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We obtain the existence of a global weak solution to a fractional nonlinear Schrödinger equation by the Galerkin method. Its
uniqueness is also discussed. In our proof, we use harmonic analysis techniques and compactness arguments.

1. Introduction

This paper is concerned with the following fractional partial
differential equations in the 𝑛 dimensional torus T𝑛:

𝜕𝑢

𝜕𝑡

− 𝑖Λ
2𝛼

𝑢 + |𝑢|
𝜌

𝑢 = 𝑓, (1)

where 𝛼 ∈ (0, 1) and 𝜌 ∈ (0, ∞) are real numbers and 𝑖 =

√−1.𝑓(𝑥, 𝑡) is given and 𝑢(𝑥, 𝑡) is a complex-valued function.
Here,Λ2𝛼 = (−Δ)

𝛼, the fractional Laplacian with respect to 𝑥.
The fractional Laplacian operator appears in a wide class

of physical systems and engineering problems, including
Lévy flights, viscoelasticity, electrochemistry, control, porous
media, electromagnetic, stochastic interfaces, and anoma-
lous diffusion problems, and attracts the interests of many
mathematicians; see [1–5], for example.The quasigeostrophic
equation with fractional dissipation has been also exten-
sively studied; see Constantin et al. [6–10], for example.
In mathematical physics, the fractional Laplacian is often
applied to describe many complicated phenomena via partial
differential equations.

The Schrödinger equation is a fundamental equation in
physics, which describes nonrelativistic quantummechanical
behavior. It is well known that Feynman and Hibbs [11] used
path integrals over Brownian paths to derive the standard
Schrödinger equation (𝛼 = 1 in (1)). Recently, Laskin [12, 13]

showed that the path integral over the Lévy-like quantum
mechanical paths allows us to generalize the classical quan-
tum mechanics. Namely, if the path integral over Brownian
trajectories leads to the well-known Schrödinger equation,
then the path integral over Lévy trajectories leads to the
fractional Schrödinger equation. The fractional Schrödinger
equation includes the space derivative of order 2𝛼 instead of
second-order space derivative in the standard Schrödinger
equation. Laskin [14] showed the hermiticity of the fractional
Hamilton operator and established the parity conservation
law. Guo et al. [15] obtained the existence of a unique global
smooth solution to the periodical boundary value problem
for the fractional nonlinear Schrödinger equation.

Interestingly enough, there are also some other models
involving the damping term |𝑢|

𝜌

𝑢; see [16, 17].
In studying (1), there exist some essential difficulties.

First, since the fractional differential operator is defined by
Fourier series and is nonlocal except when 𝛼 ∈ N, which
means that Λ

2𝛼

𝑢(𝑥) depends not only on 𝑢(𝑦) for 𝑦 near 𝑥,
but also on 𝑢(𝑦) for all 𝑦. Moreover, integration by part for
nonlinear term is not valid.These bring new difficulties when
doing energy estimate. And thus new harmonic analysis
methods must be introduced to overcome these difficulties.
Second, there are some difficulties in the convergence of
the approximate solutions because of the nonlinear term. A
compactness device should be given to treat this case.
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We now collect the notations in this paper.The fractional
Laplacian Λ

2𝛼

𝑓, for 𝛼 ∈ R, can be defined as

̂
Λ
2𝛼

𝑓
𝑘

= |𝑘|
2𝛼 ̂

𝑓
𝑘
., 𝑘 ∈ Z

𝑛

, (2)

where ̂
𝑓
𝑘
is the Fourier coefficients of 𝑓:

̂
𝑓
𝑘

=

1

(2𝜋)
𝑛

∫

T𝑛
𝑓 (𝑥) 𝑒

−𝑖𝑘⋅𝑥

𝑑𝑥, 𝑘 ∈ Z
𝑛

. (3)

We shall also invoke the notion of inhomogeneous
Sobolev space 𝐻̇

𝑠

(T𝑛) (𝑠 ∈ R), which comprises all tem-
pered distributions 𝑓 on R𝑛 such that

󵄩
󵄩
󵄩
󵄩
𝑓

󵄩
󵄩
󵄩
󵄩𝐻
𝑠
(T𝑛)

= ( ∑

𝑘∈Z𝑛\{0}

(1 + |𝑘|
2

)

𝑠󵄨
󵄨
󵄨
󵄨
𝑢̂
𝑘

󵄨
󵄨
󵄨
󵄨

2

)

1/2

. (4)

We now end this introduction by outlining the rest of this
paper. In Section 2, we prove the existence of a weak solution
to (1); seeTheorem 8. The uniqueness of such weak solutions
is discussed in Section 3; see Theorem 9.

2. Existence of a Weak Solution

In this section, we prove the existence of a weak solution to
the following system:

𝜕𝑢

𝜕𝑡

− 𝑖Λ
2𝛼

𝑢 + |𝑢|
𝜌

𝑢 = 𝑓, (𝑥, 𝑡) ∈ T
𝑛

× (0, 𝑇) (5)

𝑢 (0) = 𝑢
0
, 𝑥 ∈ T

𝑛

. (6)

Let us first recall and prove some fundamental Lemmas.

Lemma 1 (see [18]). Let 𝑋 be a Banach space; consider

𝑓 ∈ 𝐿
𝑝

(0, 𝑇; 𝑋) ,

𝜕𝑓

𝜕𝑡

∈ 𝐿
𝑝

(0, 𝑇;X) , (7)

for some 1 ≤ 𝑝 ≤ ∞; then 𝑓 is continuous map from [0, 𝑇] to
𝑋.

Lemma 2 (see [18]). LetD be a bounded domain inR𝑛 ×R
+
,

and 𝑔
𝑘
, 𝑔 are in 𝐿

𝑞

(D)(1 < 𝑞 < ∞) with
󵄩
󵄩
󵄩
󵄩
𝑔
𝑘

󵄩
󵄩
󵄩
󵄩𝐿
𝑞
(D)

≤ 𝐶, 𝑔
𝑘

󳨀→ 𝑔, a.e. D; (8)

then 𝑔
𝑘

→ 𝑔 weakly in 𝐿
𝑞

(D).

Lemma 3 (see [18]). Let 𝑇 > 0, 1 < 𝑝
1
, 𝑝
2

< ∞, and 𝐵
0
, 𝐵, 𝐵
1

be three Banach spaces satisfying 𝐵
0

󳨅→ 𝐵 󳨅→ 𝐵
1
, where 𝐵

0
, 𝐵
1

are reflexive and the embedding 𝐵
0

󳨅→ 𝐵 is compact. Endow
the space

𝑊 = {𝑤; 𝑤 ∈ 𝐿
𝑝
0

(0, 𝑇; 𝐵
0
) ,

𝜕𝑤

𝜕𝑡

∈ 𝐿
𝑝
1

(0, 𝑇; 𝐵
1
)} (9)

with the norm

‖𝑤‖
𝑊

= ‖𝑤‖
𝐿
𝑝
0 (0,𝑇;𝐵

0
)
+

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕𝑤

𝜕𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝐿
𝑝
1 (0,𝑇;𝐵

1
)

, ∀𝑤 ∈ 𝑊. (10)

Then the embedding 𝑊 󳨅→ 𝐿
𝑝
0
(0, 𝑇; 𝐵) is compact.

In the following developments, we modify the methods
in [19].

Proposition 4. Let 0 < 𝛼 < 1, 𝑥 ∈ T𝑛 = R𝑛/Z𝑛, and 𝑢 ∈

S(R𝑛). Then

Λ
2𝛼

𝑢 (𝑥) = 𝐶
𝛼

∑

]∈Z𝑛
𝑃𝑉 ∫

T𝑛

𝑢 (𝑥) − 𝑢 (𝑦)

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦 − ]󵄨

󵄨
󵄨
󵄨

𝑛+2𝛼
d𝑦, (11)

with 𝐶
𝛼

> 0.

Proof. First, we have

Λ
2𝛼

𝑢 (𝑥) = ∑

|]|>0
|]|
2𝛼

𝑢̂ (]) 𝑒
𝑖]⋅𝑥

= − ∑

|]|>0
|]|
2𝛼−2

Δ̂𝑢 (]) 𝑒
𝑖]⋅𝑥

.

(12)

Let Φ
𝜀
(𝑥) = (|𝑥|

2𝛼−2

)
𝜀

∗ 𝜑
𝜀
(𝑥), where (|𝑥|

2𝛼−2

)
𝜀

= |𝑥|
2𝛼−2

⋅

𝜒(|𝑥|/𝜀) with 𝜒 ∈ 𝐶
∞

([0, ∞)),

𝜒 (𝑥) = {

0, if |𝑥| ≤ 1,

1, if |𝑥| ≥ 2,

(13)

and 𝜑
𝜀
(𝑥) = 𝜀

−𝑛

𝜑(𝑥/𝜀) is a standard approximation of
identity, 0 ≤ 𝜑 ∈ 𝐶

∞

(R𝑛), supp 𝜑 ⊂ 𝐵
1
, and ∫ 𝜑 = 1. Now we

can write

Λ
2𝛼

𝑢 (𝑥) = − lim
𝜀→0

∑

]∈Z𝑛
Φ
𝜀
(]) Δ̂𝑢 (]) 𝑒

𝑖]⋅𝑥

= − lim
𝜀→0

( ∑

]∈Z𝑛
Φ
𝜀
(]) 𝑒
𝑖]⋅𝑥

) ∗ ( ∑

]∈Z𝑛
Δ̂𝑢 (]) 𝑒

𝑖]⋅𝑥
) .

(14)

Poisson’s summation then yields

Λ
2𝛼

𝑢 (𝑥) = − lim
𝜀→0

( ∑

]∈Z𝑛
Φ̂
𝜀
(𝑥 − ])) ∗ Δ𝑢 (𝑥)

= lim
𝜀→0

∑

]∈Z𝑛
∫

T𝑛
Φ̂
𝜀
(𝑥 − 𝑦 − ]) Δ [𝑢 (𝑥) − 𝑢 (𝑦)] d𝑦

= lim
𝜀→0

∑

]∈Z𝑛
∫

T𝑛
Δ (Φ̂
𝜀
) (𝑥 − 𝑦 − ]) [𝑢 (𝑥) − 𝑢 (𝑦)] d𝑦.

(15)

Due to the fact that

Φ̂
𝜀
(𝜂) =

̂
(|𝑥|
2𝛼−2

)
𝜀

⋅ 𝜑
𝜀
(𝜂) =

̂
(|𝑥|
2𝛼−2

)
𝜀

⋅ 𝜑 (𝜀𝜂) ,

ΔΦ̂
𝜀
(𝜂) = Δ (

̂
(|𝑥|
2𝛼−2

)
𝜀

) (𝜂) ⋅ 𝜑 (𝜀𝜂) + 𝑂 (𝜀) ,
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̂
(|𝑥|
2𝛼−2

)
𝜀

(𝑦) =

𝑐
𝛼

󵄨
󵄨
󵄨
󵄨
𝑦

󵄨
󵄨
󵄨
󵄨

𝑛+2𝛼−2

− ∫

T𝑛
𝑒
−𝑖𝑦⋅𝑥

|𝑥|
2𝛼−2

(1 − 𝜒 (

|𝑥|

𝜀

)) d𝑥,

Δ
̂

(|𝑥|
2𝛼−2

)
𝜀

(𝑦) =

𝑐
𝛼

󵄨
󵄨
󵄨
󵄨
𝑦

󵄨
󵄨
󵄨
󵄨

𝑛+2𝛼

− ∫

T𝑛
𝑒
−𝑖𝑦⋅𝑥

|𝑥|
2𝛼

(1 − 𝜒 (

|𝑥|

𝜀

)) d𝑥,

(16)
we obtain

∑

]∈Z𝑛
Δ (Φ̂
𝜀
) (𝑦 − ]) = 𝑐

𝛼
∑

]∈Z𝑛

1

󵄨
󵄨
󵄨
󵄨
𝑦 − ]󵄨

󵄨
󵄨
󵄨

𝑛+2𝛼

+ 𝑂 ( ∑

]∈Z𝑛

1

󵄨
󵄨
󵄨
󵄨
𝑦 − ]󵄨

󵄨
󵄨
󵄨

𝑛+𝛿

𝑂 (𝜀
𝛿

)) ,

(17)

for some 𝛿 > 0.
Therefore,

Λ
2𝛼

𝑢 (𝑥)

= lim
𝜀→0

∑

]∈Z𝑛
∫

T𝑛
Δ (Φ̂
𝜀
) (𝑥 − 𝑦 − ]) [𝑢 (𝑥) − 𝑢 (𝑦)] d𝑦

= 𝐶
𝛼

∑

]∈Z𝑛
𝑃𝑉 ∫

T𝑛

𝑢 (𝑥) − 𝑢 (𝑦)

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦 − ]󵄨

󵄨
󵄨
󵄨

𝑛+2𝛼
d𝑦.

(18)

Lemma 5. Let T𝑛 = R𝑛/Z𝑛, and let 𝑢 be a complex-valued
function satisfying 𝑢, 𝑢

2𝛼

∈ 𝐿
𝑝

(R𝑛) with 0 < 𝛼 < 1 and 1 ≤

𝑝 < ∞. Then

Re(∫

T𝑛
|𝑢|
𝑝−2

𝑢Λ
2𝛼

𝑢 d𝑥) ≥ 0. (19)

Proof. For 0 < 𝛼 < 1, by invoking Proposition 4 and
changing of variables, we have

Re (∫

T𝑛
|𝑢|
𝑝−2

𝑢Λ
2𝛼

𝑢 d𝑥)

= 𝐶
𝛼
lim
𝜀→0

Re(∬

|𝑦−𝑥|≥𝜀

|𝑢 (𝑥)|
𝑝−2

𝑢 (𝑥)

𝑢 (𝑥) − 𝑢 (𝑦)

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛+2𝛼
d𝑦 d𝑥)

= −𝐶
𝛼
lim
𝜀→0

Re(∫

|𝑦−𝑥|≥𝜀

󵄨
󵄨
󵄨
󵄨
𝑢 (𝑦)

󵄨
󵄨
󵄨
󵄨

𝑝−2

𝑢 (𝑦)

𝑢 (𝑥) − 𝑢 (𝑦)

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛+2𝛼
d𝑦 d𝑥)

=

𝐶
𝛼

2

lim
𝜀→0

Re(∬

|𝑦−𝑥|≥𝜀

[|𝑢 (𝑥)|
𝑝−2

𝑢 (𝑥) −
󵄨
󵄨
󵄨
󵄨
𝑢 (𝑦)

󵄨
󵄨
󵄨
󵄨

𝑝−2

𝑢 (𝑦)]

×

𝑢 (𝑥) − 𝑢 (𝑦)

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

𝑛+2𝛼
d𝑦 d𝑥)

≥ 0.

(20)

In the following Lemma, we give a characterization of
the eigenvalues and eigenvectors of the pseudodifferential
operators Λ

2𝛼.

Lemma 6. Let T𝑛 = R𝑛/Z𝑛. Then there exist a sequence of
real numbers {𝜆

𝑗
}
∞

𝑗=1

and a sequence of periodical functions
{𝜔
𝑗
}
∞

𝑗=1

⊂ 𝐻
2𝛼

(T𝑛), such that

Λ
2𝛼

𝜔
𝑗

= 𝜆
𝑗
𝜔
𝑗
, 𝑗 = 1, 2, 3, . . . . (21)

Moreover, {𝜔
𝑗
}
∞

𝑗=1

is a basis of 𝐻
2𝛼

(T𝑛) satisfying

(𝜔
𝑗
, 𝜔
𝑘
) ≡ ∫

T𝑛
𝜔
𝑗
𝜔
𝑘
d𝑥 = 𝛿

𝑗𝑘
, (22)

(Λ
2𝛼

𝜔
𝑗
, 𝜔
𝑘
) = 𝜆
𝑗
𝛿
𝑗𝑘

, (23)

for 𝑗, 𝑘 = 1, 2, 3, . . ..

Notice that the lemma is a direct consequence of elliptic
regularity and functional analysis; see [20], for example.

Let us now give the weak formulation of (5)-(6).

Definition 7. Let 𝑇 > 0, 𝑓 ∈ 𝐿
2

(0, 𝑇; 𝐻
𝛼

(T𝑛)), 𝜕𝑓/𝜕𝑡 ∈

𝐿
2

(0, 𝑇; 𝐿
2

(T𝑛)), and 𝑢
0

∈ 𝐻
𝛼

(T𝑛)∩𝐿
2(𝜌+1)

(T𝑛). Ameasurable
complex-valued function 𝑢(𝑥, 𝑡) is said to be a weak solution
to (5)-(6) on [0, 𝑇], provided the following:

(1) 𝑢 ∈ 𝐿
∞

(0, 𝑇; 𝐻
𝛼

(T𝑛)) ∩ 𝐿
𝑝

(0, 𝑇; 𝐿
𝑝

(T𝑛)) and 𝜕𝑢/𝜕𝑡 ∈

𝐿
∞

(0, 𝑇; 𝐿
2

(T𝑛));

(2) 𝑢 satisfies (5) in the sense of distributions;

(3) 𝑢(𝑥, 0) = 𝑢
0
(𝑥) a.e. T𝑛.

Here and hereafter, 𝑝 = 𝜌 + 2.

Now, we state our existence results in the following
theorem.

Theorem 8. Let 𝑇 > 0 be a given time, and

𝑢
0

∈ 𝐻
𝛼

(T
𝑛

) ∩ 𝐿
2(𝜌+1)

(T
𝑛

) ,

𝑓 ∈ 𝐿
2

(0, 𝑇; 𝐻
𝛼

(T
𝑛

)) ,

𝜕𝑓

𝜕𝑡

∈ 𝐿
2

(0, 𝑇; 𝐿
2

(T
𝑛

)) .

(24)

Then there exists at least one weak solution 𝑢 to (5)-(6) on
[0, 𝑇], taking 𝑢

0
as initial data.

Proof. We use Galerkin method.

Step 1. Construction of approximate solution.
Let {𝜔

𝑗
}
∞

𝑗=1

be given as in Lemma 6. We consider the
approximate solution which has the form

𝑢
𝑚

(𝑡) =

𝑚

∑

𝑗=1

𝑐
𝑗𝑚

(𝑡) 𝜔
𝑗
, (25)
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where 𝑐
𝑗𝑚

satisfy the following ordinary differential system:

(

𝜕𝑢
𝑚

𝜕𝑡

(𝑡) , 𝜔
𝑗
) − 𝑖 (Λ

2𝛼

𝑢
𝑚

(𝑡) , 𝜔
𝑗
)

+ (
󵄨
󵄨
󵄨
󵄨
𝑢
𝑚

(𝑡)
󵄨
󵄨
󵄨
󵄨

𝜌

𝑢
𝑚

(𝑡) , 𝜔
𝑗
)

= (𝑓 (𝑡) , 𝜔
𝑗
) , 1 ≤ 𝑗 ≤ 𝑚,

(26)

𝑢
𝑚

(0) = 𝑢
0𝑚

=

𝑚

∑

𝑗=1

𝛼
𝑗𝑚

𝜔
𝑗

󳨀→ 𝑢
0

in 𝐻
𝛼

(T
𝑛

) ∩ 𝐿
2(𝜌+1)

(T
𝑛

) ,

as 𝑚 󳨀→ ∞.

(27)

Here and hereafter, (𝑢, V) = ∫
T𝑛

𝑢V d𝑥 is the inner product in
𝐿
2

(T𝑛).
The system (26)-(27) is nonsingular because {𝜔

𝑗
} are

linear independent. Thus we may apply standard theory of
ordinary differential equations to obtain the existence of a
local solution to equations (26)-(27) on [0, 𝑡

𝑚
], for some 𝑡

𝑚
>

0. We shall then, in the next step, establish some a priori
estimates of the obtained solutions.This will ensure that 𝑡

𝑚
=

𝑇.

Step 2. A priori estimates.
By multiplying (26) by 𝑐

𝑗𝑚
(𝑡) and summing with 1 ≤ 𝑗 ≤

𝑚, we have

(

𝜕𝑢
𝑚

𝜕𝑡

(𝑡) , 𝑢
𝑚

(𝑡)) + 𝑖 (Λ
𝛼

𝑢
𝑚

(𝑡) , Λ
𝛼

𝑢
𝑚

(𝑡))

+ (
󵄨
󵄨
󵄨
󵄨
𝑢
𝑚

(𝑡)
󵄨
󵄨
󵄨
󵄨

𝜌

𝑢
𝑚

(𝑡) , 𝑢
𝑚

(𝑡)) = (𝑓 (𝑡) , 𝑢
𝑚

(𝑡)) .

(28)

Taking real part of (28) and invoking Hölder inequality then
yields

1

2

d
d𝑡

󵄩
󵄩
󵄩
󵄩
𝑢
𝑚

(𝑡)
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(T𝑛)

+ ∫

T𝑛

󵄨
󵄨
󵄨
󵄨
𝑢
𝑚

(𝑡)
󵄨
󵄨
󵄨
󵄨

𝑝d𝑥

= Re (𝑓 (𝑡) , 𝑢
𝑚

(𝑡))

≤
󵄩
󵄩
󵄩
󵄩
𝑢
𝑚

(𝑡)
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(T𝑛)

+
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑡)

󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(T𝑛)

.

(29)

By Gronwall’s inequality, we have

𝑢
𝑚
is bounded in 𝐿

∞

(0, 𝑇; 𝐿
2

(T
𝑛

)) , 𝐿
𝑝

(0, 𝑇; 𝐿
𝑝

(T
𝑛

)) .

(30)

Bymultiplying (26) by𝜆
𝑗
𝑐
𝑗𝑚

(𝑡), summingwith 1 ≤ 𝑗 ≤ 𝑚,
and noticing (23), we get

(

𝜕Λ
𝛼

𝑢
𝑚

𝜕𝑡

(𝑡) , Λ
𝛼

𝑢
𝑚

) − 𝑖

󵄩
󵄩
󵄩
󵄩
󵄩
Λ
2𝛼

𝑢
𝑚

(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(T𝑛)

+ (
󵄨
󵄨
󵄨
󵄨
𝑢
𝑚

(𝑡)
󵄨
󵄨
󵄨
󵄨

𝜌

𝑢
𝑚

(𝑡) , Λ
2𝛼

𝑢
𝑚

(𝑡)) = (Λ
𝛼

𝑓 (𝑡) , Λ
𝛼

𝑢
𝑚

(𝑡)) .

(31)

Thanks to Lemma 5, we may consider the real part of (31) to
obtain

1

2

d
d𝑡

󵄩
󵄩
󵄩
󵄩
Λ
𝛼

𝑢
𝑚

󵄩
󵄩
󵄩
󵄩𝐿
2
(T𝑛)

≤ Re (Λ
𝛼

𝑓 (𝑡) , Λ
𝛼

𝑢
𝑚

) . (32)

By Gronwall’s inequality again, we have

𝑢
𝑚
is bounded in 𝐿

∞

(0, 𝑇; 𝐻
𝛼

(T
𝑛

)) . (33)

By multiplying (26) by 𝑐
󸀠

𝑗𝑚
(𝑡), summing with 1 ≤ 𝑗 ≤ 𝑚,

and taking 𝑡 = 0, we have
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕𝑢
𝑚

𝜕𝑡

(0)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(T𝑛)

−

𝑖

2

d
d𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑡=0

󵄩
󵄩
󵄩
󵄩
Λ
𝛼

𝑢
𝑚

(𝑡)
󵄩
󵄩
󵄩
󵄩𝐿
2
(T𝑛)

+ (
󵄨
󵄨
󵄨
󵄨
𝑢
𝑚

(0)
󵄨
󵄨
󵄨
󵄨

𝜌

𝑢
𝑚

(0) ,

𝜕𝑢
𝑚

𝜕𝑡

(0)) = (𝑓 (0) ,

𝜕𝑢
𝑚

𝜕𝑡

(0)) .

(34)

Looking into the real part of (34), we see
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕𝑢
𝑚

𝜕𝑡

(0)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(T𝑛)

≤ (
󵄩
󵄩
󵄩
󵄩
𝑢
𝑚

(0)
󵄩
󵄩
󵄩
󵄩𝐿
2(𝜌+1)
(T𝑛)

+
󵄩
󵄩
󵄩
󵄩
𝑓 (0)

󵄩
󵄩
󵄩
󵄩𝐿
2
(T𝑛)

)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕𝑢
𝑚

𝜕𝑡

(0)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
(T𝑛)

.

(35)

Thus,
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕𝑢
𝑚

𝜕𝑡

(0)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
(T𝑛)

≤ 𝐶. (36)

Now we can obtain the estimate for 𝑢
󸀠

𝑚
(𝑡). By differenti-

ating (26) with respect to 𝑡, we get

(

𝜕
2

𝑢
𝑚

𝜕𝑡
2

(𝑡) , 𝜔
𝑗
) + 𝑖 (

𝜕Λ
2𝛼

𝑢
𝑚

𝜕𝑡

(𝑡) , 𝜔
𝑗
)

+ (

𝜕

𝜕𝑡

(
󵄨
󵄨
󵄨
󵄨
𝑢
𝑚

(𝑡)
󵄨
󵄨
󵄨
󵄨

𝜌

𝑢
𝑚

(𝑡)) , 𝜔
𝑗
)

= (

𝜕𝑓

𝜕𝑡

(𝑡) , 𝜔
𝑗
) , 1 ≤ 𝑗 ≤ 𝑚.

(37)

By multiplying (37) by 𝑐
󸀠

𝑗𝑚
(𝑡) and summing with 1 ≤ 𝑗 ≤ 𝑚,

we have
1

2

d
d𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕𝑢
𝑚

𝜕𝑡

(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(T𝑛)

−

𝑖

2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕Λ
𝛼

𝑢
𝑚

𝜕𝑡

(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2
(T𝑛)

+ (

𝜕

𝜕𝑡

(
󵄨
󵄨
󵄨
󵄨
𝑢
𝑚

(𝑡)
󵄨
󵄨
󵄨
󵄨

𝜌

𝑢
𝑚

(𝑡)) ,

𝜕𝑢
𝑚

𝜕𝑡

(𝑡)) = (

𝜕𝑓

𝜕𝑡

(𝑡) ,

𝜕𝑢
𝑚

𝜕𝑡

(𝑡)) .

(38)

Notice that

(

𝜕

𝜕𝑡

(
󵄨
󵄨
󵄨
󵄨
𝑢
𝑚

(𝑡)
󵄨
󵄨
󵄨
󵄨

𝜌

𝑢
𝑚

(𝑡)) ,

𝜕𝑢
𝑚

𝜕𝑡

(𝑡))

= ∫

T𝑛

󵄨
󵄨
󵄨
󵄨
𝑢
𝑚

(𝑡)
󵄨
󵄨
󵄨
󵄨

𝜌

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕𝑢
𝑚

𝜕𝑡

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

d𝑥

+

𝜌

2

∫

T𝑛

󵄨
󵄨
󵄨
󵄨
𝑢
𝑚

(𝑡)
󵄨
󵄨
󵄨
󵄨

𝜌−2

× (

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑢
𝑚

(𝑡)

𝜕𝑢
𝑚

𝜕𝑡

(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

+
󵄨
󵄨
󵄨
󵄨
𝑢
𝑚

(𝑡)
󵄨
󵄨
󵄨
󵄨

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜕𝑢
𝑚

𝜕𝑡

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

) d𝑥

≥ 0.

(39)
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Taking the real part of (38) then yields

d
d𝑡

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕𝑢
𝑚

𝜕𝑡

(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(T𝑛)

≤ 2Re(

𝜕𝑓

𝜕𝑡

(𝑡) ,

𝜕𝑢
𝑚

𝜕𝑡

(𝑡))

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕𝑓

𝜕𝑡

(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(T𝑛)

+

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕𝑢
𝑚

𝜕𝑡

(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

𝐿
2
(T𝑛)

.

(40)

By Gronwall’s inequality, we deduce

𝜕𝑢
𝑚

𝜕𝑡

is bounded in 𝐿
∞

(0, 𝑇; 𝐿
2

(T
𝑛

)) . (41)

Step 3. Convergence process.
By (30), (33), and (41), we have, up to a subsequence, still

denoted by 𝑢
𝑚
, that

𝑢
𝑚

⇀ 𝑢 weakly ∗ in 𝐿
∞

(0, 𝑇; 𝐻
𝛼

(T
𝑛

)) , as 𝑚 󳨀→ ∞,

(42)

𝑢
𝑚

⇀ 𝑢 weakly in 𝐿
𝑝

(0, 𝑇; 𝐿
𝑝

(T
𝑛

)) , as 𝑚 󳨀→ ∞, (43)

𝜕𝑢
𝑚

𝜕𝑡

⇀

𝜕𝑢

𝜕𝑡

weakly in 𝐿
∞

(0, 𝑇; 𝐿
2

(T
𝑛

)) , as 𝑚 󳨀→ ∞.

(44)

Thus by Lemma 3, we find

𝑢
𝑚

󳨀→ 𝑢 strongly in 𝐿
∞

(0, 𝑇; 𝐿
2

(T
𝑛

)) , a.e. T𝑛,

as 𝑚 󳨀→ ∞.

(45)

By (44), there exists a function 𝑤 = 𝑤(𝑥, 𝑡) such that
󵄨
󵄨
󵄨
󵄨
𝑢
𝑚

󵄨
󵄨
󵄨
󵄨

𝜌

𝑢
𝑚

⇀ 𝑤 (𝑥, 𝑡) weakly in 𝐿
𝑞

(0, 𝑇; 𝐿
𝑞

(T
𝑛

)) ,

as 𝑚 󳨀→ ∞,

(46)

with (1/𝑝) + (1/𝑞) = 1. By Lemma 2 and the fact that
󵄨
󵄨
󵄨
󵄨
𝑢
𝑚

󵄨
󵄨
󵄨
󵄨

𝜌

𝑢
𝑚

󳨀→ |𝑢|
𝜌

𝑢, a.e. T𝑛, (47)

we see

𝑤 = |𝑢|
𝜌

𝑢. (48)

Fix 𝑗; we now pass to limit 𝑚 → ∞ in (26) to deduce

(

𝜕𝑢

𝜕𝑡

(𝑡) , 𝜔
𝑗
) − 𝑖 (Λ

𝛼

𝑢 (𝑡) , Λ
𝛼

𝜔
𝑗
) + (|𝑢 (𝑡)|

𝜌

𝑢 (𝑡) , 𝜔
𝑗
)

= (𝑓 (𝑡) , 𝜔
𝑗
) .

(49)

A simple density argument then shows

(

𝜕𝑢

𝜕𝑡

(𝑡) , V) + 𝑖 (Λ
𝛼

𝑢 (𝑡) , Λ
𝛼V) + (|𝑢 (𝑡)|

𝜌

𝑢 (𝑡) , V)

= (𝑓 (𝑡) , V) ,

(50)

for all V ∈ 𝐻
𝛼

(T𝑛) ∩ 𝐿
𝑝

(T𝑛).
The proof of Theorem 8 is completed.

3. Uniqueness of Weak Solutions

In this section, we will discuss the uniqueness of weak
solutions of (5)-(6). More precisely, we have the following
theorem.

Theorem 9. Assume as in Theorem 8. Then there exists a
unique weak solution of (5)-(6).

Proof. Let 𝑢 and V be two weak solutions of (5)-(6), given in
Theorem 8, with the same datum. Then 𝑤 = 𝑢 − V satisfies

𝜕𝑤

𝜕𝑡

+ 𝑖Λ
2𝛼

𝑤 = |V|𝜌V − |𝑢|
𝜌

𝑢, (51)

𝑤 (0) = 0. (52)

Also, we have

𝑤 ∈ 𝐿
∞

(0, 𝑇; 𝐻
𝛼

(T
𝑛

)) ∩ 𝐿
𝑝

(0, 𝑇; 𝐿
𝑝

(T
𝑛

)) ,

𝜕𝑤

𝜕𝑡

∈ 𝐿
∞

(0, 𝑇; 𝐿
2

(T
𝑛

)) .

(53)

By taking the inner product of (51) with 𝑤 in 𝐿
2

(T𝑛), we
obtain

1

2

d
d𝑡

‖𝑤‖
2

𝐿
2
(T𝑛) − 𝑖‖𝑤‖

2

𝐻
𝛼
(T𝑛)

= ∫

T𝑛
(|V|𝜌V − |𝑢|

𝜌

𝑢) (𝑢 − V)d𝑥.

(54)

By taking the real part of (54) and noticing

Re (∫

T𝑛
(|V|𝜌V − |𝑢|

𝜌

𝑢) (𝑢 − V)d𝑥) ≤ 0, (55)

we have

‖𝑤‖
2

𝐿
2
(T𝑛) ≤ ‖𝑤 (0)‖

2

𝐿
2
(T𝑛) = 0. (56)

Thus 𝑤 = 0 and 𝑢 ≡ V a.e. in T𝑛.
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