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By using slack variables and minimum function, we first reformulate the system of equalities and inequalities as a system of
nonsmooth equations, and, using smoothing technique, we construct the smooth operator. A newnoninterior continuationmethod
is proposed to solve the systemof smooth equations. It shows that any accumulation point of the iteration sequence generated by our
algorithm is a solution of the system of equalities and inequalities. Some numerical experiments show the feasibility and efficiency
of the algorithm.

1. Introduction

In this paper, we consider the following system of equalities
and inequalities:

𝑓
𝐼 (𝑥) ≤ 0,

𝑓
𝐸 (𝑥) = 0,

(1)

where 𝐼 = {1, . . . , 𝑚} and 𝐸 = {𝑚 + 1, . . . , 𝑛}. Define 𝑓(𝑥) =
[𝑓
1
(𝑥), . . . , 𝑓

𝑛
(𝑥)] with 𝑓

𝑖
: R𝑛 → R, for any 𝑖 ∈ {1, . . . , 𝑛}.

Throughout this paper, we assume that 𝑓 is continuously
differentiable.

Problems taking the form (1) have been studied exten-
sively due to its various applications in data analysis, set
separation problems, computer aided design problems, and
image reconstructions.

Recently, a class of popular numerical methods, namely,
the so-called noninterior continuation methods, has been
studied extensively for complementarity, variational inequal-
ity, andmathematical programming problems; see, for exam-
ple, [1–7]. However, as we observe, there are few noninterior
continuation methods available for the system of equalities
and inequalities given by (1).

In this paper, we first reformulate (1) as a system of
nonsmooth equations by using slack variables and minimum

function, and, using smoothing technique, we construct
the smooth equations. Then, a noninterior continuation
method for (1) by modifying and extending the method of
Huang [1] is proposed. Under suitable assumptions, we show
that the proposed algorithm is globally linearly convergent.
We also report some preliminary numerical results, which
demonstrate that the algorithm is effective for solving (1).

The organization of this paper is as follows. In Section 2,
we reformulate (1) as a system of smooth equations. In
Section 3, we propose a noninterior continuation method for
solving (1). Global convergence is analyzed in Section 4. Some
preliminary computational results are reported in Section 5.

We introduce some notations. All vectors are column
vectors, the superscript 𝑇 denotes transpose,R𝑛

+
(resp.,R𝑛

++
)

denotes the nonnegative (resp., positive) orthant in R𝑛. 𝐼
denotes 𝑛 × 𝑛 identity matrix. For 𝑥 ∈ R𝑛, ‖𝑥‖ denotes
the 2-norm of 𝑥. For a continuously differentiable function
𝐹 : R𝑛 → R𝑚, we denote the Jacobian of 𝐹 at 𝑥 ∈ R𝑛 by
𝐹󸀠(𝑥).

2. Equivalent Smoothing Reformulation of (1)
In this section, we give the equivalent smoothing reformu-
lation of (1) and discuss some associated properties of the
reformulation. Firstly, we introduce the NCP function and
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the smoothing function. A function 𝜙 : R2 → R is called
an NCP function, if it possesses the following property:

𝜙 (𝑎, 𝑏) = 0 ⇐⇒ 𝑎 ≥ 0, 𝑏 ≥ 0, 𝑎𝑏 = 0. (2)

One well-knownNCP function is theminimum function [9],
which is defined as follows:

𝜙min (𝑎, 𝑏) = 𝑎 + 𝑏 − |𝑎 − 𝑏| . (3)

Accordingly, the smoothing function associated with 𝜙min is
[4]

𝜙min (𝑎, 𝑏, 𝜇) = 𝑎 + 𝑏 − √(𝑎 − 𝑏)2 + 2𝜇2. (4)

For (1), we introduce a slack variable 𝑠 ∈ R𝑚. Then, (1) is
equivalent to the following system of equations:

𝑓
𝐸 (𝑥) = 0,

𝑓
𝐼 (𝑥) + 𝑠 = 0, 𝑠 ≥ 0.

(5)

Based on the minimum function, we reformulate (5) into the
following equivalent system of nonlinear equation:

Φ (𝑤) := (

𝑓
𝐸 (𝑥)

𝑓
𝐼 (𝑥) + 𝑠

Φmin (0, 𝑠)

) = 0, (6)

where Φmin(0, 𝑠) = (𝜙min(0, 𝑠
1
), . . . , 𝜙min(0, 𝑠

𝑚
))𝑇, 𝑤 =

(𝑥, 𝑠) ∈ R𝑛×𝑚.
Since the function in (6) is nonsmooth, the noninterior

continuation method cannot be directly applied to solve (6).
In order to make (6) solvable by the noninterior continuation
method, we will use the smoothing technique and construct
the smooth approximation of Φ as Φ

𝜇
. Consider

Φ
𝜇 (𝑤) := (

𝑓
𝐸 (𝑥) + 𝜇𝑥

𝐸

𝑓
𝐼 (𝑥) + 𝑠 + 𝜇𝑥

𝐼

Φmin (0, 𝑠, 𝜇) + 𝜇𝑠

) , (7)

where 𝑥
𝐼

= (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
)𝑇, 𝑥
𝐸

= (𝑥
𝑚+1

, 𝑥
𝑚+2

, . . . , 𝑥
𝑛
)𝑇,

𝑠 ∈ R𝑚, 𝑥 = (𝑥
𝐼
, 𝑥
𝐸
) ∈ R𝑛, and Φmin(0, 𝑠, 𝜇) = (𝜙min

(0, 𝑠
1
, 𝜇), . . . , 𝜙min(0, 𝑠

𝑚
, 𝜇))𝑇. Thereby, it is obvious that, if

Φ
𝜇
(𝑤) = 0 and 𝜇 = 0, then 𝑥 solves (1). It is not difficult to see

that, for any𝑤 ∈ R𝑛×R𝑚, the functionΦ
𝜇
(𝑤) is continuously

differentiable. Let Φ󸀠
𝜇
(𝑤) denote the Jacobian of the function

Φ
𝜇
(𝑤); then, for any 𝑤 ∈ R𝑛 × R𝑚,

Φ󸀠
𝜇

(𝑤) := (

𝑓󸀠
𝐸

(𝑥) + 𝜇𝑉 0
(𝑛−𝑚)×𝑚

𝑓󸀠
𝐼

(𝑥) + 𝜇𝑈 𝐼
𝑚

0
𝑚×𝑛

Φ󸀠min (0, 𝑠, 𝜇) + 𝜇𝐼
𝑚

) , (8)

where 𝑈 := [𝐼
𝑚

0
𝑚×(𝑛−𝑚)

] and 𝑉 := [0
(𝑛−𝑚)×𝑚

𝐼
𝑛−𝑚

]. Here,
we use 0

𝑙
to denote the 𝑙-dimensional zero vector and 0

𝑙×𝑞

to denote the 𝑙 × 𝑞 zero matrix for any positive integers 𝑙
and 𝑞. Thus, we can solve approximately the smooth system
Φ
𝜇
(𝑤) = 0 by using Newton’s method at each iteration

and then obtain a solution of Φ
0
(𝑤) = 0 by reducing the

parameter 𝜇 to zero so that a solution of (1) can be found.

3. Algorithm

In this section, we propose a noninterior continuation algo-
rithm. Some basic properties are given. In particular, we show
that the algorithm is well defined.

Algorithm 1 (a noninterior continuation algorithm). Con-
sider the following.

Step 0. Choose 𝛿, 𝛾, 𝜎 ∈ (0, 1). Take any (𝑥0, 𝑠0) ∈

R2𝑛 and 𝜇
0

∈ (0, ∞); choose 𝛽 ≥ √𝑛 such that
‖Φ
𝜇0

(𝑥0, 𝑠0)‖ ≤ 𝛽𝜇
0
. Set 𝑘 := 0.

Step 1. If 𝜇
𝑘

= 0, then stop.

Step 2. If Φ
𝜇𝑘

(𝑥𝑘, 𝑠𝑘) = 0, then set (𝑥𝑘+1, 𝑠𝑘+1) :=

(𝑥𝑘, 𝑠𝑘) and 𝜃
𝑘

:= 1, and go to Step 4; otherwise,
compute (Δ𝑥𝑘, Δ𝑠𝑘) ∈ R2𝑛 by

Φ󸀠
𝜇𝑘

(𝑥𝑘, 𝑠𝑘) (Δ𝑥𝑘, Δ𝑠𝑘) = −Φ
𝜇𝑘

(𝑥𝑘, 𝑠𝑘) . (9)

Step 3. Let 𝜃
𝑘
be maximum of the values 1, 𝛿, 𝛿2, . . .

such that
󵄩󵄩󵄩󵄩󵄩Φ
𝜇𝑘

(𝑥𝑘 + 𝜃Δ𝑥𝑘, 𝑠𝑘 + 𝜃Δ𝑠𝑘)
󵄩󵄩󵄩󵄩󵄩 ≤ [1 − 𝜎𝜃

𝑘
]

󵄩󵄩󵄩󵄩󵄩Φ
𝜇𝑘

(𝑥𝑘, 𝑠𝑘)
󵄩󵄩󵄩󵄩󵄩 .

(10)

Set (𝑥𝑘+1, 𝑠𝑘+1) := (𝑥𝑘 + 𝜃Δ𝑥𝑘, 𝑠𝑘 + 𝜃Δ𝑠𝑘).

Step 4. Set the following:

𝜇
𝑘

:= (1 −
1

1 + √2 (
󵄩󵄩󵄩󵄩𝑥𝑘+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑠𝑘+1

󵄩󵄩󵄩󵄩 + 1)
𝜎𝜃
𝑘
) 𝜇
𝑘
. (11)

Let 𝜂
𝑘
be the minimum of the values 1, 𝛾, 𝛾2, . . . such that

󵄩󵄩󵄩󵄩󵄩Φ
𝜂𝑘𝜇𝑘

(𝑥𝑘+1, 𝑠𝑘+1)
󵄩󵄩󵄩󵄩󵄩 ≤ 𝛽𝜂

𝑘
𝜇
𝑘
, (12)

and set 𝜇
𝑘+1

:= 𝜂
𝑘
𝜇
𝑘
. Set 𝑘 := 𝑘 + 1 and go to Step 1.

Remark 2. Algorithm 1 is a modified version of Huang’s
algorithm in [1]. It is easy to see that, ifΦ

𝜇𝑘
(𝑤𝑘) = 0, for any 𝑘,

then Algorithm 1 does not solve the Newton equation (9) and
does not perform the line search (10) in the (𝑘+1)th iteration.
Thus, Algorithm 1 only needs to solve at most a linear system
of equations at each iteration. Algorithm 1 can be started
easily. In fact, we can choose any (𝜇

0
, 𝑥0, 𝑠0) ∈ R

++
×R𝑛×R𝑚

as the starting point of our algorithm and then set

𝛽 := max{√𝑛,

󵄩󵄩󵄩󵄩󵄩Φ
𝜇0

(𝑥0, 𝑠0)
󵄩󵄩󵄩󵄩󵄩

𝜇
0

} . (13)
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Define 𝑓󸀠(𝑥) := [𝑓󸀠
𝐸
(𝑥)𝑇, 𝑓󸀠

𝐼
(𝑥)𝑇]𝑇. We will use the fol-

lowing assumption.

Assumption 3. 𝑓󸀠(𝑥) + 𝜇𝐼
𝑛
is invertible for any 𝑥 ∈ R𝑛 and

𝜇 ∈ R
++
.

The next result plays an important role in establishing
the well-definedness and the local quadratic convergence of
Algorithm 1.

Lemma 4. (i) 𝜙min(⋅, ⋅, ⋅) is continuously differentiable at any
(𝜇, 𝑎, 𝑏) ∈ R3 \ (0, 0, 0).

(ii) For any 𝜇
1
, 𝜇
2

> 0 and (𝑎, 𝑏) ∈ R × R, we have

󵄨󵄨󵄨󵄨𝜙min (𝑎, 𝑏, 𝜇
1
) − 𝜙min (𝑎, 𝑏, 𝜇

2
)
󵄨󵄨󵄨󵄨 ≤ √2

󵄨󵄨󵄨󵄨𝜇1 − 𝜇
2

󵄨󵄨󵄨󵄨 . (14)

Theorem 5. Suppose that 𝑓 is a continuously differentiable
function andAssumption 3 is satisfied.ThenAlgorithm 1 is well
defined.

Proof. For any square matrix 𝐴, we use det(𝐴) to denote the
determinant of 𝐴. It is easy to see from (8) that det(Φ󸀠

𝜇
(𝑤)) =

det(𝑓󸀠(𝑥)+𝜇𝐼
𝑛
)⋅det(Φ󸀠min(0, 𝑠, 𝜇)+𝜇𝐼

𝑚
), for any𝜇 > 0 and𝑤 ∈

R𝑛 × R𝑚. Furthermore, it is easy to see that Φ󸀠min(0, 𝑠, 𝜇) is
positive semidefinite. Thus, by Assumption 3, we obtain that
Φ󸀠
𝜇
(𝑤) is nonsingular, for any 𝜇 > 0 and𝑤 ∈ R𝑛×R𝑚. Hence,

Step 2 is well defined.
Now we prove that Step 3 is well defined. For any 𝛼 ∈

(0, 1], define

𝑟 (𝛼) = Φ
𝜇𝑘

(𝑤𝑘 + 𝛼Δ𝑤𝑘) − Φ
𝜇𝑘

(𝑤𝑘) − 𝛼Φ󸀠
𝜇𝑘

(𝑤𝑘) Δ𝑤𝑘.

(15)

From 𝜇
𝑘

> 0 and Lemma 4(i), we know that Φmin(𝑤) is
continuously differentiable at 𝑤𝑘. Thus, by (15), we have

‖𝑟 (𝛼)‖ = 𝑜 (𝛼) . (16)

Then by (9), (15) and (16),

󵄩󵄩󵄩󵄩󵄩Φ
𝜇𝑘

(𝑤𝑘 + 𝛼Δ𝑤𝑘)
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩Φ
𝜇𝑘

(𝑤𝑘) + 𝛼Φ󸀠
𝜇𝑘

(𝑤𝑘) Δ𝑤𝑘
󵄩󵄩󵄩󵄩󵄩 + ‖𝑟 (𝛼)‖

= (1 − 𝛼)
󵄩󵄩󵄩󵄩󵄩Φ
𝜇𝑘

(𝑤𝑘)
󵄩󵄩󵄩󵄩󵄩 + 𝑜 (𝛼)

= (1 − 𝜎𝛼)
󵄩󵄩󵄩󵄩󵄩Φ
𝜇𝑘

(𝑤𝑘)
󵄩󵄩󵄩󵄩󵄩 − (1 − 𝜎) 𝛼

󵄩󵄩󵄩󵄩󵄩Φ
𝜇𝑘

(𝑤𝑘)
󵄩󵄩󵄩󵄩󵄩 + 𝑜 (𝛼) .

(17)

Since 𝜎 ∈ (0, 1), then (1 − 𝜎)𝛼‖Φ
𝜇𝑘

(𝑤𝑘)‖ > 0. For 𝛼 sufficient
small, we can get ‖Φ

𝜇𝑘
(𝑤𝑘 + 𝛼Δ𝑤𝑘)‖ ≤ (1 − 𝜎𝛼)‖Φ

𝜇𝑘
(𝑤𝑘)‖,

this shows that Step 3 is well defined.

Next we show that Step 4 is well defined. If Φ
𝜇𝑘

(𝑤𝑘) ̸= 0,
it follows from Lemma 4(ii) and (7) that

󵄩󵄩󵄩󵄩󵄩Φ
𝜇1

(𝑤) − Φ
𝜇2

(𝑤)
󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
(𝜇
1

− 𝜇
2
) 𝑥

Φmin (0, 𝑠, 𝜇
1
) − Φmin (0, 𝑠, 𝜇

2
) + (𝜇

1
− 𝜇
2
) 𝑠

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄨󵄨󵄨󵄨𝜇1 − 𝜇

2

󵄨󵄨󵄨󵄨 ‖𝑥‖ +
󵄨󵄨󵄨󵄨𝜇1 − 𝜇

2

󵄨󵄨󵄨󵄨 ‖𝑠‖

+
󵄩󵄩󵄩󵄩Φmin (0, 𝑠, 𝜇

1
) − Φmin (0, 𝑠, 𝜇

2
)
󵄩󵄩󵄩󵄩

≤
󵄨󵄨󵄨󵄨𝜇1 − 𝜇

2

󵄨󵄨󵄨󵄨 (‖𝑥‖ + ‖𝑠‖) + √2𝑛
󵄨󵄨󵄨󵄨𝜇1 − 𝜇

2

󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨𝜇1 − 𝜇

2

󵄨󵄨󵄨󵄨 (‖𝑥‖ + ‖𝑠‖ + √2𝑛)

≤ √2𝑛
󵄨󵄨󵄨󵄨𝜇1 − 𝜇

2

󵄨󵄨󵄨󵄨 (‖𝑥‖ + ‖𝑠‖ + 1) .

(18)

Then, by 𝛽 ≥ √𝑛, (10)–(12), and (18), we have

󵄩󵄩󵄩󵄩󵄩Φ
𝜇
𝑘

(𝑤𝑘+1)
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩Φ
𝜇𝑘

(𝑤𝑘+1)
󵄩󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩󵄩Φ
𝜇𝑘

(𝑤𝑘+1) − Φ
𝜇
𝑘

(𝑤𝑘+1)
󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝜎𝜃
𝑘
)

󵄩󵄩󵄩󵄩󵄩Φ
𝜇𝑘

(𝑤𝑘)
󵄩󵄩󵄩󵄩󵄩

+ √2𝑛
󵄨󵄨󵄨󵄨𝜇𝑘 − 𝜇

𝑘

󵄨󵄨󵄨󵄨 (
󵄩󵄩󵄩󵄩󵄩𝑥𝑘+1

󵄩󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩𝑠𝑘+1

󵄩󵄩󵄩󵄩󵄩 + 1)

≤ (1 − 𝜎𝜃
𝑘
) 𝛽𝜇
𝑘

+
√2𝑛 (

󵄩󵄩󵄩󵄩󵄩𝑥𝑘+1
󵄩󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩󵄩𝑠𝑘+1
󵄩󵄩󵄩󵄩󵄩 + 1)

1 + √2 (
󵄩󵄩󵄩󵄩𝑥𝑘+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑠𝑘+1

󵄩󵄩󵄩󵄩 + 1)
𝜎𝜃
𝑘
𝜇
𝑘

≤ (1 − 𝜎𝜃
𝑘
) 𝛽𝜇
𝑘

+
√2 (

󵄩󵄩󵄩󵄩󵄩𝑥𝑘+1
󵄩󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩󵄩𝑠𝑘+1
󵄩󵄩󵄩󵄩󵄩 + 1)

1 + √2 (
󵄩󵄩󵄩󵄩𝑥𝑘+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑠𝑘+1

󵄩󵄩󵄩󵄩 + 1)
𝛽𝜎𝜃
𝑘
𝜇
𝑘

= (1 − [1 −
√2 (

󵄩󵄩󵄩󵄩󵄩𝑥𝑘+1
󵄩󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩󵄩𝑠𝑘+1
󵄩󵄩󵄩󵄩󵄩 + 1)

1 + √2 (
󵄩󵄩󵄩󵄩𝑥𝑘+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑠𝑘+1

󵄩󵄩󵄩󵄩 + 1)
] 𝜎𝜃
𝑘
) 𝛽𝜇
𝑘

= (1 −
1

1 + √2 (
󵄩󵄩󵄩󵄩𝑥𝑘+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑠𝑘+1

󵄩󵄩󵄩󵄩 + 1)
𝜎𝜃
𝑘
) 𝛽𝜇
𝑘

= 𝛽𝜇
𝑘
.

(19)

If Φ
𝜇𝑘

(𝑤𝑘) = 0, similarly we also obtain that (19) holds. Thus,
from (19), we know that there exists a minimal 𝜂

𝑘
∈ (0, 1]

such that (12) holds; that is, Step 4 is well defined.
Therefore, Algorithm 1 is well defined.

4. Convergence of Algorithm 1

In this section, we analyze the global convergence properties
of Algorithm 1. We show that any accumulation point of the
iteration sequence {𝑤𝑘} is a solution of the system Φ(𝑤) = 0.

Theorem 6. Suppose that 𝑓 is a continuously differentiable
function and (𝑤∗, 𝜇∗) := (𝑥∗, 𝑠∗, 𝜇∗) is an accumulation point
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of the iteration sequence {(𝑤𝑘, 𝜇
𝑘
)} generated by Algorithm 1. If

Assumption 3 is satisfied, then lim
𝑘→∞

𝜇
𝑘

= 0, and hence 𝑤∗

is a solution of Φ(w) = 0.

Proof. Since the sequence {𝜇
𝑘
} is monotonically decreasing

and bounded from below by zero, then 𝜇
𝑘

→ 𝜇∗ ≥ 0. If 𝜇∗ =
0, we obtain the desired result. Suppose 𝜇∗ > 0. Without loss
of generality, we assume that lim

𝑘→∞
(𝑤𝑘, 𝜇

𝑘
) = (𝑤∗, 𝜇∗). If

there exists an infinite subset 𝐾
1

= {𝑘
1
, . . . , 𝑘

𝑖
, 𝑘
𝑖+1

, . . .} such
that Φ

𝜇𝑘
(𝑤𝑘) = 0, 𝑘 ∈ 𝐾

1
, then, by Step 2 of Algorithm 1, we

have 𝜃
𝑘𝑖

≡ 1, for any 𝑖 ≥ 1. It follows from Step 4 that

𝜇
𝑘𝑖+1

≤ 𝜇
𝑘𝑖+1

= 𝜂
𝑘𝑖

𝜇
𝑘𝑖

≤ (1 −
𝜎

1 + √2 (
󵄩󵄩󵄩󵄩𝑥𝑘𝑖+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑠𝑘𝑖+1

󵄩󵄩󵄩󵄩 + 1)
) 𝜇
𝑘𝑖

.
(20)

Let 𝑖 → +∞; we have that

0 < 𝜇∗ ≤ (1 −
𝜎

1 + √2 (‖𝑥∗‖ + ‖𝑠∗‖ + 1)
) 𝜇∗, (21)

which is a contradiction.Therefore, without loss of generality,
we may assume that Φ

𝜇𝑘
(𝑤𝑘) ̸= 0 holds, for any 𝑘 ≥ 0. From

the assumption, 𝑓 is continuously differentiable and (7); it is
not difficult to see that Φ

𝜇
(𝑤) is continuously differentiable

in both 𝑤 and 𝜇 for any 𝜇 > 0. Since 𝜇
𝑘

→ 𝜇∗ > 0, by
assumption, then we have

lim
𝑘→∞

Φ
𝜇𝑘

(𝑤𝑘) = Φ
𝜇
∗ (𝑤∗) , lim

𝑘→∞

Φ󸀠
𝜇𝑘

(𝑤𝑘) = Φ󸀠
𝜇
∗ (𝑤∗) .

(22)

The steplength 𝜃
𝑘

:= 𝜃
𝑘
/𝛿 does not satisfy (10); that is,

󵄩󵄩󵄩󵄩󵄩Φ
𝜇𝑘

(𝑤𝑘 + 𝜃
𝑘
Δ𝑤
𝑘
)
󵄩󵄩󵄩󵄩󵄩 −

󵄩󵄩󵄩󵄩󵄩Φ
𝜇𝑘

(𝑤𝑘)
󵄩󵄩󵄩󵄩󵄩

𝜃
𝑘

> −𝜎
󵄩󵄩󵄩󵄩󵄩Φ
𝜇𝑘

(𝑤𝑘)
󵄩󵄩󵄩󵄩󵄩 . (23)

By taking 𝑘 → ∞ in the above inequality, we have

Φ
𝜇
∗(𝑤∗)

𝑇
Φ
𝜇
∗ (𝑤∗) Δ𝑤∗ ≥ −𝜎

󵄩󵄩󵄩󵄩󵄩Φ
𝜇
∗(𝑤∗)

󵄩󵄩󵄩󵄩󵄩
2

. (24)

It follows from (9) that

Φ
𝜇
∗(𝑤∗)

𝑇
Φ
𝜇
∗ (𝑤∗) Δ𝑤∗ = −

󵄩󵄩󵄩󵄩󵄩Φ
𝜇
∗(𝑤∗)

󵄩󵄩󵄩󵄩󵄩
2

. (25)

By substituting (25) into (24), we obtain that ‖Φ
𝜇
∗(𝑤∗)‖ ≤

𝜎‖Φ
𝜇
∗(𝑤∗)‖, which contradicts 𝜎 < 1. This proves 𝜇∗ = 0.

Next, we prove that 𝑤∗ is a solution of Φ(𝑤) = 0. In view
of the Algorithm 1, we have

󵄩󵄩󵄩󵄩󵄩Φ
𝜇𝑘

(𝑤𝑘)
󵄩󵄩󵄩󵄩󵄩 ≤ 𝛽𝜇

𝑘
. (26)

Then, by taking the limit on both sides of (26) based on the
continuity of Φ

𝜇
(𝑤), we have ‖Φ

0
(𝑤∗)‖ = ‖Φ

𝜇
∗(𝑤∗)‖ ≤ 𝛽𝜇∗.

Hence, ‖Φ
0
(𝑤∗)‖ = 0.

5. Numerical Experiments

In this section, we implement Algorithm 1 for solving the
system of equalities and inequalities in MATLAB in order to
see the behavior of our noninterior continuation algorithm.
All the program codes were written in MATLAB and run in
MATLAB 7.5 environment. All numerical experiments were
done at a PC with CPU of 1.6GHz and RAM of 512 MB.

In numerical implementation, we adopt the similar strat-
egy to [10]; the function Φ

𝜇
(𝑤) defined by (7) is replaced by

Φ
𝜇 (𝑤) := (

𝑓
𝐸 (𝑥) + 𝑐𝜇𝑥

𝐸

𝑓
𝐼 (𝑥) + 𝑠 + 𝑐𝜇𝑥

𝐼

Φmin (0, 𝑠, 𝜇) + 𝑐𝜇𝑠

) , (27)

where 𝑐 is a given constant. It is easy to see that such a change
does not destroy any theoretical results obtained in this paper.
In order to obtain an interior solution of (1), we solve the
following system of equalities and inequalities:

𝑓
𝐼 (𝑥) + 𝜀𝑒 ≤ 0,

𝑓
𝐸 (𝑥) = 0,

(28)

where 𝜀 is a sufficiently small number and 𝑒 is a vector of all
ones. The parameters used in Algorithm 1 were as follows:
𝜎 = 0.4, 𝜀 = 0.00001, 𝛿 = 𝛾 = 0.5, 𝜇

0
= {1, Φ

0
(𝑤0)}, and

𝛽 = max{√𝑛, ‖Φ
𝜇0

(𝑤0)‖/𝜇
0
}; the parameter 𝑐 and the starting

point are chosen according to the ones listed in Tables 1, 2, 3,
and 4. Set 𝑠0 := −𝑓

𝐼
(𝑥0) and 𝑤0 = (𝑥0, 𝑠0). We used 𝜇 ≤ 10−6

as the stopping criterion.
We consider the following four examples.

Example 1. Consider (1), where𝑓 := (𝑓
1
, 𝑓
2
, 𝑓
3
)𝑇with𝑥 ∈ R3

and

𝑓
1 (𝑥) := (𝑥

1
− 0.5)

2
+ (𝑥
2

− 1)
2

− 0.25 ≤ 0,

𝑓
2 (𝑥) := −(𝑥

1
− 0.5)

2
− (𝑥
1

− 1.1)
2

+ 𝑥2
2

− 0.26 ≤ 0,

𝑓
3 (𝑥) := 𝑥

2
+ 𝑥2
3

− 1 ≤ 0.

(29)

Example 2. Consider (1), where 𝑓 := (𝑓
1
, 𝑓
2
, 𝑓
3
)𝑇 with 𝑥 ∈

R3 and

𝑓
1 (𝑥) := 𝑥

1
+ 𝑥
2
𝑒0.8𝑥3 + 𝑒1.6 ≤ 0,

𝑓
2 (𝑥) := 𝑥2

1
+ 𝑥2
2

+ 𝑥2
3

− 5.2675 = 0,

𝑓
3 (𝑥) := 𝑥

1
+ 𝑥
2

+ 𝑥
3

− 0.2605 = 0.

(30)

Example 3. Consider (1), where 𝑓 := (𝑓
1
, 𝑓
2
, 𝑓
3
)𝑇 with 𝑥 ∈

R3 and

𝑓
1 (𝑥) := 0.8 − 𝑒𝑥1+𝑥2 + 𝑥2

3
≤ 0,

𝑓
2 (𝑥) := 1.21𝑒𝑥1 + 𝑒𝑥2 − 2.2 = 0,

𝑓
3 (𝑥) := 𝑥2

1
+ 𝑥2
2

+ 𝑥
2

− 0.1135 = 0.

(31)
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Table 1: Numerical results for Example 1󸀠.

ST 𝑐 = 102 𝑐 = 103

IT SOL IT SOL
(0, 0, 0)𝑇 8 (0.8771, 0.6720, 0.5725)𝑇 6 (0.8697, 0.6680, 0.5741)𝑇

(−1, −1, −1)𝑇 6 (0.8771, 0.6721, 0.5726)𝑇 5 (0.8664, 0.6665, 0.5730)𝑇

(1, 1, 1)𝑇 8 (0.8771, 0.6720, 0.5725)𝑇 6 (0.8697, 0.6680, 0.5741)𝑇

(1, 0, 1)𝑇 8 (0.8766, 0.6718, 0.5726)𝑇 9 (0.8702, 0.6687, 0.5737)𝑇

Table 2: Numerical results for Example 2󸀠.

ST 𝑐 = 102 𝑐 = 103

IT SOL IT SOL
(0, 0, 0)𝑇 12 (−0.8362, −0.8605, 1.9566)𝑇 10 (−0.8396, −0.8600, 1.9558)𝑇

(−1, −1, −1)𝑇 12 (−0.8362, −0.8606, 1.9565)𝑇 11 (−0.8394, −0.8600, 1.9558)𝑇

(1, 1, 1)𝑇 10 (−0.8364, −0.8605, 1.9565)𝑇 9 (−0.8446, −0.8592, 1.9548)𝑇

(0, 1, 0)𝑇 11 (−0.8363, −0.8605, 1.9565)𝑇 13 (−0.8376, −0.8603, 1.9562)𝑇

Table 3: Numerical results for Example 3󸀠.

ST 𝑐 = 102 𝑐 = 103

IT SOL IT SOL
(−1, −1, −1)𝑇 5 (−0.0952, 0.0952, 0.4471)𝑇 4 (−0.0946, 0.0944, 0.4474)𝑇

(0, 0, 0)𝑇 13 (−0.0953, 0.0953, 0.4471)𝑇 10 (−0.0948, 0.0946, 0.4472)𝑇

(1, 1, 1)𝑇 5 (−0.0953, 0.0952, 0.4471)𝑇 4 (−0.0947, 0.0946, 0.4476)𝑇

(0, 1, 0)𝑇 5 (−0.0952, 0.0952, 0.4471)𝑇 5 (−0.0950, 0.0949, 0.4472)𝑇

Table 4: Numerical results for Example 4󸀠.

ST 𝑐 = 102 𝑐 = 103

IT SOL IT SOL
(0, 0, 0)𝑇 18 (0.5769, 0.4787, 99.9981)𝑇 22 (0.7944, 0.3344, 100.0022)𝑇

(0, 0, −1)𝑇 18 (0.3516, 0.7573, 100.0028)𝑇 14 (1.2045, 0.0456, 100.0051)𝑇

(1, 0, 1)𝑇 19 (0.8154, 0.4056, 99.9981)𝑇 9 (1.2619, −1.2051, 99.9994)𝑇

(0, 0, 1)𝑇 17 (0.6092, 0.4122, 99.9992)𝑇 13 (1.0040, −1.0030, 100.0533)𝑇

Table 5: Numerical results for Examples 1󸀠–4󸀠.

Example ST Our algorithm Algorithm in [8]
IT CPU IT CPU

Example 1󸀠
(0, 0, 0)𝑇 8 0.007767 6 0.006365

(−1, −1, −1)𝑇 6 0.006270 8 0.007373
(1, 1, 1)𝑇 8 0.006578 7 0.006137

Example 2󸀠
(0, 0, 0)𝑇 12 0.016807 49 0.068499

(−1, −1, −1)𝑇 12 0.017554 45 0.065420
(1, 1, 1)𝑇 10 0.026884 54 0.187465

Example 3󸀠
(0, 0, 0)𝑇 13 0.011897 5 0.004939

(−1, −1, −1)𝑇 5 0.007156 18 0.023658
(1, 1, 1)𝑇 5 0.006765 11 0.010136

Example 4󸀠
(0, 0, 0)𝑇 18 0.030636 — —
(0, 0, 1)𝑇 17 0.036194 — —
(1, 0, 1)𝑇 19 0.043265 — —
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Example 4. Consider (1), where 𝑓 := (𝑓
1
, 𝑓
2
, 𝑓
3
)𝑇 with 𝑥 ∈

R3 and

𝑓
1 (𝑥) := 𝑥2

1
+ 𝑥2
2

+ 𝑥2
3

− 10000 ≤ 0,

𝑓
2 (𝑥) := 𝑥

1
− 0.7 sin𝑥

1
− 0.2 cos𝑥

2
= 0,

𝑓
3 (𝑥) := 𝑥

2
− 0.7 cos𝑥

1
+ 0.2 sin𝑥

2
= 0.

(32)

The first example only contains inequalities; the other
examples contain equalities and inequalities. Instead of these
three examples, we use Algorithm 1 to solve the following
problems.

Example 1󸀠. Consider (1), where 𝑓 := (𝑓
1
, 𝑓
2
, 𝑓
3
)𝑇 with 𝑥 ∈

R3 and

𝑓
1 (𝑥) := (𝑥

1
− 0.5)

2
+ (𝑥
2

− 1)
2

− 0.25 + 𝜀 ≤ 0,

𝑓
2 (𝑥) := −(𝑥

1
− 0.5)

2
− (𝑥
1

− 1.1)
2

+ 𝑥2
2

− 0.26 + 𝜀 ≤ 0,

𝑓
3 (𝑥) := 𝑥

2
+ 𝑥2
3

− 1 + 𝜀 ≤ 0.

(33)

Example 2󸀠. Consider (1), where 𝑓 := (𝑓
1
, 𝑓
2
, 𝑓
3
)𝑇 with 𝑥 ∈

R3 and

𝑓
1 (𝑥) := 𝑥

1
+ 𝑥
2
𝑒0.8𝑥3 + 𝑒1.6 + 𝜀 ≤ 0,

𝑓
2 (𝑥) := 𝑥2

1
+ 𝑥2
2

+ 𝑥2
3

− 5.2675 = 0,

𝑓
3 (𝑥) := 𝑥

1
+ 𝑥
2

+ 𝑥
3

− 0.2605 = 0.

(34)

Example 3󸀠. Consider (1), where 𝑓 := (𝑓
1
, 𝑓
2
, 𝑓
3
)𝑇 with 𝑥 ∈

R3 and

𝑓
1 (𝑥) := 0.8 − 𝑒𝑥1+𝑥2 + 𝑥2

3
+ 𝜀 ≤ 0,

𝑓
2 (𝑥) := 1.21𝑒𝑥1 + 𝑒𝑥2 − 2.2 = 0,

𝑓
3 (𝑥) := 𝑥2

1
+ 𝑥2
2

+ 𝑥
2

− 0.1135 = 0.

(35)

Example 4󸀠. Consider (1), where 𝑓 := (𝑓
1
, 𝑓
2
, 𝑓
3
)𝑇 with 𝑥 ∈

R3 and

𝑓
1 (𝑥) := 𝑥2

1
+ 𝑥2
2

+ 𝑥2
3

− 10000 + 𝜀 ≤ 0,

𝑓
2 (𝑥) := 𝑥

1
− 0.7 sin𝑥

1
− 0.2 cos𝑥

2
= 0,

𝑓
3 (𝑥) := 𝑥

2
− 0.7 cos𝑥

1
+ 0.2 sin𝑥

2
= 0.

(36)

The numerical results are listed in Tables 1, 2, 3, 4, and
5, where Exam denotes the tested examples, ST denotes the
starting point 𝑥

0
,𝐶 denotes the value of the parameter 𝑐 given

in (27), CPUdenotes the CPU time for solving the underlying
problem in second, IT denotes the total number of iterations,
− represents iteration number in more than 1000, and SOL
denotes the solution obtained by Algorithm 1.

From Tables 1, 2, 3, and 4, it is easy to see that all
problems that we tested can be solved efficiently. In Table 5,
we compare our proposed algorithm with the algorithm in
[8].Thenumerical results illustrate that our algorithm ismore
effective.
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