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This paper investigates the dynamic behavior of a viral infection model with general contact rate between susceptible host cells and
free virus particles. If the basic reproduction number of the virus is less than unity, by LaSalle’s invariance principle, the disease-
free equilibrium is globally asymptotically stable. If the basic reproduction number of the virus is greater than unity, then the virus
persists in the host and the endemic equilibrium is locally asymptotically stable.

1. Introduction

Viral infection within-host, such as hepatitis B virus (HBV),
hepatitis C virus (HCV), and human immunodeficiency
virus (HIV) infections, is a complicated kinetic process, and
mathematical model is always important, which can give a
hand to understand the complexity between the responses of
the body and variant conditions [1–6].

The basic viral infection model contains three variables,
susceptible host cells (𝑥), infected host cells (𝑦), and free
virus particles (V), which can be formulated by the following
differential equations [7, 8]:

d𝑥
d𝑡

= 𝑟 − 𝑚𝑥 − 𝛽𝑥V,

d𝑦
d𝑡

= 𝛽𝑥V − 𝑎𝑦,

dV
d𝑡

= 𝑘𝑦 − 𝑢V,

(1)

in which susceptible host cells are produced at a constant rate,
𝑟, die at the rate of 𝑚𝑥, and become infected with the rate of
𝛽𝑥V. Infected host cells are produced at the rate of𝛽𝑥V and die
at the rate of 𝑎𝑦. Free virus particles are released from infected
host cells at the rate of 𝑘𝑦 anddie at the rate of𝑢V. It is assumed
that parameters 𝑟, 𝑚, 𝛽, 𝑎, 𝑘, and 𝑢 are all positive constants.

Note that there is an assumption that the infection term
is based on themass-action principle, which means that there
is a constant contact rate (𝛽) between susceptible host cells
and virus particles in (1). However, many experiments of
microparasitic infections suggest the infection rate may be
a nonlinear relationship [3, 9–11], such as dose-dependent
infection rate. Thus, to meet more biological practice, we
replace the constant contact rate (𝛽) with a general contact
rate (𝑓(V)) between susceptible cells and virus particles and
obtain the following modified viral infection model:

d𝑥
d𝑡

= 𝑟 − 𝑚𝑥 − 𝑓 (V) 𝑥V,

d𝑦
d𝑡

= 𝑓 (V) 𝑥V − 𝑎𝑦,

dV
d𝑡

= 𝑘𝑦 − 𝑢V,

(2)

where the contact rate function 𝑓(V) satisfy the following
assumption (H1):

(H1) 𝑓(V) : R
+

→ R
+
, continuous and differentiable,

𝑓(0) = 𝛽, 𝑓󸀠(V) < 0 and 𝑓(∞) = 0.

The primary goal of this paper is to carry out amathemat-
ical analysis of system (2) and predict whether the infection
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disappears or survives. The organization of this paper is as
follows. In the next section, some preliminary results are
given, including the dissipativity of system (2), the definition
of basic reproduction number of the virus, and the existence
of the disease-free equilibrium and endemic equilibrium.
In Section 3, by analyzing the corresponding characteristic
equations, we study the local stability of the equilibria. In
Section 4, by using suitable Lyapunov function and LaSalle’s
invariance principle [12], we first prove that if the basic
reproduction number is less than unity, the disease-free
equilibrium is globally asymptotically stable. Then using
Theorem 4.6 in [13], we obtain the uniform persistence of (2)
if the basic reproduction number is greater than unity. A brief
discussion is given in Section 5 to conclude this work.

2. Preliminary Results

In this section, we first show that all solutions of system
(2) are positive and ultimately bounded. Then the existence
of feasible equilibria is given under the condition of basic
reproduction number of the virus.

Because of the biological meaning of the components
(𝑥(𝑡), 𝑦(𝑡), V(𝑡)), we focus on the model in the first octant of
R3 and consider system (2) with initial conditions

𝑥 (0) > 0, 𝑦 (0) > 0, V (0) > 0. (3)

The following result shows that system (2) is dissipative.

Theorem 1. Under the initial conditions (3), all solutions of
system (2) are positive for 𝑡 > 0 and there exists a constant
𝑀 > 0, such that all solutions satisfy 𝑥(𝑡) < 𝑀, 𝑦(𝑡) < 𝑀, and
V(𝑡) < 𝑀 for all sufficiently large 𝑡.

Proof. Note that 𝑥
󸀠
|
𝑥=0

= 𝑟 > 0, 𝑦
󸀠
|
𝑦=0

= 𝑓(V)𝑥V and
𝑉
󸀠
|V=0 = 𝑘𝑦. This implies that (𝑥(𝑡), 𝑦(𝑡), V(𝑡)) ∈ R3

+
for all

𝑡 > 0, provided that (𝑥(0), 𝑦(0), V(0)) ∈ R3
+
. Suppose that 𝑥(𝑡)

is not always positive. Let 𝜏 > 0 be the first time such that
𝑥(𝜏) = 0. By the first equation of (2) we have 𝑥

󸀠
(𝜏) = 𝑟 > 0,

which implies 𝑥(𝑡) < 0 for 𝑡 ∈ (𝜏 − 𝜀, 𝜏) for sufficiently small
𝜀 > 0, a contradiction. Thus, 𝑥(𝑡) is positive for all 𝑡 > 0.
In addition, by the second and third equations of (2), we
have

𝑦 (𝑡) = (𝑦 (0) + ∫

𝑡

0

𝑓 (V (𝑠)) 𝑥 (𝑠) V (𝑠) 𝑒
𝑎𝑠

𝑑𝑠) 𝑒
−𝑎𝑡

≥ 𝑦 (0) 𝑒
−𝑎𝑡

> 0,

V (𝑡) = (V (0) + ∫

𝑡

0

𝑘𝑦 (𝑠) 𝑒
𝑢𝑠

𝑑𝑠) 𝑒
−𝑢𝑡

≥ V (0) 𝑒
−𝑢𝑡

> 0,

(4)

for all 𝑡 > 0. Therefore, it is easy to see that 𝑦(𝑡) and V(𝑡) are
positive with initial conditions (3).

Next, we sketch the arguments for ultimate boundedness
of solution of (2). Let𝑁

1
(𝑡) = 𝑥(𝑡)+𝑦(𝑡),𝑁

2
(𝑡) = 𝑥(𝑡)+𝑦(𝑡)+

(𝑎V(𝑡)/𝑘), 𝑑
1

= min{𝑚, 𝑎}, and 𝑑
2

= min{𝑚, 𝑎, 𝑢}. Since all
solutions of (2) are positive, we have

𝑁
󸀠

1
= 𝑟 − 𝑚𝑥 − 𝑎𝑦 < 𝑟 − 𝑑

1
𝑁
1
,

𝑁
󸀠

2
= 𝑟 − 𝑚𝑥 −

𝑎𝑢

𝑘

V < 2𝑟 − 𝑑
2
𝑁
2
.

(5)

Therefore, 𝑁
1
(𝑡) < 2𝑟/𝑑

1
and 𝑁

2
(𝑡) < 3𝑟/𝑑

2
for all suffi-

ciently large 𝑡, and hence, 𝑥(𝑡), 𝑦(𝑡), and V(𝑡) are ultimately
bounded by some positive constant 𝑀.

Note that a free virus particle has an average lifetime of
1/𝑢 and parameter 𝑘 is the burst size, which means the total
number of virions produced by an infected cell during its
life span. Thus, at the beginning of the infectious process,
the average number of newly virus particles generated from
one virus particle, which is the basic reproduction number of
virus by [14, 15], can be defined as

𝑅
0
=

𝑟𝑘𝑓 (0)

𝑎𝑢𝑚

=

𝑟𝑘𝛽

𝑎𝑢𝑚

. (6)

Now, we begin to find the equilibria of model (2) by the
following algebraic system

𝑟 − 𝑚𝑥 − 𝑓 (V) 𝑥V = 0,

𝑓 (V) 𝑥V − 𝑎𝑦 = 0,

𝑘𝑦 − 𝑢V = 0.

(7)

Solving the third algebraic equation of (7), we can obtain
𝑦 = 𝑢V/𝑘. By combining this equality with the second
equation of (7), we have 𝑥 = 𝑎𝑢/𝑘𝑓(V) or V = 0. When
V = 0, it is easy to have 𝑦 = 0 and 𝑥 = 𝑟/𝑚 by the third and
first equations of (7); that is, system (2) always has a disease-
free equilibrium state, denoted as 𝐸

0
= (𝑟/𝑚, 0, 0). If V ̸= 0,

substituting 𝑥 = 𝑎𝑢/𝑘𝑓(V) in the first equation of (7), we have

𝜑
1
(V) ≡ 𝑟 −

𝑎𝑢

𝑘

V =

𝑎𝑚𝑢

𝑘𝑓 (V)
≡ 𝜑
2
(V) . (8)

Note that

𝜑
1
(0) = 𝑟, 𝜑

2
(0) =

𝑎𝑢𝑚

𝑘𝛽

, 𝜑
󸀠

1
(V) = −

𝑎𝑢

𝑘

< 0,

𝜑
󸀠

2
(V) = −

𝑎𝑢𝑚𝑘𝑓
󸀠

(V)

(𝑘𝑓 (V))2
> 0.

(9)

Thus, if 𝜑
1
(0) > 𝜑

2
(0), that is, 𝑅

0
> 1, there is a unique

positive root for (8).
We summarize the above analyses in the following result.

Proposition 2. For system (2), the disease-free equilibrium
𝐸
0

= (𝑟/𝑚, 0, 0) always exists. Furthermore, the unique
endemic equilibrium 𝐸

1
= (𝑥
∗
, 𝑦
∗
, V∗) exists only if 𝑅

0
> 1;

here 𝑥
∗

= 𝑎𝑢/𝑘𝑓(V∗), 𝑦
∗

= 𝑢V∗/𝑘, and V∗ is the unique
positive root of (8).
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3. Local Stability

In this section, we study the local stability of each of feasible
equilibria of system (2) by analyzing the corresponding
characteristic equations, respectively.

The Jacobian matrix 𝐽 of (2) at (𝑥, 𝑦, V) is

𝐽 =

[

[

[

[

−𝑚 − V𝑓 (V) 0 −𝑥𝑓 (V) − 𝑥V𝑓󸀠 (V)

𝑓 (V) V −𝑎 𝑥𝑓 (V) + 𝑥V𝑓󸀠 (V)

0 𝑘 −𝑢

]

]

]

]

. (10)

At disease-free equilibrium 𝐸
0
,

𝐽
𝐸0

=

[

[

[

[

[

[

[

−𝑚 0 −

𝛽𝑟

𝑚

0 −𝑎

𝛽𝑟

𝑚

0 𝑘 −𝑢

]

]

]

]

]

]

]

. (11)

Clearly, the determinant of the lower right-hand 2 × 2matrix
is positive and its trace is negative only if 𝑅

0
< 1, so its

eigenvalues have negative real parts in this case. Thus, 𝐸
0
is

locally asymptotically stable if and only if 𝑅
0
< 1.

When 𝑅
0
> 1, the endemic equilibrium 𝐸

1
exists, and the

Jacobian matrix at 𝐸
1
is

𝐽
𝐸1

=

[

[

[

[

−𝑚 − V∗𝑓 (V∗) 0 −𝑥
∗
𝑓 (V∗) − 𝑥

∗V∗𝑓󸀠 (V∗)

𝑓 (V∗) V∗ −𝑎 𝑥
∗
𝑓 (V∗) + 𝑥

∗V∗𝑓󸀠 (V∗)

0 𝑘 −𝑢

]

]

]

]

.

(12)

The characteristic equation of (12) is given by

𝜆
3

+ 𝐴
1
𝜆
2

+ 𝐴
2
𝜆 + 𝐴

3
= 0, (13)

in which

𝐴
1
= 𝑎 + 𝑢 + 𝑚 + V∗𝑓 (V∗) > 0,

𝐴
2
= 𝑎𝑢 + (𝑎 + 𝑢) (𝑚 + V∗𝑓 (V∗))

− 𝑘 (𝑥
∗

𝑓 (V∗) + 𝑥
∗V∗𝑓󸀠 (V∗))

= (𝑎 + 𝑢) (𝑚 + V∗𝑓 (V∗)) − 𝑘𝑥
∗V∗𝑓󸀠 (V∗) > 0,

𝐴
3
= 𝑎𝑢 (𝑚 + V∗𝑓 (V∗)) − 𝑚𝑘 (𝑥

∗

𝑓 (V∗) + 𝑥
∗V∗𝑓󸀠 (V∗))

= 𝑎𝑢V∗𝑓 (V∗) − 𝑚𝑘𝑥
∗V∗𝑓󸀠 (V∗) > 0.

(14)

Here, we used 𝑥
∗
𝑓(V∗) = 𝑎𝑢/𝑘 and the assumption (H1); that

is, 𝑓󸀠(V) < 0.
Because 𝐴

1
and 𝐴

3
are both positive, by Routh-Hurwitz

criterion, 𝐸
1
is locally asymptotically stable if and only if

𝐴
1
𝐴
2
−𝐴
3
> 0. After a simple algebraic calculation, we have

that

𝐴
1
𝐴
2
− 𝐴
3

= 𝑎𝑢𝑚 − 𝑎𝑘𝑥
∗V∗𝑓󸀠 (V∗) + (𝑚 + V∗𝑓 (V∗)) (𝑎2 + 𝑎𝑢 + 𝑚𝑢)

+ (𝑢 + V∗𝑓 (V∗)) ((𝑎 + 𝑢) (𝑚 + V∗𝑓 (V∗)) − 𝑘𝑥
∗V∗𝑓󸀠 (V∗))

(15)

is positive because 𝑓
󸀠
(V) < 0. Thus, 𝐸

1
is locally asymptoti-

cally stable if and only if 𝑅
0
> 1.

We summarize the above results and Proposition 2 in the
following theorem.

Theorem 3. If 𝑅
0

< 1, then only disease-free equilibrium 𝐸
0

exists and is locally asymptotically stable. When 𝑅
0
> 1, 𝐸

0
is

unstable and the endemic equilibrium 𝐸
1
appears and is locally

asymptotically stable.

4. Global Stability and Disease Persistence

For the global stability of the equilibria, we first have the
following.

Theorem4. Thedisease-free equilibrium𝐸
0
is globally asymp-

totically stable if only 𝐸
0
exists; that is, 𝑅

0
< 1.

Proof. Define a Lyapunov function

𝑉 = 𝑥 −

𝑟

𝑚

− ln 𝑚𝑥

𝑟

+ 𝑦 +

𝑎

𝑘

V. (16)

Along the trajectories of system (2), we have

𝑉
󸀠󵄨󵄨
󵄨
󵄨
󵄨(2)

= (1 −

𝑟

𝑚𝑥

)𝑥
󸀠

+ 𝑦
󸀠

+

𝑎

𝑘

V󸀠

= (1 −

𝑟

𝑚𝑥

) (𝑟 − 𝑚𝑥 − 𝑓 (V) 𝑥V)

+ 𝑓 (V) 𝑥V − 𝑎𝑦 + 𝑎𝑦 −

𝑎𝑢

𝑘

V

= −

𝑚

𝑥

(𝑥 −

𝑟

𝑚

)

2

−

𝑎𝑢

𝑘

(1 −

𝑘𝑟𝑓 (V)
𝑎𝑢𝑚

) V.

(17)

Based onTheorem 1, we know that all solutions of system
(2) are positive for 𝑡 > 0. Taking 𝜑(V) = 1 − 𝑘𝑟𝑓(V)/𝑎𝑢𝑚, we
have𝜑(0) = 1−𝑅

0
,𝜑󸀠(V) = −𝑘𝑟𝑓

󸀠
(V)/𝑎𝑢𝑚 > 0; that is,𝜑(V) is a

monotone increasing function.Thus, 𝜑(V) > 0 is always valid
if 𝑅
0

< 1. Consequently, all terms of the right hand side of
(17) are nonpositive when 𝑅

0
< 1, which implies that 𝑉󸀠|

(2)
≤

0 and 𝑉
󸀠
|
(2)

= 0 if and only if 𝑥 = 𝑟/𝑚 and V = 0. As a
result, the maximal invariant set in {(𝑥, 𝑦, V) : 𝑉

󸀠
|
(2)

= 0} is
the singleton {𝐸

0
}. According to the results inTheorem 3 and

LaSalle’s invariance principle [12], we have that 𝐸
0
is globally

asymptotically stable if 𝑅
0
< 1.

Next, we investigate the uniform persistence of (2) and
have the following result.
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Theorem 5. If 𝑅
0
> 1, then system (2) is uniformly persistent;

that is, there exists 𝜀 > 0 (independent of initial conditions),
such that lim inf

𝑡→+∞
𝑥(𝑡) > 𝜀, lim inf

𝑡→+∞
𝑦(𝑡) > 𝜀, and

lim inf
𝑡→+∞

V(𝑡) > 𝜀 for all solutions of (2) with initial
conditions (3).

Proof. The result follows from an application ofTheorem 4.6
in [13], with 𝑋

1
= int(R3

+
) and 𝑋

2
= bd(R3

+
). Since the proof

is similar to that of Lemma 3.5 in [16], here we only sketch
the modifications that 𝐸

0
is a weak repeller for 𝑋

1
.

Since 𝑅
0

> 1, that is, 𝑎𝑢 < 𝑟𝑘𝑓(0)/𝑚, together with
the continuity of the function 𝑓(V), there exists a sufficiently
small constant 𝜖 > 0 such that 𝑎𝑢 < 𝑘(𝑟/𝑚 − 𝜖)𝑓(𝜖) is valid.
Suppose that there exists a solution (𝑥(𝑡), 𝑦(𝑡), V(𝑡)) such that
(𝑥(𝑡), 𝑦(𝑡), V(𝑡)) → (𝑟/𝑚, 0, 0). Thus, when 𝑡 is sufficiently
large, we have

𝑟

𝑚

− 𝜖 < 𝑥 (𝑡) <

𝑟

𝑚

+ 𝜖, 𝑦 (𝑡) ≤ 𝜖, V (𝑡) ≤ 𝜖. (18)

By the second equation of (2), we have

d𝑦
d𝑡

= 𝑓 (V) 𝑥V − 𝑎𝑦 ≥ 𝑓 (𝜖) (

𝑟

𝑚

− 𝜖) V − 𝑎𝑦. (19)

Take an auxiliary system of (2) as

d𝑦
d𝑡

= 𝑓 (𝜖) (

𝑟

𝑚

− 𝜖) V − 𝑎𝑦,

dV
d𝑡

= 𝑘𝑦 − 𝑢V.

(20)

Clearly, (0, 0) is the unique equilibrium of (20) and the
Jacobian matrix 𝐽 of (20) is given by

𝐽 =
[

[

−𝑎 𝑓 (𝜖) (

𝑟

𝑚

− 𝜖)

𝑘 −𝑢

]

]

. (21)

After a simple calculation, we have that the determinant of
matrix (21)

det (𝐽) = 𝑎𝑢 − 𝑘 (

𝑟

𝑚

− 𝜖)𝑓 (𝜖) < 0 (22)

is valid for some sufficiently small constant 𝜖 > 0 if 𝑅
0

> 1.
Thus, (0, 0) is unstable in this case. This is a contradiction to
that (𝑦(𝑡), V(𝑡)) → (0, 0). As a result, 𝐸

0
is a weak repeller for

𝑋
1
.

5. Discussion

Considering the biological practice during viral or micropar-
asitic infection [3, 9–11], we proposed a viral infection model
with general contact rate between susceptible cells and virus
particles, which is a generalization of the basic viral infection
model [7, 8]. The biological meaning of the assumption (H1)
is that the accumulation of free virus particles can affect
the contact rate between susceptible cells and virus particles,
and the contact function is gradually weaker along with the
increasing of free virus particles.
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Figure 1: Phase diagram of system (2) under different initial
conditions. Here 𝑓(V) = 𝛽/(1 + 𝑏V) and 𝑟 = 10.0, 𝑚 = 0.01,
𝛽 = 3.60 × 10

−6, 𝑎 = 0.02, 𝑏 = 0.01, 𝑘 = 50, and 𝑢 = 0.67.

Though the rigorous analysis of stability of equilibria
is obtained in [17] for the basic model, it is usually very
complicated [18] and we cannot obtain the global stabil-
ity of the endemic equilibrium 𝐸

1
. However, we have the

conditions of globally asymptotic stability of the disease-
free equilibrium and persistence of virus. In addition, the
phase diagram of system (2) indicates that all solutions tend
to the unique disease steady state 𝐸

1
under different initial

conditions (Figure 1). Thus, we conjecture that 𝐸
1
is globally

asymptotically stable only if it exists even though the rigorous
mathematical proof remains open.
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