotonic and continuous function of real field 𝑅 such
that 𝑓(0) = 0, preserves ranks of matrices if and only if
it is linear. Furthermore, in [2], Kalinowski generalized the
results in [1] by removing any restrictions on themap𝜑. In [3],
Liu and Zhang characterized the general form of all maps 𝑓
induced by 𝑓

𝑖𝑗
and preserving rank-1 matrices over a field. In

particular, nonlinearmaps preserving similarity were studied
by Du et al. [4]. One can see [5–15] and their references for
some background on preserver problems.

We say that a map 𝑓 on𝑀
𝑛
(F) preserves similarity if

𝐴 ∼ 𝐵 󳨐⇒ 𝑓 (𝐴) ∼ 𝑓 (𝐵) ∀𝐴, 𝐵 ∈ 𝑀
𝑛
(F) , (3)

where𝐴 ∼ 𝐵 represents that𝐴 and 𝐵 are similar. A map 𝑓 on
𝑀
𝑛
(F) preserving inverses of matrices means 𝑓(𝐴)𝑓(𝐴−1) =

𝐼
𝑛
for every invertible 𝐴 ∈ 𝑀

𝑛
(F). In this paper, we describe

the forms of induced map preserving similarity and inverses
of matrices, respectively.

We end this section by introducing some notations which
will be used in the following sections. Let diag(𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
)

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 596756, 5 pages
http://dx.doi.org/10.1155/2014/596756

http://dx.doi.org/10.1155/2014/596756


2 Abstract and Applied Analysis

be the diagonal matrix of order 𝑛. 𝐸
𝑖𝑗
is the matrix with 1 in

the (𝑖, 𝑗)th entry and 0 elsewhere and 𝐼
𝑛
is the identity matrix

of order 𝑛. Denote by ⊕ the usual direct sum of matrices.

2. Induced Map Preserving
Similarity of Matrices

In this section, we use the form of induced rank-1 preserver
to describe forms of induced similarity preservers. Firstly, we
need the following theorem from [3].

Lemma 4 (see [3, Corollary 1]). Suppose that F is any field
and 𝑛 ≥ 2 are integers. Suppose that 𝑓 on 𝑀

𝑛
(F) is induced

by {𝑓
𝑖𝑗
} such that 𝑓(0) = 0. Then 𝑓 preserves rank-1 if and

only if there exist invertible and diagonal 𝑃,𝑄 ∈ 𝑀
𝑛
(F) and a

multiplicative map 𝛿 on F satifying 𝛿(𝑥) = 0 ⇔ 𝑥 = 0 such
that

𝑓 (𝐴) = 𝑃𝐴
𝛿

𝑄, ∀𝐴 ∈ 𝑀
𝑛
(F) . (4)

Lemma 5. Suppose that F is any field, and 𝑛 is an integer with
𝑛 ≥ 2. If 𝐴 ∈ 𝑀

𝑛
(F) satisfies 𝐴2 = 0 and rank𝐴 = 𝑟, then

there exists an invertible matrix 𝑃 ∈ 𝑀
𝑛
(F) such that

𝑃
−1

𝐴𝑃 = [

0 𝐼
𝑟

0 0
] ⊕ 0. (5)

Proof. It is easy to see that there exists an invertible matrix
𝑃
1
∈ 𝑀
𝑛
(F) such that

𝐴 = 𝑃
1
[

𝐴
1
𝐴
2

0 0
]𝑃
−1

1
, (6)

where 𝐴
1

∈ 𝑀
𝑟
(F) and 𝐴

2
∈ 𝑀

𝑟(𝑛−𝑟)
(F) satisfy

rank [𝐴
1
𝐴
2
] = 𝑟. From 𝐴2 = 0, we have

𝐴
1
[𝐴
1
𝐴
2
] = 0, (7)

so that 𝐴
1
= 0. Thus, rank𝐴

2
= 𝑟, which implies that

𝐴
2
𝑄 = [𝐼

𝑟
0] , (8)

for some invertible𝑄 ∈ 𝑀
𝑛−𝑟
(F). Let 𝑃 = 𝑃

1
(𝐼
𝑟
⊕𝑄); then (6)

turns into

𝑃
−1

𝐴𝑃 = [

0 𝐼
𝑟

0 0
] ⊕ 0. (9)

This completes the proof.

Theorem 6. Let F be a field and let 𝑚, 𝑛 ≥ 3 be positive
integers. Suppose that 𝑓 is a map on 𝑀

𝑛
(F) induced by {𝑓

𝑖𝑗
}

such that 𝑓(0) = 0. Then 𝑓 preserves similarity if and only if
there exist an invertible and diagonal 𝑃 ∈ 𝑀

𝑛
(F), 𝑞 ∈ F , and

an injective endomorphism 𝛿 of F such that

𝑓 (𝐴) = 𝑞𝑃𝐴
𝛿

𝑃
−1

, ∀𝐴 ∈ 𝑀
𝑛
(F) . (10)

Proof. The sufficiency is obvious.We will prove the necessary
part by the following four steps.

Step 1. If there exists some 𝑖 ̸= 𝑗 and 𝑎 ̸= 0 such that 𝑓
𝑖𝑗
(𝑎) = 0,

then 𝑓 = 0.

Proof of Step 1. For any 𝑏 ̸= 0, 𝑘 ̸= 𝑙, since rank 𝑏𝐸
𝑙𝑘
= 1 and

(𝑏𝐸
𝑙𝑘
)
2

= 0, by Lemma 5, we have

𝑏𝐸
𝑙𝑘
∼ 𝐸
12
∼ 𝑎𝐸
𝑖𝑗
. (11)

Since 𝑓 preserves similarity, we derive

𝑓
𝑘𝑙
(𝑏) 𝐸
𝑘𝑙
∼ 𝑓
𝑖𝑗
(𝑎) 𝐸
𝑖𝑗
= 0, (12)

and thus,

𝑓
𝑘𝑙
(𝑏) = 0, ∀𝑘 ̸= 𝑙 ∈ [1, 𝑛] , 𝑏 ∈ F . (13)

Because of rank (𝑏𝐸
𝑘𝑘
−𝑏𝐸
𝑙𝑙
−𝑏𝐸
𝑘𝑙
+𝑏𝐸
𝑙𝑘
) = 1 and (𝑏𝐸

𝑘𝑘
−

𝑏𝐸
𝑙𝑙
− 𝑏𝐸
𝑘𝑙
+ 𝑏𝐸
𝑙𝑘
)
2

= 0, by Lemma 5, we have

(𝑏𝐸
𝑘𝑘
− 𝑏𝐸
𝑙𝑙
− 𝑏𝐸
𝑘𝑙
+ 𝑏𝐸
𝑙𝑘
) ∼ 𝐸
12
∼ 𝑎𝐸
𝑖𝑗
. (14)

Using 𝑓 preserves similarity and (13), one can obtain that

𝑓
𝑘𝑘
(𝑏) 𝐸
𝑘𝑘
+ 𝑓
𝑙𝑙
(−𝑏) 𝐸

𝑙𝑙
= 0, (15)

hence,

𝑓
𝑘𝑘
(𝑏) = 0, ∀𝑘 ∈ [1, 𝑛] , 𝑏 ∈ F . (16)

It follows from (13) and (16) that 𝑓
𝑖𝑗
= 0, that is, 𝑓 = 0.

Step 2. If there exist some 𝑖 and 𝑎 ̸= 0 such that𝑓
𝑖𝑖
(𝑎) = 0, then

𝑓 = 0.

Proof of Step 2. For 𝑗 ̸= 𝑖, it follows from 𝑎𝐸
𝑖𝑖
∼ 𝑎𝐸

𝑗𝑗
that

𝑓
𝑖𝑖
(𝑎)𝐸
𝑖𝑖
∼ 𝑓
𝑗𝑗
(𝑎)𝐸
𝑗𝑗
. Thus,

𝑓
𝑗𝑗
(𝑎) = 0, ∀𝑗 ∈ [1, 𝑛] , 𝑎 ∈ F . (17)

Because of

(𝑎𝐸
𝑖𝑖
− 𝑎𝐸
𝑗𝑗
− 𝑎𝐸
𝑖𝑗
+ 𝑎𝐸
𝑗𝑖
) ∼ 𝐸
12
, (18)

one can obtain by using (17) that (𝑓
𝑖𝑗
(𝑎)𝐸
𝑖𝑗
+ 𝑓
𝑗𝑖
(−𝑎)𝐸

𝑖𝑗
) ∼

𝑓
12
(1)𝐸
12
, and hence,

rank (𝑓
𝑖𝑗
(𝑎) 𝐸
𝑖𝑗
+ 𝑓
𝑗𝑖
(−𝑎) 𝐸

𝑖𝑗
) = rank𝑓

12
(1) 𝐸
12
≤ 1. (19)

Thus, 𝑓
𝑖𝑗
(𝑎) = 0 or 𝑓

𝑗𝑖
(−𝑎) = 0. We complete the proof of this

step by using the result of Step 1.

Step 3. If 𝑓 ̸= 0, then 𝑓 preserves rank-1.

Proof of Step 3. For any rank-1 matrix 𝐴 we have

𝐴 ∼

[

[

[

[

[

𝑎
1
𝑎
2
⋅ ⋅ ⋅ 𝑎
𝑛

0 0 ⋅ ⋅ ⋅ 0

...
...

...
...

0 0 ⋅ ⋅ ⋅ 0

]

]

]

]

]

, (20)

and hence,

𝑓 (𝐴) ∼

[

[

[

[

[

𝑓
11
(𝑎
1
) 𝑓
12
(𝑎
2
) ⋅ ⋅ ⋅ 𝑓

1𝑛
(𝑎
𝑛
)

0 0 ⋅ ⋅ ⋅ 0

...
...

...
...

0 0 ⋅ ⋅ ⋅ 0

]

]

]

]

]

. (21)

Thus, rank𝑓(𝐴) ≤ 1; it follows from𝑓 ̸= 0 that rank𝑓(𝐴) = 1.
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Step 4. If𝑓 ̸= 0, then there exist an invertible and diagonal𝑃 ∈
𝑀
𝑛
(F), 0 ̸= 𝑞 ∈ F , and an injective endomorphism 𝛿 of F such

that

𝑓 (𝐴) = 𝑞𝑃𝐴
𝛿

𝑃
−1

, ∀𝐴 ∈ 𝑀
𝑛
(F) . (22)

Proof of Step 4. Since 𝑓 ̸= 0, by Step 3 and Lemma 4, there
exist invertible and diagonal 𝑃,𝑄 ∈ 𝑀

𝑛
(F) and a multiplica-

tive map 𝛿 on F satisfying 𝛿(𝑥) = 0 ⇔ 𝑥 = 0 such that

𝑓 (𝐴) = 𝑃𝐴
𝛿

(𝑄𝑃) 𝑃
−1

, ∀𝐴 ∈ 𝑀
𝑛
(F) . (23)

Let

𝐴 =
[

[

1 1 𝑥 + 𝑦

0 1 𝑥

1 0 𝑦

]

]

⊕ 0,

𝐵 =
[

[

1 1 − 𝑥 − 𝑦 𝑥 + 𝑦

0 1 − 𝑥 𝑥

1 1 − 𝑥 − 𝑦 𝑥 + 𝑦

]

]

⊕ 0.

(24)

It is easy to see that 𝐵 = (𝐼
𝑛
+ 𝐸
32
)𝐴(𝐼
𝑛
+ 𝐸
32
)
−1. Since 𝑓

preserves similarity, we have that 𝑓(𝐴) and 𝑓(𝐵) are similar;
further, rank𝑓(𝐴) = rank𝑓(𝐵). It follows from (23) that
rank𝑓(𝐵) ≤ 2, thus,

rank[

[

𝛿 (1) 𝛿 (1) 𝛿 (𝑥 + 𝑦)

0 𝛿 (1) 𝛿 (𝑥)

𝛿 (1) 0 𝛿 (𝑦)

]

]

⊕ 0 ≤ 2. (25)

This implies 𝛿(𝑥 + 𝑦) = 𝛿(𝑥) + 𝛿(𝑦), hence, 𝛿 is an injective
endomorphism of F .

Set 𝑄𝑃 = diag(𝑞
1
, . . . , 𝑞

𝑛
). Since 𝐸

𝑖𝑖
∼ 𝐸
𝑗𝑗
, one obtains by

using (23) that

𝑞
𝑖
𝐸
𝑖𝑖
∼ 𝑞
𝑗
𝐸
𝑗𝑗
. (26)

Thus, 𝑞
𝑖
= 𝑞
𝑗
. Letting 𝑞 = 𝑞

1
, then 𝑄𝑃 = 𝑞𝐼

𝑛
and 𝑓(𝐴) =

𝑞𝑃𝐴
𝛿

𝑃
−1.

This completes the proof of Theorem.

3. Induced Map Preserving
Inverses of Matrices

Theorem 7. Let F be a field and let 𝑚, 𝑛 ≥ 3 be positive
integers. Suppose that 𝑓 is a map on 𝑀

𝑛
(F) induced by {𝑓

𝑖𝑗
}

such that 𝑓(0) = 0. Then 𝑓 preserves inverses of matrices if
and only if there exist an invertible and diagonal 𝑃 ∈ 𝑀

𝑛
(F),

𝑐 ∈ {−1, 1}, and an injective endomorphism 𝜑 of F such that

𝑓 (𝐴) = 𝑐𝑃𝐴
𝜑

𝑃
−1

, ∀𝐴 ∈ 𝑀
𝑛
(F) . (27)

Proof. The sufficiency is obvious.We will prove the necessary
part. For any 𝑖 ̸= 𝑗 ∈ [1, 𝑛], 𝑎 ∈ F , and 𝑏 ∈ F∗, since

[𝐸
𝑖𝑖
− 𝑎𝐸
𝑖𝑗
+ 𝐸
𝑗𝑖
+ (𝑏
−1

− 𝑎) 𝐸
𝑗𝑗
+ Σ
𝑘 ̸= 𝑖,𝑗

𝐸
𝑘𝑘
]

−1

= (1 − 𝑎𝑏) 𝐸
𝑖𝑖
+ 𝑎𝑏𝐸

𝑖𝑗
− 𝑏𝐸
𝑗𝑖
+ 𝑏𝐸
𝑗𝑗
+ Σ
𝑘 ̸= 𝑖,𝑗

𝐸
𝑘𝑘
,

(28)

by 𝑓 preserving inverses of matrices, we have

[

𝑓
𝑖𝑖
(1) 𝑓

𝑖𝑗
(−𝑎)

𝑓
𝑗𝑖
(1) 𝑓

𝑗𝑗
(𝑏
−1

− 𝑎)

] [

𝑓
𝑖𝑖
(1 − 𝑎𝑏) 𝑓

𝑖𝑗
(𝑎𝑏)

𝑓
𝑗𝑖
(−𝑏) 𝑓

𝑗𝑗
(𝑏)
] = 𝐼
2
, (29)

so that

𝑓
𝑖𝑖
(1) 𝑓
𝑖𝑗
(𝑎𝑏) + 𝑓

𝑖𝑗
(−𝑎) 𝑓

𝑗𝑗
(𝑏) = 0, (30)

𝑓
𝑖𝑖
(1) 𝑓
𝑖𝑖
(1 − 𝑎𝑏) + 𝑓

𝑖𝑗
(−𝑎) 𝑓

𝑗𝑖
(−𝑏) = 1. (31)

Let 𝑏 = 1; then (30) turns into

𝑓
𝑖𝑖
(1) 𝑓
𝑖𝑗
(𝑎) + 𝑓

𝑖𝑗
(−𝑎) 𝑓

𝑗𝑗
(1) = 0. (32)

Replacing 𝑎 by 𝑎𝑏, then the above turns into

𝑓
𝑖𝑖
(1) 𝑓
𝑖𝑗
(𝑎𝑏) + 𝑓

𝑖𝑗
(−𝑎𝑏) 𝑓

𝑗𝑗
(1) = 0. (33)

It follows from (30) and (33) that

𝑓
𝑖𝑗
(−𝑎𝑏) 𝑓

𝑗𝑗
(1) = 𝑓

𝑖𝑗
(−𝑎) 𝑓

𝑗𝑗
(𝑏) . (34)

Replacing −𝑎 by 𝑎, then the above turns into

𝑓
𝑖𝑗
(𝑎𝑏) 𝑓

𝑗𝑗
(1) = 𝑓

𝑖𝑗
(𝑎) 𝑓
𝑗𝑗
(𝑏) . (35)

By [𝑎𝐸
𝑖𝑖
+ Σ
𝑘 ̸= 𝑖
𝐸
𝑘𝑘
]
−1

= 𝑎
−1

𝐸
𝑖𝑖
+ Σ
𝑘 ̸= 𝑖
𝐸
𝑘𝑘
, we have

𝑓
𝑖𝑖
(𝑎) 𝑓
𝑖𝑖
(𝑎
−1

) = 1. (36)

In particular,

𝑓
𝑖𝑖
(1)
2

= 1. (37)

From [𝑎𝐸
𝑖𝑗
+ 𝑎𝐸
𝑗𝑖
+ Σ
𝑘 ̸= 𝑖,𝑗

𝐸
𝑘𝑘
]
−1

= 𝑎
−1

𝐸
𝑖𝑗
+ 𝑎
−1

𝐸
𝑗𝑖
+

Σ
𝑘 ̸= 𝑖,𝑗

𝐸
𝑘𝑘
, we have

𝑓
𝑖𝑗
(𝑎) 𝑓
𝑗𝑖
(𝑎
−1

) = 1. (38)

In particular,

𝑓
𝑖𝑗
(1) 𝑓
𝑗𝑖
(1) = 1. (39)

Multiplying𝑓
𝑖𝑗
(−𝑏
−1

) by (31), we obtain by using (38) that

𝑓
𝑖𝑖
(1) 𝑓
𝑖𝑖
(1 − 𝑎𝑏) 𝑓

𝑖𝑗
(−𝑏
−1

) + 𝑓
𝑖𝑗
(−𝑎) = 𝑓

𝑖𝑗
(−𝑏
−1

) . (40)

It follows from (35) and (38) that

𝑓
𝑖𝑖
(1) 𝑓
𝑖𝑗
((1 − 𝑎𝑏) (−𝑏

−1

)) = 𝑓
𝑖𝑖
(1 − 𝑎𝑏) 𝑓

𝑖𝑗
(−𝑏
−1

) . (41)

This, together with (40), implies that

𝑓
𝑖𝑖
(1) 𝑓
𝑖𝑖
(1) 𝑓
𝑖𝑗
(−𝑏
−1

+ 𝑎) + 𝑓
𝑖𝑗
(−𝑎) = 𝑓

𝑖𝑗
(−𝑏
−1

) . (42)

Hence, it follows from 𝑓
𝑖𝑖
(1)
2

= 1 that

𝑓
𝑖𝑗
(−𝑏
−1

+ 𝑎) + 𝑓
𝑖𝑗
(−𝑎) = 𝑓

𝑖𝑗
(−𝑏
−1

) . (43)
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Let 𝑥 = −𝑏−1 and 𝑦 = −𝑎; we have

𝑓
𝑖𝑗
(𝑥 − 𝑦) = 𝑓

𝑖𝑗
(𝑥) − 𝑓

𝑖𝑗
(𝑦) , ∀𝑥 ∈ F

∗

, 𝑦 ∈ F . (44)

From

[𝐸
𝑖𝑖
+ 𝐸
𝑖𝑗
− 𝐸
𝑗𝑗
+ Σ
𝑘 ̸= 𝑖,𝑗

𝐸
𝑘𝑘
]

−1

= 𝐸
𝑖𝑖
+ 𝐸
𝑖𝑗
− 𝐸
𝑗𝑗
+ Σ
𝑘 ̸= 𝑖,𝑗

𝐸
𝑘𝑘

(45)

we have

[

𝑓
𝑖𝑖
(1) 𝑓

𝑖𝑗
(1)

0 𝑓
𝑗𝑗
(−1)

] [

𝑓
𝑖𝑖
(1) 𝑓

𝑖𝑗
(1)

0 𝑓
𝑗𝑗
(−1)

] = 𝐼
2
, (46)

so that

𝑓
𝑖𝑖
(1) 𝑓
𝑖𝑗
(1) = −𝑓

𝑖𝑗
(1) 𝑓
𝑗𝑗
(−1) . (47)

This, together with (39), implies

𝑓
𝑖𝑖
(1) = −𝑓

𝑗𝑗
(−1) . (48)

Similarly, 𝑓
𝑘𝑘
(1) = −𝑓

𝑗𝑗
(−1); hence,

𝑓
𝑖𝑖
(1) = 𝑓

𝑘𝑘
(1) , ∀𝑖, 𝑘 ∈ [1, 𝑛] . (49)

It follows from

[𝐸
𝑖𝑖
+ 𝑥𝐸
𝑖𝑗
+ 𝐸
𝑗𝑗
+ Σ
𝑘 ̸= 𝑖,𝑗

𝐸
𝑘𝑘
]

−1

= 𝐸
𝑖𝑖
− 𝑥𝐸
𝑖𝑗
+ 𝐸
𝑗𝑗
+ Σ
𝑘 ̸= 𝑖,𝑗

𝐸
𝑘𝑘
, ∀𝑥 ∈ F

(50)

that

[

𝑓
𝑖𝑖
(1) 𝑓

𝑖𝑗
(𝑥)

0 𝑓
𝑗𝑗
(1)
] [

𝑓
𝑖𝑖
(1) 𝑓

𝑖𝑗
(−𝑥)

0 𝑓
𝑗𝑗
(1)
] = 𝐼
2
. (51)

Hence,

𝑓
𝑖𝑖
(1) 𝑓
𝑖𝑗
(−𝑥) = −𝑓

𝑖𝑗
(𝑥) 𝑓
𝑗𝑗
(1) . (52)

This, together with (39) and (49), implies

𝑓
𝑖𝑗
(−𝑥) = −𝑓

𝑖𝑗
(𝑥) , ∀𝑥 ∈ F . (53)

Since

[𝑎𝐸
𝑖𝑖
+ 𝐸
𝑖𝑗
− 𝐸
𝑗𝑖
+ Σ
𝑘 ̸= 𝑖,𝑗

𝐸
𝑘𝑘
]

−1

= −𝐸
𝑖𝑗
+ 𝐸
𝑗𝑖
+ 𝑎𝐸
𝑗𝑗
+ Σ
𝑘 ̸= 𝑖,𝑗

𝐸
𝑘𝑘
,

(54)

we have

[

𝑓
𝑖𝑖
(𝑎) 𝑓

𝑖𝑗
(1)

𝑓
𝑗𝑖
(−1) 0

] [

0 𝑓
𝑖𝑗
(−1)

𝑓
𝑗𝑖
(1) 𝑓

𝑗𝑗
(𝑎)
] = 𝐼
2
, (55)

so that

𝑓
𝑖𝑖
(𝑎) 𝑓
𝑖𝑗
(−1) = −𝑓

𝑖𝑗
(1) 𝑓
𝑗𝑗
(𝑎) . (56)

Hence,

𝑓
𝑖𝑖
(𝑎) = 𝑓

𝑗𝑗
(𝑎) . (57)

For distinct 𝑖, 𝑗, 𝑘 ∈ [1, 𝑛] and 𝑥, 𝑦 ∈ F , since

[𝐸
𝑖𝑖
+ 𝑥𝐸
𝑖𝑗
+ 𝑥𝐸
𝑖𝑘
+ 𝐸
𝑗𝑗
+ 𝐸
𝑗𝑘
+ 𝐸
𝑘𝑘
+ Σ
𝑙 ̸= 𝑖,𝑗,𝑘

𝐸
𝑙𝑙
]

−1

= 𝐸
𝑖𝑖
− 𝑥𝐸
𝑖𝑗
+ 𝐸
𝑗𝑗
− 𝐸
𝑗𝑘
+ 𝐸
𝑘𝑘
+ Σ
𝑙 ̸= 𝑖,𝑗,𝑘

𝐸
𝑙𝑙
,

(58)

we have

[

[

𝑓
𝑖𝑖
(1) 𝑓

𝑖𝑗
(𝑥) 𝑓

𝑖𝑘
(𝑥𝑦)

0 𝑓
𝑗𝑗
(1) 𝑓

𝑗𝑘
(𝑦)

0 0 𝑓
𝑘𝑘
(1)

]

]

[

[

𝑓
𝑖𝑖
(1) 𝑓

𝑖𝑗
(−𝑥) 0

0 𝑓
𝑗𝑗
(1) 𝑓

𝑗𝑘
(−𝑦)

0 0 𝑓
𝑘𝑘
(1)

]

]

= 𝐼
3
,

(59)

so that

𝑓
𝑖𝑗
(𝑥) 𝑓
𝑗𝑘
(−𝑦) + 𝑓

𝑖𝑘
(𝑥𝑦) 𝑓

𝑘𝑘
(1) = 0. (60)

This, together with (53), implies that

𝑓
𝑖𝑗
(𝑥) = 𝑓

𝑖𝑘
(𝑥) 𝑓
𝑘𝑘
(1) 𝑓
𝑗𝑘
(1)
−1

. (61)

It follows from (35) and (61) that

𝑓
𝑖𝑗
(𝑥)

= 𝑓
𝑖𝑘
(𝑥) 𝑓
𝑘𝑘
(1) 𝑓
𝑗𝑘
(1)
−1

= 𝑓
𝑖𝑘
(𝑥) 𝑓
11
(1) 𝑓
𝑗𝑘
(1)
−1

= (𝑓
𝑘𝑘
(1)
−1

𝑓
𝑖1
(1) 𝑓
11
(𝑥))

× 𝑓
11
(1) (𝑓

𝑘𝑘
(1)
−1

𝑓
𝑗1
(1) 𝑓
11
(1))

−1

= 𝑓
𝑖1
(1) 𝑓
11
(𝑥) 𝑓
𝑗1
(1)
−1

, ∀𝑖 ̸= 𝑗 ∈ [1, 𝑛] .

(62)

Using this, together with (57), we obtain

𝑓 (𝐴) = 𝑃 [𝑓
11
(𝑎
𝑖𝑗
)] 𝑃
−1

, (63)

where 𝑃 = diag(𝑓
11
(1), . . . , 𝑓

𝑛1
(1)). Let 𝑐 = 𝑓

11
(1) ∈ {−1, 1};

𝜑(𝑥) = 𝑓
11
(1)𝑓
11
(𝑥) and then

𝑓 (𝐴) = 𝑐𝑃 [𝜑 (𝑎
𝑖𝑗
)] 𝑃
−1

= 𝑐𝑃𝐴
𝜑

𝑃
−1

. (64)

Let 𝜙(𝐴) = [𝜑(𝑎
𝑖𝑗
)]; since 𝑓 preserves inverses of matrices,

one can see that 𝜙 also preserves inverses of matrices. By
𝜑(1) = 𝑓

11
(1)
2

= 1, we obtain by using similar method to
(35), (37), (44), and (53) that for any 𝑎, 𝑏 ∈ F

𝜑 (𝑎𝑏) = 𝜑 (1) 𝜑 (𝑎𝑏) = 𝜑 (𝑎) 𝜑 (𝑏) ,

𝜑 (𝑎 + 𝑏) = 𝜑 (𝑎) + 𝜑 (𝑏) .

(65)

This completes the proof.
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