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We establish new fractional integral inequalities, via Hadamard’s fractional integral. Several new integral inequalities are obtained,
including a Griiss type Hadamard fractional integral inequality, by using Young and weighted AM-GM inequalities. Many special

cases are also discussed.

1. Introduction

Inequalities have proved to be one of the most powerful and
far-reaching tools for the development of many branches of
mathematics. The study of mathematical inequalities plays
very important role in classical differential and integral
equations which has applications in many fields. Fractional
inequalities are important in studying the existence, unique-
ness, and other properties of fractional differential equations.
Recently many authors have studied integral inequalities
on fractional calculus using Riemann-Liouville and Caputo
derivative; see [1-7] and the references therein.

Another kind of fractional derivative that appears in
the literature is the fractional derivative due to Hadamard
introduced in 1892 [8], which differs from the Riemann-
Liouville and Caputo derivatives in the sense that the kernel
of the integral contains logarithmic function of arbitrary
exponent. Details and properties of Hadamard fractional
derivative and integral can be found in [9-14]. Recently in the
literature, there appeared some results on fractional integral
inequalities using Hadamard fractional integral; see [15-17].

In this paper we present some new fractional integral
inequalities using the Hadamard fractional integral. Several
new integral inequalities are obtained by using Young and
weighted AM-GM inequalities. Many special cases are also

discussed. Moreover, a Griiss type Hadamard fractional
integral inequality is obtained.

2. Preliminaries

In this section we give some preliminaries and basic propo-
sition used in our subsequent discussion. The necessary
background details are given in the book by Kilbas et al. [9].

Definition 1. The Hadamard fractional integral of order o €
R™ of a function f(t), for all t > 1, is defined as

1 A ds
« = — 1 —) — 1
W I0= s [ (egl) T0T o
where T is the standard gamma function defined by I'(x) =

_[000 e*s*'ds, provided the integral exists, where log(-) =

log, ().

Definition 2. 'The Hadamard fractional derivative of order « €
[n—1,n),n € Z*, of a function f(¢) is given by

N B 1 d\" (! £\l ds
wDf (1) = F(n—oc)<t5> ,[1 (log;) f© s
(2)
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Next, we recall a proposition concerning a Hadamard
integral and derivative.

Proposition 3 (see [9]). If « > 0, the following relations hold:

r(p)

Bra—1
) (log )P TG )( ogt)F ", 3)
HD"‘(logt)/;’1 — %(logt)ﬁal, @

respectively.

For the convenience of establishing our results, we give
the semigroup property

PO = P ), a0, =0, (5

which implies the commutative property
ul wl’f ) = ul )" f ). (6)

3. Main Results

Now, we are in a position to give our main results.
Theorem 4. Let f be an integrable function on [1, 00). Assume
the following.

(H,) There exist two integrable functions ¢,, ¢, on [1,00)
such that

P ()< fO) <, (t), Vte[l,00). ™)

Then, fort > 1, a, B > 0, one has

2Pl () F () + 5T, (8) wIP £ (©)

(8)
> 1102 (0 TP (O + 5] O ] f (©).
Proof. From (H,), forall T > 1, p > 1, we have
(@, (™) = f @) (f(p) =91 (p)) 2 0. ©)

Therefore,

oM f(P)+e(p) f@) 29 (p)e, () + f(0) f (p)(-1 )

Multiplying both sides of (10) by (log(t/r))”‘_1 /1T(x), T €
(1,t), we get

(log (t/7))*" (log (t/7))*"

f(p) T " (1) + ¢, (p) T@ f@
log (t/7))*" log (t/7))*"
=01 () g 04 5 (o) CEO )

(11)
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Integrating both sides of (11) with respect to 7 on (1,t), we
obtain

f(p)—j ( g£>a71<pz(r)df

()
t %! dr
+¢1(p) == T I (log ;) f@o—
1 t t 1 d (12)
«” T
> ¢ (p) o T J ( g;) 9, () —
t t dr
f(p) mj <log ;) f -
which yields
FP) e e ) + o1 (p) ) f (1)
(13)

> (p) a0, )+ f(P) ) f ().

Multiplying both sides of (13) by (log(t/p))ﬁ_l/pf(ﬁ), p €
(1,t), we have

(log (t/p))""
pr (B)

(log (t/p))""!
Pr(B)

(log (t/p))""
P (B)

w ;o (log(t/p))
O ()

H]a(Pz (t) f (P)

+ ] f (1) o (p)

(14)

>y, () o (p)

fp)-

Integrating both sides of (14) with respect to p on (1,t), we
get

w0 155 |, (0 ) e ®

-1

+ 5 f (8) = F(ﬁ) Jt <log£>ﬁ P (P)%

>y, (1) = T (/3) Jt <10g %)ﬁ_lq’l (p) %

byl f(t)r(/g)J (10 gp) _lf(p)%”

Hence, we deduce inequality (8) as requested. This completes
the proof. O

(15)

As special cases of Theorems 4, we obtain the following
results.
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Corollary 5. Let f be an integrable function on [1,00)
satisfyingm < f(t) < M, forallt € [1,00) and m,M € R.
Then fort > 1 and a, 3 > 0, one has

(logt)® (logt)” 4
ml"(ﬁ+ l)H] f® +M1“(oc + l)H] f®
; (16)
l o+
> (log) + 1 f O P f ).

Fa+1)T(B+1)

Corollary 6. Let f be an integrable function on [1,00).
Assume that there exists an integrable function ¢(t) on [1, 00)
and a constant M > 0 such that

Pt -M< f() <o)+ M, (17)

forallt € [1,00). Then fort > 1 and «, 3 > 0, one has

2Po ) I f () + 1% ) yJP f (1)

M(logt)ﬁ N M(logt)” 5
r(B+1) n/ e O+ I['(x+1) W f®
M>(logt)***

"T@+DT(B+1) 1

> %0 (6) 1P () + I (0) P f (1)

M(logt)® M(logt)®
T O Taeny

Example 7. Let f be a function satisfying logt < f(t) < 1+
logt fort € [1,00). Then fort > 1 and « > 0, we have

< 2(logt)*"!
+

I'(ax+2)

2Po ).

(log )"
I'(x+1)

(logt)” \ (((logt)™™\  (19)
T+ J\Tw+2

+ (g f )

)HJ”‘ f@

I'(x+2)

5 ( (log t)oc+1

Theorem 8. Let f be an integrable function on [1,00) and
0,,0, > 0 satisfying 1/0, + 1/0, = 1. Suppose that (H,) holds.
Then, fort > 1, a, 5 > 0, one has

1 (logt)’ 6
6_1% u/ ((‘Pz—f) )(f)

1 (logt)®
0, T (x+1)

+ 150 (6) TPy (8) + 1 F (8) P f (8)
> 150, (0) P f () + 1T f (8) TP, (8).

H]ﬁ ((f - ‘Pl)ez) () (20)

3
Proof. According to the well-known Young’s inequality
I o, 1 o
o +9—y >xy, VYx,y20,0,,0,>0,
1 2 1)

L
0, 6,

setting x = ¢,(7) — f(r)and y = f(p) — @,(p), T, p > 1, we
have

1 1

5 (@@= f @)+ (F (p) - 01 (p)"

91 62 (22)
2 (9@ = f @) (f (p) =1 (p))

Multiplying both sides of (22) by (log(¢/7))* " (log(t/p))* "/
pL()T(B), T, p € (1,1), we get

1 (log (t/7)* (log (t/p))""
0, 7pl (o) T (B)

1 (log (t/7)" " (log (t/p))"
0, 7pl () T (B)

. (log (t/'r))a_1
- T ()

x(f(p) =1 (p))-

(9, (@)~ f ()"

(f (p) -9, (p))”

(log (t/p))""

((PZ (T) - f (T)) Pr (ﬁ)

(23)

Integrating the above inequality with respect to 7 and p from
1 to t, we have

eleﬂ W@ 12 - )" ®)
1
" eiHJ“ OO -e) @) @
2

2l (9= O (F-9) ),
which implies (20). O
Corollary 9. Let f be an integrable function on [1,00)

satisfyingm < f(t) < M, forallt € [1,00) and m,M € R.
Then fort > 1 and «, 3 > 0, one has

. (logt)™* (logt)® . ,
M gy Tren” SO
(logt)* B 2 o 8
r((x+1)H] f (t)+2H] f(t)H] f(t)

>2(m+ M)
(log t)ﬁ « (logt)® P
x<—r(ﬁ+1)Hl FO+ oz F® )



Example 10. Let f be a function satisfying logt < f(t) <1+
logt fort € [1,00). Then for t > 1 and « > 0, we have

1 (logt)”
2T (x+1)
(logt)*  2(logt)*""  4(logt)** o
X(F((x+1)+ F(@+2) T(a+3) +2y)" f7 (1)
(logt)"  (logt)*™\ (logt)™™ o
+<r(06+1)+1“(oc+2) F(oc+2)+(H] f@®)
(logt)*  (logt)*"\
_2<F(a+1)+r((x+2) H]f(t)
2(logt
r((zg s u)” (flogt) (1).
(26)

Theorem 11. Let f be an integrable function on [1,00) and
0,,0, > 0 satisfying 0, +0, = 1. In addition, suppose that (H,)
holds. Then, fort > 1, «, 3 > 0, one has

(1og)’ o, L8
'T(B+1) T (a

sz@a—ﬁ%unﬂﬁf—%f%ﬂ (27)

(logt)® (log)®
'T(B+1) T(x+1)

Proof. From the well-known weighted AM-GM inequality

H]ﬁf( t)

ul e, (t) +

W f (1) + 6, 2P ).

0,x+0,y > xelyez,
0,+0,=1,

Vx,y >0, 6,6, >0,
(28)

by setting x = @,(7) — f(r) and y = f(p) —@,(p), T,p > 1,

we have

0, (¢, (1) = f (1) + 6, (f (p) — 1 (p))

@) (f (p) -1 (p)™.

Multiplying both sides of (29) by (log(t/7))* " (log(t/p))* '/
oL ()T (P), T, p € (1,1), we get

(log (t/7))* " (log (t/p))""
: oI ()T (B)

(log (¢t/7))" " (log (t/p))""
DT @T ()

N (log (t/7))*"
- I («)

 (log (t/p))
T (B)

(29)
> (¢, (1) -

(¢, (1)~ £ (1))

+0,

(f(p) =9, (p))

(30)
(9, (™) - f ()"

(f (p) - 91 (p)™.
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Integrating the above inequality with respect to 7 and p from
1 to t, we have

0’ (1) ) ] (@2 = £) ()
6,5 (1) O 1] (F ~ 1) () (31)
> 1l (9 = )" O WP (f - 9)" (0).
Therefore, we deduce inequality (27). O

Corollary 12. Let f be an integrable function on [1,00)
satisfyingm < f(t) < M, forallt € [1,00) and m,M € R.
Then fort > 1 and «, 3 > 0, one has

(logt)*** (logt)*
T+ DT (B+1) T(atl)

(logt)** (logt)” (32)
TR R LA

20 (M = )2 &) TP (f - m) (0).

Example 13. Let f be a function satisfying logt < f(t) <1+
logt for t € [1,00). Then for t > 1 and & > 0, we have

H]ﬁf (1)

(logt)™
2 (ax+1) (33)
> 2,° (\/1 +logt—f> (t)H]“(\/f—logt ®).
Lemma 14 (see [18]). Assume thata > 0, p > q > 0, and

p#0. Then
a? < (ﬂkqu/pa+ —p_qkq/p>, for any k> 0. (34)
p p
Theorem 15. Let f be an integrable function on [1,00) and
constants p > q = 0, p#0. In addition, assume that (H,)
holds. Then for any k > 0,t > 1, o, B > 0, the following two
inequalities hold:

(A) 1l (o- NP0+ %k<q”’)/PHI"‘f (t)

@-p)lp P=4,q4/p (logt)*
pk 92 (O + K F(a+1)

(By) wJ*(f - ‘Pl)q/P (t) + %kq_p/pH]“(Pl (t)

4., plp p—q, 4, (logt)”
pk WOF () + . k L

<

(35)

Proof. By condition (H,) and Lemma 14, for p > g > 0, p+0,
it follows that

(¢, (1) = f ()77

_ (36)
< Qk(q—P)/P (902 (1) - f (T)) + %kq/{

S
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for any k> 0. Multiplying both sides of (36) by
(log(t/T))"‘_l/TF(oc), 7 € (1,t), and integrating the resulting
identity with respect to 7 from 1 to t, one has

ul*(f - ¢1)q/p

(logt)"
IF(ax+1),
(37)

<

%k(q—P)/P (H]a(PZ (t) - H]af (t)) + P; qkq/P

which leads to inequality (A ). Inequality (B,) is proved by
similar arguments. O

Corollary 16. Let f be an integrable function on [1,00)
satisfyingm < f(t) < M, forallt € [1,00) and m,M € R.
Then fort > 1 and a > 0, one has

« 1/2 o (logt)lx
o 1/2 (logt)a
(B,) 2pJ*(f - m) (t)+mr((x+ D
« (log)”
<ul SO+ re Ty
(38)

Example 17. Let f be a function satisfying logt < f(t) <1+
logt fort € [1,00). Then for t > 1 and & > 0, we have

2" (\/1 +logt - f) )+ I f ()

a+l

g 2(logt)*  (logt)
T T(a+1) " F(a+2)’
of [ (logt)*" (logt)”
2H] ( f—lOgt)(t)-l-m SH] f(t)+ r((x+1).
(39)

Theorem 18. Let f and g be two integrable functions on
[1, 00). Suppose that (H,) holds and moreover one assumes the
following.

(H,) There exist y, and vy, integrable functions on [1, 0c0)
such that

Y <gt) <y, () Vie[l00). (40)

5
Then, fort > 0, o, B > 0, the following inequalities hold:
(A3) Py O I f O+ 192 (1) g (1)
= H]ﬂVII () gJ @, () + 1 f (1) Hlﬁg ),
(Bs) 1 91 (1) ]9 (8) + ™y (0) ] f (1)
S NCI R ACEN S NCIAPIOR w

C3) 1 O 10y (O + I f O )P g (1)

> 1)y () uI*g (&) + uTPys () yI* (0,
(D3) 1% () Py O + (I F (O )P g ()

> %0 On 1P g () + 1Ty (O W) f ().

Proof. To prove (Aj;), from (H;) and (H,), we have for t €
[1, 00) that

(o (D)= f (D) (g(p) —vi (p) 2 0. (42)

Therefore,

P (M gp)+yi(p) f(@ 2y (p)p, (1) + f (1) g (p)(~ |
43

Multiplying both sides of (43) by (log(t/r))““l/rr((x), T €
(1,t), we get

(log (t/‘r))o‘_1 (log (t/r))o‘_1

g(p) T () ¢, (1) +y, (p) T (@) f@)
log (t/7))* log (t/7))*""
>y, (p) —( %8 T(r/(l))) @, (1) +g(p) —( ogT}/(;))) f@).

(44)

Integrating both sides of (44) with respect to 7 on (1,t), we
obtain

g(p) ﬁ Lt (log ;)H% (1) %

+, (p) ﬁ Lt <log ;)ailf (1) %

) (45)
1 ¢ a- d
>y, (p) @ L (log f) ¢, (1) 7T
1 (! t\*! d
+9(P)m£ <log;) f(T)%-
Then we have
9(P) ul ey () + v, (p) J“ f (1) o)

2y, (p) o () + g (p) wJ“f ().
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Multiplying both sides of (46) by (log(t/p))ﬁ_l/pl"(ﬁ), p €
(1,t), we have

(log (¢/p))" ™"

“o, (t
ul ¢, (1) T (B)

g(p)

(log (t/p))"

+ ) f (1) o (B)

v (p)
(log (t/p))""

>y, (t)

(log (t/p))""
Pl (B)

Integrating both sides of (47) with respect to p on (1,t), we
get the desired inequality (A5).
To prove (B;)-(D;), we use the following inequalities:

(Bs) (v, (@) =g @) (f(p)—¢:(p)) 20,
(C) (@ =f@)(g(p)-v,(p)) <0, (48)
(D;) (¢ ()= f()(g(p) -1 (p)) 0.

+ 5] f (1) g(p).

As a special case of Theorem 18, we have the following
corollary.

Corollary 19. Let f and g be two integrable functions on
[1, 00). Assume the following.
(Hs) There exist real constants m, M, n, N such that

m< f(t)<M, n<g(t)<N Vte[l,00). (49)

Then, fort > 1, a, B > 0, one has

n(logt)”

M(logt)”
r(g+1)"

TF'(a+1)

(Ay) Jf @)+ 0

nM(logt)**

_mMUogt) — o« p
- T(x+1)T(B+1) +ul fOu] g @),

m(logt)’
F(B+1)

N(logt)”

F(oc+1)H

(B4)

2 () + 1P £ @)

mN(logt)**

_MmTosh) L P o
2 Tarnr(grn S Onl 9@,

MN(log)*"*
Ta+1)T(B+1)

(Cy) + 1 f O u)g ®)

. M(logt)”
T T(a+1)

N(logt)”

B
23 g(t)+r(/3+1)

ul*f @®),
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mn(logt)**

Fa+1)T(B+1)

(D,) + 1 f (O I g (1)

8 n(logt)”
a9 O+ £l f 0.

. m(logt)”

T T(a+1)

(50)

Theorem 20. Let f and g be two integrable functions on

[1,00) and 0,0, > 0 satisfying 1/0, + 1/0, = 1. Suppose that

(H,) and (H,) hold. Then, fort > 1, a, 3 > 0, the following
inequalities hold:

1 (logt)’

0, T(f+1)

1 (log t)*
0, T(ax+1)

>yl (- )@ H]'B (v, —9) @),

(As) (92 - f)el ()

H]ﬁ(‘lfz - 9)62 (t)

1 « 1 1
(Bs) 9_1HI (¢, - f)e () H]'B(VIZ - 9)6 ()
1 (44 2 2
+ g (= 9)" O ul 92 = ) ©

2H]“(‘Pz_f)(‘lfz_9)(t)H]ﬁ(§"2_f)(ll/z_g)(t)’

1 (log t)ﬁ
6, T(B+1)

1 (logt)”
0, T(x+1)

> J(f =) O wl” (9-v) ®),

H]a(f - (Pl)el (t)

H]ﬁ(!] - 1//1)62 (¥)

OLH]a(f - (1’1)6l (t) H]ﬁ(g - V’l)el (t)
1
1 04 2 2
+ G_ZH] (g_%)e (t)H]ﬁ(f_(Pl)e (t)
> yl” (f_(Pl)(g_VJl)(t)H]ﬁ (f-e)(g-v)®).

(51)

Proof. The inequalities (A 5)-(Ds) can be proved by choosing
of the parameters in the Young inequality

(A5) x=p, ()~ f(@®),  y=wv,(p)-9g(p)
(Bs) x=(p,(0)—f (™) (v, (p)—9(p))
y=(,(®-9@) (e, (p) - f(p),

(52)
Cs) x=f@) -9, (0, y=gp)-vi(p),
(Ds) x=(f(0) -9, () (g(p) -1 (p)),
y=(g@ -y, @) (f(p) - (p)).
O
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Theorem 21. Let f and g be two integrable functions on
[1,00) and 0,,0, > 0 satisfying 0, + 0, = 1. Suppose that
(H,) and (H,) hold. Then, fort > 1, a, 3 > 0, the following

Theorem 22. Let f and g be two integrable functions on
[1,00) and constants p > q > 0, p #0. Assume that (H,) and

inequalities hold:

(logt)"
'T(B+1)

>y (¢, - f)e1 (t) H]ﬁ(VJZ - 9)92 (t)

(logt)® (log#)®
+911"(ﬁ+ I)H] f(t)+621“(oc+1)

(Bs) 6y 1), () Py () + 6, )£ (1) )P g (1)
+ 60, 1), (6) 1Py (6) + 6, 1) g (8) )P f (1)
> 10— )" (s - 9)" O T (v, - 9)"
x (¢, = )" ()

+0, 1%, (1) 1P g () + 0, 1 F () TPy (1)

oo (1) + 6,108

(4¢) 0 T(a+1)

Py, ()

BTN

+0, H]all/z ) H]ﬁf (1) + 6, H]“g ) H]ﬁ(Pz ),
(logt)”

(log?)?
(Cs) Tar D

01F(ﬁ+ 1)
> g (f - 9"1)(91 (1) H]ﬁ(g - 1//1)92 (t)

(logt)® (logt)”
+ 1@}11 o) (t)+921“((x—+1)

(Ds) 0, 1J*f () u)P g () + 6, %0) (O TPy, ()

I f () +6, 7Pq(t)

EAGE

+0,10%9 (6) P £ (8) + 6, 1y, () TP, ()
> ) (f-0) (g-v)" © (g - )"

x (f =) (1)

+ 60, I (8) 1Py (6) + 6, 1T, (8) 1P g (1)

+0, g (1) I e (1) + 6, )y () yP F ().
(53)

Proof. The inequalities (A 4)-(Dg) can be proved by choosing
of the parameters in the weighted AM-GM:

(Ag) x=9, ()= f(0), y=v,(p)-g(p),
(Bs) x=(9,(0)—f (@) (v (p)-9(p))>
y=W, @) -9@) (e, (p) - f(p))>

54)
(Co) x=f@-9.(®), y=g(p)-vi(p)
(Dg) x=(f @) =9, (0)(g(p)-v1(p)),
y=(g@ -y, @) (f(p) -1 (p)).
O

(H,) hold. Then, for any k > 0,t > 1, &, 8 > 0, the following
inequalities hold:
« / /
(A7) (9= N" (v - 9)"" @)

" %k(‘“’)“’ ul g (1) + %k(q_P)/PH]“f% ®)

<

%k(q_P)/PH]“(leljz ) + %k(q_P)/PH]afg (t)

+ p- qkq/p (logt)“
P T(a+1)

(B;) J* (9, — 1" (1) TP (v, - 9)VF (1)

+ %k(q—P)/PH]“(pZ t) H]ﬁg )

N % KPP 12 £ (1) TP, ()
S % KPP 1 () TPy, (6)
. % KaPIP 1 F () 11P g (8)

L P (log £)*F
P Ta+1)T(B+1)
(C,) H]a(f - (Pl)q/P(g - 1//1)‘7/}7 (1)

+ %k(q_P)/pH]af% () + %k(q_P)/PH]a%g (t)

<

%k(q"P)/PH]“fg ) + %k(q—p)/PH]“(lel (t)

+ p- qkq/p (logt)“
P [(a+1)

(D7) H]"‘(f _ gDl)q/P t) H]ﬁ(g _ ‘/’1)q/‘0 )

. % KaPIP 1 F () TPy (6)

n %k(q—P)/PHI“(pl t) H]ﬁg ®)
< %k(q—P)/PH]“f (t) H]ﬁg )
' %k(q'”’%f"‘% () 1y (1)

L P (log )™ .
p Ta+1)T(B+1)

(55)



Proof. The inequalities (A,)-(D;) can be proved by choosing
of the parameters in Lemma 14:

(4;) a=(p (M)~ f(@) (¥, (1) -g (D),
(B;) a=(p(r) = f () (v2(p)-39(p))>
(C) a=(f@-9,(0)(g(0) -y, (1)),
(D7) a=(f @) -91(0)(g(p) -1 (p))-

(56)

O

Lemma 23. Let f be an integrable function on [1,00) and
@1, ¢, are two integrable functions on [1, 00). Assume that the
condition (H,) holds. Then, fort > 1, « > 0, one has

(lOgt)‘x o 2 « 2
T+ 1) w70 = (W f ()
= (H]a‘Pz () - H]af (t)) (H]af () - H]a(/)l (t))
(logt)”
- T(a+ 1)H] (o2 =) (f—91) ®)
log t (57)
+§$RNJ¢JU)Hﬂ%®Hﬂﬂ0
logt
+§$)yﬂwf® 192 () ] £ (8
« « (logt)®
+tul Ol e, () - —(oc )H] @19, (1) .

Proof. For any 7 > 1 and p > 1, we have

(92 (p) = f (p)) (f (1) =91 (7))

+(p (0 = fF (@) (f (p) — 91 (p))
(- f@O)(f (D) -9 (D)
= (p2(p) = £ (P)) (f (P) =91 (p))

=@+ (p)-2f @ f(p)+9:(p) f (@)
+ ¢, (1) f(p) - 91 (1) 9, (p)
+¢, (1) f(p) + 91 (p) f (1) -
-9, () f (1) + ¢, (D) 9, (7)
~p (@ f@ =9, (p) f(p)
+¢1(P) 92 (p) =1 (p) f (p)-

(58)

@1 (p) 9 (7)
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Multiplying (58) by (log(t/T))“_l/Tl"(oc), T e (1,t),t>1,and
integrating the resulting identity with respect to 7 from 1 to
t, we get

(92 (p) = f(P) (I f (&) = ]y (1))
+ (] () ) f (t)) (f (P) -1 (p)
) (2= ) (f 1) ®) = (92 (p) - £ (p))

< (F (p) g (p)) o8)”

IF'(a+1)

(log)*
I'(x+1)

:H]“fz(t)"’fz(P)

=2f(P) )" f O+, (p) u]*f ()
+ £ (P)uJ 01 (1) = 92 (p) )1 ()
+ £ (P)ul P, (1) + 91 (p) I f ()
wl o f () + w9, (t)

(log)*
IF'(x+1)

¢ (p) ey (8) -

-~ f () =, (p) f (p)

(logt)*®

F(a+1)
(59)

(logt)*
I'(x+1)

+¢1(p) 9, (p) -9 (p) f(p)

Multiplying (59) by (log(t/p))“fl/pl"(oc), p€(1,t),t>1,and
integrating the resulting identity with respect to p from 1 to
t, we have

H]af (t)) (Hjaf (1) - H]a(Pl (t))
I @) (a]* f @) = 5], (1)

(log)*
I(x+1)

(logt)®
I'(x+1)

(H]a(PZ (t) -
+ (g%, () -

—u" (2= ) (f - 1) @)

N -e)®)
(lo g t)"

I («

-1l (¢, -
_ (logt)®
F( +1)
= 2u4] f O g f ) + 1], () g f (1)
+ 1) o0 () I f (6) = 5Ty () 1], (1)
+ 10, () ] f (8)

+ 5 o ) g f () = 5] 0y (8) 1] o, (8)

(log)*
CT(a+1)

H]f() H]f(f)

wl o f (t)
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logt)” logt)”
IS(Z‘g+)1)H]a¢1¢z () - r(((;g_i_)l)H]angf (t)
logt)®
- %H]“gozf (1)
logt)® logt)®
%Hﬂ%% (t) - %Hlaﬁf ),
(60)
which implies (57). O

Corollary 24. Let f be an integrable function on [1,00)
satisfyingm < f(t) < M, forallt € [1,00). Then forall t > 1,
« > 0 one has

(logt)”
faen @O~ 10
o, (ogt)® ) (logt)*
= (MF(OC+1) -ul f(t)>(H] f(t)—mm)
(og)” v it
- T(oc+1)H] (M- f®))(f ®)-m)).
(61)

Theorem 25. Let f and g be two integrable functions on
[1,00) and ¢, ¢,, ¥, and y, are four integrable functions on
[1, 00) satisfying the conditions (H,) and (H,) on [1, 00). Then
forallt > 1, « > 0, one has

(logt)* . N
e+ l)HI fg@®) =) f () )79 (1) -

|T fﬂ"v?’z)l | (9 v1s 1/’2)|

where T (u, v, w) is defined by

T (u, v, w)
= () w (@) — g u®) (] u () -

) (logt)*
TF'(a+1)

) (logt)®
TF'(a+1)

H]aV (t))

——— ] vu (t) — g v () gJ u (1)

(63)

wJ wu () — g w () g u (t)

(logt)®

Tarns W

+ 5] v (@) g w () -

Proof. Let f and g be two integrable functions defined on
[1, co) satisfying (H,) and (H,). Define

f(p)(g@-4g(p),

T,p€(1,t), t>1

H(r,p) = (f () -
(64)

9

Multiplying both sides of (64) by (log(t/7))* " (log(t/p))*™"/
7pI*(q), 7,p € (1,1), and integrating the resulting identity
with respect to 7 and p from 1 to ¢, we can state that

H%@JJZ(]Og%)“l(log £>oc Hnp) & dr dpP

_ (logt)®
T (ax+

(65)

H] fa@®) -ul*f O g @).

Applying the Cauchy-Schwarz inequality to (65), we have

( (logt)”

I'(x+1)

(s [ 0ee ) (o)
x H (1, p) ?%)2

(st s ) " (s

2drdp ) (66)
p

(=l Z(log%)“(logé)“

< (90 g (o)) ’d”)

2
= py fg &) ) f O u] g(t))

x(f@-f(p) —

_ (logt)lx o 2 o 2
_(F(cx+1)H] O - (gl f ) )
(logt)oc o 2 « 2
X(r(aH)Hl g &) - (]9 ®) )

Since (¢, (t) — f(O))(f(t) =@, (t)) = 0and (v, (t) — g(£))(g(t) -
Y, (1)) = 0 fort € [1,00), we have

(logt)*
T(a+1)

(log)*
TF'(x+1)

W (=) (f-e)®) 20,

(67)

o (v, —9g) (g-v,) @) 2 0.
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Thus, from Lemma 23, we get

(log )"
I'(x+1)

2R - (I @)

< (a0 () = wJ f ) W] f ©) = u) 0y (1)

’ r(l((;gi)j) o f €)= ule () 1) f (1)
’ r(l((;gi)r) 1l o f O = a2 (O 1) f ()
+ ) o1 (O ) 0, (1) - (log )’ w19, (1)
T(a+1)
=T(f.91,92)
(logt)”

o 2 o 2
mH] g )= (a9 1)

< (v (1) =19 (1)
X (] g () = 1)y, (1))

(logt)*
mzﬂ V19 (1)
-1y () ] g (@)

(logt)”
+ mHI v,9 (1)
-1 v () g]%g ()
+ 1]y () g%, (1)

(log )"
CT(a+1)

vy, ()

=T(g:v1¥2).
(68)
From (66) and (68), we obtain (62). O
Remark 26. If T(f, ¢, ¢9,) = T(f,m, M) and T(g,y,,y,) =
T(g, p,P), m,M,p,P € R, then inequality (62) reduces

to the following Griiss type Hadamard fractional integral
inequality:

(logt)”
T'(x+1)

wl fg@®) = f ) ul’g (t)‘
(69)

< lM 2(]\/[_ )(p_ )
*\2r@+1 e P
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Example 27. Let f and g be two functions satisfying logt <
f(t) < 1+logtand -1 +logt < g(t) < logt fort € [1,00).
Then for t > 1 and « > 0, we have

(log )"
I'(x+1)

W fg®) =g f ) gJ%g (1)

<|T(flogt, 1+ logt)|l/2|T (g.-1+ logt,logt)|1/2,
(70)

where

T (flogt,1+logt)

[ (logt)*  (logt)™™ |
- <F(oc+ D Ty /O
. (logt)*"!
X (H] f)- I‘((x—+2)
(logt)”
T (a+ I)H] (flog t) (¥)
1 ¢ a+1
N (rii Z 2) ul*f
(088" a1 1oar) £t
OBty 1+ 10g0) 1) 0
(logt)*  (log)™""\
- (F(oc+ D Twen |7 f®
(logt)*"" ( (logt)”  (logt)*"
T T@+2) \T@+1)  T(a+2)
(logt)* [ (logt)*™  2(logt)*™
TT@+D\T(@+2)  T(@+3) /)

T (g,-1 +logt,logt)

1 toc+1
- (giiiz) _H]ag(t)>

. (logt)”  (logt)*"'
X (H] IO T D Tw+2)
logt)*
- B (1 10g0) )0

(logt)*  (logt)™""\
+<F(o¢+1)_ r(a+z)>H]9(t)

(log t)oc+1
I'(x+2)

(logt)*
T(a+1)

uJ” (glogt) () - < ) g ()
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(logt)*  (logt)™"" (logt)™"
\T(a+1) T(x+2) ) T(ax+2)
(71)

(logt)" ( (logt)""

T'(a+1)

2(log )" >

T(a+2) T(a+3)
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