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With the aid of symbolic computation, we obtain the symmetry transformations of the (2 + 1)-dimensional Caudrey-Dodd-Gibbon-
Kotera-Sawada (CDGKS) equation by Lou’s direct method which is based on Lax pairs. Moreover, we use the classical Lie group
method to seek the symmetry groups of both the CDGKS equation and its Lax pair and then reduce them by the obtained
symmetries. In particular, we consider the reductions of the Lax pair completely. As a result, three reduced (1 + 1)-dimensional
equations with their new Lax pairs are presented and some group-invariant solutions of the equation are given.

1. Introduction

Inmodernmathematics with ramifications of several fields of
mathematics, physics, and other sciences, it is getting more
and more popular to study the symmetry analysis of dif-
ferential equations, especially high-dimensional ones, such
as finding symmetries, symmetry groups of transformation,
symmetry reductions, and construction group invariant solu-
tions.

Nowadays, there are three basicmethods for finding sym-
metry reductions of the given nonlinear systems [1], namely,
the classical Lie group method [2, 3], the nonclassical Lie
group method [4], and the Clarkson and Kruskal’s direct
method [5].Then Lou improved the directmethod [6], which
was based on Lax pairs. With the classical Lie group method,
Zhi [7, 8] studied symmetry reductions of the Lax pair for
the (2+1)-dimensional Konopelchenko-Dubrovsky equation
and found that the reduced Lax pairs do not always lead to the
reduced KD equations.

In [9], the first two ZS-AKNSmembers, the coupled non-
linear Schrödinger, and the mKdV equations yield special
solutions to the KP equation. This means the assembling of
(1 + 1)-dimensions into (2 + 1)-dimensions. The technique
is applied to the KdV hierarchy. The assembling of the first

two KdV equations leads to the (2 + 1)-dimensional CDGKS
equation:
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(1)

which is a higher-order generalization of the celebrated Kor-
teweg-de Vries (KdV) equation. Equation (1) was first intro-
duced in [10], and its (1+1)-dimensional version was studied
by Sawada and Kotera [11] and Caudrey et al. [12].The (1+1)-
dimensional CDGKS equation is not a member of the Lax
hierarchy of the Korteweg-de Vries equation and has some
distinct properties, as reported in [13]. In [14], the algebraic-
geometric solutions to (1) were obtained. The Lax pair of
linear equations of the (2 + 1)-dimensional CDGKS equation
(1) is as follows:
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(2)
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The plan of the present paper is as follows. Section 2
presents the symmetry transformations of the CDGKS equa-
tion by means of its Lax pair with Lou’s direct method.
Section 3 gives the symmetry reductions of the CDGKS
equation and its Lax pair, based on the symmetries obtained
by the classical Lie group method. A short summary is in
Section 4.

2. Symmetry Transformations by
the Direct Method

In this section, we will seek the symmetry transformations
of the CDGKS equation and will determine the Lie group of
transformations of (1) with the direct method based on the
Lax pair due to Lou.

By a transformation, (1) is equivalent to the following
system:
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(3)

which possesses the Lax pair
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Let

Φ = 𝐺𝜙 (𝜉, 𝜂, 𝜏) , (5)

where𝐺, 𝜉, 𝜂, and 𝜏 are functions of (𝑥, 𝑦, 𝑡) and𝜙(𝜉, 𝜂, 𝜏) has
the same equations as (4). Consider
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Substitution of (5) and (6) into (4) leads to a system of
differential equations. Comparing the different derivatives of
𝜙, we get the restricted equations of 𝐺, 𝜉, 𝜂, and 𝜏. Solving
these equations, we obtain
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and the relations of 𝑤, 𝑢 and 𝑤(𝜉, 𝜂, 𝜏), 𝑢̃(𝜉, 𝜂, 𝜏) are as fol-
lows:
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where 𝜉
1
, 𝜂
1
, and 𝜏 are arbitrary functions of 𝑡. In this paper,

the dots denote differentiation with respect to 𝑡.
From the above results one can get the following symme-

try group theorem for the CDGKS equation.

Theorem 1. If 𝑤 = 𝑤(𝑥, 𝑦, 𝑡), 𝑢 = 𝑢(𝑥, 𝑦, 𝑡) are a solution of
the CDGKS equation, then so is (𝑤, 𝑢̃), given by (8) and (7).

From Theorem 1, let 𝜉
1

= 𝜖𝑓(𝑡), 𝜂
1

= 𝜖𝑔(𝑡), and 𝜏 = 𝑡 +

𝜖ℎ(𝑡) in (8), with infinitesimal parameter 𝜖; we can obtain the
Lie point symmetry structure again, 𝑤 = 𝑤 + 𝜖𝜎(𝑤), 𝑢̃ =

𝑢 + 𝜖𝜎(𝑢). Furthermore, we have

𝜎 (𝑤) = −
2

5
ℎ̇𝑤 +

9

25
ℎ̈𝑦 +

3

5
̇𝑔,

𝜎 (𝑢) =
9

5
̇𝑓 +

9

25
ℎ̈𝑥 +

81

250
ℎ⃛𝑦
2

+
27

25
̈𝑔𝑦 − (

9

25
ℎ̈𝑦 +

3

5
̇𝑔)𝑤 −

4

5
ℎ̇𝑢.

(9)

The equivalent vector expression of the symmetries can
be expressed as
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It is easy to show that {𝑋
1
, 𝑋
2
, 𝑋
3
} constructs a Kac-

Moody algebra.

3. Symmetry Reductions of the CDGKS
Equation and Its Reduced Lax Pairs

In this section, we will use the classical Lie group method to
seek some symmetries of the CDGKS equation and its Lax
pair. The Lie point symmetry algebra admitted by its corre-
sponding Lax pair (4) is

𝑋 = 𝜉
1
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𝜕𝑥
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𝜕
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3

𝜕

𝜕Φ
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where 𝜉
1
, 𝜉
2
, 𝜉
3
, 𝜙
1
, 𝜙
2
, and 𝜙

3
are functions of 𝑥, 𝑦, 𝑡, 𝑤, 𝑢,

and Φ.
With the aid of Maple, we obtain the following infinitesi-

mals:

𝜉
1
= 9 ̈𝑓𝑦

2
+ 15 ̇𝑔𝑦 + 10 ̇𝑓𝑥 + 5ℎ, 𝜉

2
= 30 ̇𝑓𝑦 + 25𝑔,

𝜉
3
= 50𝑓, 𝜙

1
= 18 ̈𝑓𝑦 + 15 ̇𝑔 − 20 ̇𝑓𝑤,

𝜙
2
= 18 ̈𝑓𝑥 − 3 (6 ̈𝑓𝑦 + 5 ̇𝑔)𝑤 +
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5
⃛𝑓𝑦
2

+ 27 ̈𝑔𝑦 − 40 ̇𝑓𝑢 + 9ℎ̇,

𝜙
3
= 𝐶
1
Φ + 𝐶

2
,

(14)

where 𝐶
1
, 𝐶
2
are arbitrary constants and 𝑓, 𝑔, and ℎ are

arbitrary functions of 𝑡. Also, we can obtain the Lie point
symmetry algebra admitted by (3), and we find that the
CDGKS equation and its Lax pair admit the same symmetry
transformations of the independent variables except the
eigenfunction 𝜙

3
.

After determining the infinitesimals (14), the symmetry
variables are found by solving the corresponding characteris-
tic equations:

𝑑𝑥

𝜉
1

=
𝑑𝑦

𝜉
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𝑑𝑡

𝜉
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𝑑𝑤

𝜙
1
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𝑑𝑢

𝜙
2

=
𝑑Φ

𝜙
3

. (15)

While solving the above characteristic equation one has
to distinguish between the cases in which some of the
functions 𝑓, 𝑔, ℎ and the constants 𝐶

1
, 𝐶
2
are identical to

zero and cases where they are not. This leads to different
relations between the similarity variables (𝑥, 𝑦, 𝑃, 𝑄, Ψ) and
the original variables (𝑥, 𝑦, 𝑡, 𝑤, 𝑢, Φ). As a result we obtain
the following cases.

Case 1 (𝑓(𝑡) ̸= 0). Integrating (15), we get the following
similarity variables:
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𝑄 −
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𝑦𝑃 −
9
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−
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9
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𝑓
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ℎ,

(16)

where 𝑃 and 𝑄 are symmetry reduction fields with respect
to the group invariants 𝑥, 𝑦 and 𝑓, 𝑔, and ℎ are arbitrary
functions of 𝑡. The reduced equation (3) turns out to be

1

9
(𝑃
𝑥𝑥𝑥𝑥

+ 5𝑄
𝑥𝑥

+ 5𝑃𝑃
𝑥𝑥

+
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3
𝑃
3
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𝑥

+
5

9
(𝑃𝑄
𝑥
+ 𝑃
𝑥
𝑄 − 𝑄

𝑦
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𝑃
𝑦
= 𝑄
𝑥
.

(17)

In the following reductions, we find that 𝐶
1
, 𝐶
2
play the

role of spectral parameter in the reduced Lax pair. In this
case, the following three cases should be considered; namely,
(i) 𝐶
1

̸= 0, (ii) 𝐶
1
= 0, 𝐶

2
̸= 0, and (iii) 𝐶

1
= 𝐶
2
= 0.

(i) One has𝐶
1

̸= 0.

From (15), we can obtain the eigenfunction

Φ = −
𝐶
2

𝐶
1

+ 𝑒
∫(𝐶
1
/50𝑓(𝑡))𝑑𝑡

Ψ (𝑥, 𝑦) . (18)

Substituting (16) and (18) into (4), we obtain the first type
of the reduced Lax pair

Ψ
𝑦
+ Ψ
𝑥𝑥𝑥

+ 𝑃Ψ
𝑥
= 0,

450Ψ
𝑥𝑥𝑥𝑥𝑥
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𝑥𝑥𝑥

+ 750𝑃
𝑥
Ψ
𝑥𝑥

+ 500𝑃
𝑥𝑥

Ψ
𝑥
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2
Ψ
𝑥
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𝑥
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1
Ψ = 0.
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By direct computation, from (19) we can obtain

5
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(𝑄
𝑥
− 𝑃
𝑦
)Ψ
𝑥𝑥𝑥

+
5

3
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− 𝑃
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+
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9
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𝑥𝑥𝑥

− 𝑃
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+
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𝑥
− 𝑃
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) 𝑃Ψ
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− [
1

9
(𝑃
𝑥𝑥𝑥𝑥

+ 5𝑄
𝑥𝑥

+ 5𝑃𝑃
𝑥𝑥

+
5

3
𝑃
3
)
𝑥

+
5
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(𝑃𝑄
𝑥
+ 𝑃
𝑥
𝑄 − 𝑄

𝑦
)]Ψ
𝑥
= 0.

(20)

It is easy to check that the reduced (1 + 1)-dimensional
equation (17) is the compatibility condition of the reduced
Lax pair (19).

(ii) One has𝐶
1
= 0, 𝐶

2
̸= 0.

The eigenfunction is

Φ = ∫
𝐶
2

50𝑓 (𝑡)
𝑑𝑡 + Ψ (𝑥, 𝑦) . (21)

We obtain the second type of the reduced Lax pair

Ψ
𝑦
+ Ψ
𝑥𝑥𝑥

+ 𝑃Ψ
𝑥
= 0,

450Ψ
𝑥𝑥𝑥𝑥𝑥
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𝑥𝑥𝑥
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𝑥
Ψ
𝑥𝑥
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Ψ
𝑥
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2
Ψ
𝑥
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𝑥
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2
= 0.

(22)

Similarly, the reduced equation (17) is the compatibility
condition of the reduced Lax pair (22).

(iii) One has𝐶
1
= 𝐶
2
= 0.

The eigenfunction is

Φ = Ψ (𝑥, 𝑦) . (23)

We obtain the third type of the reduced Lax pair

Ψ
𝑦
+ Ψ
𝑥𝑥𝑥

+ 𝑃Ψ
𝑥
= 0,

9Ψ
𝑥𝑥𝑥𝑥𝑥

+ 15𝑃Ψ
𝑥𝑥𝑥

+ 15𝑃
𝑥
Ψ
𝑥𝑥

+ 10𝑃
𝑥𝑥

Ψ
𝑥

+ 5𝑃
2
Ψ
𝑥
− 5𝑄Ψ

𝑥
= 0.

(24)

Equation (17) is the compatibility condition of the Lax
pair (24).

The reduction equation (17) is much simpler than the
original equation (3). It is easy to obtain the solutions of (17).
Consider

𝑃 (𝑥, 𝑦) = 𝐶
4
− 6𝐶
2

2
tanh2 (𝐶

1
+ 𝐶
2
𝑥 + 𝐶

3
𝑦) ,

𝑄 (𝑥, 𝑦) = − 6𝐶
2
𝐶
3
tanh2 (𝐶

1
+ 𝐶
2
𝑥 + 𝐶

3
𝑦)

− 𝐶
−1

2
𝐶
3
𝐶
4
− 𝐶
2

4
+ 8 𝐶

2

2
𝐶
4

−
76

5
𝐶
4

2
− 8𝐶
2
𝐶
3
+ 𝐶
−2

2
𝐶
2

3
,

(25)

where 𝐶
1
, 𝐶
2
, 𝐶
3
, and 𝐶

4
are arbitrary constants.

According to (16), we can get the group-invariant solu-
tions of (3). Consider

𝑞 = 𝑓
−2/5

(𝐶
4
− 6𝐶
2

2
tanh2 (𝑍)) +

9

25
̇𝑓𝑓
−1

𝑦 +
3

10
𝑔𝑓
−1

,

𝑢 = 𝑓
−4/5

(𝐶
4
− 6𝐶
2

2
tanh2 (𝑍)) −

54

125
̇𝑓𝑓
−2

𝑔𝑦

−
162

625
̇𝑓
2
𝑓
−2

𝑦
2
−

9

25
̇𝑓𝑓
−7/5

𝑦𝑃 −
9

50
𝑓
−2

𝑔
2

−
3

10
𝑓
−7/5

𝑔( − 6𝐶
2
𝐶
3
tanh2 (𝑍) − 𝐶

−1

2
𝐶
3
𝐶
4
− 𝐶
2

4

+ 8𝐶
2

2
𝐶
4
−

76

5
𝐶
4

2
− 8𝐶
2
𝐶
3
+ 𝐶
−2

2
𝐶
2

3
)

+
9

25
̇𝑓𝑓
−1

𝑥 +
81

250
̈𝑓𝑓
−1

𝑦
2
+

27

50
𝑓
−1

̇𝑔𝑦 +
9

50
𝑓
−1

ℎ,

(26)

with

𝑍 = 𝐶
1
+ 𝐶
2
(𝑓
−1/5

𝑥 −
9

50
̇𝑓𝑓
−6/5

𝑦
2
−

3

10
𝑔𝑓
−6/5

𝑦

−
1

10
∫ ℎ𝑓
−6/5

𝑑𝑡 +
3

20
∫𝑔
2
𝑓
−11/5

𝑑𝑡)

+ 𝐶
3
(𝑓
−3/5

𝑦 −
1

2
∫𝑔𝑓
−8/5

𝑑𝑡) ,

(27)

and 𝑓, 𝑔, and ℎ are arbitrary functions of 𝑡.

Case 2 (𝑓(𝑡) = 0, 𝑔(𝑡) ̸= 0). In this case, integrating (15) with
𝑓 = 0 leads to the following similarity variables:

𝑥 = 5𝑔𝑥 −
3

2
̇𝑔𝑦
2
− ℎ𝑦, 𝑦 = 𝑡,

𝑤 =
3 ̇𝑔

5𝑔
𝑦 + 𝑃,

𝑢 =
27 ̈𝑔𝑔 − 9 ̇𝑔2

50𝑔2
𝑦
2
+

9ℎ̇ − 15 ̇𝑔𝑃

25𝑔
𝑦 + 𝑄,

(28)

where 𝑃 and𝑄 are the similarity reduction fields with respect
to 𝑥 and 𝑦. Substituting (28) into (3) yields the second type of
similarity reductions:

9𝑔𝑃
𝑦
+ 3125𝑔

6
𝑃
𝑥𝑥𝑥𝑥𝑥

+ (625𝑔
4
𝐹 − 125𝑔

3
ℎ) 𝑃
𝑥𝑥𝑥

+ 625𝑔
4
𝑃
𝑥
𝑃
𝑥𝑥

+ 6 ̇𝑔𝑃 −
9

5
ℎ̇ +

3 ̇𝑔ℎ

5𝑔

+ (9𝑥 ̇𝑔 + 25𝑔
2
𝑃
2
− 5𝑔ℎ𝑃 + 25𝑔

2
𝑄 − ℎ

2
) 𝑃
𝑥
= 0,

− 3 ̇𝑔 + 5𝑔ℎ𝑃
𝑥
+ 25𝑔

2
𝑄
𝑥
= 0,

(29)

with 𝑔 = 𝑔(𝑦), ℎ = ℎ(𝑦).

(i) One has𝐶
1

̸= 0.
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We can obtain the eigenfunction

Φ = −
𝐶
2

𝐶
1

+ 𝑒
𝐶
1
𝑦/25𝑔(𝑡)

Ψ (𝑥, 𝑦) . (30)

Substituting (28) and (30) into (4), in this case we obtain
the first type of the reduced Lax pair:

3125𝑔
4
Ψ
𝑥𝑥𝑥

+ 125𝑔
2
𝑃Ψ
𝑥
− 25𝑔ℎΨ

𝑥
+ 𝐶
1
Ψ = 0,

28125𝑔
6
Ψ
𝑥𝑥𝑥𝑥𝑥

+ 1875𝑔
4
𝑃Ψ
𝑥𝑥𝑥

+ 1875𝑔
4
𝑃
𝑥
Ψ
𝑥𝑥

+ 1250𝑔
4
𝑃
𝑥𝑥

Ψ
𝑥

+ 25𝑔
2
𝑃
2
Ψ
𝑥
− 25𝑔

2
𝑄Ψ
𝑥

− 9 ̇𝑔𝑥Ψ
𝑥
− 9𝑔Ψ

𝑦
= 0.

(31)

From (31), we obtain

− 3𝐶
1
(−3 ̇𝑔 + 5𝑔ℎ𝑃

𝑥
+ 25𝑔

2
𝑄
𝑥
)Ψ

+ 9375𝑔
4
(5𝑔ℎ𝑃

𝑥𝑥
+ 25𝑔

2
𝑄
𝑥𝑥

)Ψ
𝑥𝑥

+ [50𝑔ℎ (−3 ̇𝑔 + 5𝑔ℎ𝑃
𝑥
+ 25𝑔

2
𝑄
𝑥
)

− 250𝑔
2
𝑃 (−3 ̇𝑔 + 5𝑔ℎ𝑃

𝑥
+ 25𝑔

2
𝑄
𝑥
)

+ 3125𝑔
4
(5𝑔ℎ𝑃

𝑥𝑥𝑥
+ 25𝑔

2
𝑄
𝑥𝑥𝑥

)

−
25

2
𝑔(9𝑔𝑃

𝑦
+ 3125𝑔

6
𝑃
𝑥𝑥𝑥𝑥𝑥

+ (625𝑔
4
𝐹 − 125𝑔

3
ℎ) 𝑃
𝑥𝑥𝑥

+ 625𝑔
4
𝑃
𝑥
𝑃
𝑥𝑥

+ 6 ̇𝑔𝑃 +
9

5
ℎ̇ −

3 ̇𝑔ℎ

5𝑔

+ (9𝑥 ̇𝑔 + 25𝑔
2
𝑃
2

− 5𝑔ℎ𝑃 + 25𝑔
2
𝑄 − ℎ

2
) 𝑃
𝑥
)]Ψ
𝑥
= 0.

(32)

It is easy to prove that the reduced (1 + 1)-dimensional
equation (29) is the compatibility condition of the reduced
Lax pair (31).

(ii) One has𝐶
1
= 0, 𝐶

2
̸= 0.

The eigenfunction is

Φ =
𝐶
2
𝑦

25𝑔 (𝑡)
+ Ψ (𝑥, 𝑦) . (33)

We obtain the second type of the reduced Lax pair

3125𝑔
4
Ψ
𝑥𝑥𝑥

+ 125𝑔
2
𝑃Ψ
𝑥
− 25𝑔ℎΨ

𝑥
+ 𝐶
2
= 0,

28125𝑔
6
Ψ
𝑥𝑥𝑥𝑥𝑥

+ 1875𝑔
4
𝑃Ψ
𝑥𝑥𝑥

+ 1875𝑔
4
𝑃
𝑥
Ψ
𝑥𝑥

+ 1250𝑔
4
𝑃
𝑥𝑥

Ψ
𝑥

+ 25𝑔
2
𝑃
2
Ψ
𝑥
− 25𝑔

2
𝑄Ψ
𝑥
− 9 ̇𝑔𝑥Ψ

𝑥
− 9𝑔Ψ

𝑦
= 0.

(34)

Similarly, the reduced (1 + 1)-dimensional equation (29)
is the compatibility condition of the reduced Lax pair (34).

(iii) One has𝐶
1
= 𝐶
2
= 0.

The eigenfunction is

Φ = Ψ (𝑥, 𝑦) . (35)

We obtain the reduced Lax pair

125𝑔
4
Ψ
𝑥𝑥𝑥

+ 5𝑔
2
𝑃Ψ
𝑥
− 𝑔ℎΨ

𝑥
= 0,

28125𝑔
6
Ψ
𝑥𝑥𝑥𝑥𝑥

+ 1875𝑔
4
𝑃Ψ
𝑥𝑥𝑥

+ 1875𝑔
4
𝑃
𝑥
Ψ
𝑥𝑥

+ 1250𝑔
4
𝑃
𝑥𝑥

Ψ
𝑥

+ 25𝑔
2
𝑃
2
Ψ
𝑥
− 25𝑔

2
𝑄Ψ
𝑥
− 9 ̇𝑔𝑥Ψ

𝑥
− 9𝑔Ψ

𝑦
= 0.

(36)

The compatibility condition of the reduced Lax pair is

375𝑔
3
(5𝑔ℎ𝑃

𝑥𝑥
+ 25𝑔

2
𝑄
𝑥𝑥

)Ψ
𝑥𝑥

+ [2ℎ (−3 ̇𝑔 + 5𝑔ℎ𝑃
𝑥
+ 25𝑔

2
𝑄
𝑥
)

− 10𝑔𝑃 (−3 ̇𝑔 + 5𝑔ℎ𝑃
𝑥
+ 25𝑔

2
𝑄
𝑥
)

+ 125𝑔
3
(5𝑔ℎ𝑃

𝑥𝑥𝑥
+ 25𝑔

2
𝑄
𝑥𝑥𝑥

)

−
1

2
(9𝑔𝑃
𝑦
+ 3125𝑔

6
𝑃
𝑥𝑥𝑥𝑥𝑥

+ (625𝑔
4
𝐹 − 125𝑔

3
ℎ) 𝑃
𝑥𝑥𝑥

+ 625𝑔
4
𝑃
𝑥
𝑃
𝑥𝑥

+ 6 ̇𝑔𝑃 +
9

5
ℎ̇ −

3 ̇𝑔ℎ

5𝑔

+ (9𝑥 ̇𝑔 + 25𝑔
2
𝑃
2
− 5𝑔ℎ𝑃 + 25𝑔

2
𝑄 − ℎ

2
) 𝑃
𝑥
)]Ψ
𝑥

= 0.

(37)

The reduced (1 + 1)-dimensional equation (29) is just a
subset of (37); then (36) is not the Lax pair of (29).

Case 3 (𝑓(𝑡) = 𝑔(𝑡) = 0, ℎ(𝑡) ̸= 0). In this case, the character-
istic equation becomes

𝑑𝑥

5ℎ
=

𝑑𝑢

9ℎ̇
. (38)
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Then the group invariants are 𝑥 = 𝑦, 𝑦 = 𝑡 and the sym-
metry reduction fields are

𝑤 = 𝑃 (𝑥, 𝑦) , 𝑢 =
9ℎ̇

5ℎ
𝑥 + 𝑄 (𝑥, 𝑦) , (39)

where 𝑃 and𝑄 are symmetry reduction fields with respect to
the group invariants𝑥, 𝑦. Under the above similarity transfor-
mations, (3) is reduced to a systemof PDE in two independent
variables of 𝑥 and 𝑦. Consider

9ℎ𝑃
𝑦
− 5ℎ𝑄

𝑥
+ 9ℎ̇𝑃 = 0,

5ℎ𝑃
𝑥
− 9ℎ̇ = 0.

(40)

(i) One has𝐶
1

̸= 0.

We can obtain the eigenfunction

Φ = −
𝐶
2

𝐶
1

+ 𝑒
𝐶
1
𝑥/5ℎ(𝑡)

Ψ (𝑥, 𝑦) . (41)

Substituting (39) and (41) into (4), in this case we obtain
the first type of the reduced Lax pair:

125ℎ
3
Ψ
𝑥
+ 25𝐶

1
ℎ
2
𝑃Ψ + 𝐶

3

1
Ψ = 0,

28125ℎ
5
Ψ
𝑦
+ 3125𝐶

1
ℎ
4
𝑃
2
Ψ + 3125𝐶

1
ℎ
4
𝑄Ψ

− 375𝐶
3

1
ℎ
2
𝑃Ψ − 9𝐶

5

1
Ψ = 0.

(42)

The compatibility condition is

𝐶
1
ℎ [3𝐶

2

1
(5ℎ𝑃
𝑥
− 9ℎ̇) + 50ℎ

2
𝑃 (5ℎ𝑃

𝑥
− 9ℎ̇)

+ 25ℎ
2
(9ℎ𝑃
𝑦
− 5ℎ𝑄

𝑥
+ 9ℎ̇𝑃)]Ψ = 0.

(43)

It is easy to prove that the reduced (1 + 1)-dimensional
equation (40) is the compatibility condition of the reduced
Lax pair (42).

(ii) One has𝐶
1
= 0, 𝐶

2
̸= 0.

The eigenfunction is

Φ =
𝐶
2
𝑥

5ℎ (𝑡)
+ Ψ (𝑥, 𝑦) . (44)

We obtain the reduced Lax pair

5ℎΨ
𝑥
+ 𝐶
2
𝑃 = 0,

9ℎΨ
𝑦
− 𝐶
2
𝑃
2
+ 𝐶
2
𝑄 = 0.

(45)

The compatibility condition is

𝐶
2

ℎ
[(9ℎ𝑃

𝑦
− 5ℎ𝑄

𝑥
+ 9ℎ̇𝑃) + 2𝑃 (5ℎ𝑃

𝑥
− 9ℎ̇)] = 0. (46)

We can see that the reduced (1+1)-dimensional equation
(40) is just a subset of (46); then (45) is not the Lax pair of
(40).

4. Summary

To understand the integrability aspects of the (2 + 1)-dimen-
sional CDGKS equation, we carry out Lou’s direct method
and obtain the symmetry transformations of the equation.
In fact, we can get infinitely many explicit solutions to (3)
through the symmetry transformations.With the classical Lie
group method, we obtain the Lie point symmetry groups of
both the CDGKS equation and its Lax pair. By the obtained
symmetries, we can reduce the dimensions and orders of the
(2 + 1)-dimensional CDGKS equation and get three (1 + 1)-
dimensional equations with their new Lax pairs. Since the
reduced equations are much simpler than the original ones, it
is easy to obtain some group-invariant solutions of the(2+1)-
dimensional CDGKS equation. By the new Lax pairs, we
can research the Darboux transformation and explicit solu-
tions to the CDGKS equation as well. These topics will be
considered in the future.
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