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The sufficient conditions are obtained for the existence and uniqueness of continuous solution to the linear nonclassical Volterra
equation that appears in the integral models of developing systems. The Volterra integral equations of the first kind with piecewise
smooth kernels are considered. Illustrative examples are presented.

1. Introduction

Volterra integral equations of the first kind with variable
upper and lower limits of integrationwere studied byVolterra
himself [1]. The publications on this topic in the first half of
the 20th century were reviewed in [2] and later studies were
discussed in [3–5].

A noticeable impetus to the development of this area
is related to the research [6] which suggested a macroe-
conomic two-sector integral model. The Glushkov’s models
of developing systems were further extended in [7, 8] and
used in many applications (see [9] and references therein).
In particular, a one-sector version of the Glushkov’s model
applied to the power engineering problems was considered in
[10–12]. In the recent years the researchers have got attracted
by the equation (see [13] and references therein) that in a
general case has the following form:

𝑛

∑
𝑖=1

∫
𝑎𝑖−1(𝑡)

𝑎𝑖(𝑡)

𝐾
𝑖
(𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠 = 𝑦 (𝑡) , 𝑡 ∈ [0, 𝑇] , (1)

where

0 ≤ 𝑎
𝑛
(𝑡) < 𝑎

𝑛−1
(𝑡) < ⋅ ⋅ ⋅ < 𝑎

0
(𝑡) ≡ 𝑡,

𝑎
𝑖
(0) = 0, 𝑖 = 0, 𝑛;

(2)

kernels 𝐾
𝑖
and right-hand side 𝑦(𝑡) are given, and 𝑥(𝑡) is an

unknown desired solution.
At 𝑛 = 1 the problems of the existence and uniqueness

of solution to (1) in the space 𝐶
[0,𝑇]

, as well as the numerical

methods, are studied in detail in [5]. In this paper we will be
interested in the same problems for (1) at 𝑛 > 1. Further, for
simplicity, we will consider only the case 𝑛 = 2, since many
results are easily generalized for the case 𝑛 > 2.

2. Sufficient Conditions for the Correctness of

(1) at 𝑛=2 in Pair (𝐶
[0,𝑇]

,
∘

𝐶
(1)

[0,𝑇]
)

For convenience, present (1) with 𝑛 = 2 in operator form

𝑉
1
𝑥 + 𝑉
2
𝑥 ≜ ∫

𝑡

𝑎1(𝑡)

𝐾
1
(𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠

+ ∫
𝑎1(𝑡)

0

𝐾
2
(𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠 = 𝑦 (𝑡) , 𝑡 ∈ [0, 𝑇]

(3)

(in (3) 𝑎
2
(𝑡) = 0 is assumed with no loss of generality).

Let kernels 𝐾
1
and 𝐾

2
be continuous in arguments and

continuously differentiable with respect to 𝑡 in regions Δ
1
=

{(𝑡, 𝑠) : 0 ≤ 𝑎
1
(𝑡) ≤ 𝑠 ≤ 𝑡 ≤ 𝑇} and Δ

2
= {(𝑡, 𝑠) : 0 ≤ 𝑠 ≤

𝑎
1
(𝑡)}, respectively, so that Δ

1
∪ Δ
2
= Δ, Δ = {(𝑡, 𝑠) : 0 ≤ 𝑠 ≤

𝑡 ≤ 𝑇}, Δ
1
∩ Δ
2
= 𝑙, 𝑙 = {(𝑡, 𝑠) : 𝑠 = 𝑎

1
(𝑡)}. We will assume

that

𝑎󸀠
1
(𝑡) ∈ 𝐶

+[0,𝑇]
, 𝑎󸀠
1
(0) < 1. (4)

In particular, (4) holds true for 𝑎
1
(𝑡) = 𝛼𝑡, 𝛼 ∈ (0, 1).

∘

𝐶
(1)

[0,𝑇]
is further taken to mean the space of continu-

ously differentiable functions 𝑦(𝑡) on [0, 𝑇] with the norm
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‖𝑦(𝑡)‖
∘

𝐶

(1)

[0,𝑇]

= max
0≤𝑡≤𝑇

{|𝑦(𝑡)| + |𝑦󸀠(𝑡)|} and additional condit-

ion 𝑦(0) = 0. If

min
𝑡∈[0,𝑇]

󵄨󵄨󵄨󵄨𝐾1 (𝑡, 𝑡)
󵄨󵄨󵄨󵄨 = 𝑘 > 0, (5)

then, as established in [5, page 106], the following estimate is
true:

󵄩󵄩󵄩󵄩󵄩𝑉
−1

1

󵄩󵄩󵄩󵄩󵄩 ∘
𝐶

(1)

[0,𝑇]
→𝐶[0,𝑇]

≤ 𝑆𝑘−1𝑒𝑘
−1
𝐿1𝑇, (6)

where

𝐿
1
= max
(𝑡,𝑠)∈Δ 1

󵄨󵄨󵄨󵄨󵄨𝐾
󸀠

1𝑡

(𝑡, 𝑠)󵄨󵄨󵄨󵄨󵄨 ,

𝑆 =
∞

∑
𝑗=0

𝑗

∏
𝑖=1

𝛾
𝑖
≥ 1,

𝛾
𝑖
= 𝛽
𝑖
+ (𝑧
𝑖
− 𝑧
𝑖+1
) 𝐿
1
𝑘−1,

𝑧
𝑖
= 𝑎𝑖
1
(𝑇) = 𝑎

1
(𝑎
1
(⋅ ⋅ ⋅ 𝑎
1
(𝑇))) , 𝑎0

1
(𝑇) = 𝑇,

𝛽
𝑖
= max
𝑡∈[𝑧𝑖 ,𝑧𝑖−1]

𝑎󸀠
1
(𝑡) 󵄨󵄨󵄨󵄨𝐾1 (𝑡, 𝑎 (𝑡))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐾1 (𝑡, 𝑡)
󵄨󵄨󵄨󵄨

.

(7)

Estimating (6) makes it possible to obtain the sufficient
condition for the existence, uniqueness, and stability of the

solution to (3) in pair (𝐶
[0,𝑇]

,
∘

𝐶
(1)

[0,𝑇]
).

Theorem 1. Let the following inequality hold true:

𝑎
1
(𝑇) (𝑀

2
+ 𝐿
2
) + 𝐴
1
𝑀
2
< 𝑘𝑆−1𝑒−𝑘

−1
𝐿1𝑇, (8)

where

𝐴
1
= max
𝑡∈[0,𝑇]

𝑎󸀠
1
(𝑡) ;

𝑀
2
= max
(𝑡,𝑠)∈Δ 2

󵄨󵄨󵄨󵄨𝐾2 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨 ;

𝐿
2
= max
(𝑡,𝑠)∈Δ 2

󵄨󵄨󵄨󵄨󵄨𝐾
󸀠

2𝑡

(𝑡, 𝑠)󵄨󵄨󵄨󵄨󵄨 ,

(9)

Then (3) is correct in the sense of Hadamard in pair

(𝐶
[0,𝑇]

,
∘

𝐶
(1)

[0,𝑇]
).

Proof. By virtue of a well-known theorem of functional
analysis (see, e.g., [14, page 212]), if

󵄩󵄩󵄩󵄩𝑉2
󵄩󵄩󵄩󵄩
𝐶[0,𝑇]→

∘

𝐶

(1)

[0,𝑇]

< 1
󵄩󵄩󵄩󵄩𝑉
−1

1

󵄩󵄩󵄩󵄩 ∘
𝐶

(1)

[0,𝑇]
→𝐶[0,𝑇]

, (10)

then the operator 𝑉 = 𝑉
1
+ 𝑉
2
has a bounded inverse, and,

consequently, (3) is correct in the sense of Hadamard in pair

(𝐶
[0,𝑇]

,
∘

𝐶
(1)

[0,𝑇]
). We show that under (8)-(9) inequality (10)

holds true.

As

󵄩󵄩󵄩󵄩𝑉2𝑥
󵄩󵄩󵄩󵄩 ∘
𝐶

(1)

[0,𝑇]

= max
0≤𝑡≤𝑇

{
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑎1(𝑡)

0

𝐾
2
(𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑎󸀠
1
(𝑡) 𝐾
2
(𝑡, 𝑎
1
(𝑡))

+∫
𝑎1(𝑡)

0

𝐾󸀠
2𝑡

(𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
}

≤ {𝑎
1
(𝑇) (𝑀

2
+ 𝐿
2
) + 𝐴
1
𝑀
2
} ‖𝑥(𝑡)‖

𝐶[0,𝑇]
,

(11)

then
󵄩󵄩󵄩󵄩𝑉2

󵄩󵄩󵄩󵄩
𝐶[0,𝑇]→

∘

𝐶

(1)

[0,𝑇]

≤ 𝑎
1
(𝑇) (𝑀

2
+ 𝐿
2
) + 𝐴
1
𝑀
2 (12)

and (10) follows from (6) and (12).

Condition (8) was obtained in the assumption that kernel
𝐾
1
is defined on Δ

1
. If it is possible to expand the domain of

definition 𝐾
1
to Δ, so that Δ

1
∩ Δ
2
= Δ ∩ Δ

2
= Δ
2
, then the

sufficient condition for the correctness of (3) is modified in
the following way. Represent the first term in (3) in the form

∫
𝑡

𝑎1(𝑡)

𝐾
1
(𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠 = ∫

𝑡

0

𝐾
1
(𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠

− ∫
𝑎1(𝑡)

0

𝐾
1
(𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠.

(13)

Then (3) can be represented as

𝑉̂
1
𝑥 + 𝑉̂
2
𝑥 ≜ ∫

𝑡

0

𝐾
1
(𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠

+ ∫
𝑎1(𝑡)

0

(𝐾
2
(𝑡, 𝑠) − 𝐾

1
(𝑡, 𝑠)) 𝑥 (𝑠) 𝑑𝑠 = 𝑦 (𝑡) ,

𝑡 ∈ [0, 𝑇] .
(14)

Since (see [5, page 12])
󵄩󵄩󵄩󵄩󵄩𝑉̂
−1

1

󵄩󵄩󵄩󵄩󵄩 ∘
𝐶

(1)

[0,𝑇]
→𝐶[0,𝑇]

≤ 𝑘−1𝑒𝑘
−1
𝐿̂1𝑇, (15)

where
𝐿̂
1
= max
(𝑡,𝑠)∈Δ

󵄨󵄨󵄨󵄨󵄨𝐾
󸀠

1𝑡

(𝑡, 𝑠)󵄨󵄨󵄨󵄨󵄨 , (16)

then sufficient conditions for the correctness of (14) give the
following theorem.

Theorem 2. Let inequality

𝑎
1
(𝑇) (𝑀̂

2
+ 𝐿̂
2
) + 𝐴

1
𝑀̂
2
< 𝑘𝑒−1𝑒−𝑘

−1
𝐿̂1𝑇, (17)

where
𝑀̂
2
= max
(𝑡,𝑠)∈Δ 2

󵄨󵄨󵄨󵄨𝐾2 (𝑡, 𝑠) − 𝐾1 (𝑡, 𝑠)
󵄨󵄨󵄨󵄨 , (18)

𝐿̂
2
= max
(𝑡,𝑠)∈Δ 2

󵄨󵄨󵄨󵄨󵄨𝐾
󸀠

2𝑡

(𝑡, 𝑠) − 𝐾󸀠
1𝑡

(𝑡, 𝑠)󵄨󵄨󵄨󵄨󵄨 , (19)

hold true.Then (14) is correct in the sense of Hadamard in pair

(𝐶
[0,𝑇]

,
∘

𝐶
(1)

[0,𝑇]
).
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Proof. With obvious changes, repeat the proof of Theorem 1.

Let us illustrate the obtained results with the following
example.

Consider the equation

∫
𝑡

𝛼𝑡

𝑥 (𝑠) 𝑑𝑠 + 𝜖∫
𝛼𝑡

0

𝑥 (𝑠) 𝑑𝑠 = 𝑦 (𝑡) , 𝑡 ∈ [0, 𝑇] . (20)

Here by (5)–(7) 𝑘 = 1, 𝑀
2
= |𝜖|, 𝑀

2
= |1 − 𝜖|, 𝐿

1
= 𝐿
1
=

𝐿
2
= 0, 𝑎

1
(𝑇) = 𝛼𝑇, 𝐴

1
= 𝛼, 𝛾

𝑖
= 𝛽
𝑖
= 𝛼, and 𝑆 = 1/(1 − 𝛼);

therefore based on (8) inequality

𝛼𝑇 |𝜖| + 𝛼 |𝜖| < 1 − 𝛼 (21)

and based on (17) inequality

𝛼𝑇 |1 − 𝜖| + 𝛼 |1 − 𝜖| < 1 (22)

give the following estimates 𝜖, which guarantee the existence,
uniqueness, and stability of solution to (20) in the space𝐶

[0,𝑇]
:

|𝜖| < 1 − 𝛼
𝛼 (1 + 𝑇)

;

|1 − 𝜖| < 1
𝛼 (1 + 𝑇)

.
(23)

It is useful to compare (23) with the estimate obtained by
shifting from (20) to the equivalent functional equation.
Differentiation of (20) gives

𝑥 (𝑡) = 𝛼 (1 − 𝜖) 𝑥 (𝛼𝑡) + 𝑦󸀠 (𝑡) , (24)

whence

𝑥 (𝑡) = lim
𝑛→∞

[

[
𝛼𝑛(1 − 𝜖)𝑛𝑥 (𝛼𝑛𝑡) +

𝑛−1

∑
𝑗=0

𝛼𝑗(1 − 𝜖)𝑗𝑦󸀠 (𝛼𝑗𝑡)]

]
(25)

and condition

|1 − 𝜖| < 1
𝛼

(26)

provides convergence of series (25) to continuous function
𝑥(𝑡) on [0, 𝑇].

If in (20)

𝜖 = 1 − 1
𝛼
, (27)

then condition (26) is violated. Then it is easy to see that the
homogeneous equation

∫
𝑡

𝛼𝑡

𝑥 (𝑠) 𝑑𝑠 + (1 − 1
𝛼
)∫
𝛼𝑡

0

𝑥 (𝑠) 𝑑𝑠 = 0 (28)

has a nontrivial solution 𝑥(𝑡) = const, and if, for example,
𝑦(𝑡) = 𝑡, the solution to the nonhomogeneous equation

∫
𝑡

𝛼𝑡

𝑥 (𝑠) 𝑑𝑠 + (1 − 1
𝛼
)∫
𝛼𝑡

0

𝑥 (𝑠) 𝑑𝑠 = 𝑡, 𝑡 ∈ [0, 𝑇] (29)

is a one-parameter family:

𝑥 (𝑡) = − ln 𝑡
ln𝛼

+ 𝑥 (1) . (30)

Let now

𝜖 = 1 + 1
𝛼
. (31)

Then, according to (24),

𝑥 (𝑡) = −𝑥 (𝛼𝑡) + 𝑦󸀠 (𝑡) , (32)

whence

𝑥 (𝑡) = lim
𝑛→∞

[

[
(−1)𝑛𝑥 (𝛼𝑛𝑡) +

𝑛−1

∑
𝑗=0

(−1)𝑗𝑦󸀠 (𝛼𝑗𝑡)]

]
(33)

so that for the right-hand side of (20) 𝑦(𝑡) = 𝑦(𝑡) = 𝑡𝑘/𝑘,
𝑘 = 1, 2, 3, . . ., from (33) we obtain

𝑥 (𝑡) = 𝑡𝑘−1

1 + 𝛼𝑘−1
, 𝑘 = 1, 2, . . . . (34)

In conclusion of this section it should be noted that
inequalities (8) and (17) can be interpreted as constraints on
the value 𝑇, which guarantee at given 𝐾

1
(𝑡, 𝑠), 𝐾

2
(𝑡, 𝑠), and

𝑎
1
(𝑡) the correct solvability of (3) in 𝐶

[0,𝑇]
. Since all param-

eters in the left-hand side of (8) and (17) are nondecreasing
functions of𝑇 and the right-hand side of (8) and (17) at 𝐿

1
̸= 0

(𝐿̂
1

̸= 0), on the contrary, monotonously decreases, then the
real positive root of corresponding nonlinear equation that
gives a guaranteed lower-bound estimate of 𝑇 exists and is
unique if 𝑎󸀠(0) is sufficiently small. In some special cases
this root can be found analytically in terms of the Lambert
function𝑊 [15, 16].

In [17–22] the authors studied the characteristic of con-
tinuous solution locality and the role of the Lambert function
as applied to the polynomial (multilinear) Volterra equations
of the first kind. The calculations of the test examples show
that the locality feature of the solution to the linear equation
(3) is not the result of the inaccuracy of estimates (8) and (17)
and reflects the specifics of the considered class of problems.
In this paper we do not dwell on the problem of numerically
solving (3). It is of independent interest and deserves special
consideration.

3. The Volterra Integral Equations of the First
Kind with Discontinuous Kernels

Equation (2) can be written in the form of Volterra integral
equation of the first kind:

∫
𝑡

0

𝐾 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠 = 𝑦 (𝑡) , 𝑡 ∈ [0, 𝑇] , (35)
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with discontinuous kernel

𝐾 (𝑡, 𝑠)

=

{{{{{{{{
{{{{{{{{
{

𝐾
1
(𝑡, 𝑠) , 𝑎

1
(𝑡) < 𝑠 ≤ 𝑡;

𝐾
𝑖
(𝑡, 𝑠) , 𝑎

𝑖
(𝑡) < 𝑠 < 𝑎

𝑖−1
(𝑡) ,

𝑖 = 2, 𝑛 − 1;
(𝐾
𝑖
(𝑡, 𝑠) + 𝐾

𝑖+1
(𝑡, 𝑠))

2
, 𝑠 = 𝑎

𝑖
(𝑡) , 𝑖 = 1, 𝑛 − 1;

𝐾
𝑛
(𝑡, 𝑠) , 0 ≤ 𝑠 < 𝑎

𝑛−1
(𝑡) .

(36)

To illustrate the fundamental difference between (35),
(36), and classical Volterra equation of the first kind with
smooth kernel, we confine ourselves to (20) that has the form
of (35) at

𝐾 (𝑡, 𝑠) =
{{{
{{{
{

1, 𝛼𝑡 < 𝑠 ≤ 𝑡;
1 + 𝜖
2

, 𝑠 = 𝛼𝑡;
𝜖, 0 ≤ 𝑠 < 𝛼𝑡,

(37)

where 𝜖 ̸= 0, 1, and 𝛼 ∈ (0, 1). In particular, at 𝛼 = 1/2, 𝜖 = −1,

𝐾 (𝑡, 𝑠) = sign(𝑠 − 𝑡
2
) =

{{{{{{{
{{{{{{{
{

1, 𝑠 > 𝑡
2
;

0, 𝑠 = 𝑡
2
;

−1, 𝑠 < 𝑡
2
.

(38)

For this case the solution to (35) with 𝑦(𝑡) = 𝑡 given in
[23] is

𝑥 (𝑡) = ln 𝑡
ln 2

+ 𝑥 (𝑠) . (39)

For kernel (38)

𝐾 (0, 0) = 0, 𝐾 (𝑡, 𝑡) ̸= 0, 𝑡 > 0. (40)

If𝐾(𝑡, 𝑠) is continuous in arguments and continuously differ-
entiable with respect to 𝑡 inΔ, then condition (40)means that
(35) is Volterra integral equation of the third kind.

The theory (whose foundation was laid by Volterra (see
[24, pages 104–106])) of such equations is developed in the
research done by Magnitsky [25–28].

In particular, the author of [25–28] studies the structure
of one- or many-parameter family of solutions to (35).

If 𝐾(𝑡, 𝑠) is discontinuous, then the solution to (35) may
be nonunique, even if 𝐾(𝑡, 𝑡) ̸= 0 ∀𝑡 ≥ 0.

For example, if𝛼 ̸= 1/2 and 𝜖 = 1−(1/𝛼) ̸= −1, the solution
to equation

∫
𝑡

𝛼𝑡

𝑥 (𝑠) 𝑑𝑠 + 𝜖∫
𝛼𝑡

0

𝑥 (𝑠) 𝑑𝑠 = 𝑡, 𝑡 ∈ [0, 𝑇] , (41)

is a one-parameter family:

𝑥 (𝑡) = − ln 𝑡
ln𝛼

+ 𝑥 (1) , (42)

but, by (37) 𝐾(0, 0) = (1 + 𝜖)/2 ̸= 0, 𝐾(𝑡, 𝑡) = 1, 𝑡 > 0.

Now we show that there can be a nonunique solution to
(35) and (36) even in the case 𝐾(𝑡, 𝑡) ≡ 1. Let

𝐾 (𝑡, 𝑠) = {1, 𝑠 ≥ 𝛼𝑡,
𝜖, 𝑠 < 𝛼𝑡,

(43)

so that condition𝐾(𝑡, 𝑡) ≡ 1 is true.
We prove that solutions to (35), (37) and (35), (43)

coincide. It suffices to show that the equivalent functional
equations for (35), (37) and (35), (43) coincide. Recall that for
(35), (37) the equivalent functional equation is (24).

Theorem 3. The equivalent functional equations for (35), (37)
and (35), (43) coincide.

Proof. Let us represent (43) by

𝐾 (𝑡, 𝑠) ≡ 1 + (𝜖 − 1) 𝑒 (𝛼𝑡 − 𝑠) , (44)

where 𝑒(⋅)– is a Heaviside function:

𝑒 (]) = {1, ] ≥ 0,
0, ] < 0.

(45)

Substitution of (44) in (35) gives

∫
𝑡

0

𝑥 (𝑠) 𝑑𝑠 + (𝜖 − 1) ∫
𝑡

0

𝑒 (𝛼𝑡 − 𝑠) 𝑥 (𝑠) 𝑑𝑠 = 𝑦 (𝑡) ,

𝑡 ∈ [0, 𝑇] .
(46)

Transform the second integral. Let ] = 𝛼𝑡 − 𝑠. Then

∫
𝑡

0

𝑒 (𝛼𝑡 − 𝑠) 𝑥 (𝑠) 𝑑𝑠 = ∫
𝛼𝑡

(𝛼−1)𝑡

𝑒 (]) 𝑥 (𝛼𝑡 − ]) 𝑑]

= ∫
𝛼𝑡

0

𝑥 (𝛼𝑡 − ]) 𝑑].

(47)

By virtue of (47), differentiation of (46) results in

𝑥 (𝑡) + (𝜖 − 1) 𝛼𝑥 (0) + (𝜖 − 1) ∫
𝛼𝑡

0

𝑥󸀠
𝑡
(𝛼𝑡 − ]) 𝑑] = 𝑦󸀠 (𝑡) .

(48)

But

𝑥󸀠
𝑡
(𝛼𝑡 − ]) = −𝛼𝑥󸀠] (𝛼𝑡 − ]) . (49)

By virtue of (49) we have

𝑥 (𝑡) + (𝜖 − 1) 𝛼𝑥 (0) − (𝜖 − 1) 𝛼 [𝑥 (𝛼𝑡 − ])|𝛼𝑡
0
] = 𝑦󸀠 (𝑡) ,

(50)

from (48), whence finally

𝑥 (𝑡) + 𝛼 (𝜖 − 1) 𝑥 (𝛼𝑡) = 𝑦󸀠 (𝑡) , (51)

and (51) coincides with (24).
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The solution to (35), (43) in the class of piecewise
continuous functions with a jump on line 𝑠 = 𝛼𝑡 is interesting
from the application perspective.

It is easy to see that this solution is

𝑥 (𝑡, 𝑠) =
{
{
{

𝑦󸀠 (𝑠) , 𝑠 ≥ 𝛼𝑡,
1
𝜖
𝑦󸀠 (𝑠) , 𝑠 < 𝛼𝑡.

(52)

At last consider the concept of 𝛼-convolution. Volterra
integral equations of convolution type

𝐾 (𝑡) ∗ 𝑥 (𝑡) Δ= ∫
𝑡

0

𝐾 (𝑡 − 𝑠) 𝑥 (𝑠) 𝑑𝑠 = 𝑦 (𝑡) , 𝑡 ∈ [0, 𝑇]

(53)

are important for application.
Examples (38) and (44) show the usefulness of the 𝛼-

convolution concept:

𝐾 (𝑡) 𝛼∗ 𝑥 (𝑡) Δ= ∫
𝑡

0

𝐾 (𝛼𝑡 − 𝑠) 𝑥 (𝑠) 𝑑𝑠

= 𝑦 (𝑡) , 𝛼 ∈ (0, 1] , 𝑡 ∈ [0, 𝑇] .
(54)

Give some inversion formulas of the integral equation

𝐾 (𝑡) 𝛼∗ 𝑥 (𝑡) = 𝑦 (𝑡) , 𝑡 ∈ [0, 𝑇] . (55)

(1) If 𝐾(𝑡) = 𝛿(𝑡), 𝑦(𝑡) ∈ 𝐶
[0,𝑇]

, and 𝛼 ∈ (0, 1], then

𝑥 (𝛼𝑡) = 𝑦 (𝑡) . (56)

(2) If 𝐾(𝑡) = 𝑒(𝑡), 𝑦(𝑡) ∈
∘

𝐶
(1)

[0,𝑇]
, and 𝛼 ∈ (0, 1], then

𝑥 (𝛼𝑡) = 1
𝛼
𝑦󸀠 (𝑡) . (57)

(3) If 𝐾(𝑡) = sign 𝑡, 𝑦(𝑡) = 𝑡, and 𝛼 ∈ (0, 1), then

𝑥 (𝑡) = ln 𝑡
ln𝛼

+ 𝑥 (1) . (58)

At 𝐾(𝑡) = 𝑡𝑛, 𝑛 ≥ 1, (55) is Volterra integral equation
of the third kind.

(4) If 𝐾(𝑡) = 𝑡, 𝑦(𝑡) = 𝑡2/2, and 𝛼 = 1/2, then

𝑥 (𝑡) = −2 ln 𝑡 + 𝑥 (1) . (59)

(5) If 𝐾(𝑡) = 𝑡, 𝑦(𝑡) = 𝑡2/2, and 𝛼 ∈ (0, 1), 𝛼 ̸= 1/2, then

𝑥 (𝑡) = 𝑥 (1)
𝑡(2𝛼−1)/(𝛼−1)

. (60)

4. Conclusion

As is mentioned in the introduction, the main results of this
study can be easily applied to the case 𝑛 > 2 in (1). The
equations of type (1) not only are of theoretical interest, but
also play an important role in the mathematical modeling of
developing dynamic systems.Moreover, by𝑦(𝑡), we canmean
some criterion that characterizes the level of development
of the system as a whole, and the 𝑖th term in (1) represents
a contribution of the system components 𝑥(𝑠) of the 𝑖th
age group, whose operation is reflected by the efficiency
coefficient 𝐾

𝑖
(𝑡 − 𝑠). As a rule, 𝐾

1
≥ ⋅ ⋅ ⋅ ≥ 𝐾

𝑛
≥ 0.

Such an approach is implemented, for instance, in [29, 30],
in the problem of the analysis of strategies for the long-term
expansion of the Russian electric power system, with the
consideration of aging of the power plants equipment.
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