
Research Article
A New Iterative Method for Finding Approximate Inverses of
Complex Matrices

M. Kafaei Razavi,1 A. Kerayechian,1 M. Gachpazan,1 and S. Shateyi2

1 Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
2Department of Mathematics and Applied Mathematics, School of Mathematical and Natural Sciences, University of Venda,
Private Bag X5050, Thohoyandou 0950, South Africa

Correspondence should be addressed to S. Shateyi; stanford.shateyi@univen.ac.za

Received 24 May 2014; Revised 25 July 2014; Accepted 28 July 2014; Published 14 September 2014

Academic Editor: Juan R. Torregrosa

Copyright © 2014 M. Kafaei Razavi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper presents a new iterative method for computing the approximate inverse of nonsingular matrices. The analytical
discussion of the method is included to demonstrate its convergence behavior. As a matter of fact, it is proven that the suggested
scheme possesses tenth order of convergence. Finally, its performance is illustrated by numerical examples on different matrices.

1. Introduction

The solution of linear algebraic systems of the form 𝐴𝑥 = 𝑏,
where𝐴 = [𝑎

𝑖,𝑗
] is an𝑚×𝑚matrix (all matrices in this paper

are of the same dimension, unless it is clearly stated) and 𝑏

is a given vector, is the center to many numerical simulations
and is often the most time-consuming part of a computation.
Direct methods, which work essentially based on finding the
inverse of the coefficients matrix 𝐴, are very robust, and they
tend to require a predictable amount of resources in terms of
time and storage.Their only problem, in fact, lies in themass-
ive need of time andmemory in calculations, which normally
put them out of interest especially for the cases when 𝐴 is
sparse.

At this time, iterative methods can be taken into account.
The relaxation andKrylov subspacemethods are of such type,
which are reliable in solving large scale sparse systems [1]. On
the other hand, we have another type of iterative methods,
which are called Schulz-type iterations in the literature (see,
e.g., [2]). These techniques are based on finding robust
approximate inverses of a given matrix.

The oldest technique of this type is the Schulz method [3]
defined by

𝑉
𝑛+1

= 𝑉
𝑛
(2𝐼 − 𝐴𝑉

𝑛
) , 𝑛 = 0, 1, 2, . . . , (1)

where 𝐼 is the identity matrix. In the general case, it is known
to converge with 𝑉

0
:= 𝛼𝐴

∗, where 0 < 𝛼 < 2/𝜌(𝐴
∗
𝐴) and

𝜌(⋅) denotes the spectral radius. Such schemes are also useful
for sensitivity analysis when accurate approximate inverses
are needed for both square and rectangular matrices. Notice
that, for rectangular matrices, one may obtain their general-
ized inverse using such iterative methods [4].

These solvers are also the method of choice in certain
areas such as circuits, power system networks, and chemical
plant modeling [5]. A practical application of Schulz-type
methods, which recently attracted somenumerical analysts to
itself [6], is in preconditioning. In fact, by having an initial
value [7], one is able to produce any approximate inverse pre-
conditioners up to the desired accuracy and then solve the
preconditioned linear system as rapidly as possible.

Hence, we are interested in finding a new iterativemethod
belonging to the class of Schulz-type methods for finding
approximate inverses in this work.

Remark 1. We use matrix norm 2 in all subsequent deriva-
tions and discussions unless the other forms are clearly stated.

The rest of this paper is organized in what follows. In the
next section, we briefly review some of the existing Schulz-
type methods and provide a new mathematical proof for
one of the unproved iterative methods. Another contribution

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 563787, 7 pages
http://dx.doi.org/10.1155/2014/563787

http://dx.doi.org/10.1155/2014/563787

2 Abstract and Applied Analysis

of this paper is presented in Section 3. That section is also
devoted to the analysis of convergence. Section 4 covers the
numerical simulations and some notes in order to have the
best feedback in practical implementations. And finally, con-
cluding remarks are drawn in Section 5.

2. Preliminaries

Li et al. in [6] presented

𝑉
𝑛+1

= 𝑉
𝑛
(3𝐼 − 𝐴𝑉

𝑛
(3𝐼 − 𝐴𝑉

𝑛
)) , 𝑛 = 0, 1, 2, . . . , (2)

and also proposed another third-order iterative method for
finding 𝐴

−1 as comes next (right-product form):

𝑉
𝑛+1

= [𝐼 +
1

4
(𝐼 − 𝑉

𝑛
𝐴) (3𝐼 − 𝑉

𝑛
𝐴)
2
]𝑉
𝑛
, 𝑛 = 0, 1, 2,

(3)

W. Li and Z. Li in [8] proposed the following fourth-order
iteration method:

𝑉
𝑛+1

= 𝑉
𝑛
(4𝐼 − 6𝐴𝑉

𝑛
+ 4(𝐴𝑉

𝑛
)
2
− (𝐴𝑉

𝑛
)
3
) ,

𝑛 = 0, 1, 2,

(4)

In fact, a family of methods developed in [8]. We draw
attention to the point that the iterative methods (2) and (4)
can also be found in the textbook [9]. Moreover, we suggest
that the iterative method (3) can be rewritten as (left-product
form)

𝑉
𝑛+1

=
1

4
𝑉
𝑛
(13𝐼 − 𝐴𝑉

𝑛
(15𝐼 − 𝐴𝑉

𝑛
(7𝐼 − 𝐴𝑉

𝑛
))) . (5)

This structure is easier due to the use of Horner-like
multiplications and, subsequently, lowers round-off errors by
avoiding the calculation of matrix power, which is costly. It
should be remarked that authors in [6] did not provide a
mathematical proof for (3) or its other form (5). Thus, herein
we prove its order of convergence to first complete the paper
[6].

Theorem 2. Assume that𝐴 = [𝑎
𝑖,𝑗
]
𝑚×𝑚

is an invertible matrix
with real or complex components. If the initial value𝑉

0
satisfies

󵄩󵄩󵄩󵄩𝐼 − 𝐴𝑉
0

󵄩󵄩󵄩󵄩 < 1, (6)

then, the iteration (5) converges cubically to 𝐴
−1.

Proof. In order to prove the convergence of (5), we consider
first that ‖𝐼 − 𝐴𝑉

0
‖ < 1, 𝐸

0
= 𝐼 − 𝐴𝑉

0
, and 𝐸

𝑛
= 𝐼 − 𝐴𝑉

𝑛
. For

(5), we get that

𝐸
𝑛+1

= 𝐼 − 𝐴𝑉
𝑛+1

= 𝐼 − 𝐴[
1

4
𝑉
𝑛
(13𝐼 − 𝐴𝑉

𝑛
(15𝐼 − 𝐴𝑉

𝑛
(7𝐼 − 𝐴𝑉

𝑛
)))]

= 𝐼 − 𝐴 [−
1

4
𝑉
𝑛
(−13𝐼 + 15𝐴𝑉

𝑛
− 7(𝐴𝑉

𝑛
)
2
+ (𝐴𝑉

𝑛
)
3
)]

=
1

4
(4𝐼 − 𝐴𝑉

𝑛
) (𝐼 − 𝐴𝑉

𝑛
)
3

=
1

4
(3𝐼 + 𝐼 − 𝐴𝑉

𝑛
) (𝐼 − 𝐴𝑉

𝑛
)
3

=
1

4
(3𝐼 + 𝐸

𝑛
) (𝐸
𝑛
)
3
=

1

4
(3𝐸
3

𝑛
+ 𝐸
4

𝑛
) .

(7)

Thus, we obtain ‖𝐸
𝑛+1

‖ = (1/4)(‖3𝐸
3

𝑛
+ 𝐸
4

𝑛
‖) ≤ (1/4)(3‖𝐸

3

𝑛
‖ +

‖𝐸
4

𝑛
‖). Moreover, since ‖𝐸

0
‖ < 1 and ‖𝐸

1
‖ ≤ ‖𝐸

0
‖
3
< 1, we

get that

󵄩󵄩󵄩󵄩𝐸𝑛+1
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝐸𝑛
󵄩󵄩󵄩󵄩

3
≤
󵄩󵄩󵄩󵄩𝐸𝑛−1

󵄩󵄩󵄩󵄩

3
2

≤ ⋅ ⋅ ⋅ ≤
󵄩󵄩󵄩󵄩𝐸0

󵄩󵄩󵄩󵄩

3
𝑛+1

< 1, (8)

where (8) tends to zero when 𝑛 → ∞. That is, 𝐼 −𝐴𝑉
𝑛
→ 0,

when 𝑛 → ∞, and thus for (5), we attain 𝑉
𝑛

→ 𝐴
−1, as

𝑛 → ∞. This shows the convergence.
Now, we must show its third order. Toward this end, we

denote by 𝜀
𝑛

= 𝐴
−1

− 𝑉
𝑛
the error matrix in the iterative

procedure (5). We have (using a similar methodology as in
[10])

𝐼 − 𝐴𝑉
𝑛+1

=
1

4
[3(𝐼 − 𝐴𝑉

𝑛
)
3
+ (𝐼 − 𝐴𝑉

𝑛
)
4
] . (9)

We can now obtain

𝐴(𝐴
−1

− 𝑉
𝑛+1

)

=
1

4
[3(𝐴 (𝐴

−1
− 𝑉
𝑛
))
3

+ (𝐴 (𝐴
−1

− 𝑉
𝑛
))
4

] ,

(10)

𝐴𝜀
𝑛+1

=
1

4
[3(𝐴𝜀

𝑛
)
3
+ (𝐴𝜀

𝑛
)
4
] . (11)

Equation (11) results in

𝐴𝜀
𝑛+1

=
1

4
[3 (𝐴𝜀

𝑛
) (𝐴𝜀
𝑛
)
2
+ (𝐴𝜀

𝑛
) (𝐴𝜀
𝑛
)
3
] , (12)

and subsequently

𝜀
𝑛+1

=
1

4
[3𝜀
𝑛
(𝐴𝜀
𝑛
)
2
+ 𝜀
𝑛
(𝐴𝜀
𝑛
)
3
] , (13)

which yields by taking norm from both sides

󵄩󵄩󵄩󵄩𝜀𝑛+1
󵄩󵄩󵄩󵄩 ≤

1

4
[3

󵄩󵄩󵄩󵄩𝜀𝑛
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐴𝜀
𝑛

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝜀𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐴𝜀
𝑛

󵄩󵄩󵄩󵄩

3
] , (14)

and consequently

󵄩󵄩󵄩󵄩𝜀𝑛+1
󵄩󵄩󵄩󵄩 ≤ (

1

4
[3‖𝐴‖

2
+ ‖𝐴‖

3 󵄩󵄩󵄩󵄩𝜀𝑛
󵄩󵄩󵄩󵄩])

󵄩󵄩󵄩󵄩𝜀𝑛
󵄩󵄩󵄩󵄩

3
. (15)

This reveals that the iterative method (5) converges to 𝐴
−1

with at least third order of convergence. The proof is com-
plete.

Abstract and Applied Analysis 3

3. A Novel Method

Let 𝐼 be the identity matrix and 𝑛 = 0, 1, 2, We aim at
constructing an iterative method in which the sequence of
iterates {𝑉

𝑛
}
𝑛 =∞

𝑛= 0
converges to 𝐴

−1 for an appropriate initial
guess. We suggest our proposed method as follows:

𝜁
𝑛
= −11𝐼 + 𝜓

𝑛
(25𝐼 + 𝜓

𝑛

× (−30𝐼 + 𝜓
𝑛
(20𝐼 + 𝜓

𝑛
(−7𝐼 + 𝜓

𝑛
)))) ,

𝑉
𝑛+1

= −
1

4
𝑉
𝑛
𝜁
𝑛
(4𝐼 + 𝜓

𝑛
𝜁
𝑛
) , 𝑛 = 0, 1, 2, . . . ,

(16)

while 𝜓
𝑛
= 𝐴𝑉
𝑛
and its derivation will be pointed out in Sec-

tion 4. In numerical mathematics, it is essential to know the
theoretical behavior of an approximate method. In what
follows, we prove the convergence order of (16).

Theorem 3. Assume that𝐴 = [𝑎
𝑖,𝑗
]
𝑚×𝑚

is an invertible matrix
with real or complex entries. If the initial guess 𝑉

0
satisfies

󵄩󵄩󵄩󵄩𝐼 − 𝐴𝑉
0

󵄩󵄩󵄩󵄩 < 1, (17)

then, the iteration (16) converges to𝐴−1 with at least tenth con-
vergence order.

Proof. In order to prove the convergence of (16), we consider
the same assumptions as we did in the proof of Theorem 2.
We then have

𝐸
𝑛+1

= 𝐼 − 𝐴𝑉
𝑛+1

= 𝐼 − 𝐴[−
1

4
𝑉
𝑛

× (−11𝐼 + 𝐴𝑉
𝑛

× (25𝐼 + 𝐴𝑉
𝑛
(−30𝐼 + 𝐴𝑉

𝑛

× (20𝐼 + 𝐴𝑉
𝑛
(−7𝐼 + 𝐴𝑉

𝑛
)))))

× (4𝐼 + 𝐴𝑉
𝑛

× (−11𝐼 + 𝐴𝑉
𝑛

× (25𝐼 + 𝐴𝑉
𝑛

× (−30𝐼 + 𝐴𝑉
𝑛
(20𝐼 + 𝐴𝑉

𝑛

× (−7𝐼 + 𝐴𝑉
𝑛
))))))]

= 𝐼 − 𝐴 [−
1

4
𝑉
𝑛
(−11𝐼 + 25𝐴𝑉

𝑛
− 30(𝐴𝑉

𝑛
)
2

+20(𝐴𝑉
𝑛
)
3
− 7(𝐴𝑉

𝑛
)
4
+ (𝐴𝑉

𝑛
)
5
)

× (4𝐼 − 11𝐴𝑉
𝑛
+ 25(𝐴𝑉

𝑛
)
2
− 30(𝐴𝑉

𝑛
)
3

+20(𝐴𝑉
𝑛
)
4
− 7(𝐴𝑉

𝑛
)
5
+ (𝐴𝑉

𝑛
)
6
)]

=
1

4
(−2𝐼 + 𝐴𝑉

𝑛
)
2
(−𝐼 + 𝐴𝑉

𝑛
)
10

=
1

4
(𝐼 + 𝐼 − 𝐴𝑉

𝑛
)
2
(𝐼 − 𝐴𝑉

𝑛
)
10

=
1

4
(𝐼 + 𝐸

𝑛
)
2
(𝐸
𝑛
)
10

=
1

4
(𝐼 + 2𝐸

𝑛
+ 𝐸
2

𝑛
) 𝐸
10

𝑛
=

1

4
(𝐸
10

𝑛
+ 2𝐸
11

𝑛
+ 𝐸
12

𝑛
) .

(18)

Thus, we obtain

󵄩󵄩󵄩󵄩𝐸𝑛+1
󵄩󵄩󵄩󵄩 =

1

4
(
󵄩󵄩󵄩󵄩󵄩
𝐸
10

𝑛
+ 2𝐸
11

𝑛
+ 𝐸
12

𝑛

󵄩󵄩󵄩󵄩󵄩
)

≤
1

4
(
󵄩󵄩󵄩󵄩𝐸𝑛

󵄩󵄩󵄩󵄩

10
+ 2

󵄩󵄩󵄩󵄩𝐸𝑛
󵄩󵄩󵄩󵄩

11
+
󵄩󵄩󵄩󵄩𝐸𝑛

󵄩󵄩󵄩󵄩

12
) .

(19)

Moreover, since ‖𝐸
0
‖ < 1 and ‖𝐸

1
‖ ≤ ‖𝐸

0
‖
10

< 1, we attain

󵄩󵄩󵄩󵄩𝐸𝑛+1
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝐸𝑛
󵄩󵄩󵄩󵄩

10
≤
󵄩󵄩󵄩󵄩𝐸𝑛−1

󵄩󵄩󵄩󵄩

10
2

≤ ⋅ ⋅ ⋅ ≤
󵄩󵄩󵄩󵄩𝐸0

󵄩󵄩󵄩󵄩

10
𝑛+1

< 1,

(20)

where (20) tends to zero when 𝑛 → ∞.That is, 𝐼−𝐴𝑉
𝑛
→ 0,

when 𝑛 → ∞, and thus for (16), we obtain

𝑉
𝑛
󳨀→ 𝐴

−1
, as 𝑛 󳨀→ ∞. (21)

Wemust now illustrate the tenth order of convergence for
(16). To this aim, we denote by 𝜀n = 𝐴

−1
−𝑉
𝑛
the error matrix

in the iterative procedure (16). We have (using (18))

𝐼 − 𝐴𝑉
𝑛+1

=
1

4
[(𝐼 − 𝐴𝑉

𝑛
)
10

+ 2(𝐼 − 𝐴𝑉
𝑛
)
11

+ (𝐼 − 𝐴𝑉
𝑛
)
12
] .

(22)

Equation (22) yields

𝐴(𝐴
−1

− 𝑉
𝑛+1

)

=
1

4
[(𝐴 (𝐴

−1
− 𝑉
𝑛
))
10

+ 2(𝐴 (𝐴
−1

− 𝑉
𝑛
))
11

+ (𝐴 (𝐴
−1

− 𝑉
𝑛
))
12

] ,

(23)

𝐴𝜀
𝑛+1

=
1

4
[(𝐴𝜀
𝑛
)
10

+ 2(𝐴𝜀
𝑛
)
11

+ (𝐴𝜀
𝑛
)
12
] . (24)

Using (24), we attain

𝐴𝜀
𝑛+1

=
1

4
[(𝐴𝜀
𝑛
) (𝐴𝜀
𝑛
)
9
+ 2 (𝐴𝜀

𝑛
) (𝐴𝜀
𝑛
)
10

+ (𝐴𝜀
𝑛
) (𝐴𝜀
𝑛
)
11
] ,

𝜀
𝑛+1

=
1

4
[𝜀
𝑛
(𝐴𝜀
𝑛
)
9
+ 2𝜀
𝑛
(𝐴𝜀
𝑛
)
10

+ 𝜀
𝑛
(𝐴𝜀
𝑛
)
11
] ,

(25)

4 Abstract and Applied Analysis

which simplifies, by taking norm from both sides, the
following:

󵄩󵄩󵄩󵄩𝜀𝑛+1
󵄩󵄩󵄩󵄩 ≤

1

4
[
󵄩󵄩󵄩󵄩𝜀𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐴𝜀
𝑛

󵄩󵄩󵄩󵄩

9
+ 2

󵄩󵄩󵄩󵄩𝜀𝑛
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐴𝜀
𝑛

󵄩󵄩󵄩󵄩

10

+
󵄩󵄩󵄩󵄩𝜀𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐴𝜀
𝑛

󵄩󵄩󵄩󵄩

11
] ,

(26)

and consequently

󵄩󵄩󵄩󵄩𝜀𝑛+1
󵄩󵄩󵄩󵄩 ≤ (

1

4
[‖𝐴‖
9
+ 2‖𝐴‖

10 󵄩󵄩󵄩󵄩𝜀𝑛
󵄩󵄩󵄩󵄩 + ‖𝐴‖

11󵄩󵄩󵄩󵄩𝜀𝑛
󵄩󵄩󵄩󵄩

2
])

󵄩󵄩󵄩󵄩𝜀𝑛
󵄩󵄩󵄩󵄩

10
.

(27)

This shows that themethod (16) converges to𝐴−1 with at least
tenth order of convergence. The proof is now complete.

A simple corollary from Theorems 2 and 3 is that, using
the same conditions and initial conditions, the higher order
methods arrive at the convergence phase faster than lower
order methods and this reduces the number of iterations.

Note that the sequence {𝑉
𝑛
}
𝑛 =∞

𝑛= 0
of (16) may be applied

to not only the left preconditioned linear system 𝑉
𝑛
𝐴𝑥 = 𝑉

𝑛
𝑏

but also the right preconditioned linear system 𝐴𝑉
𝑛
𝑦 = 𝑏,

where 𝑦 = 𝑉
𝑛
𝑥, only if the initial matrix satisfies 𝐴𝑉

0
= 𝑉
0
𝐴.

The iterative methods that have been discussed up to now
are sensitive for choosing the initial guess to start the process.
As a matter of fact, the high accuracy and efficiency of such
types of iterative algorithms are guaranteed only if the initial
value satisfies the appropriate condition given inTheorems 2
and 3.

Thus, in order to preserve the convergence order, we
remind the reader that the efficient way of producing 𝑉

0
as

given in [11] is as follows: 𝑉
0

= 𝐴
𝑇
/(‖𝐴‖

1
‖𝐴‖
∞
). Another

adaptive way is 𝑉
0
= 󰜚𝐼, where 𝐼 is the identity matrix, and

󰜚 ∈ R should be determined so that ‖𝐼 − 󰜚𝐴‖ < 1.

Remark 4. The new iteration (16) reaches 10th order by using
8 matrix-matrix multiplications, while the schemes (1), (2),
and (5) reach 2nd, 3rd, and and 4th orders, respectively, by
consuming 2, 3, and 4 matrix-matrix multiplications. Hence,
the contributed method has less computational cost than its
competitors. This superiority will be clarified in Section 4. It
should also be remarked that the convergence of any order for
nonsingular square matrices is generated in Section 6 of
Chapter 2 of the book [12], whereas the general way for the
rectangular matrices is discussed in Chapter 5 of [9] and the
recent paper [13]. In fact, in those constructions a conver-
gence order 𝜌 will always be attained by 𝜌 times of matrix-
matrix products, such as (1) which reaches the order 2 using
two matrix-matrix multiplications.

Remark 5. Two important matters must be mentioned at this
moment to ease up the perception of why a higher order
(efficient) method such as (16) with 8matrix-matrix products
to reach at least the convergence order 10 is practical. First, by
following the comparative index of informational efficiency
index of inverse-finders [14], defined by 𝐸 = 𝜌/𝜃, wherein 𝜌

and 𝜃 stand for the convergence order and the number of
matrix-matrix products, the informational efficiency for (16),

that is, 10/8 ≈ 1.25, beats its other competitive, 2/2 = 1 of (1),
3/3 = 1 of (2) and (4), and 3/4 = 0.75 of (3). And second, the
significance of the new schemewill be displayed in the imple-
mentation of such schemes. To illustrate further, such iter-
ations are totally dependent on the initial matrices. Though
there are certain and efficient ways for finding 𝑉

0
, in general

such initial approximations take a high number of iterations
to arrive at the convergence phase. On the other hand,
each cycle of the implementation of such Schulz-type meth-
ods includes one stopping criterion based on the use of a
matrix norm, and this would impose further burden and load
in general for the low order methods in contrast to the high
order methods such as (5). Because the computation of a
matrix norm (usually ‖ ⋅ ‖

2
for dense matrices and ‖ ⋅ ‖

𝐹
for

large sparse matrices) takes a reasonable time, therefore
higher number of steps/iterations (which is the result of lower
order methods) will be costlier than the lower number of
steps/iterations.

Remark 6. The index that we are defining is different from
the classical efficiency index as defined in [15]. Traub in [15]
discussed why informational efficiency index is needed. In
fact, the kind of efficiency index that the users apply depends
on the situation which is dealt with. Note that the cost of each
iteration (step) is governed by the number of matrix-matrix
products, order, and computing of a stopping criterion.Thus,
the informational index has meaning in this case, because it
measures the gain brought each time amatrix-matrix product
along with the order and the stopping criterion is computed.

4. Numerical Reports

In this section, some experiments are presented to demon-
strate the capability of the suggested method. The computer
algebra systemMathematica 8, [16] and [17], has been used
in this section. For numerical comparisons, we have used the
methods (1), (2), (5), and (16). We will also use double
precision in our calculations. The computer specifications
are Microsoft Windows XP Intel(R), Pentium(R) 4, CPU
3.20GHz, and 4GB of RAM.

Experiment 1. In this test, 10 sparse randomcomplexmatrices
of the dimension 2500 are considered as follows:

n = 2500; number = 10;
Table[A[j] = SparseArray[{Band[{−100, 700}]

–>RandomReal[], {i , i } :> 3.3,

Band[{500, −150}, {n − 20, n − 25}]

–>{RandomReal[], 10. + I},
Band[{600, 250}, {n − 100, n − 400}]

–>{RandomReal[10],
RandomReal[10]}}, {n, n}, 0.],{j, number}];

In this test, the stopping criterion is ‖𝐼 − 𝑉
𝑛
𝐴‖
1
≤ 10
−6,

and the maximum number of iterations allowed is set to 100.
Note that in this test the initial choice has been constructed by
𝑉
0
= 𝐴
𝑇
/(‖𝐴‖

1
‖𝐴‖
∞
). We also plot the condition number of

the 10 test matrices in Figure 1.

Abstract and Applied Analysis 5

2 4 6 8 10

0

5000

10000

15000

20000

25000

30000

35000

Number of matrices

C
on

di
tio

n
nu

m
be

r

Figure 1: Comparison of condition numbers for the 10 test sparse
matrices in Experiment 1.

The results of comparisons for the test problem have been
presented in Figures 2-3.We have distinguished the curves by
various symbols like circle, triangle, and so forth, alongside
different colors.The attained results reverify the robustness of
the proposed iterative method (16) by a clear reduction in the
number of iterations and the elapsed time. Note that, in figures
of this paper, Schulz, KSM,MM, and proposedmethod (PM)
stand for (1), (2), (5), and (16), respectively.

In general, iterative Schulz-type methods are very useful
for large sparse matrices having an sparse inverse or when
only an approximate inverse is needed.

After a few iterations of such methods, the computed
approximate inverse may be dense, and thus the whole
procedure might be slow. To remedy this, a threshold can be
imposed to the implemented algorithm. Hopefully, this can
be done by the command Chop[exp, tol]. In Experiment 1,
we have set the tol to 10−10.This technique of implementation
would be also fruitful for preconditioning.

We also point out that the construction of (16) is based on
applying the nonlinear equation solver (similar idea to [3])

𝑦
𝑛
= 𝜐
𝑛
− 𝑓
󸀠
(𝜐
𝑛
)
−1
𝑓 (𝜐
𝑛
) ,

𝑧
𝑛
= 𝜐
𝑛
− (2
−1
𝑓 (𝜐
𝑛
)
−1
) (𝑓(𝜐

𝑛
)
−1

+ 𝑓(𝑦
𝑛
)
−1
) ,

𝑤
𝑛
= 𝑧
𝑛
− (𝑓 [𝑧

𝑛
, 𝑦
𝑛
])
−1
𝑓 (𝑧
𝑛
) ,

𝜐
𝑛+1

= 𝑤
𝑛
− 𝑓(𝑤

𝑛
)
−1
𝑓 (𝑤
𝑛
) , 𝑛 = 0, 1, 2, . . . ,

(28)

on the matrix equation 𝐹(𝑉) = 𝑉
−1

− 𝐴 = 0, where, for
example, 𝑓[𝑧

𝑛
, 𝑦
𝑛
] = (𝑧

𝑛
− 𝑦
𝑛
)
−1
(𝑓(𝑧
𝑛
) − 𝑓(𝑦

𝑛
)) is the two-

point divided difference, which gives us the aimed tenth-
order method (16).

Remark 7. As discussed before, an important application of
such solvers is to provide robust preconditioners for solving
linear systems of equations. To illustrate further, we have
chosen the following example carefully, in which, in a practi-
cal problem, the GMRES solver fails in solving the resulting
system of a discretization, when the maximum number of
steps allowed to the GMRES is 2000.

2 4 6 8 10

0

5

10

15

20

25

30

Matrices

N
um

be
r o

f i
te

ra
tio

ns

PM
MM

KSM
Schulz

Figure 2: Comparison of the number of iterations for the 10 test
sparse matrices in Experiment 1.

2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Matrices

C
om

pu
ta

tio
na

l t
im

e (
s)

PM
MM

KSM
Schulz

Figure 3: Comparison of the computational times for the 10 test
sparse matrices in Experiment 1.

Experiment 2. We consider solving a boundary value prob-
lem (BVP) using finite difference discretization. Let us solve
the BVP

𝜕
2
𝑢

𝜕𝑥2
+ 𝑓 (𝑥) 𝑢 = 𝑔 (𝑥) , 𝑢 (0) = 0, 𝑢

󸀠
(1) = 0, (29)

where 𝑓(𝑥) = 1 + 100 exp(−(321(𝑥 − 1/2))
2
), 𝑔(𝑥) = sin(𝜋𝑥),

and the number of discretization in our range [0, 1] is 𝑛 =

1000.
The implementation to find the solution with the toler-

ance 10
−6 would be (in the Mathematica environment) as

comes next:

n = 1000; h = 1./n; xgrid = h Range[1, n];
f[x] := 1 + 100 Exp[−(321(x − 1/2))

∧
2];

g[x] := Sin[Pi x];
id = SparseArray[{i , i } –> 1., {n, n}, 0.];
d2 = SparseArray[{{i , i } –>−2., {n, n − 1} –>
2., {i , j }/; Abs[i − j] == 1 –> 1.}, {n, n}, 0.]

6 Abstract and Applied Analysis

Table 1: Comparison of the computational time in solving the linear system 𝐴𝑥 = 𝑏 in Experiment 2.

Methods GMRES (1)-PGMRES (2)-PGMRES (5)-PGMRES (16)-PGMRES
The whole time Fail 9.21 7.31 4.76 3.15

Now the coefficient matrix and the right hand side vector
for finding the solution of the BVP (29) in the sparse form can
be deduced by

A = SparseArray[d2/h ∧ 2 + id f[xgrid]]

b = g[xgrid];

Just like the other problems, this is the most time-
consuming step, that is, to solve the sparse system 𝐴𝑥 = 𝑏.
Herein, we choose the Krylov subspace method GMRES to
solve the system, without preconditioning and with 𝑉

5
pro-

duced from the iterative method (1), 𝑉
4
produced from the

iterative methods (2) and (5), and 𝑉
2
produced from the

iterative methods (16) to solve the left preconditioned system
𝑉
𝑖
𝐴𝑥 = 𝑉

𝑖
𝑏.

In this way, the systemwill be well behaved and we expect
to find the solution of the BVP (29) in less computational
time than the nonpreconditionedGMRES.The results of con-
suming time for this purpose are given in Table 1. We should
remark that in this test 𝑉

0
= diag(1/𝑎

11
, 1/𝑎
22
, . . . , 1/𝑎

𝑛𝑛
) has

been chosen as the initial approximation based on [18], where
𝑎
𝑖𝑖
is the 𝑖th diagonal entry of 𝐴.
As is obvious from Table 1, the nonpreconditioned

GMRES fails to converge even after 2000 iteration steps, while
the required accuracy could be attained using precondition-
ing. The best time which beats all the other ways comes from
the new scheme (16).The left preconditioned system resulting
from (16), showed as (16)-PGMRES, is reliable in solving
linear ill-conditioned systems.

Note that the time reported for PGMRES is the whole
time of constructing the initial matrix, obtaining the precon-
ditioner𝑉

𝑖
and solving the left preconditioned system𝑉

𝑖
𝐴𝑥 =

𝑉
𝑖
𝑏, by GMRES.

Experiment 3. In order to compare the preconditioners
obtained from new method with the famous preconditioners
of the literature resulting from incomplete LU factoriza-
tions, [1], we pay heed to solving the linear sparse systems
𝐴𝑥 = 𝑏, of the dimension 841 using BiCGSTAB. The
matrix 𝐴 has been chosen from MatrixMarket database as
A = ExampleData[“Matrix”, “YOUNG1C”], while the right
hand side vector is 𝑏 = (1, 1, . . . , 1)

𝑇. The solution would be
(−0.0177027−0.00693171𝐼, . . . , −0.0228083−0.00589176𝐼)

𝑇.
Figure 4 denotes the plot of matrix 𝐴.

The left preconditioned system using 𝑉
3
of Schulz, 𝑉

2
of

KSM, and𝑉
1
of the proposedmethod PMalongwith thewell-

known preconditioned techniques ILU0, ILUT, and ILUTP
has been tested, while the initial vector has been chosen for all
the cases automatically by the command of LinearSolve[]
in MATHEMATICA 8. The results of consuming time com-
parisons for different tolerances (residual norms) have been
listed in Figure 5.

Note that, after a few iterations, the computed precondi-
tioner of Schulz-type methods may be dense. Like before, we

1 200 400 600 841

1 200 400 600 841

1

200

400

600

841

1

200

400

600

841

Figure 4: The plot of matrix 𝐴 in Experiment 3.

1.0

10.0

5.0

2.0

3.0

1.5

15.0

7.0

PM
ILUTP
ILUT

ILU0

KSM
Schulz

The tolerance

Ti
m

e (
s)

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

Figure 5: Comparison of the computational times for various
preconditioners in Experiment 3.

must choose a strategy to control the sparsity of the precon-
ditioner. This here can be done by setting Chop[𝑉

𝑖
, 10
−6
], in

our obtained approximate inverses.

5. Conclusions

In this work, we have developed an iterative method in
inverse-finding of complex matrices belonging to the well-
known class of Schulz-type methods.

Abstract and Applied Analysis 7

We have proposed a simpler form of a recently published
method (3) in the form (5) and proved analytically that the
scheme possesses third-order convergence.

We have shown that the suggested method (16) reaches
tenth order of convergence.Wemoreover have discussed that
(16) can be considered for the left and right preconditioned
systems under a certain condition. The efficacy of the new
scheme was illustrated numerically using the computer pro-
gramming package MATHEMATICA.

One may note that the approximate inverse obtained per
step of Algorithm (5) or (16) can also easily be taken into
account as a preconditioner to reduce the ill-conditioning of a
system and let the users apply iterative methods such as
GMRES or BiCGSTAB in solving large scale sparse linear
systems of algebraic equations efficiently.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, 2nd
edition, 2003.

[2] F. Soleimani, F. Soleymani, A. Cordero, and J. R. Torregrosa,
“On the extension of Householder’s method for weighted
Moore-Penrose inverse,” Applied Mathematics and Computa-
tion, vol. 231, pp. 407–413, 2014.

[3] G. Schulz, “Iterative Berechnung der Reziproken matrix,” Zei-
tschrift für Angewandte Mathematik und Mechanik, vol. 13, pp.
57–59, 1933.

[4] A. Ben-Israel and T. N. E. Greville, Generalized Inverses, Berlin,
Germany, Springer, 2nd edition, 2003.

[5] M. Benzi, “Preconditioning techniques for large linear systems:
a survey,” Journal of Computational Physics, vol. 182, no. 2, pp.
418–477, 2002.

[6] H.-B. Li, T.-Z. Huang, Y. Zhang, V.-P. Liu, and T.-V. Gu, “Cheb-
yshev-type methods and preconditioning techniques,” Applied
Mathematics andComputation, vol. 218, no. 2, pp. 260–270, 2011.

[7] V. Y. Pan, M. Van Barel, X. Wang, and G. Codevico, “Iterative
inversion of structuredmatrices,”Theoretical Computer Science,
vol. 315, no. 2-3, pp. 581–592, 2004.

[8] W. Li and Z. Li, “A family of iterative methods for computing
the approximate inverse of a square matrix and inner inverse of
a non-square matrix,” Applied Mathematics and Computation,
vol. 215, no. 9, pp. 3433–3442, 2010.

[9] E. V. Krishnamurthy and S. K. Sen, Numerical Algorithms:
Computations in Science and Engineering, Affiliated East-West
Press, New Delhi, India, 2007.

[10] F. Toutounian and F. Soleymani, “An iterative method for
computing the approximate inverse of a square matrix and the
Moore-Penrose inverse of a non-square matrix,” Applied Math-
ematics and Computation, vol. 224, pp. 671–680, 2013.

[11] V. Y. Pan and R. Schreiber, “An improved Newton iteration for
the generalized inverse of a matrix, with applications,” SIAM:
Journal on Scientific and Statistical Computing, vol. 12, no. 5, pp.
1109–1130, 1991.

[12] E. Isaacson and H. B. Keller, Analysis of Numerical Methods,
John Wiley & Sons, New York, NY, USA, 1966.

[13] L. Weiguo, L. Juan, and Q. Tiantian, “A family of iterative
methods for computing Moore-Penrose inverse of a matrix,”
Linear Algebra and Its Applications, vol. 438, no. 1, pp. 47–56,
2013.

[14] F. Soleymani, “A fast convergent iterative solver for approximate
inverse of matrices,” Numerical Linear Algebra with Applica-
tions, vol. 21, pp. 439–452, 2014.

[15] J. F. Traub, Iterative Methods for the Solution of Equations,
Prentice Hall, New York, NY, USA, 1964.

[16] http://reference.wolfram.com/language/tutorial/LinearAlgebra-
InMathematicaOverview.

[17] S. Wolfram, The Mathematica Book, Wolfram Media, 5th edi-
tion, 2003.

[18] L. Grosz, “Preconditioning by incomplete block elimination,”
Numerical Linear Algebra with Applications, vol. 7, no. 7-8, pp.
527–541, 2000.

