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We study Mann type iterative algorithms for finding fixed points of Bregman relatively nonexpansive mappings in Banach spaces.
By exhibiting an example, we first show that the class of Bregman relatively nonexpansive mappings embraces properly the
class of Bregman strongly nonexpansive mappings which was investigated by Mart́ın-Márques et al. (2013). We then prove weak
convergence theorems for the sequences produced by the methods. Some application of our results to the problem of finding a zero
of a maximal monotone operator in a Banach space is presented. Our results improve and generalize many known results in the
current literature.

1. Introduction

Let 𝐸 be a (real) Banach space with norm ‖ ⋅ ‖ and dual space
𝐸
∗. For any 𝑥 in 𝐸, we denote the value of 𝑥∗ in 𝐸

∗ at 𝑥
by ⟨𝑥, 𝑥∗⟩. When {𝑥

𝑛
}
𝑛∈N is a sequence in 𝐸, we denote the

strong convergence of {𝑥
𝑛
}
𝑛∈N to 𝑥 ∈ 𝐸 by 𝑥

𝑛
→ 𝑥 and the

weak convergence by 𝑥
𝑛
⇀ 𝑥. Let 𝐶 be a nonempty subset of

𝐸. Let 𝑇 : 𝐶 → 𝐸 be a map. We denote by 𝐹(𝑇) = {𝑥 ∈ 𝐶 :

𝑇𝑥 = 𝑥} the set of fixed points of 𝑇. We call the map 𝑇
(i) nonexpansive if ‖𝑇𝑥 − 𝑇𝑦‖ ≤ ‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 in 𝐶,
(ii) quasi-nonexpansive if 𝐹(𝑇) ̸= 0 and ‖𝑇𝑥−𝑦‖ ≤ ‖𝑥−𝑦‖

for all 𝑥 in 𝐶 and 𝑦 in 𝐹(𝑇).
The nonexpansivity plays an important role in the study

of theMann iteration, given by

𝑥
𝑛+1

= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑇𝑥
𝑛
, (1)

where the sequence {𝛽
𝑛
}
𝑛∈N satisfies some appropriate condi-

tions. Construction of fixed points of nonexpansivemappings
via Mann’s algorithm [1] has been extensively investigated in
the literature (see, e.g., [2] and the references therein).

Let 𝑔 : 𝐸 → R be a strictly convex and Gâteaux
differentiable function on a Banach space 𝐸. The Bregman
distance [3] (see also [4, 5]) corresponding to𝑔 is the function
𝐷
𝑔
: 𝐸 × 𝐸 → R defined by

𝐷
𝑔
(𝑥, 𝑦) = 𝑔 (𝑥) − 𝑔 (𝑦) − ⟨𝑥 − 𝑦, ∇𝑔 (𝑦)⟩ , ∀𝑥, 𝑦 ∈ 𝐸.

(2)

It follows from the strict convexity of 𝑔 that 𝐷
𝑔
(𝑥, 𝑦) ≥ 0 for

all 𝑥, 𝑦 in 𝐸. However, 𝐷
𝑔
might not be symmetric and 𝐷

𝑔

might not satisfy the triangular inequality.
When 𝐸 is a smooth Banach space, setting 𝑔(𝑥) = ‖𝑥‖

2

for all 𝑥 in 𝐸, we have that ∇𝑔(𝑥) = 2𝐽𝑥 for all 𝑥 in 𝐸. Here
𝐽 is the normalized duality mapping from 𝐸 into 𝐸∗. Hence,
𝐷
𝑔
(⋅, ⋅) reduces to the usual map 𝜙(⋅, ⋅) as

𝐷
𝑔
(𝑥, 𝑦) = 𝜙 (𝑥, 𝑦) := ‖𝑥‖

2

− 2 ⟨𝑥, 𝐽𝑦⟩ +
𝑦


2

, ∀𝑥, 𝑦 ∈ 𝐸.

(3)

If 𝐸 is a Hilbert space, then 𝐷
𝑔
(𝑥, 𝑦) = ‖𝑥 − 𝑦‖

2. For more
details, we refer the readers to [6].

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 573075, 9 pages
http://dx.doi.org/10.1155/2014/573075

http://dx.doi.org/10.1155/2014/573075


2 Journal of Applied Mathematics

Let 𝐸 be a smooth, strictly convex, and reflexive Banach
space and let 𝐽 be the normalized duality mapping of 𝐸.
Let 𝐶 be a nonempty, closed, and convex subset of 𝐸. The
generalized projection Π

𝐶
from 𝐸 onto 𝐶 is defined and

denoted by

Π
𝐶
(𝑥) = argmin

𝑦∈𝐶

𝜙 (𝑦, 𝑥) , (4)

where 𝜙(𝑥, 𝑦) = ‖𝑥‖2 − 2⟨𝑥, 𝐽𝑦⟩ + ‖𝑦‖2. Let 𝐶 be a nonempty,
closed, and convex subset of a smooth Banach space 𝐸; let 𝑇
be a mapping from 𝐶 into itself. A point 𝑝 ∈ 𝐶 is said to be
an asymptotic fixed point [7] of 𝑇 if there exists a sequence
{𝑥
𝑛
}
𝑛∈N in 𝐶 which converges weakly to 𝑝 and lim

𝑛→∞
‖𝑥
𝑛
−

𝑇𝑥
𝑛
‖ = 0.We denote the set of all asymptotic fixed points of𝑇

by𝐹(𝑇). A point𝑝 ∈ 𝐶 is called a strong asymptotic fixed point
of 𝑇 if there exists a sequence {𝑥

𝑛
}
𝑛∈N in 𝐶 which converges

strongly to 𝑝 and lim
𝑛→∞

‖𝑥
𝑛
− 𝑇𝑥
𝑛
‖ = 0. We denote the set

of all strong asymptotic fixed points of 𝑇 by 𝐹(𝑇).
Let 𝐶 be a nonempty, closed, and convex subset of a

reflexive Banach space 𝐸. Let 𝑔 : 𝐸 → (−∞, +∞] be a
proper, lower semicontinuous, and convex function. Recall
that a mapping 𝑇 : 𝐶 → 𝐶 is said to be Bregman quasi-
nonexpansive, if 𝐹(𝑇) ̸=Ø and

𝐷
𝑔
(𝑝, 𝑇𝑥) ≤ 𝐷

𝑔
(𝑝, 𝑥) , ∀𝑥 ∈ 𝐶, 𝑝 ∈ 𝐹 (𝑇) . (5)

A mapping 𝑇 : 𝐶 → 𝐶 is said to be Bregman relatively
nonexpansive if the following conditions are satisfied:

(1) 𝐹(𝑇) is nonempty;
(2) 𝐷
𝑔
(𝑝, 𝑇V) ≤ 𝐷

𝑔
(𝑝, V), ∀𝑝 ∈ 𝐹(𝑇), V ∈ 𝐶;

(3) 𝐹(𝑇) = 𝐹(𝑇).

A mapping 𝑇 : 𝐶 → 𝐶 is said to be Bregman weak relatively
nonexpansive if the following conditions are satisfied:

(1) 𝐹(𝑇) is nonempty;
(2) 𝐷
𝑔
(𝑝, 𝑇V) ≤ 𝐷

𝑔
(𝑝, V), ∀𝑝 ∈ 𝐹(𝑇), V ∈ 𝐶;

(3) 𝐹(𝑇) = 𝐹(𝑇).

A mapping 𝑇 : 𝐶 → 𝐶 is said to be Bregman strongly
nonexpansive (BSNE) if the following conditions are satisfied:

(1) 𝐹(𝑇) is nonempty;
(2) 𝐷
𝑔
(𝑝, 𝑇V) ≤ 𝐷

𝑔
(𝑝, V), ∀𝑝 ∈ 𝐹(𝑇), V ∈ 𝐶;

(3) 𝐹(𝑇) = 𝐹(𝑇);
(4) for any bounded sequence {𝑥

𝑛
}
𝑛∈N ⊂ 𝐶 and any 𝑝 ∈

𝐹(𝑇) we have

lim
𝑛→∞

[𝐷
𝑔
(𝑝, 𝑥
𝑛
) − 𝐷
𝑔
(𝑝, 𝑇𝑥

𝑛
)] = 0

⇒ lim
𝑛→∞

𝐷
𝑔
(𝑇𝑥
𝑛
, 𝑥
𝑛
) = 0.

(6)

It is obvious that any Bregman strongly nonexpansive
mapping is a Bregman relatively nonexpansive mapping, but
the converse is not true in general. In the following, we show
that there exists a Bregman relatively nonexpansive mapping
which is not a Bregman strongly nonexpansive mapping.

Example 1. Let 𝐸 = 𝑙
2, where

𝑙
2

= {𝜎 = (𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑛
, . . .) :

∞

∑

𝑛=1

𝜎𝑛


2

< ∞} ,

‖𝜎‖ = (

∞

∑

𝑛=1

𝜎𝑛


2

)

1/2

,

∀𝜎 ∈ 𝑙
2

,

⟨𝜎, 𝜂⟩ =

∞

∑

𝑛=1

𝜎
𝑛
𝜂
𝑛
, ∀𝛿 = (𝜎

1
, 𝜎
2
, . . . , 𝜎

𝑛
, . . .) ,

𝜂 = (𝜂
1
, 𝜂
2
, . . . , 𝜂

𝑛
, . . .) ∈ 𝑙

2

.

(7)

Let {𝑥
𝑛
}
𝑛∈N∪{0} ⊂ 𝐸 be a sequence defined by

𝑥
0
= (1, 0, 0, 0, . . .)

𝑥
1
= (1, 1, 0, 0, 0, . . .)

𝑥
2
= (1, 0, 1, 0, 0, 0, . . .)

𝑥
3
= (1, 0, 0, 1, 0, 0, 0, . . .)

...

𝑥
𝑛
= (𝜎
𝑛,1
, 𝜎
𝑛,2
, . . . , 𝜎

𝑛,𝑘
, . . .)

...

(8)

where

𝜎
𝑛,𝑘

= {
1 if 𝑘 = 1, 𝑛 + 1,
0 if 𝑘 ̸= 1, 𝑘 ̸= 𝑛 + 1,

(9)

for all 𝑛 ∈ N. It is clear that the sequence {𝑥
𝑛
}
𝑛∈N converges

weakly to 𝑥
0
. Indeed, for any Λ = (𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑛
, . . .) ∈ 𝑙

2

=

(𝑙
2

)
∗, we have

Λ (𝑥
𝑛
− 𝑥
0
) = ⟨𝑥

𝑛
− 𝑥
0
, Λ⟩ =

∞

∑

𝑘=2

𝜆
𝑘
𝜎
𝑛,𝑘

→ 0 (10)

as 𝑛 → ∞. It is also obvious that ‖𝑥
𝑛
− 𝑥
𝑚
‖ = √2 for

any 𝑛 ̸=𝑚 with 𝑛, 𝑚 sufficiently large. Thus, {𝑥
𝑛
}
𝑛∈N is not

a Cauchy sequence. Let 𝑘 be an even number in N and let
𝑔 : 𝐸 → R be defined by

𝑔 (𝑥) =
1

𝑘
‖𝑥‖
𝑘

, 𝑥 ∈ 𝐸. (11)

It is easy to show that ∇𝑔(𝑥) = 𝐽
𝑘
(𝑥) for all 𝑥 ∈ 𝐸, where

𝐽
𝑘
(𝑥) = {𝑥

∗

∈ 𝐸
∗

: ⟨𝑥, 𝑥
∗

⟩ = ‖𝑥‖
𝑥
∗ ,

𝑥
∗ = ‖𝑥‖

𝑘−1

} .

(12)

It is also obvious that

𝐽
𝑘
(𝜆𝑥) = 𝜆

𝑘−1

𝐽
𝑘
(𝑥) , ∀𝑥 ∈ 𝐸, ∀𝜆 ∈ R. (13)
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Now, we define a mapping 𝑇 : 𝐸 → 𝐸 by

𝑇 (𝑥) =

{

{

{

−𝑛

𝑛 + 1
𝑥, if 𝑥 = 𝑥

𝑛
;

−𝑥, if 𝑥 ̸= 𝑥
𝑛
.

(14)

It is clear that 𝐹(𝑇) = {0} and for any 𝑛 ∈ N

𝐷
𝑔
(0, 𝑇𝑥

𝑛
) = 𝑔 (0) − 𝑔 (𝑇𝑥

𝑛
) − ⟨0 − 𝑇𝑥

𝑛
, ∇𝑔 (𝑇𝑥

𝑛
)⟩

= −
𝑛
𝑘

(𝑛 + 1)
𝑘

𝑔 (𝑥
𝑛
)

− ⟨
𝑛

𝑛 + 1
𝑥
𝑛
, −

𝑛
𝑘−1

(𝑛 + 1)
𝑘−1

∇𝑔 (𝑥
𝑛
)⟩

= −
𝑛
𝑘

(𝑛 + 1)
𝑘

𝑔 (𝑥
𝑛
) +

𝑛
𝑘

(𝑛 + 1)
𝑘

⟨𝑥
𝑛
, ∇𝑔 (𝑥

𝑛
)⟩

=
𝑛
𝑘

(𝑛 + 1)
𝑘

[−𝑔 (𝑥
𝑛
) + ⟨𝑥

𝑛
, ∇𝑔 (𝑥

𝑛
)⟩]

=
𝑛
𝑘

(𝑛 + 1)
𝑘

𝐷
𝑔
(0, 𝑥
𝑛
)

≤ 𝐷
𝑔
(0, 𝑥
𝑛
) .

(15)

If 𝑥 ̸= 𝑥
𝑛
, then we have

𝐷
𝑔
(0, 𝑇𝑥) = 𝑔 (0) − 𝑔 (𝑇𝑥) − ⟨0 − 𝑇𝑥, ∇𝑔 (𝑇𝑥)⟩

= −𝑔 (𝑥) − ⟨𝑥, −∇𝑔 (𝑥)⟩

= −𝑔 (𝑥) − ⟨−𝑥, ∇𝑔 (𝑥)⟩

= 𝐷
𝑔
(0, 𝑥) .

(16)

Therefore, 𝑇 is a Bregman quasi-nonexpansive mapping.
Next, we claim that for any subsequence {𝑥

𝑛𝑗
}
𝑗∈N of {𝑥

𝑛
}
𝑛∈N,

lim
𝑗→∞

‖𝑥
𝑛𝑗
− 𝑇𝑥
𝑛𝑗
‖ ̸= 0. If not, then there exists a subse-

quence {𝑥
𝑛𝑗
}
𝑗∈N of {𝑥

𝑛
}
𝑛∈N such that lim

𝑗→∞
‖𝑥
𝑛𝑗
−𝑇𝑥
𝑛𝑗
‖ = 0.

This implies that lim
𝑗→∞

‖𝑥
𝑛𝑗
− 𝑇𝑥
𝑛𝑗
‖ = lim

𝑗→∞
‖𝑥
𝑛𝑗
−

(−𝑛
𝑗
/(𝑛
𝑗
+ 1))𝑥

𝑛𝑗
‖ = lim

𝑗→∞
‖𝑥
𝑛𝑗
+ (𝑛
𝑗
/(𝑛
𝑗
+ 1))𝑥

𝑛𝑗
‖ = 0,

which is impossible. Now, we claim that 𝑇 is a Bregman
relatively nonexpansive mapping. Indeed, for any sequence
{𝑧
𝑛
}
𝑛∈N ⊂ 𝐸 such that 𝑧

𝑛
⇀ 𝑧
0
and ‖𝑧

𝑛
− 𝑇𝑧
𝑛
‖ → 0 as

𝑛 → ∞, since {𝑥
𝑛
}
𝑛∈N is not a Cauchy sequence, there exists

a sufficiently large number 𝑁 ∈ N such that 𝑧
𝑛
̸= 𝑥
𝑚
, for any

𝑛,𝑚 > 𝑁. If we suppose that there exists 𝑚 ≤ 𝑁 such that
𝑧
𝑛
= 𝑥
𝑚
for infinitely many 𝑛 ∈ N, then a subsequence

{𝑥
𝑛𝑖
}
𝑖∈N would satisfy 𝑧

𝑛𝑖
= 𝑥
𝑚
, so 𝑧
0
= lim

𝑖→∞
𝑧
𝑛𝑖
= 𝑥
𝑚

and 𝑧
0
= lim

𝑖→∞
𝑇𝑧
𝑛𝑖
= 𝑇𝑥
𝑚
= (𝑚/(𝑚 + 1))𝑥

𝑚
which is

impossible due to the fact that ‖𝑥
𝑚
− 𝑇𝑥
𝑚
‖ ̸= 0 for all𝑚 ∈ N.

This implies that 𝑇𝑧
𝑛
= −𝑧
𝑛
for all 𝑛 > 𝑁. It follows from

‖𝑧
𝑛
− 𝑇𝑧
𝑛
‖ → 0 that 2𝑧

𝑛
→ 0 and hence 𝑧

𝑛
→ 0, which

implies that 𝑧
0
= 0. Since 𝑧

0
∈ 𝐹(𝑇), we conclude that 𝑇 is a

Bregman relatively nonexpansive mapping. Finally, we show
that 𝑇 is not a Bregman strongly nonexpansive mapping.

To this end, we consider the sequence {𝑥
𝑛
}
𝑛∈N∪{0} defined by

(8); then, we have

𝐷
𝑔
(0, 𝑥
𝑛
) − 𝐷
𝑔
(0, 𝑇𝑥

𝑛
)

= 𝑔 (0) − 𝑔 (𝑥
𝑛
) − ⟨0 − 𝑥

𝑛
, ∇𝑔 (𝑥

𝑛
)⟩

− [𝑔 (0) − 𝑔 (𝑇𝑥
𝑛
) − ⟨0 − 𝑇𝑥

𝑛
, ∇𝑔 (𝑇𝑥

𝑛
)⟩]

= −𝑔 (𝑥
𝑛
) + ⟨𝑥

𝑛
, ∇𝑔 (𝑥

𝑛
)⟩ + 𝑔 (𝑇𝑥

𝑛
) − ⟨𝑇𝑥

𝑛
, ∇𝑔 (𝑇𝑥

𝑛
)⟩

= −
1

𝑘

𝑥𝑛


2

+ ⟨𝑥
𝑛
, ∇𝑔 (𝑥

𝑛
)⟩ +

𝑛
𝑘

𝑘(𝑛 + 1)
𝑘

𝑥𝑛


2

−
𝑛
𝑘

(𝑛 + 1)
𝑘

⟨𝑥
𝑛
, ∇𝑔 (𝑥

𝑛
)⟩

= −
1

𝑘
(1 −

𝑛
𝑘

(𝑛 + 1)
𝑘

)
𝑥𝑛



2

+ (1 −
𝑛
𝑘

(𝑛 + 1)
𝑘

)⟨𝑥
𝑛
, ∇𝑔 (𝑥

𝑛
)⟩ .

(17)

This implies that

lim
𝑛→∞

𝐷
𝑔
(0, 𝑥
𝑛
) − 𝐷
𝑔
(0, 𝑇𝑥

𝑛
) = 0. (18)

On the other hand, we have

𝑥𝑛 − 𝑇𝑥𝑛
 =


𝑥
𝑛
−

−𝑛

𝑛 + 1
𝑥
𝑛


=
2𝑛 + 1

𝑛 + 1

𝑥𝑛


(19)

which implies that

lim
𝑛→∞

𝑥𝑛 − 𝑇𝑥𝑛
 ̸= 0. (20)

Therefore, 𝑇 is not a Bregman strongly nonexpansive map-
ping.

We refer the readers to see some other examples of
Bregman relatively nonexpansive mappings in [8].

A Banach space 𝐸 is said to satisfy the Opial property [9]
if for any weakly convergent sequence {𝑥

𝑛
}
𝑛∈N in 𝐸with weak

limit 𝑥, we have

lim sup
𝑛→∞

𝑥𝑛 − 𝑥
 < lim sup
𝑛→∞

𝑥𝑛 − 𝑦
 (21)

for all 𝑦 in 𝐸 with 𝑦 ̸= 𝑥. It is well known that all Hilbert
spaces, all finite dimensional Banach spaces, and the Banach
spaces 𝑙𝑝 (1 ≤ 𝑝 < ∞) satisfy the Opial property. Working
with the Bregman distance𝐷

𝑔
, the following BregmanOpial-

like inequality holds for every Banach space 𝐸 such that ∇𝑔 is
weakly sequentially continuous:

lim sup
𝑛→∞

𝐷
𝑔
(𝑥, 𝑥
𝑛
) < lim sup
𝑛→∞

𝐷
𝑔
(𝑦, 𝑥
𝑛
) , (22)

whenever 𝑥
𝑛
⇀ 𝑥 ̸= 𝑦. See Lemma 3 for details. The Opial

property of Hilbert spaces and some other special Banach
spaces is a powerful tool in establishing fixed point theorems
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for nonexpansive and, more generally, quasi-nonexpansive
mappings.TheBregman-Opial property suggests introducing
the notions of Bregman nonexpansive-like mappings and
developing fixed point theorems and convergence results for
the Mann iterations for these mappings.

Let 𝐸 be a reflexive Banach space with the dual space 𝐸∗

and let 𝐴 : 𝐸 → 2
𝐸
∗

be a set-valued mapping. We define
the domain and range of 𝐴 by dom𝐴 = {𝑥 ∈ 𝐸 : 𝐴𝑥 ̸=Ø}
and ran𝐴 = ∪

𝑥∈𝐸
𝐴𝑥, respectively. The graph of 𝐴 is denoted

by 𝐺(𝐴) = {(𝑥, 𝑥
∗

) ∈ 𝐸 × 𝐸
∗

: 𝑥
∗

∈ 𝐴𝑥}. The mapping
𝐴 ⊂ 𝐸×𝐸

∗ is said to bemonotone [10] if ⟨𝑥 − 𝑦, 𝑥∗ − 𝑦∗⟩ ≥ 0
whenever (𝑥, 𝑥∗), (𝑦, 𝑦∗) ∈ 𝐴. It is also said to be maximal
monotone [11] if its graph is not contained in the graph of any
other monotone operators on 𝐸. If 𝐴 ⊂ 𝐸 × 𝐸

∗ is maximal
monotone, then we can show that the set 𝐴−10 = {𝑧 ∈ 𝐸 :

0 ∈ 𝐴𝑧} is closed and convex. Let 𝑔 : 𝐸 → (−∞, +∞] be a
proper, lower semicontinuous, and convex function. Let𝐴 be
a maximal monotone operator from 𝐸 to 𝐸∗. For any 𝑟 > 0,
let the mapping Res𝑔

𝑟𝐴
: 𝐸 → dom𝐴 be defined by

Res𝑔
𝑟𝐴
= (∇𝑔 + 𝑟𝐴)

−1

∇𝑔. (23)

The mapping Res𝑔
𝑟𝐴

is called the 𝑔-resolvent of 𝐴 (see [12]).
It is well known that 𝐴−1(0) = 𝐹(Res𝑔

𝑟𝐴
) for each 𝑟 > 0 (for

more details, see, e.g., [13]).
Examples and some important properties of such opera-

tors are discussed in [14].
In this paper, using Bregman functions, we study Mann

type iterative algorithms for finding fixed points of Breg-
man relatively nonexpansive mappings in Banach spaces.
We prove weak convergence theorems for the sequences
produced by the methods. Some application of our results
to the problem of finding a zero of a maximal monotone
operator in a Banach space is presented. Our results improve
and generalize many known results in the current literature;
see, for example, [15].

2. Properties of Bregman Functions and
Bregman Distances

Let 𝐸 be a (real) Banach space, and let 𝑔 : 𝐸 → R. For any 𝑥
in 𝐸, the gradient ∇𝑔(𝑥) is defined to be the linear functional
in 𝐸∗ such that

⟨𝑦, ∇𝑔 (𝑥)⟩ = lim
𝑡→0

𝑔 (𝑥 + 𝑡𝑦) − 𝑔 (𝑥)

𝑡
, ∀𝑦 ∈ 𝐸. (24)

The function 𝑔 is said to be Gâteaux differentiable at 𝑥 if
∇𝑔(𝑥) is well defined, and 𝑔 is Gâteaux differentiable if it is
Gâteaux differentiable everywhere on 𝐸. We call 𝑔 Fréchet
differentiable at 𝑥 (see, e.g., [16, page 13] or [17, page 508])
if, for all 𝜖 > 0, there exists 𝛿 > 0 such that

𝑔 (𝑦) − 𝑔 (𝑥) − ⟨𝑦 − 𝑥, ∇𝑔 (𝑥)⟩


≤ 𝜖
𝑦 − 𝑥

 whenever 𝑦 − 𝑥
 ≤ 𝛿.

(25)

The function 𝑔 is said to be Fréchet differentiable if it is
Fréchet differentiable everywhere. It is well known that if

a continuous convex function 𝑔 : 𝐸 → R is Gâteaux
differentiable, then ∇𝑔 is norm-to-weak∗ continuous (see,
e.g., [16, Proposition 1.1.10]). If 𝑔 is also Fréchet differentiable,
then ∇𝑔 is norm-to-norm continuous (see, [17, page 508]).

Let 𝐸 be a Banach space, 𝑟 > 0, and 𝐵
𝑟
:= {𝑧 ∈ 𝐸 : ‖𝑧‖ ≤

𝑟}. A function 𝑔 : 𝐸 → R is said to be

(i) strongly coercive if

lim
‖𝑥𝑛‖→+∞

𝑔 (𝑥
𝑛
)

𝑥𝑛


= +∞; (26)

(ii) locally bounded if 𝑔(𝐵
𝑟
) is bounded for all 𝑟 > 0;

(iii) locally uniformly smooth on 𝐸 ([18, pages 207, 221]) if
the function 𝜎

𝑟
: [0, +∞) → [0, +∞], defined by

𝜎
𝑟
(𝑡) = sup
𝑥∈𝐵𝑟 ,𝑦∈𝑆𝐸,𝛼∈(0,1)

(𝛼𝑔 (𝑥 + (1 − 𝛼) 𝑡𝑦) + (1 − 𝛼)

× 𝑔 (𝑥 − 𝛼𝑡𝑦) − 𝑔 (𝑥)) (𝛼 (1 − 𝛼))
−1

,

(27)

satisfies

lim
𝑡↓0

𝜎
𝑟
(𝑡)

𝑡
= 0, ∀𝑟 > 0; (28)

(iv) locally uniformly convex on 𝐸 (or uniformly convex on
bounded subsets of𝐸 ([18, pages 203, 221])) if the gauge
𝜌
𝑟
: [0, +∞) → [0, +∞] of uniform convexity of 𝑔,

defined by

𝜌
𝑟
(𝑡)

= inf
𝑥,𝑦∈𝐵𝑟,‖𝑥−𝑦‖=𝑡,𝛼∈(0,1)

(𝛼𝑔 (𝑥) + (1 − 𝛼) 𝑔 (𝑦)

− 𝑔 (𝛼𝑥 + (1 − 𝛼) 𝑦)) (𝛼 (1 − 𝛼))
−1

,

(29)

satisfies

𝜌
𝑟
(𝑡) > 0, ∀𝑟, 𝑡 > 0. (30)

For a locally uniformly convex map 𝑔 : 𝐸 → R, we have

𝑔 (𝛼𝑥 + (1 − 𝛼) 𝑦) ≤ 𝛼𝑔 (𝑥) + (1 − 𝛼) 𝑔 (𝑦)

− 𝛼 (1 − 𝛼) 𝜌
𝑟
(
𝑥 − 𝑦

) ,

(31)

for all 𝑥, 𝑦 in 𝐵
𝑟
and for all 𝛼 in (0, 1).

Let 𝐸 be a Banach space and 𝑔 : 𝐸 → R a strictly convex
and Gâteaux differentiable function. By (2), the Bregman
distance satisfies [3]

𝐷
𝑔
(𝑥, 𝑧) = 𝐷

𝑔
(𝑥, 𝑦) + 𝐷

𝑔
(𝑦, 𝑧)

+ ⟨𝑥 − 𝑦, ∇𝑔 (𝑦) − ∇𝑔 (𝑧)⟩ , ∀𝑥, 𝑦, 𝑧 ∈ 𝐸.

(32)

In particular,

𝐷
𝑔
(𝑥, 𝑦) = −𝐷

𝑔
(𝑦, 𝑥) + ⟨𝑦 − 𝑥, ∇𝑔 (𝑦) − ∇𝑔 (𝑥)⟩ ,

∀𝑥, 𝑦 ∈ 𝐸.

(33)
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Lemma 2 (see [8, 16]). Let 𝐸 be a Banach space and 𝑔 : 𝐸 →

R a Gâteaux differentiable function which is locally uniformly
convex on 𝐸. Let {𝑥

𝑛
}
𝑛∈N and {𝑦

𝑛
}
𝑛∈N be bounded sequences in

𝐸. Then the following assertions are equivalent:

(1) lim
𝑛→∞

𝐷
𝑔
(𝑥
𝑛
, 𝑦
𝑛
) = 0;

(2) lim
𝑛→∞

‖𝑥
𝑛
− 𝑦
𝑛
‖ = 0.

In the following, derive an Opial-like inequality for the
Bregman distance. For original Opial’s inequality, we refer the
readers to Lemma 1 of [9].

Lemma 3. Let 𝐸 be a Banach space and let 𝑔 : 𝐸 → R be
a strictly convex and Gâteaux differentiable function such that
∇𝑔 is weakly sequentially continuous. Suppose that {𝑥

𝑛
}
𝑛∈N is

a sequence in 𝐸 such that 𝑥
𝑛
⇀ 𝑥 for some 𝑥 in 𝐸. Then

lim sup
𝑛→∞

𝐷
𝑔
(𝑥, 𝑥
𝑛
) < lim sup
𝑛→∞

𝐷
𝑔
(𝑦, 𝑥
𝑛
) , (34)

for all 𝑦 in the interior of dom𝑔 with 𝑦 ̸= 𝑥.

Proof. In view of the definition of Bregman distance (see (2)),
we obtain

𝐷
𝑔
(𝑥, 𝑥
𝑛
) − 𝐷
𝑔
(𝑦, 𝑥
𝑛
)

= 𝑔 (𝑥) − 𝑔 (𝑥
𝑛
) − ⟨𝑥 − 𝑥

𝑛
, ∇𝑔 (𝑥

𝑛
)⟩

− [𝑔 (𝑦) − 𝑔 (𝑥
𝑛
) − ⟨𝑦 − 𝑥

𝑛
, ∇𝑔 (𝑥

𝑛
)⟩]

= 𝑔 (𝑥) − 𝑔 (𝑦) + ⟨𝑥 − 𝑦, ∇𝑔 (𝑥)⟩

− ⟨𝑥 − 𝑦, ∇𝑔 (𝑥)⟩ + ⟨𝑦 − 𝑥, ∇𝑔 (𝑥
𝑛
)⟩

= 𝑔 (𝑥) − 𝑔 (𝑦) + ⟨𝑥 − 𝑦, ∇𝑔 (𝑥)⟩

+ ⟨𝑦 − 𝑥, ∇𝑔 (𝑥
𝑛
) − ∇𝑔 (𝑥)⟩

= −𝐷
𝑔
(𝑦, 𝑥) + ⟨𝑦 − 𝑥, ∇𝑔 (𝑥

𝑛
) − ∇𝑔 (𝑥)⟩ .

(35)

Since 𝑥
𝑛
⇀ 𝑥 as 𝑛 → ∞ and ∇𝑔 is weakly sequentially

continuous, we deduce that

lim sup
𝑛→∞

𝐷
𝑔
(𝑥, 𝑥
𝑛
)

= lim sup
𝑛→∞

[𝐷
𝑔
(𝑥, 𝑥
𝑛
) − 𝐷
𝑔
(𝑦, 𝑥
𝑛
) + 𝐷
𝑔
(𝑦, 𝑥
𝑛
)]

= lim sup
𝑛→∞

[𝐷
𝑔
(𝑥, 𝑥
𝑛
) − 𝐷
𝑔
(𝑦, 𝑥
𝑛
)] + lim sup

𝑛→∞

𝐷
𝑔
(𝑦, 𝑥
𝑛
)

= −𝐷
𝑔
(𝑦, 𝑥) + lim sup

𝑛→∞

𝐷
𝑔
(𝑦, 𝑥
𝑛
) .

(36)

Taking into account that 𝐷
𝑔
(𝑦, 𝑥) > 0 for 𝑦 ̸= 𝑥, we obtain

that

lim sup
𝑛→∞

𝐷
𝑔
(𝑥, 𝑥
𝑛
) < lim sup
𝑛→∞

𝐷
𝑔
(𝑦, 𝑥
𝑛
) , (37)

which completes the proof.

We call a function 𝑔 : 𝐸 → (−∞, +∞] lower semi-
continuous if {𝑥 ∈ 𝐸 : 𝑔(𝑥) ≤ 𝑟} is closed for all 𝑟 in R.

For a lower semicontinuous convex function 𝑔 : 𝐸 → R, the
subdifferential 𝜕𝑔 of 𝑔 is defined by

𝜕𝑔 (𝑥) = {𝑥
∗

∈ 𝐸
∗

: 𝑔 (𝑥) + ⟨𝑦 − 𝑥, 𝑥
∗

⟩ ≤ 𝑔 (𝑦) , ∀𝑦 ∈ 𝐸}

(38)

for all 𝑥 in 𝐸. It is well known that 𝜕𝑔 ⊂ 𝐸 × 𝐸
∗ is maximal

monotone [19, 20]. For any lower semicontinuous convex
function 𝑔 : 𝐸 → (−∞, +∞], the conjugate function 𝑔∗ of 𝑔
is defined by

𝑔
∗

(𝑥
∗

) = sup
𝑥∈𝐸

{⟨𝑥, 𝑥
∗

⟩ − 𝑔 (𝑥)} , ∀𝑥
∗

∈ 𝐸
∗

. (39)

It is well known that

𝑔 (𝑥) + 𝑔
∗

(𝑥
∗

) ≥ ⟨𝑥, 𝑥
∗

⟩ , ∀ (𝑥, 𝑥
∗

) ∈ 𝐸 × 𝐸
∗

,

(𝑥, 𝑥
∗

) ∈ 𝜕𝑔 is equivalent to 𝑔 (𝑥) + 𝑔∗ (𝑥∗) = ⟨𝑥, 𝑥∗⟩ .
(40)

We also know that if 𝑔 : 𝐸 → (−∞, +∞] is a proper
lower semicontinuous convex function, then 𝑔

∗

: 𝐸
∗

→

(−∞, +∞] is a proper weak∗ lower semicontinuous convex
function. Here, saying 𝑔 is proper, we mean that dom𝑔 :=

{𝑥 ∈ 𝐸 : 𝑔(𝑥) < +∞} ̸= 0.
The following definition is slightly different from that in

Butnariu and Iusem [16].

Definition 4 (see [17]). Let 𝐸 be a Banach space. A function
𝑔 : 𝐸 → R is said to be a Bregman function if the following
conditions are satisfied:

(1) 𝑔 is continuous, strictly convex, and Gâteaux differ-
entiable;

(2) the set {𝑦 ∈ 𝐸 : 𝐷
𝑔
(𝑥, 𝑦) ≤ 𝑟} is bounded for all 𝑥 in

𝐸 and 𝑟 > 0.

The following lemma follows from Butnariu and Iusem
[16] and Zălinescu [18].

Lemma 5. Let 𝐸 be a reflexive Banach space and 𝑔 : 𝐸 → R

a strongly coercive Bregman function. Then

(1) ∇𝑔 : 𝐸 → 𝐸
∗ is one-to-one, onto, and norm-to-𝑤𝑒𝑎𝑘∗

continuous;
(2) ⟨𝑥 − 𝑦, ∇𝑔(𝑥) − ∇𝑔(𝑦)⟩ = 0 if and only if 𝑥 = 𝑦;
(3) {𝑥 ∈ 𝐸 : 𝐷

𝑔
(𝑥, 𝑦) ≤ 𝑟} is bounded for all 𝑦 in 𝐸 and

𝑟 > 0;
(4) dom 𝑔

∗

= 𝐸
∗

, 𝑔
∗ is Gâteaux differentiable and∇𝑔∗ =

(∇𝑔)
−1.

The following two results follow from [18, Proposition
3.6.4].

Proposition 6. Let 𝐸 be a reflexive Banach space and let 𝑔 :

𝐸 → R be a convex function which is locally bounded. The
following assertions are equivalent:

(1) 𝑔 is strongly coercive and locally uniformly convex on
𝐸;
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(2) dom 𝑔
∗

= 𝐸
∗

, 𝑔
∗ is locally bounded and locally

uniformly smooth on 𝐸;
(3) dom 𝑔

∗

= 𝐸
∗

, 𝑔
∗ is Fréchet differentiable and ∇𝑔∗

is uniformly norm-to-norm continuous on bounded
subsets of 𝐸∗.

Proposition 7. Let𝐸 be a reflexive Banach space and 𝑔 : 𝐸 →

R a continuous convex function which is strongly coercive. The
following assertions are equivalent:

(1) 𝑔 is locally bounded and locally uniformly smooth on
𝐸;

(2) 𝑔∗ is Fréchet differentiable and∇𝑔∗ is uniformly norm-
to-norm continuous on bounded subsets of 𝐸;

(3) dom 𝑔
∗

= 𝐸
∗

, 𝑔
∗ is strongly coercive and locally

uniformly convex on 𝐸.

Lemma 8 (see [17, 21]). Let 𝐸 be a reflexive Banach space, let
𝑔 : 𝐸 → R be a strongly coercive Bregman function, and let𝑉
be the function defined by

𝑉 (𝑥, 𝑥
∗

) = 𝑔 (𝑥) − ⟨𝑥, 𝑥
∗

⟩ + 𝑔
∗

(𝑥
∗

) , ∀𝑥 ∈ 𝐸, ∀𝑥
∗

∈ 𝐸
∗

.

(41)

The following assertions hold:
(1) 𝐷
𝑔
(𝑥, ∇𝑔

∗

(𝑥
∗

)) = 𝑉(𝑥, 𝑥
∗

) for all 𝑥 in𝐸 and 𝑥∗ in𝐸∗;
(2) 𝑉(𝑥, 𝑥∗) + ⟨∇𝑔∗(𝑥∗) − 𝑥, 𝑦∗⟩ ≤ 𝑉(𝑥, 𝑥

∗

+ 𝑦
∗

) for all
𝑥 in 𝐸 and 𝑥∗, 𝑦∗ in 𝐸∗.

It also follows from the definition that 𝑉 is convex in the
second variable 𝑥∗ and

𝑉 (𝑥, ∇𝑔 (𝑦)) = 𝐷
𝑔
(𝑥, 𝑦) . (42)

Let 𝐸 be a Banach space and let 𝐶 be a nonempty and
convex subset of 𝐸. Let 𝑔 : 𝐸 → R be a strictly convex and
Gâteaux differentiable function. Then, we know from [22]
that, for 𝑥 in 𝐸 and 𝑥

0
in 𝐶, one has

𝐷
𝑔
(𝑥
0
, 𝑥)

= min
𝑦∈𝐶

𝐷
𝑔
(𝑦, 𝑥) iff ⟨𝑦 − 𝑥

0
, ∇𝑔 (𝑥) − ∇𝑔 (𝑥

0
)⟩ ≤ 0,

∀𝑦 ∈ 𝐶.

(43)

Further, if 𝐶 is a nonempty, closed, and convex subset of a
reflexive Banach space 𝐸 and 𝑔 : 𝐸 → R is a strongly
coercive Bregman function, then, for each 𝑥 in 𝐸, there exists
a unique 𝑥

0
in 𝐶 such that

𝐷
𝑔
(𝑥
0
, 𝑥) = min

𝑦∈𝐶

𝐷
𝑔
(𝑦, 𝑥) . (44)

The Bregman projection proj𝑔
𝐶
from 𝐸 onto 𝐶 defined by

proj𝑔
𝐶
(𝑥) = 𝑥

0
has the following property:

𝐷
𝑔
(𝑦, proj𝑔

𝐶
𝑥) + 𝐷

𝑔
(proj𝑔
𝐶
𝑥, 𝑥) ≤ 𝐷

𝑔
(𝑦, 𝑥) ,

∀𝑦 ∈ 𝐶, ∀𝑥 ∈ 𝐸.

(45)

See [16] for details.

Let 𝐸 be a reflexive Banach space and let 𝑔 : 𝐸 →

R be a lower-semicontinuous, strictly convex, and Gâteaux
differentiable function. Let 𝐶 be a nonempty, closed, and
convex subset of 𝐸 and let {𝑥

𝑛
}
𝑛∈N be a bounded sequence

in 𝐸. For any 𝑥 in 𝐸, we set

Br (𝑥, {𝑥
𝑛
}
𝑛∈N

) = lim sup
𝑛→∞

𝐷
𝑔
(𝑥, 𝑥
𝑛
) . (46)

The Bregman asymptotic radius of {𝑥
𝑛
}
𝑛∈N relative to 𝐶 is

defined by

Br (𝐶, {𝑥
𝑛
}
𝑛∈N

) = inf {Br (𝑥, {𝑥
𝑛
}
𝑛∈N

) : 𝑥 ∈ 𝐶} . (47)

The Bregman asymptotic center of {𝑥
𝑛
}
𝑛∈N relative to 𝐶 is the

set

BA (𝐶, {𝑥
𝑛
}
𝑛∈N

) = {𝑥 ∈ 𝐶 : Br (𝑥, {𝑥
𝑛
}
𝑛∈N

)

= Br (𝐶, {𝑥
𝑛
}
𝑛∈N

)} .

(48)

Proposition 9. Let𝐶 be a nonempty, closed, and convex subset
of a reflexive Banach space 𝐸, and let 𝑔 : 𝐸 → R be strictly
convex, Gâteaux differentiable, and locally bounded on 𝐸. If
{𝑥
𝑛
}
𝑛∈N is a bounded sequence of 𝐶, then 𝐵𝐴(𝐶, {𝑥

𝑛
}
𝑛∈N) is

singleton.

Proof. In view of the definition of Bregman asymptotic
radius, we may assume that {𝑥

𝑛
}
𝑛∈N converges weakly to 𝑧 in

𝐶. By Lemma 3, we conclude that 𝐵𝐴(𝐶, {𝑥
𝑛
}
𝑛∈N) = {𝑧}.

Lemma 10 (see [23]). Let𝐶 be a nonempty, closed, and convex
subset of a reflexive Banach space 𝐸. Let 𝑔 : 𝐸 → R be strictly
convex, continuous, strongly coercive, Gâteaux differentiable,
and locally bounded on𝐸. Let𝑇 : 𝐶 → 𝐸 be a Bregman quasi-
nonexpansive mapping. Then 𝐹(𝑇) is closed and convex.

3. Weak Convergence Theorems for Bregman
Relatively Nonexpansive Mappings

In this section, we prove weak convergence theorems con-
cerning Bregman relatively nonexpansive mappings in a
reflexive Banach space. We propose the following Bregman
Mann’s type iteration.

Let 𝐸 be a reflexive Banach space and let 𝑔 : 𝐸 → R be a
strictly convex and Gâteaux differentiable function. Let 𝐶 be
a nonempty, closed, and convex subset of 𝐸. Let 𝑇 : 𝐶 → 𝐶

be a Bregman relatively nonexpansive mapping. Let {𝑥
𝑛
}
𝑛∈N

be a sequence defined by

𝑥
𝑛+1

= proj𝑔
𝐶
(∇𝑔
∗

[𝛾
𝑛
∇𝑔 (𝑥

𝑛
) + (1 − 𝛾

𝑛
) ∇𝑔 (𝑇𝑥

𝑛
)]) ,

(49)

where {𝛾
𝑛
}
𝑛∈N is an arbitrary sequence in [0, 1].

Lemma 11. Let 𝐶 be a nonempty, closed, and convex subset
of a reflexive Banach space 𝐸. Let 𝑔 : 𝐸 → R be a strictly
convex and Gâteaux differentiable function. Let 𝑇 : 𝐶 → 𝐶

be a Bregman quasi-nonexpansive mapping with a nonempty
fixed point set 𝐹(𝑇).Let {𝑥

𝑛
}
𝑛∈N be a sequence defined by (49)



Journal of Applied Mathematics 7

such that {𝛾
𝑛
}
𝑛∈N is an arbitrary sequence in [0, 1]. Then the

following assertions hold:

(1) 𝐷
𝑔
(𝑧, 𝑥
𝑛+1
) ≤ 𝐷

𝑔
(𝑧, 𝑥
𝑛
) for all 𝑧 in 𝐹(𝑇) and 𝑛 =

1, 2, . . .;

(2) lim
𝑛→∞

𝐷
𝑔
(𝑧, 𝑥
𝑛
) exists for any 𝑧 in 𝐹(𝑇).

Proof. Let 𝑧 ∈ 𝐹(𝑇). In view of (49), we have

𝐷
𝑔
(𝑧, 𝑥
𝑛+1
)

= 𝐷
𝑔
(𝑧, proj𝑔

𝐶
(∇𝑔
∗

[𝛾
𝑛
∇𝑔 (𝑥

𝑛
) + (1 − 𝛾

𝑛
) ∇𝑔 (𝑇𝑥

𝑛
)]))

= 𝐷
𝑔
(𝑧, ∇𝑔

∗

[𝛾
𝑛
∇𝑔 (𝑥

𝑛
) + (1 − 𝛾

𝑛
) ∇𝑔 (𝑇𝑥

𝑛
)])

= 𝑉 (𝑧, ∇𝛾
𝑛
∇𝑔 (𝑥

𝑛
) + (1 − 𝛾

𝑛
) ∇𝑔 (𝑇𝑥

𝑛
))

≤ 𝛾
𝑛
𝑉 (𝑧, ∇𝑔 (𝑥

𝑛
)) + (1 − 𝛾

𝑛
) 𝑉 (𝑧, ∇𝑔 (𝑇𝑥

𝑛
))

= 𝛾
𝑛
𝐷
𝑔
(𝑧, 𝑥
𝑛
) + (1 − 𝛾

𝑛
)𝐷
𝑔
(𝑧, 𝑇𝑥

𝑛
)

≤ 𝛾
𝑛
𝐷
𝑔
(𝑧, 𝑥
𝑛
) + (1 − 𝛾

𝑛
)𝐷
𝑔
(𝑧, 𝑥
𝑛
)

= 𝐷
𝑔
(𝑧, 𝑥
𝑛
) .

(50)

This implies that {𝐷
𝑔
(𝑧, 𝑥
𝑛
)}
𝑛∈N is a bounded andnonincreas-

ing sequence for all 𝑧 in𝐹(𝑇).Thuswehave lim
𝑛→∞

𝐷
𝑔
(𝑧, 𝑥
𝑛
)

that exists for any 𝑧 in 𝐹(𝑇).

Theorem 12. Let 𝐶 be a nonempty, closed, and convex subset
of a reflexive Banach space 𝐸. Let 𝑔 : 𝐸 → R be a strongly
coercive Bregman function which is locally bounded, locally
uniformly convex, and locally uniformly smooth on 𝐸. Let 𝑇 :

𝐶 → 𝐶 be a Bregman relatively nonexpansive mapping. Let
{𝛾
𝑛
}
𝑛∈N be a sequence in [0, 1] satisfying the control condition

∞

∑

𝑛=1

𝛾
𝑛
(1 − 𝛾

𝑛
) = +∞. (51)

Let {𝑥
𝑛
}
𝑛∈N be a sequence generated by the algorithm (49).Then

{𝑥
𝑛
}
𝑛∈N converges weakly to a fixed point of 𝑇.

Proof. Theboundedness of the sequence {𝑥
𝑛
}
𝑛∈N follows from

Lemma 11 and Definition 4. Since 𝑇 is a Bregman quasi-
nonexpansive mapping, for any 𝑞 in 𝐹(𝑇), we have

𝐷
𝑔
(𝑞, 𝑇𝑥

𝑛
) ≤ 𝐷

𝑔
(𝑞, 𝑥
𝑛
) , ∀𝑛 ∈ N. (52)

This, together with Definition 4 and the boundedness of
{𝑥
𝑛
}
𝑛∈N, implies that {𝑇𝑥

𝑛
}
𝑛∈N is bounded. The function 𝑔 is

bounded on bounded subsets of 𝐸 and therefore ∇𝑔 is also
bounded on bounded subsets of𝐸∗ (see, e.g., [16, Proposition
1.1.11] for more details). This implies that the sequences
{∇𝑔(𝑥

𝑛
)}
𝑛∈N and {∇𝑔(𝑇𝑥

𝑛
)}
𝑛∈N are bounded in 𝐸∗.

In view of Proposition 7, we have that dom𝑔
∗

= 𝐸
∗ and

𝑔
∗ is strongly coercive and uniformly convex on bounded

subsets of 𝐸∗. Let 𝑠
2
= sup{‖∇𝑔(𝑥

𝑛
)‖, ‖∇𝑔(𝑇𝑥

𝑛
)‖ : 𝑛 ∈ N} <

∞ and let 𝜌∗
𝑠2
: 𝐸
∗

→ R be the gauge of uniform convexity
of the conjugate function 𝑔∗.

Claim. For any 𝑝 in 𝐹(𝑇) and 𝑛 in N,

𝐷
𝑔
(𝑝, 𝑥
𝑛+1
) ≤ 𝐷

𝑔
(𝑝, 𝑥
𝑛
) − 𝛾
𝑛
(1 − 𝛾

𝑛
) 𝜌
∗

𝑠2

× (
∇𝑔 (𝑥𝑛) − ∇𝑔 (𝑇𝑥𝑛)

) .

(53)

Let 𝑝 ∈ 𝐹(𝑇). For each 𝑛 in N, it follows from the definition
of Bregman distance (2), Lemma 8, (32), and (49) that

𝐷
𝑔
(𝑝, 𝑥
𝑛+1
)

= 𝑔 (𝑝) − 𝑔 (𝑥
𝑛+1
) − ⟨𝑝 − 𝑥

𝑛+1
, ∇𝑔 (𝑥

𝑛+1
)⟩

= 𝑔 (𝑝) + 𝑔
∗

(∇𝑔 (𝑥
𝑛+1
)) − ⟨𝑥

𝑛+1
, ∇𝑔 (𝑥

𝑛+1
)⟩

− ⟨𝑝, ∇𝑔 (𝑥
𝑛+1
)⟩ + ⟨𝑥

𝑛+1
, ∇𝑔 (𝑥

𝑛+1
)⟩

= 𝑔 (𝑝) + 𝑔
∗

((1 − 𝛾
𝑛
) ∇𝑔 (𝑥

𝑛
) + 𝛾
𝑛
∇𝑔 (𝑇𝑥

𝑛
))

− ⟨𝑝, (1 − 𝛾
𝑛
) ∇𝑔 (𝑥

𝑛
) + 𝛾
𝑛
∇𝑔 (𝑇𝑥

𝑛
)⟩

≤ (1 − 𝛾
𝑛
) 𝑔 (𝑝) + 𝛾

𝑛
𝑔 (𝑝) + (1 − 𝛾

𝑛
) 𝑔
∗

(∇𝑔 (𝑥
𝑛
))

+ 𝛾
𝑛
𝑔
∗

(∇𝑔 (𝑇𝑥
𝑛
)) − 𝛾
𝑛
(1 − 𝛾

𝑛
) 𝜌
∗

𝑠2

× (
∇𝑔 (𝑥𝑛) − ∇𝑔 (𝑇𝑥𝑛)

)

− (1 − 𝛾
𝑛
) ⟨𝑝, ∇𝑔 (𝑥

𝑛
)⟩ − 𝛾

𝑛
⟨𝑝, ∇𝑔 (𝑇𝑥

𝑛
)⟩

= (1 − 𝛾
𝑛
) [𝑔 (𝑝) + 𝑔

∗

(∇𝑔 (𝑥
𝑛
)) − ⟨𝑝, ∇𝑔 (𝑥

𝑛
)⟩]

+ 𝛾
𝑛
[𝑔 (𝑝) + 𝑔

∗

(∇𝑔 (𝑇𝑥
𝑛
)) − ⟨𝑝, ∇𝑔 (𝑇𝑥

𝑛
)⟩]

− 𝛾
𝑛
(1 − 𝛾

𝑛
) 𝜌
∗

𝑠2
(
∇𝑔 (𝑥𝑛) − ∇𝑔 (𝑇𝑥𝑛)

)

= (1 − 𝛾
𝑛
) [𝑔 (𝑝) − 𝑔 (𝑥

𝑛
) + ⟨𝑥

𝑛
, ∇𝑔 (𝑥

𝑛
)⟩

− ⟨𝑝, ∇𝑔 (𝑥
𝑛
)⟩]

+ 𝛾
𝑛
[𝑔 (𝑝) − 𝑔 (𝑇𝑥

𝑛
) + ⟨𝑇𝑥

𝑛
, ∇𝑔 (𝑇𝑥

𝑛
)⟩

− ⟨𝑝, ∇𝑔 (𝑇𝑥
𝑛
)⟩]

− 𝛾
𝑛
(1 − 𝛾

𝑛
) 𝜌
∗

𝑠2
(
∇𝑔 (𝑥𝑛) − ∇𝑔 (𝑇𝑥𝑛)

)

= (1 − 𝛾
𝑛
)𝐷 (𝑝, 𝑥

𝑛
) + 𝛾
𝑛
𝐷(𝑝, 𝑇𝑥

𝑛
)

− 𝛾
𝑛
(1 − 𝛾

𝑛
) 𝜌
∗

𝑠2
(
∇𝑔 (𝑥𝑛) − ∇𝑔 (𝑇𝑥𝑛)

)

≤ (1 − 𝛾
𝑛
)𝐷 (𝑝, 𝑥

𝑛
) + 𝛾
𝑛
𝐷(𝑝, 𝑥

𝑛
)

− 𝛾
𝑛
(1 − 𝛾

𝑛
) 𝜌
∗

𝑠2
(
∇𝑔 (𝑥𝑛) − ∇𝑔 (𝑇𝑥𝑛)

)

= 𝐷 (𝑝, 𝑥
𝑛
) − 𝛾
𝑛
(1 − 𝛾

𝑛
) 𝜌
∗

𝑠2
(
∇𝑔 (𝑥𝑛) − ∇𝑔 (𝑇𝑥𝑛)

) .

(54)

Thus we have

𝛾
𝑛
(1 − 𝛾

𝑛
) 𝜌
∗

𝑠2
(
∇𝑔 (𝑥𝑛) − ∇𝑔 (𝑇𝑛𝑥𝑛)

)

≤ 𝐷
𝑔
(𝑝, 𝑥
𝑛
) − 𝐷
𝑔
(𝑝, 𝑥
𝑛+1
) .

(55)
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Since {𝐷
𝑔
(𝑝, 𝑥
𝑛
)}
𝑛∈N converges, together with the control

condition (60), we have

lim inf
𝑛→∞

𝜌
∗

𝑠2
(
∇𝑔 (𝑥𝑛) − ∇𝑔 (𝑇𝑥𝑛)

) = 0. (56)

Therefore, from the property of 𝜌∗
𝑠2
we deduce that

lim inf
𝑛→∞

∇𝑔 (𝑥𝑛) − ∇𝑔 (𝑇𝑥𝑛)
 = 0. (57)

Since ∇𝑔
∗ is uniformly norm-to-norm continuous on

bounded subsets of 𝐸∗ (see, e.g., [18]), we arrive at

lim inf
𝑛→∞

𝑥𝑛 − 𝑇𝑥𝑛
 = 0. (58)

Since 𝐸 is reflexive, then there exists a subsequence {𝑥
𝑛𝑖
}
𝑖∈N

of {𝑥
𝑛
}
𝑛∈N such that 𝑥

𝑛𝑖
⇀ 𝑝 ∈ 𝐶 as 𝑖 → ∞. Since 𝑇 is

a Bregman relatively nonexpansive mapping, we deduce that
𝑝 ∈ 𝐹(𝑇).We claim that𝑥

𝑛
⇀ 𝑝 as 𝑛 → ∞. If not, then there

exists a subsequence {𝑥
𝑛𝑗
}
𝑗∈N of {𝑥

𝑛
}
𝑛∈N such that {𝑥

𝑛𝑗
}
𝑗∈N

converges weakly to some 𝑞 in 𝐶 with 𝑝 ̸= 𝑞. This implies that
𝑞 ∈ 𝐹(𝑇). By Lemma 11, lim

𝑛→∞
𝐷
𝑔
(𝑧, 𝑥
𝑛
) exists for all 𝑧 in

𝐹(𝑇). By the BregmanOpial-like property of𝐸, we obtain that

lim
𝑛→∞

𝐷
𝑔
(𝑝, 𝑥
𝑛
) = lim
𝑖→∞

𝐷
𝑔
(𝑝, 𝑥
𝑛𝑖
) < lim
𝑖→∞

𝐷
𝑔
(𝑞, 𝑥
𝑛𝑖
)

= lim
𝑛→∞

𝐷
𝑔
(𝑞, 𝑥
𝑛
) = lim
𝑗→∞

𝐷
𝑔
(𝑞, 𝑥
𝑛𝑗
)

< lim
𝑗→∞

𝐷
𝑔
(𝑝, 𝑥
𝑛𝑗
) = lim
𝑛→∞

𝐷
𝑔
(𝑝, 𝑥
𝑛
) .

(59)

This is a contradiction. Thus we have 𝑝 = 𝑞, and the desired
assertion follows.

Corollary 13. Let 𝐸 be a reflexive Banach space and let
𝑔 : 𝐸 → R be a strongly coercive Bregman function
which is locally bounded, locally uniformly convex, and locally
uniformly smooth on 𝐸. Let 𝑇 : 𝐸 → 𝐸 be a Bregman
relatively nonexpansive mapping. Let {𝛾

𝑛
}
𝑛∈N be a sequence in

[0, 1] satisfying the control condition

∞

∑

𝑛=1

𝛾
𝑛
(1 − 𝛾

𝑛
) = +∞. (60)

Let {𝑥
𝑛
}
𝑛∈N be a sequence generated by

𝑥
𝑛+1

= ∇𝑔
∗

[𝛾
𝑛
∇𝑔 (𝑥

𝑛
) + (1 − 𝛾

𝑛
) ∇𝑔 (𝑇𝑥

𝑛
)] , (61)

where ∇𝑔 is the right-hand derivative of 𝑔. Then {𝑥
𝑛
}
𝑛∈N

converges weakly to a fixed point of 𝑇.

4. Applications (Approximating Zeros of
Maximal Monotone Operators)

As an application of our main result, we include a concrete
example in support of Theorem 12. Using Theorem 12, we
obtain the following strong convergence theorem for maxi-
mal monotone operators.

Theorem 14. Let 𝐸 be a reflexive Banach space and 𝑔 : 𝐸 →

R a strongly coercive Bregman function which is bounded on
bounded subsets and uniformly convex and uniformly smooth
on bounded subsets of 𝐸. Let 𝐴 be a maximal monotone
operator from 𝐸 to 𝐸∗ such that 𝑍 := 𝐴

−1

(0) ̸=Ø. Let 𝑟 > 0

and Res 𝑔
𝑟𝐴

= (∇𝑔 + 𝑟𝐴)
−1

∇𝑔 be the 𝑔-resolvent of 𝐴. Let
{𝛾
𝑛
}
𝑛∈N be an arbitrary sequence in [0, 1] which satisfies the

control condition
∞

∑

𝑛=1

𝛾
𝑛
(1 − 𝛾

𝑛
) = +∞. (62)

Let {𝑥
𝑛
}
𝑛∈N be a sequence generated by

𝑥
𝑛+1

= ∇𝑔
∗

[𝛾
𝑛
∇𝑔 (𝑥

𝑛
) + (1 − 𝛾

𝑛
) ∇𝑔 (Res𝑔

𝑟𝐴
𝑥
𝑛
)] , (63)

where ∇𝑔 is the right-hand derivative of 𝑔. Then the sequence
{𝑥
𝑛
}
𝑛∈N defined in (63) converges weakly to an element in 𝑍 as

𝑛 → ∞.

Proof. Letting 𝑇 = Res𝑔
𝑟𝐴
, in Theorem 12, from (49),

we obtain (63). We need only to show that 𝑇 satisfies all
the conditions in Theorem 12. In view of [8, Lemma 3.2],
we conclude that 𝑇 is a Bregman relatively nonexpansive
mapping. Thus, we obtain

𝐷
𝑔
(𝑝,Res𝑔

𝑟𝐴
V) ≤ 𝐷

𝑔
(𝑝, V) , ∀V ∈ 𝐸, 𝑝 ∈ 𝐹 (Res𝑔

𝑟𝐴
) ,

𝐹 (Res𝑔
𝑟𝐴
) = 𝐹 (Res𝑔

𝑟𝐴
) = 𝐴
−1

(0) ,

(64)

where 𝐹(Res𝑔
𝑟𝐴
) is the set of all strong asymptotic fixed points

of Res𝑔
𝑟𝐴
. Therefore, in view of Theorem 12, we have the

conclusions of Theorem 14. This completes the proof.
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