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We introduce a class of functions called geodesic 𝐵-preinvex and geodesic 𝐵-invex functions on Riemannian manifolds and
generalize the notions to the so-called geodesic quasi/pseudo 𝐵-preinvex and geodesic quasi/pseudo 𝐵-invex functions.We discuss
the links among these functions under appropriate conditions and obtain results concerning extremum points of a nonsmooth
geodesic𝐵-preinvex function by using the proximal subdifferential.Moreover, we study a differentiablemultiobjective optimization
problem involving new classes of generalized geodesic 𝐵-invex functions and derive Kuhn-Tucker-type sufficient conditions for a
feasible point to be an efficient or properly efficient solution. Finally, a Mond-Weir type duality is formulated and some duality
results are given for the pair of primal and dual programming.

1. Introduction

Convex functions play an important role in optimization
theory and there are several classes of functions given in the
literature with the goal to weaken the limitations of convexity
in mathematical programming. Generalized convex func-
tions, labelled as 𝐵-vex functions, were introduced by Bector
and Singh [1]. In 1981, Hanson [2] introduced the concept
of invexity and proved that the Kuhn-Tucker conditions are
sufficient for optimality of a nonlinear programming problem
under invexity conditions. Preinvex functions were defined
by Ben-Israel and Mond [3], and, in [4], Weir and Mond
showed how and where preinvex functions could replace
convex functions inmultiple objective optimization problem.
These functions were further generalized to pseudo/quasi 𝐵-
vex, 𝐵-invex, and pseudo/quasi 𝐵-invex functions by Bector
et al. [5] and to 𝐵-preinvex by Suneja et al. [6]. In [5], Bector
et al. obtained sufficient optimality criteria and duality results
for a nonlinear programming problem involving 𝐵-vex and
𝐵-invex functions. There are also many papers in the litera-
ture concerning the generalization of convexity in connection
with sufficiency and duality in optimization problems (see,
e.g., [7–12] and the references therein).

A manifold is not a linear space and extensions of
concepts and techniques from linear spaces to Riemannian
manifolds are natural. In the literature many authors studied
generalized convex functions and many results in convex
analysis and optimization theory were extended to Rieman-
nian manifolds (see [13–28] and the references therein).
Rapcsák [27] and Udriste [28] considered a generalization of
convexity called geodesic convexity. In this setting the linear
space is replaced by a Riemannian manifold and the line
segment by a geodesic. Pini [22] introduced the notion of
invex function on Riemannianmanifolds, while Mititelu [24]
investigated its generalization.The concepts of geodesic invex
sets, geodesic invex, and preinvex functions on Riemannian
manifolds were defined by Barani and Pouryayevali [17].
They established the relation between geodesic invexity and
preinvexity of functions, and they also obtained results con-
cerning extremum points of a nonsmooth geodesic preinvex
function by using the proximal subdifferential. Subsequently,
Agarwal et al. [20] proposed and discussed geodesic 𝛼-
preinvexity on Riemannian manifolds, which generalized the
corresponding results studied by Barani and Pouryayevali
[17]. A new concept of geodesic roughly 𝐵-invexity and
its generalization on Hadamard manifolds were introduced
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by Zhou and Huang [26]. They studied the properties of
these functions and they established sufficient optimality
conditions and duality in nonlinear programming problems.

In this paper, we introduce a class of geodesic 𝐵-preinvex
and 𝐵-invex functions on Riemannian manifolds and extend
them to geodesic quasi/pseudo 𝐵-preinvex and geodesic
quasi/pseudo 𝐵-invex functions. We discuss the links among
these functions under suitable assumptions. By applying the
proximal subdifferential, we relax the smoothness condition
and study the question of global minima for geodesic 𝐵-
preinvex functions on Riemannian manifolds. As applica-
tions, we investigate a multiobjective programming problem
involving generalized geodesic 𝐵-invex functions and derive
the Kuhn-Tucker-type sufficient optimality conditions for a
feasible point to be an efficient or properly efficient solution.
Finally, a Mond-Weir type duality is formulated and some
duality results are obtained for the pair of primal and dual
programming. The results presented in this paper extend
some known results due to Barani and Pouryayevali [17, 23].

2. Preliminaries

In this section, we recall some definitions and known results
about Riemannian manifolds which will be used throughout
the paper.These can be found inmany introductory books on
Riemannian geometry, such as in [29–32].

Let 𝑀 be a 𝐶
∞ smooth manifold modelled on a Hilbert

space 𝐻, either finite dimensional or infinite dimensional,
endowed with a Riemannian metric ⟨⋅, ⋅⟩

𝑝
on the tangent

space 𝑇
𝑝
𝑀 ≅ 𝐻. The corresponding norm is denoted

by ‖ ⋅ ‖
𝑝
. The tangent bundle of 𝑀 is denoted by 𝑇𝑀 =

⋃
𝑥∈𝑀

𝑇
𝑥
𝑀, which is naturally a manifold. Given a piecewise

𝐶
1 path 𝛾 : [𝑎, 𝑏] → 𝑀 joining 𝑝 to 𝑞, that is, 𝛾(𝑎) = 𝑝 and

𝛾(𝑏) = 𝑞, we can define the length of 𝛾 by

𝐿 (𝛾) := ∫

𝑏

𝑎

󵄩󵄩󵄩󵄩󵄩
𝛾
󸀠

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝛾(𝑡)

𝑑𝑡. (1)

For any two points 𝑝, 𝑞 ∈ 𝑀, we define

𝑑 (𝑝, 𝑞)

= inf {𝐿 (𝛾) : 𝛾 is a piecewise 𝐶
1 path joining 𝑝 to 𝑞} .

(2)

Then 𝑑 is a metric on 𝑀 which defines the same topology
as the one 𝑀 naturally has as a manifold. For this metric we
define the open ball centered at the point 𝑝with radius 𝑟 > 0;
that is,

𝐵 (𝑝, 𝑟) = {𝑞 ∈ 𝑀 : 𝑑 (𝑝, 𝑞) < 𝑟} . (3)

Let us recall that in every Riemannian manifold there
exists exactly one covariant derivation called the Levi-Civita
connection denoted by ∇

𝑋
𝑌 for any vector fields 𝑋, 𝑌 on 𝑀.

We also recall that a geodesic is a 𝐶
∞ smooth path 𝛾 whose

tangent is parallel along the path 𝛾; that is, 𝛾 satisfies the
equation ∇

𝑑𝛾(𝑡)/𝑑𝑡
𝑑𝛾(𝑡)/𝑑𝑡 = 0. Any path 𝛾 joins 𝑝 and 𝑞 in𝑀

such that 𝐿(𝛾) = 𝑑(𝑝, 𝑞) is a geodesic and is called a minimal

geodesic. The existence theorem for ordinary differential
equation implies that for every V ∈ 𝑇𝑀, there exists an open
interval 𝐽(V) containing 0 and exactly one geodesic 𝛾(V) :

𝐽(V) → 𝑀 with 𝛾
󸀠

V(0) = V. This implies that there is an open
neighborhood 𝑇̃𝑀 of the submanifold𝑀 of𝑇𝑀 such that for
every V ∈ 𝑇̃𝑀, the geodesic 𝛾V(𝑡) is defined for |𝑡| < 2 (see,
e.g., [25]). The exponential map exp

𝑝
: 𝑇
𝑝
𝑀 ⊆ 𝑇̃𝑀 → 𝑀

is then defined as exp
𝑝
(V) = 𝛾V(1), where 𝛾V is the geodesic

defined by its position 𝑝 and velocity 𝛾
󸀠

V(0) = V at 𝑝.
If 𝛾 is a geodesic, then for each 𝑡

1
, 𝑡
2

∈ [𝑎, 𝑏], the Levi-
Civita connection ∇ induces an isometry 𝑃

𝑡
2

𝑡
1
,𝛾

: 𝑇
𝛾(𝑡
1
)
𝑀 →

𝑇
𝛾(𝑡
2
)
𝑀, the so-called parallel translation from 𝑇

𝛾(𝑡
1
)𝑀

to
𝑇
𝛾(𝑡
2
)
𝑀 along 𝛾, which is defined by

𝑃
𝑡
2

𝑡
1
,𝛾
(V) = 𝑉 (𝛾 (𝑡

2
)) ∀𝑎, 𝑏 ∈ 𝑅, V ∈ 𝑇

𝛾(𝑡
1
)
𝑀, (4)

where𝑉 is the unique vector field satisfying∇
𝑑𝛾(𝑡)/𝑑𝑡

𝑉 = 0 for
all 𝑡 and 𝑉(𝛾(𝑡

1
)) = V.

Let 𝑓 : 𝑀 → 𝑅 be a differentiable function. We will
denote by

𝑑𝑓
𝑥
: 𝑇
𝑝
𝑀 󳨀→ 𝑇

𝑓(𝑥)
𝑅 ≡ 𝑅 (5)

the differential 𝑓 at 𝑥.
We also recall that a simply connected complete Rieman-

nian manifold of nonpositive curvature is called a Cartan-
Hadamard manifold.

Barani and Pouryayevali [17] first defined geodesic invex
sets and introduced geodesic preinvex functions on Rieman-
nian manifolds.

Definition 1. Let 𝑀 be a Riemannian manifold and 𝜂 : 𝑀 ×

𝑀 → 𝑇𝑀 be a function such that 𝜂(𝑥, 𝑦) ∈ 𝑇
𝑦
𝑀 for every

𝑥, 𝑦 ∈ 𝑀. A nonempty subset 𝑆 of 𝑀 is said to be geodesic
invex with respect to 𝜂, if for every 𝑥, 𝑦 ∈ 𝑆, there exists
exactly one geodesic 𝛾

𝑥,𝑦
: [0, 1] → 𝑀 such that

𝛾
𝑥,𝑦

(0) = 𝑦, 𝛾
󸀠

𝑥,𝑦
(0) = 𝜂 (𝑥, 𝑦) ,

𝛾
𝑥,𝑦

(𝑡) ∈ 𝑆, ∀𝑡 ∈ [0, 1] .

(6)

Definition 2. Let 𝑀 be a Riemannian manifold and 𝑆 ⊆ 𝑀 a
geodesic invex set with respect to 𝜂 : 𝑀×𝑀 → 𝑇𝑀. We say
that a function 𝑓 : 𝑆 → 𝑅 is geodesic preinvex if

𝑓 (𝛾
𝑥,𝑦

(𝑡)) ≦ 𝑡𝑓 (𝑥) + (1 − 𝑡) 𝑓 (𝑦) ,

∀𝑥, 𝑦 ∈ 𝑆, 𝑡 ∈ [0, 1] .

(7)

In 1993, Suneja et al. [6] introduced the generalization
of preinvex functions on 𝑅

𝑛, and we now improve and
extend the definition of 𝐵-preinvex functions to Riemannian
manifolds.

Definition 3. Let𝑀 be a Riemannianmanifold and 𝑆 ⊆ 𝑀 an
open invex set with respect to 𝜂 : 𝑀×𝑀 → 𝑇𝑀. A function
𝑓 : 𝑆 → 𝑅 is said to be
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(i) geodesic 𝐵-preinvex (GBPIX) at 𝑦 ∈ 𝑆 with respect to
𝜂 and 𝑏 if

𝑓 (𝛾
𝑥,𝑦

(𝑡)) ≦ 𝑡𝑏 (𝑥, 𝑦, 𝑡) 𝑓 (𝑥) + (1 − 𝑡𝑏 (𝑥, 𝑦, 𝑡)) 𝑓 (𝑦) ,

∀𝑥 ∈ 𝑆, 𝑡 ∈ [0, 1] ,

(8)

where 𝑏 : 𝑆 × 𝑆 × [0, 1] → 𝑅
+
with 𝑡𝑏(𝑥, 𝑦, 𝑡) ∈ [0, 1]

for all 𝑥, 𝑦 ∈ 𝑆 and 𝑡 ∈ [0, 1], and 𝛾
𝑥,𝑦

is the unique
geodesic defined in Definition 1;

(ii) GBPIX on 𝑆 with respect to 𝜂 and 𝑏 if it is GBPIX at
each 𝑦 ∈ 𝑆 with respect to the same 𝜂 and 𝑏;

(iii) strictly GBPIX (SGBPIX) on 𝑆with respect to 𝜂 and 𝑏

if inequality (8) is strict for all 𝑥, 𝑦 ∈ 𝑆 with 𝑥 ̸= 𝑦;
(iv) geodesic quasi 𝐵-preinvex (GQBPIX) with respect to

𝜂 and 𝑏 at 𝑦 ∈ 𝑆 if

𝑓 (𝑥) ≦ 𝑓 (𝑦) 󳨐⇒ 𝑏 (𝑥, 𝑦, 𝑡) (𝑓 (𝛾
𝑥,𝑦

(𝑡)) − 𝑓 (𝑦)) ≦ 0,

∀𝑥 ∈ 𝑆, 𝑡 ∈ [0, 1] ;

(9)

(v) GQBPIX on 𝑆 with respect to 𝜂 and 𝑏 if it is GQBPIX
at each 𝑦 ∈ 𝑆 with respect to the same 𝜂 and 𝑏;

(vi) geodesic pseudo 𝐵-preinvex (GPBPIX) with respect
to 𝜂 and 𝑏 if, there exists a strictly positive function
𝑎 : 𝑆 × 𝑆 → 𝑅 such that

𝑏 (𝑥, 𝑦, 𝑡) 𝑓 (𝑥) ≦ 𝑏 (𝑥, 𝑦, 𝑡) 𝑓 (𝑦) 󳨐⇒ 𝑓(𝛾
𝑥,𝑦

(𝑡)) − 𝑓 (𝑦)

≦ 𝑡 (𝑡 − 1) 𝑎 (𝑥, 𝑦) , ∀𝑥 ∈ 𝑆, 𝑡 ∈ [0, 1] ;

(10)

(vii) GPBPIX on 𝑆 with respect to 𝜂 and 𝑏, if it is GPBPIX
at each 𝑦 ∈ 𝑆 with respect to the same 𝜂 and 𝑏.

Remark 4. By Definition 1, it is clear that SGBPIX⇒GBPIX,
GBPIX ⇒ GQBPIX, and GPBPIX ⇒ GQBPIX.

Remark 5. If 𝑏 > 0, then GBPIX ⇒ GPBPIX.

Remark 6. The above definition of geodesic 𝐵-preinvexity on
Riemannian manifolds is also a generalization of geodesic
preinvexity discussed in [17]. It is easy to see that every
geodesic preinvex function𝑓with respect to 𝜂 is a geodesic𝐵-
preinvex functionwith respect to 𝜂 and 𝑏, where 𝑏(𝑥, 𝑦, 𝑡) = 1,
but the converse is not true, as illustrated in the following
example.

Example 7. Let 𝑀 = {𝑒
𝑖𝜃

| 0 ≤ 𝜃 ≤ 𝜋/2} . For any 𝑥, 𝑦 ∈ 𝑀

with 𝑥 = 𝑒
𝑖𝜃 and 𝑦 = 𝑒

𝑖𝜙, let 𝑓 : 𝑀 → 𝑅 be defined by
𝑓(𝑥) = sin 𝜃, let 𝜂 : 𝑀 × 𝑀 → 𝑇𝑀 be defined by

𝜂 (𝑒
𝑖𝜃

, 𝑒
𝑖𝜙

) = (𝜙 − 𝜃) (sin𝜙, − cos𝜙) , (11)

and let 𝑏 : 𝑀 × 𝑀 × [0, 1] → 𝑅
+
be defined by

𝑏 (𝑒
𝑖𝜃

, 𝑒
𝑖𝜙

, 𝑡) =

{

{

{

1

𝑡
, 𝜃 ≥ 𝜙,

0, 𝜃 < 𝜙.

(12)

Define a geodesic 𝛾
𝑥,𝑦

(𝑡) on 𝑀 as follows:

𝛾
𝑥,𝑦

(𝑡) = (cos ((1 − 𝑡) 𝜙 + 𝑡𝜃) , sin ((1 − 𝑡) 𝜙 + 𝑡𝜃)) . (13)

Then, we can easily verify that 𝑓 is geodesic 𝐵-preinvex with
respect to 𝜂 and 𝑏, but 𝑓 is not geodesic preinvex with respect
to 𝜂.

In [22], Pini introduced the concept of geodesic invexity
on Riemannian manifolds. Motivated by the definitions of
(pseudo/quasi) 𝐵-invex functions on 𝑅

𝑛 given in [5], we
present the following definition.

Definition 8. Let 𝑀 be a Riemannian manifold and 𝑏 : 𝑀 ×

𝑀 → 𝑅
+
a nonnegative real function. A differentiable

function 𝑓 : 𝑀 → 𝑅 is said to be

(i) geodesic 𝐵-invex (GBIX) at 𝑦 ∈ 𝑀 with respect to 𝜂

and 𝑏 if

𝑑𝑓
𝑦
(𝜂 (𝑥, 𝑦)) ≦ 𝑏 (𝑥, 𝑦) (𝑓 (𝑥) − 𝑓 (𝑦)) , ∀𝑥 ∈ 𝑀; (14)

(ii) GBIX on 𝑀 with respect to 𝜂 and 𝑏 if it is GBIX at
each 𝑦 ∈ 𝑀 with respect to the same 𝜂 and 𝑏;

(iii) strictly geodesic 𝐵-invex on 𝑀 with respect to 𝜂 and
𝑏 if inequality (14) is strict for all 𝑥, 𝑦 ∈ 𝑀 with 𝑥 ̸= 𝑦;

(iv) geodesic quasi 𝐵-invex (GQBIX) at 𝑦 ∈ 𝑀 with
respect to 𝜂 and 𝑏 if

𝑓 (𝑥) ≦ 𝑓 (𝑦) 󳨐⇒ 𝑏 (𝑥, 𝑦) 𝑑𝑓
𝑦
(𝜂 (𝑥, 𝑦)) ≦ 0, ∀𝑥 ∈ 𝑀;

(15)

(v) GQBIX on𝑀with respect to 𝜂 and 𝑏 if it is GQBIX at
each 𝑦 ∈ 𝑀 with respect to the same 𝜂 and 𝑏;

(vi) geodesic pseudo 𝐵-invex (GPBIX) at 𝑦 ∈ 𝑀 with
respect to 𝜂 and 𝑏 if

𝑑𝑓
𝑦
(𝜂 (𝑥, 𝑦)) ≧ 0 󳨐⇒ 𝑏 (𝑥, 𝑦) 𝑓 (𝑥)

≧ 𝑏 (𝑥, 𝑦) 𝑓 (𝑦) , ∀𝑥 ∈ 𝑀,

(16)

or equivalently,

𝑏 (𝑥, 𝑦) 𝑓 (𝑥)

< 𝑏 (𝑥, 𝑦) 𝑓 (𝑦) 󳨐⇒ 𝑑𝑓
𝑦
(𝜂 (𝑥, 𝑦)) < 0, ∀𝑥 ∈ 𝑀;

(17)

(vii) strictly geodesic pseudo 𝐵-invex (SGPBIX) at 𝑦 ∈ 𝑀

with respect to 𝜂 and 𝑏 if

𝑑𝑓
𝑦
(𝜂 (𝑥, 𝑦)) ≧ 0 󳨐⇒ 𝑏 (𝑥, 𝑦) 𝑓 (𝑥) > 𝑏 (𝑥, 𝑦) 𝑓 (𝑦) ,

∀𝑥 ∈ 𝑀, 𝑥 ̸= 𝑦,

(18)

or equivalently,

𝑏 (𝑥, 𝑦) 𝑓 (𝑥) ≦ 𝑏 (𝑥, 𝑦) 𝑓 (𝑦) 󳨐⇒ 𝑑𝑓
𝑦
(𝜂 (𝑥, 𝑦)) < 0,

∀𝑥 ∈ 𝑀, 𝑥 ̸= 𝑦;

(19)



4 Journal of Applied Mathematics

(viii) GPBIX/SGBPIX on 𝑀 with respect to 𝜂 and 𝑏 if it is
GPBIX/SGBPIX at each 𝑦 ∈ 𝑀 with respect to the
same 𝜂 and 𝑏.

Remark 9. An invex function 𝑓 with respect to 𝜂 discussed
onRiemannianmanifolds in [17] is also aGBIX functionwith
respect to 𝜂 and 𝑏 with 𝑏 = 1, but the converse is not true.

Example 10. Let 𝑀 be a Riemannian manifold and 𝑓 : 𝑀 →

𝑅 a differentiable function such that for every 𝑦 ∈ 𝑀, 𝑑𝑓
𝑦

̸= 0.
Let 𝑏 : 𝑀 × 𝑀 → 𝑅

+
be a bifunction and let 𝜂 : 𝑀 × 𝑀 →

𝑇𝑀 be defined by

𝜂 (𝑥, 𝑦) =
𝑏 (𝑥, 𝑦) (𝑓 (𝑥) − 𝑓 (𝑦))

󵄩󵄩󵄩󵄩󵄩
𝑑𝑓
𝑦

󵄩󵄩󵄩󵄩󵄩

2

𝑦

𝑑𝑓
𝑦
. (20)

Then, for every 𝑥, 𝑦 ∈ 𝑀, one has

⟨𝑑𝑓
𝑦
, 𝜂 (𝑥, 𝑦)⟩

𝑦

= 𝑏 (𝑥, 𝑦)⟨𝑑𝑓
𝑦
,
𝑓 (𝑥) − 𝑓 (𝑦)

‖ 𝑑𝑓
𝑦
‖
2

𝑦

𝑑𝑓
𝑦
⟩

𝑦

= 𝑏 (𝑥, 𝑦)
𝑓 (𝑥) − 𝑓 (𝑦)

‖ 𝑑𝑓
𝑦
‖
2

⟨𝑑𝑓
𝑦
, 𝑑𝑓
𝑦
⟩
𝑦

= 𝑏 (𝑥, 𝑦) [𝑓 (𝑥) − 𝑓 (𝑦)] .

(21)

Therefore, 𝑓 is geodesic 𝐵-invex with respect to 𝜂 and 𝑏, but
𝑓 is not geodesic invex with respect to the same 𝜂 whenever
𝑏(𝑥, 𝑦) ̸= 1.

Remark 11. Every geodesic 𝐵-invex function 𝑓 with respect
to 𝜂 and 𝑏, where 𝑏(𝑥, 𝑦) > 0, ∀𝑥, 𝑦 ∈ 𝑀, is geodesic invex
with respect to some 𝜂, where

𝜂 (𝑥, 𝑦) =
𝜂 (𝑥, 𝑦)

𝑏 (𝑥, 𝑦)
. (22)

Remark 12. Every geodesic pseudoinvex function with
respect to 𝜂 in [18] is geodesic pseudo 𝐵-invex with respect
to the same 𝜂. However, the converse is not necessarily true
when 𝑏(𝑥, 𝑦) = 0, for some 𝑥, 𝑦 ∈ 𝑀.

Remark 13. From Definition 8, we have
SGBIX 󳨐⇒ GBIX 󳨐⇒ GBPIX

⇓

GBQIX,

(23)

Finally we present the following definitions which will be
useful in the sequel.

Definition 14 (see [17]). Let𝑀 be a Riemannianmanifold.We
say that the function 𝜂 : 𝑀×𝑀 → 𝑇𝑀 satisfies the condition
(C), if for each 𝑥, 𝑦 ∈ 𝑀, and for the geodesic 𝛾 : [0, 1] → 𝑀

satisfying 𝛾
𝑥,𝑦

(0) = 𝑦, 𝛾
󸀠

(0) = 𝜂(𝑥, 𝑦), we have

(i) 𝑃
0

𝑡,𝛾
[𝜂(𝑦, 𝛾

𝑥,𝑦
(𝑡))] = −𝑡𝜂(𝑥, 𝑦);

(ii) 𝑃
0

𝑡,𝛾
[𝜂(𝑥, 𝛾

𝑥,𝑦
(𝑡))] = (1 − 𝑡)𝜂(𝑥, 𝑦).

Definition 15 (see [33]). Let𝑀 be a Riemannianmanifold and
𝑓 : 𝑀 → (−∞, +∞] a lower semicontinuous function. A
point 𝜁 ∈ 𝑇

𝑦
𝑀 is a proximal subgradient of 𝑓 at 𝑦 ∈ dom(𝑓)

if there exist positive numbers 𝛿 and 𝜎 such that

𝑓 (𝑥) ≥ 𝑓 (𝑦) + ⟨𝜁, exp−1
𝑦

𝑥⟩
𝑦

− 𝜎𝑑(𝑦, 𝑥)
2

, ∀𝑥 ∈ 𝐵 (𝑦, 𝛿) ,

(24)

where dom(𝑓) = {𝑥 ∈ 𝑀 : 𝑓(𝑥) < ∞}.

The set of all proximal subgradients of 𝑓 at 𝑦 ∈ 𝑀 is
denoted by 𝜕

𝑝
𝑓(𝑦) and is called the proximal subdifferential

of 𝑓 at 𝑦.

3. GBPIX (GBIX) Functions
and Their Generalization

Theorem 16. Let 𝑀 be a Riemannian manifold, let 𝑆 be an
open invex subset of 𝑀 with respect to 𝜂 : 𝑀 × 𝑀 → 𝑇𝑀,
and let 𝑏 : 𝑆 × 𝑆 × [0, 1] → 𝑅

+
be a nonnegative real function.

Assume that 𝑓 : 𝑆 → 𝑅 is a differentiable GBPIX function
with respect to 𝜂 and 𝑏. Then 𝑓 is a GBIX function with respect
to 𝜂 and 𝑏, where 𝑏(𝑥, 𝑦) = lim

𝑡→0
+𝑏(𝑥, 𝑦, 𝑡).

Proof. Let 𝑥, 𝑦 ∈ 𝑆. Since 𝑆 is a geodesic invex set with respect
to 𝜂, there exists exactly one geodesic 𝛾

𝑥,𝑦
: [0, 1] → 𝑀 such

that

𝛾
𝑥,𝑦

(0) = 𝑦, 𝛾
󸀠

𝑥,𝑦
(0) = 𝜂 (𝑥, 𝑦) ,

𝛾
𝑥,𝑦

(𝑡) ∈ 𝑆, ∀𝑡 ∈ [0, 1] .

(25)

Noting that 𝑓 is GBPIX with respect to 𝜂 and 𝑏, we have

𝑓 (𝛾
𝑥,𝑦

(𝑡)) ≦ 𝑡𝑏𝑓 (𝑥) + (1 − 𝑡𝑏) 𝑓 (𝑦) , ∀𝑡 ∈ (0, 1) , (26)

which implies

𝑓 (𝛾
𝑥,𝑦

(𝑡)) − 𝑓 (𝑦) ≦ 𝑡𝑏 (𝑥, 𝑦, 𝑡) (𝑓 (𝑥) − 𝑓 (𝑦)) . (27)

Dividing by 𝑡 and taking the limit as 𝑡 → 0, we obtain

𝑑𝑓
𝛾
𝑥,𝑦
(0)

(𝛾
󸀠

𝑥,𝑦
(0)) ≦ 𝑏 (𝑥, 𝑦) (𝑓 (𝑥) − 𝑓 (𝑦)) . (28)

Therefore, 𝑑𝑓
𝛾
𝑥,𝑦
(0)

(𝜂(𝑥, 𝑦)) ≦ 𝑏(𝑥, 𝑦)(𝑓(𝑥) − 𝑓(𝑦)). This
completes the proof.

Theorem 17. Let𝑀 be a Riemannian manifold and 𝑆 ⊆ 𝑀 an
open geodesic invex set with respect to 𝜂 : 𝑀 × 𝑀 → 𝑇𝑀.
Suppose that 𝑓 : 𝑆 → 𝑅 is differentiable GBIX with respect to
𝜂 and 𝑏, where 𝑏 : 𝑆 × 𝑆 → 𝑅

+
. If 𝜂 satisfies condition (C) and

𝑏(𝑥, 𝑦) > 0, for all 𝑥, 𝑦 ∈ 𝑆, then 𝑓 is GBPIX with respect to 𝜂

and 𝑏, where

𝑏 (𝑥, 𝑦, 𝑡) =
𝑏 (𝑥, 𝑥)

(1 − 𝑡) 𝑏 (𝑦, 𝑥) + 𝑡𝑏 (𝑥, 𝑥)
(29)

for all 𝑥, 𝑦 ∈ 𝑆 and 𝑥 = 𝛾
𝑥,𝑦

(𝑡), for some 𝑡 ∈ [0, 1].
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Proof. Since 𝑆 is geodesic invex with respect to 𝜂, there exists
exactly one geodesic 𝛾

𝑥,𝑦
: [0, 1] → 𝑀 such that

𝛾
𝑥,𝑦

(0) = 𝑦, 𝛾
󸀠

𝑥,𝑦
(0) = 𝜂 (𝑥, 𝑦) , 𝛾

𝑥,𝑦
(𝑡) ∈ 𝑆,

∀𝑥, 𝑦 ∈ 𝑆, ∀𝑥, 𝑦 ∈ [0, 1] .

(30)

Fix 𝑡 ∈ [0, 1] and set 𝑥 = 𝛾
𝑥,𝑦

(𝑡). Then we have

𝑏 (𝑥, 𝑥) (𝑓 (𝑥) − 𝑓 (𝑥)) ≧ 𝑑𝑓
𝑥
(𝜂 (𝑥, 𝑥)) , (31)

𝑏 (𝑦, 𝑥) (𝑓 (𝑦) − 𝑓 (𝑥)) ≧ 𝑑𝑓
𝑥
(𝜂 (𝑦, 𝑥)) . (32)

Nowmultiplying (31) and (32) by 𝑡 and (1−𝑡), respectively,
and adding, then we have

𝑡𝑏 (𝑥, 𝑥) 𝑓 (𝑥) + (1 − 𝑡) 𝑏 (𝑦, 𝑥) 𝑓 (𝑦)

− (𝑡𝑏 (𝑥, 𝑥) + (1 − 𝑡) 𝑏 (𝑦, 𝑥)) 𝑓 (𝑥)

≧ 𝑑𝑓
𝑥
(𝑡𝜂 (𝑥, 𝑥) + (1 − 𝑡) 𝜂 (𝑦, 𝑥)) .

(33)

It follows from condition (C) that

𝑡𝜂 (𝑥, 𝑥) + (1 − 𝑡) 𝜂 (𝑦, 𝑥)

= 𝑡 (1 − 𝑡) 𝑃
𝑡

0,𝛾
𝑥,𝑦

[𝜂 (𝑥, 𝑦)]

+ (1 − 𝑡) (−𝑡) 𝑃
𝑡

0,𝛾
𝑥,𝑦

[𝜂 (𝑥, 𝑦)] = 0.

(34)

Therefore,

𝑓 (𝑥) ≦ 𝑡𝑏 (𝑥, 𝑦, 𝑡) 𝑓 (𝑥) + (1 − 𝑡𝑏 (𝑥, 𝑦, 𝑡)) 𝑓 (𝑦) , (35)

where

𝑏 (𝑥, 𝑦, 𝑡) =
𝑏 (𝑥, 𝑥)

(1 − 𝑡) 𝑏 (𝑦, 𝑥) + 𝑡𝑏 (𝑥, 𝑥)
. (36)

This completes the proof.

Theorem 18. Let 𝑀 be a Riemannian manifold, let 𝑆 ⊆ 𝑀 be
an open geodesic invex set with respect to 𝜂, and let 𝑓 : 𝑆 → 𝑅

be GBPIX with respect to 𝜂 and 𝑏.

(i) Every lower section of 𝑓 defined by

𝐿 (𝑓, 𝜆) = {𝑥 ∈ 𝑆 | 𝑓 (𝑥) ≦ 𝜆} , 𝜆 ∈ 𝑅, (37)

is a geodesic invex set with respect to 𝜂.
(ii) The set 𝐾 of solutions for problem

(𝑃) min 𝑓 (𝑥)

s.t. 𝑥 ∈ 𝑆

(38)

is a geodesic invex set with respect to 𝜂.
(iii) If 𝑥 ∈ 𝑆 is a local optimal solution to the problem

(P) and 𝑏 > 0, then 𝑥 is a global minimum for (P).
Moreover, if𝑓 is strictly GBPIX, then the global optimal
solution of problem (P) is unique.

Proof. (i) Let 𝑥, 𝑦 ∈ 𝐿
𝑓
(𝜆). Since 𝑆 is a geodesic invex set with

respect to 𝜂, there exists exactly one geodesic 𝛾
𝑥,𝑦

: [0, 1] →

𝑀 such that

𝛾
𝑥,𝑦

(0) = 𝑦, 𝛾
󸀠

𝑥,𝑦
(0) = 𝜂 (𝑥, 𝑦) ,

𝛾
𝑥,𝑦

(𝑡) ∈ 𝑆, ∀𝑡 ∈ [0, 1] .

(39)

The GBPIX of 𝑓 gives

𝑓 (𝛾
𝑥,𝑦

(𝑡)) ≦ 𝑡𝑏𝑓 (𝑥) + (1 − 𝑡𝑏) 𝑓 (𝑦) ≦ 𝜆, ∀𝑡 ∈ [0, 1] ,

(40)

which implies that 𝛾
𝑥,𝑦

(𝑡) ∈ 𝐿(𝑓, 𝜆) for all 𝑡 ∈ [0, 1].
(ii) If 𝑓 has no optimal solution in 𝑆, then 𝐾 = 0, which

is obviously a geodesic invex set. If𝐾 ̸= 0 and 𝑥 is an arbitrary
optimal point for (𝑃), then𝐾 = 𝑆 ∩ 𝐿

𝑓
(𝑓(𝑥)), which is also a

geodesic invex set with respect to 𝜂 by (𝑖).
(iii) Suppose that 𝑥 ∈ 𝑆 is a local minimum.Then there is

a neighborhood 𝑁
𝜀
(𝑥) such that

𝑓 (𝑥) ≦ 𝑓 (𝑥) , 𝑥 ∈ 𝑆 ∩ 𝑁
𝜀
(𝑥) . (41)

If 𝑥 is not a global minimum of 𝑓, then there exists a point
𝑥
∗

∈ 𝑆 such that

𝑓 (𝑥
∗

) < 𝑓 (𝑥) . (42)

Since 𝑆 is a geodesic invex set with respect to 𝜂, there exists
exactly one geodesic 𝛾

𝑥
∗
,𝑥
such that

𝛾
𝑥
∗
,𝑥

(0) = 𝑥, 𝛾
󸀠

𝑥
∗
,𝑥

(0) = 𝜂 (𝑥
∗

, 𝑥) ,

𝑥
∗
,𝑥

(𝑡) ∈ 𝑆, ∀𝑡 ∈ [0, 1] .

(43)

By the continuity of the distance function 𝑑 and the geodesic
𝛾
𝑥
∗
,𝑥
, there exists a number 𝛿 > 0 such that 𝑑(𝛾

𝑥
∗
,𝑥
(𝑡), 𝑥) < 𝜀

for all 𝑡 ∈ (0, 𝛿). Hence, 𝛾
𝑥
∗
,𝑥
(𝑡) ∈ 𝑁

𝜀
(𝑥). It follows from the

GBPIX of 𝑓 that

𝑓 (𝛾
𝑥
∗
,𝑥

(𝑡)) ≦ 𝑡𝑏𝑓 (𝑥
∗

) + (1 − 𝑡𝑏) 𝑓 (𝑥) < 𝑓 (𝑥) ,

∀𝑡 ∈ (0, 1) .

(44)

Hence, for each 𝛾
𝑥
∗
,𝑥
(𝑡) ∈ 𝑆∩𝑁

𝜀
(𝑥),𝑓(𝛾

𝑥
∗
,𝑥
(𝑡)) < 𝑓(𝑥), which

is a contradiction to (41).
If 𝑥0 is another global optimal solution for (P) and 𝑥

0

̸= 𝑥,
then 𝑓(𝑥

0

) = 𝑓(𝑥). It follows from the strict GBPIX of 𝑓 that

𝑓 (𝛾
𝑥
0
,𝑥

(𝑡)) < 𝑡𝑏𝑓 (𝑥) + (1 − 𝑡𝑏) 𝑓 (𝑥
0

) = 𝑓 (𝑥) , (45)

which contradicts the optimality of 𝑥 for (P). Therefore, the
solution of (P) is unique. This completes the proof.

Similar reasoning to that in the proof of Theorem 5.2 in
[17] yields the following result.

Theorem 19. Let 𝑀 be a Cartan-Hadamard manifold and
𝑆 ⊆ 𝑀 be an open geodesic invex set with respect to 𝜂 :

𝑀 × 𝑀 → 𝑇𝑀 with 𝜂(𝑥, 𝑦) ̸= 0 for 𝑥 ̸= 𝑦. Suppose that 𝑓 :

𝑆 → (−∞, +∞] is a lower semicontinuous GBPIX function
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with respect to 𝜂 and 𝑏. Let 𝑦 ∈ dom(𝑓) and 𝜁 ∈ 𝜕
𝑝
𝑓(𝑦). Then

there exists a number 𝛿 > 0 such that

𝑏 (𝑥, 𝑦) [𝑓 (𝑥) − 𝑓 (𝑦)] ≧ ⟨𝜁, 𝜂(𝑥, 𝑦)⟩
𝑦
, ∀𝑥 ∈ 𝐵 (𝑦, 𝛿) ,

(46)

where 𝑏(𝑥, 𝑦) = lim
𝑡→0
+𝑏(𝑥, 𝑦, 𝑡).

FromTheorem 19, we can obtain the following corollary.

Corollary 20. Let 𝑀 be a Cartan-Hadamard manifold and
𝑆 ⊆ 𝑀 be an open geodesic invex set with respect to 𝜂 : 𝑀 ×

𝑀 → 𝑇𝑀 with 𝜂(𝑥, 𝑦) ̸= 0 for 𝑥 ̸= 𝑦. Suppose that 𝑓 : 𝑆 →

(−∞, +∞] is a lower semicontinuous geodesic 𝐵-preinvex
function with respect to 𝜂 and 𝑏 and lim

𝑡→0
+𝑏(𝑥, 𝑦, 𝑡) =

𝑏(𝑥, 𝑦) > 0. Let 𝑦 ∈ dom(𝑓) and 0 ∈ 𝜕
𝑝
𝑓(𝑦). Then 𝑦 is a

global minimum of 𝑓.

Remark 21. It should be noted that if 𝑆 is a subset of a Rie-
mannian manifold 𝑀 and 𝑓 : 𝑆 → (−∞, +∞] is a lower
semicontinuous function which has a local minimum at 𝑦 ∈

𝑆, then 0 ∈ 𝜕
𝑝
𝑓(𝑦) (see [33]).

Remark 22. Theorems 16, 17, 18, and 19 extend not only the
corresponding results from 𝑅

𝑛 to Riemannian manifolds, but
also Theorems 4.1, 4.2, 5.1, and 5.2 of [17], respectively.

The following theorems reveal the relations among geo-
desic quasi 𝐵-preinvexity, geodesic quasi 𝐵-invexity, geodesic
pseudo 𝐵-preinvexity, and geodesic pseudo 𝐵-invexity for a
differentiable function 𝑓.

Theorem 23. Let 𝑀 be a Riemannian manifold and 𝑆 ⊆ 𝑀

an open geodesic invex set with respect to 𝜂. Assume that 𝑓 :

𝑆 → (−∞, +∞] is differentiable GQBPIX with respect to 𝜂

and 𝑏.Then𝑓 is GQBIXwith respect to 𝜂 and 𝑏, where 𝑏(𝑥, 𝑦) =

lim
𝑡→0
+𝑏(𝑥, 𝑦, 𝑡).

Proof. Let 𝑥, 𝑦 ∈ 𝑆 and 𝑓(𝑥) ≦ 𝑓(𝑦). Since 𝑓 is GQBPIX with
respect to 𝜂 and 𝑏, we have

𝑏 (𝑥, 𝑦, 𝑡) (𝑓 (𝛾
𝑥,𝑦

(𝑡)) − 𝑓 (𝑦)) ≦ 0, ∀𝑡 ∈ (0, 1] . (47)

Dividing the above inequality by 𝑡 and letting 𝑡 → 0, we get

𝑏 (𝑥, 𝑦) 𝑑𝑓
𝑦
(𝜂 (𝑥, 𝑦)) ≦ 0 ∀𝑥, 𝑦 ∈ 𝑆, (48)

which shows that 𝑓 is GQBIX with respect to 𝜂 and 𝑏. This
completes the proof.

Theorem 24. Let 𝑀 be a Riemannian manifold and 𝑆 ⊆ 𝑀

an open geodesic invex set with respect to 𝜂. Suppose that 𝜂

satisfies condition (C) and 𝑏 : 𝑀×𝑀 → 𝑅
+
is continuous with

respect to the second argument. If 𝑓 is differentiable GQBIX
with respect to 𝜂 and 𝑏, then 𝑓 is GQBPIX with respect to 𝜂

and 𝑏, where 𝑏(𝑥, 𝑦, 𝑡) = 𝑏(𝑥, 𝑥)𝑏(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑆 and
𝑥 = 𝛾
𝑥,𝑦

(𝑡) for some 𝑡 ∈ [0, 1].

Proof. Let 𝑥, 𝑦 ∈ 𝑆. Since 𝑆 is a geodesic invex set with respect
to 𝜂, there exists exactly one geodesic 𝛾

𝑥,𝑦
: [0, 1] → 𝑀 such

that

𝛾
𝑥,𝑦

(0) = 𝑦, 𝛾
󸀠

𝑥,𝑦
(0) = 𝜂 (𝑥, 𝑦) ,

𝛾
𝑥,𝑦

(𝑡) ∈ 𝑆, ∀𝑡 ∈ [0, 1] .

(49)

Let 𝑓(𝑥) ≤ 𝑓(𝑦). Consider the set

Ω = {𝑧 | 𝑧 = 𝛾
𝑥,𝑦

(𝑡) ,

𝑏 (𝑥, 𝑦, 𝑡) 𝑓 (𝛾
𝑥,𝑦

(𝑡))

> 𝑏 (𝑥, 𝑦, 𝑡) 𝑓 (𝑦) , 𝑡 ∈ [0, 1]} .

(50)

In order to show that 𝑓 is GQBPIX, we have to show that
Ω = 0. It is evident that Ω is equivalent to the set

Ω
󸀠

= {𝑧 | 𝑧 = 𝛾
𝑥,𝑦

(𝑡) , 𝑓 (𝛾
𝑥,𝑦

(𝑡)) > 𝑓 (𝑦) ,

𝑏 (𝑥, 𝑦, 𝑡) > 0, 𝑡 ∈ [0, 1]} .

(51)

If Ω󸀠 ̸= 0, then, by the continuity of 𝑓 and 𝑏, the set

Ω
󸀠󸀠

= {𝑧 | 𝑧 = 𝛾
𝑥,𝑦

(𝑡) , 𝑓 (𝛾
𝑥,𝑦

(𝑡)) > 𝑓 (𝑦) ,

𝑏 (𝑥, 𝑦, 𝑡) > 0, 𝑡 ∈ (0, 1)}

(52)

is also nonempty. Hence, it is sufficient to show that Ω󸀠󸀠 = 0,
to complete the proof.

Suppose now that 𝑥 ∈ Ω
󸀠󸀠. We then have 𝑥 = 𝛾

𝑥,𝑦
(𝑡), for

some 0 < 𝑡 < 1, 𝑓(𝑥) > 𝑓(𝑦) ≧ 𝑓(𝑥), and 𝑏(𝑥, 𝑦, 𝑡) > 0. By
the definition of GQBIX of, it follows, considering the pair 𝑥
and 𝑥, that

𝑏 (𝑥, 𝑥) 𝑑𝑓
𝑥
(𝜂 (𝑥, 𝑥)) ≦ 0. (53)

Similarly, considering the pair 𝑥 and 𝑦, it follows that

𝑏 (𝑦, 𝑥) 𝑑𝑓
𝑥
(𝜂 (𝑦, 𝑥)) ≦ 0. (54)

Hence by condition (C), we have

(1 − 𝑡) 𝑏 (𝑥, 𝑥) 𝑑𝑓
𝑥
𝑃
𝑡

0,𝛾
[𝜂 (𝑥, 𝑦)] ≦ 0,

−𝑡𝑏 (𝑦, 𝑥) 𝑑𝑓
𝑥
𝑃
𝑡

0,𝛾
[𝜂 (𝑥, 𝑦)] ≦ 0.

(55)

Now (55), together with the fact that 0 < 𝑡 < 1, imply that

𝑏 (𝑥, 𝑥) 𝑏 (𝑦, 𝑥) 𝑑𝑓
𝑥
𝑃
𝑡

0,𝛾
[𝜂 (𝑥, 𝑦)]

= 𝑏 (𝑥, 𝑥) 𝑏 (𝑦, 𝑥) 𝑑𝑓
𝑥
𝛾
󸀠

𝑥,𝑦
(𝑡) = 0.

(56)

Note that (56) holds for any 𝑥 ∈ Ω
󸀠󸀠. Now suppose that

Ω
󸀠󸀠

̸= 0. Let 𝑥 ∈ Ω
󸀠󸀠 and let 𝑥 = 𝛾

𝑥,𝑦
(𝑡). By the continuity

of 𝑓, 𝛾, and 𝑏, we can find 0 ≤ 𝑡
∗

< 𝑡 < 𝑡̂ < 1 such that for all
𝑡 ∈ (𝑡
∗

, 𝑡̂), we have

𝑓 (𝛾
𝑥,𝑦

(𝑡)) > 𝑓 (𝑦) , 𝑏 (𝑥, 𝑦, 𝑡) > 0,

𝑓 (𝛾
𝑥,𝑦

(𝑡
∗

)) = 𝑓 (𝑦) .

(57)
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Now, by the Mean Value Theorem, there exists 𝑡
0

∈ (𝑡
∗

, 𝑡)

such that

𝑓 (𝛾
𝑥,𝑦

(𝑡)) − 𝑓 (𝑦) = 𝑓 (𝛾
𝑥,𝑦

(𝑡)) − 𝑓 (𝛾
𝑥,𝑦

(𝑡
∗

))

= (𝑡 − 𝑡
∗

) 𝑑𝑓
𝑥
𝛾
󸀠

𝑥,𝑦
(𝑡
0
) ,

(58)

where 𝑥 = 𝛾
𝑥,𝑦

(𝑡
0
). The left-hand side is positive by our

hypothesis, but the right-hand size is zero by (56), as 𝑥 ∈

Ω
󸀠󸀠, and hence, we have a contradiction. This completes the

proof.

We can also easily obtain the following results.

Theorem 25. Let 𝑀 be a Riemannian manifold, let 𝑆 ⊆ 𝑀

be an open geodesic invex set with respect to 𝜂, and let 𝑓 :

𝑆 → 𝑅 be differentiable GPBPIX with respect to 𝜂 and 𝑏.
Then 𝑓 is GPBIX with respect to 𝜂 and 𝑏, where 𝑏(𝑥, 𝑦) =

lim
𝑡→0
+𝑏(𝑥, 𝑦, 𝑡).

Theorem 26. Let 𝑀 be a Riemannian manifold, let 𝑆 ⊆ 𝑀

be an open geodesic invex set with respect to 𝜂, and let 𝑓 :

𝑆 → 𝑅 be differentiable GPBPIX with respect to 𝜂 and 𝑏.
Then 𝑓 is GQBIX with respect to 𝜂 and 𝑏, where 𝑏(𝑥, 𝑦) =

lim
𝑡→0
+𝑏(𝑥, 𝑦, 𝑡).

Remark 27. Theorems 25 and 26 generalize the known results
from 𝑅

𝑛 to Riemannian manifolds.

4. Optimality Conditions and Duality

In this section, we discuss a multiobjective optimization
problem (VOP) involving generalized GBIX functions and
obtain the Kuhn-Tucker sufficient conditions for a feasible
point 𝑥

0 of (VOP) to be an efficient or properly efficient
solution.We also formulate aMond-Weir type dual for (VOP)
and give various types of duality results. All these conclusions
extend the corresponding results on 𝑅

𝑛 (see, e.g., [2, 4, 5, 7, 8]
and the references therein) to Riemannian manifolds under
the assumptions of GBIX functions and their generalization
introduced in Section 2.

Let 𝑀 be a Riemannian manifold and let 𝑆 ⊆ 𝑀 be an
open invex set with respect to 𝜂 : 𝑀 × 𝑀 → 𝑇𝑀. We are
concernedwith the followingmultiple objective optimization
problem:

(VOP) min 𝑓 (𝑥) = (𝑓
1
(𝑥) , . . . , 𝑓

𝑘
(𝑥)) ,

s.t. 𝑔 (𝑥) ≦ 0,

(59)

where 𝑓 : 𝑆 → 𝑅
𝑘 and 𝑔 : 𝑆 → 𝑅

𝑚 are differentiable
functions. Let 𝐷 = {𝑥 | 𝑥 ∈ 𝑆, 𝑔

𝑖
(𝑥) ≦ 0, 𝑖 = 1, 2, . . . , 𝑚}

be the set of feasible solutions for (VOP), and 𝐼(𝑥
0

) = {𝑖 |

𝑔
𝑖
(𝑥
0

) = 0}.

For vector inequalities we adopt the usual notions. If
𝑥, 𝑦 ∈ 𝑅

𝑚, then

𝑥 = 𝑦 ⇐⇒ 𝑥
𝑖
= 𝑦
𝑖
, 𝑖 = 1, 2, . . . , 𝑚,

𝑥 < 𝑦 ⇐⇒ 𝑥
𝑖
< 𝑦
𝑖
, 𝑖 = 1, 2, . . . , 𝑚.

𝑥 ≦ 𝑦 ⇐⇒ 𝑥
𝑖
≦ 𝑦
𝑖
, 𝑖 = 1, 2, . . . , 𝑚,

𝑥 ≤ 𝑦 ⇐⇒ 𝑥
𝑖
≦ 𝑦
𝑖
, 𝑖 = 1, 2, . . . , 𝑚, 𝑥 ̸= 𝑦,

𝑥 ≰ 𝑦 is the negation of 𝑥 ≤ 𝑦.

(60)

Definition 28 (see [34]). A feasible point 𝑥0 ∈ 𝐷 is said to be
an efficient solution of (VOP) if there exists no other feasible
point 𝑥 ∈ 𝐷 such that 𝑓(𝑥) ≤ 𝑓(𝑥

0

).

Definition 29 (see [34]). The point 𝑥0 is said to be properly
efficient of (VOP) if it is efficient for (VOP) and if there exists
a scalar 𝑀 > 0 such that, for each 𝑖,

𝑓
𝑖
(𝑥
0

) − 𝑓
𝑖
(𝑥)

𝑓
𝑗
(𝑥) − 𝑓

𝑗
(𝑥0)

≦ 𝑀 (61)

for some 𝑗 such that 𝑓
𝑗
(𝑥) > 𝑓

𝑗
(𝑥
0

), whenever 𝑥 is feasible
for (VOP) and 𝑓

𝑖
(𝑥) < 𝑓

𝑖
(𝑥
0

).

Theorem 30. Let 𝑥0 be a feasible solution to (VOP). Assume
that for every feasible point 𝑥, there exist scalars 𝜆

𝑗
> 0, 𝑗 =

1, 2, . . . , 𝑘 and 𝜇
𝑖
≧ 0, 𝑖 ∈ 𝐼(𝑥

0

), such that

𝑘

∑

𝑗=1

𝜆
𝑗
𝑑(𝑓
𝑗
)
𝑥
0
𝜂 (𝑥, 𝑥

0

) + ∑

𝑖∈𝐼(𝑥
0
)

𝜇
𝑖
𝑑(𝑔
𝑖
)
𝑥
0𝜂 (𝑥, 𝑥

0

) ≧ 0. (62)

Suppose that 𝑓
𝑗
, 𝑗 = 1, 2, . . . , 𝑘 are GBIX with respect to 𝜂 and

𝑏 at 𝑥0, and 𝑔
𝑖
, 𝑖 ∈ 𝐼(𝑥

0

) is GBIX with respect to 𝜂 and 𝑏 at
𝑥
0. If 𝑏(𝑥, 𝑥0) > 0 for any 𝑥 ∈ 𝐷, then 𝑥

0 is a properly efficient
solution for (VOP).

Proof. Since 𝑓
𝑗
, 𝑗 = 1, 2, . . . , 𝑘 and 𝑔

𝑖
, 𝑖 ∈ 𝐼(𝑥

0

) are GBIX,
from condition (62), we get

𝑏 (𝑥, 𝑥
0

)

𝑘

∑

𝑗=1

𝜆
𝑗
[𝑓
𝑗
(𝑥) − 𝑓

𝑗
(𝑥
0

)]

≧

𝑘

∑

𝑗=1

𝜆
𝑗
𝑑(𝑓
𝑗
)
𝑥
0
𝜂 (𝑥, 𝑥

0

)

≧ − ∑

𝑖∈𝐼(𝑥
0
)

𝜇
𝑖
𝑑(𝑔
𝑖
)
𝑥
0𝜂 (𝑥, 𝑥

0

)

≧ 𝑏 (𝑥, 𝑥
0

)[

[

∑

𝑖∈𝐼(𝑥
0
)

𝜇
𝑖
𝑔
𝑖
(𝑥
0

) − ∑

𝑖∈𝐼(𝑥
0
)

𝜇
𝑖
𝑔
𝑖
(𝑥)]

]

= −𝑏 (𝑥, 𝑥
0

) ∑

𝑖∈𝐼(𝑥
0
)

𝜇
𝑖
𝑔
𝑖
(𝑥)

≧ 0.

(63)
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Thus,

𝑏 (𝑥, 𝑥
0

)

𝑘

∑

𝑗=1

𝜆
𝑗
𝑓
𝑗
(𝑥)

≧ 𝑏 (𝑥, 𝑥
0

)

𝑘

∑

𝑗=1

𝜆
𝑗
𝑓
𝑗
(𝑥
0

) , ∀𝑥 ∈ 𝐷,

(64)

which implies that

𝑥
0 minimize

𝑘

∑

𝑗=1

𝜔
𝑗
𝑓
𝑗
(𝑥) , subject to 𝑔 (𝑥) ≦ 0, (65)

where

𝜔
𝑗
=

𝜆
𝑗

𝑏 (𝑥, 𝑥0)∑
𝑘

𝑗=1
𝜆
𝑗

. (66)

Hence, from Theorem 4.11 of [35], 𝑥0 is a properly efficient
solution for (VOP). This completes the proof.

Remark 31. Theorem 30 is a generalization ofTheorem 5.5 in
[23].

Theorem 32. Let 𝑥0 be a feasible solution for (VOP). If there
exist scalars 𝜆

𝑗
≧ 0, 𝑗 = 1, 2, . . . , 𝑘, ∑

𝑘

𝑗=1
𝜆
𝑗

= 1, 𝜇
𝑖

≧

0, 𝑖 ∈ 𝐼(𝑥
0

), such that the triplet (𝑥
0

, 𝜆
𝑗
, 𝜇
𝑖
) satisfies (62)

in Theorem 30. Assume that ∑
𝑘

𝑗=1
𝜆
𝑗
𝑓
𝑗
is strictly GBIX with

respect to 𝜂 and 𝑏 at 𝑥0, and 𝑔
𝑖
, 𝑖 ∈ 𝐼(𝑥

0

) is GBIX with respect
to 𝜂 and 𝑏 at 𝑥

0. Then 𝑥
0 is an efficient solution for problem

(VOP).

Proof. Suppose that 𝑥0 is not an efficient solution for (VOP).
Then there exists a feasible point 𝑥 ∈ 𝐷 such that

𝑓 (𝑥) ≤ 𝑓 (𝑥
0

) . (67)

Since ∑
𝑘

𝑗=1
𝜆
𝑗
𝑓
𝑗
(𝑥) is strictly GBIX, we conclude

𝑏 (𝑥, 𝑥
0

)[

[

𝑘

∑

𝑗=1

𝜆
𝑗
𝑓
𝑗
(𝑥) −

𝑘

∑

𝑗=1

𝜆
𝑗
𝑓
𝑗
(𝑥
0

)]

]

≦ 0

󳨐⇒

𝑘

∑

𝑗=1

𝜆
𝑗
𝑑(𝑓
𝑗
)
𝑥
0
𝜂 (𝑥, 𝑥

0

) < 0.

(68)

Also, the GBIX of 𝑔
𝑖
, 𝑖 ∈ 𝐼(𝑥

0

) yields

𝑏 (𝑥, 𝑥
0

)[

[

∑

𝑖∈𝐼(𝑥
0
)

𝜇
𝑖
𝑔
𝑖
(𝑥) − ∑

𝑖∈𝐼(𝑥
0
)

𝜇
𝑖
𝑔
0
(𝑥
0

)]

]

≦ 0

󳨐⇒ ∑

𝑖∈𝐼(𝑥
0
)

𝜇
𝑖
𝑑(𝑔
𝑖
)
𝑥
0𝜂 (𝑥, 𝑥

0

) ≦ 0.

(69)

Adding (68) and (69), we obtain a contradiction to (62). This
completes the proof.

Remark 33. Proceeding along the same lines as in
Theorem 30, it can be easily seen that 𝑥

0 becomes properly
efficient to (VOP) in the above theorem, if 𝜆

𝑗
> 0, for all

𝑗 = 1, 2, . . . , 𝑘.

Theorem 34. Suppose that there exist a feasible point 𝑥0 and
scalars 𝜆

𝑗
> 0, 𝑗 = 1, 2, . . . , 𝑘𝜇

𝑖
≧ 0, 𝑖 ∈ 𝐼(𝑥

0

), such that (62)
of Theorem 30 holds. Let ∑𝑘

𝑗=1
𝜆
𝑗
𝑓
𝑗
be GPBIX with respect to

𝜂 and 𝑏 at 𝑥0 and let 𝑔
𝑖
, 𝑖 ∈ 𝐼(𝑥

0

) be GQBIX with respect to 𝜂

and 𝑏 at 𝑥0. If 𝑏(𝑥, 𝑥0) > 0 and 𝑏(𝑥, 𝑥
0

) > 0 for any 𝑥 ∈ 𝐷,
then 𝑥

0 is a properly efficient solution for (VOP).

Proof. Since 𝑔
𝑖
(𝑥) ≦ 𝑔

𝑖
(𝑥
0

) = 0, 𝑖 ∈ 𝐼(𝑥
0

), and 𝑔
𝑖
, 𝑖 ∈ 𝐼(𝑥

0

)

are GQBIX functions, we obtain

𝑏 (𝑥, 𝑥
0

) ∑

𝑖∈𝐼(𝑥
0
)

𝜇
𝑖
𝑑(𝑔
𝑖
)
𝑥
0𝜂 (𝑥, 𝑥

0

) ≦ 0, ∀𝑥 ∈ 𝐷, (70)

which along with (62) yields

𝑑(

𝑘

∑

𝑗=1

𝑓
𝑗
)

𝑥
0

𝜂 (𝑥, 𝑥
0

) ≧ 0. (71)

Since ∑
𝑘

𝑗=1
𝜆
𝑗
𝑓
𝑗
is GPBIX, the above inequality implies that

𝑏 (𝑥, 𝑥
0

)

𝑘

∑

𝑗=1

𝜆
𝑗
𝑓
𝑗
(𝑥) ≧ 𝑏 (𝑥, 𝑥

0

)

𝑘

∑

𝑗=1

𝜆
𝑗
𝑓
𝑗
(𝑥
0

) . (72)

Thus, we conclude that 𝑥0 minimize ∑
𝑘

𝑗=1
𝜔
𝑗
𝑓
𝑗
(𝑥), under the

constraint 𝑔(𝑥) ≦ 0, where

𝜔
𝑗
=

𝜆
𝑗

𝑏 (𝑥, 𝑥0)∑
𝑘

𝑗=1
𝜆
𝑗

. (73)

Therefore, 𝑥0 is a properly efficient for (VOP).This completes
the proof.

Theorem35. Let 𝑥0 be a feasible point for (VOP). Assume that
there exist scalars 𝜆

𝑗
≧ 0, 𝑗 = 1, 2, . . . , 𝑘, ∑𝑘

𝑗=1
𝜆
𝑗
= 1, 𝜇

𝑖
≧ 0,

𝑖 ∈ 𝐼(𝑥
0

), such that (62) ofTheorem 30 holds. Let∑𝑘
𝑗=1

𝜆
𝑗
𝑓
𝑗
be

strictly GPBIXwith respect to 𝜂 and 𝑏 at 𝑥0, and let𝑔
𝑖
, 𝑖 ∈ 𝐼(𝑥

0

)

be GQBIX with respect to 𝜂 and 𝑏 at 𝑥0. If 𝑏(𝑥, 𝑥0) > 0 for any
𝑥 ∈ 𝐷, then 𝑥

0 is an efficient solution for problem (VOP).

Proof. Suppose that 𝑥0 is not efficient for (VOP). Then, there
exists a feasible 𝑥 of (VOP) such that

𝑓 (𝑥) ≤ 𝑓 (𝑥
0

) , (74)

which yields

𝑏 (𝑥, 𝑥
0

)

𝑘

∑

𝑗=1

𝜆
𝑗
𝑓
𝑗
(𝑥) ≦ 𝑏 (𝑥, 𝑥

0

)

𝑘

∑

𝑗=1

𝜆
𝑗
𝑓
𝑗
(𝑥
0

) . (75)
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It follows from the strict GPBIX of ∑𝑘
𝑗=1

𝜆
𝑗
𝑓
𝑗
that

𝑘

∑

𝑗=1

𝜆
𝑗
𝑑(𝑓
𝑗
)
𝑥
0
𝜂 (𝑥, 𝑥

0

) = 𝑑(

𝑘

∑

𝑗=1

𝜆
𝑗
𝑓
𝑗
)

𝑥
0

𝜂 (𝑥, 𝑥
0

) < 0. (76)

Also, from the GQBIX of 𝑔
𝑖
, 𝑖 ∈ 𝐼(𝑥

0

), we conclude

∑

𝑖∈𝐼(𝑥
0
)

𝜇
𝑖
𝑔
𝑖
(𝑥) ≦ ∑

𝑖∈𝐼(𝑥
0
)

𝜇
𝑖
𝑔
𝑖
(𝑥
0

) ,

󳨐⇒ 𝑏 (𝑥, 𝑥
0

) ∑

𝑖∈𝐼(𝑥
0
)

𝜇
𝑖
𝑑(𝑔
𝑖
)
𝑥
0𝜂 (𝑥, 𝑥

0

) ≦ 0, ∀𝑥 ∈ 𝐷.

(77)

The proof now is similar to the proof of Theorem 32. This
completes the proof.

Remark 36. Similarly as in Theorem 34, it can be easily seen
that 𝑥

0 becomes properly efficient for (VOP) in the above
theorem if 𝜆

𝑗
> 0 for all 𝑗 = 1, 2, . . . , 𝑘.

Remark 37. InTheorems 34 and 35, the results still hold when
𝑔
𝑖
is replaced by 𝜇

𝑖
𝑔
𝑖
with 𝑖 ∈ 𝐼(𝑥

0

).

We now consider the followingMond-Weir vector dual of
(VOP):

(MVD) max 𝑓 (𝑢) ,

s.t.
𝑘

∑

𝑗=1

𝜆
𝑗
𝑑(𝑓
𝑗
)
𝑢

𝜂 (𝑥, 𝑢)

+

𝑚

∑

𝑖=1

𝜇
𝑖
𝑑(𝑔
𝑖
)
𝑢
𝜂 (𝑥, 𝑢) = 0,

(78)

𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖
(𝑢) ≧ 0, (79)

𝜇
𝑖
≧ 0, 𝑖 = 1, 2, . . . , 𝑚, (80)

𝜆
𝑗
≧ 0, 𝑗 = 1, 2, . . . , 𝑘,

𝑘

∑

𝑗=1

𝜆
𝑗
= 1, (81)

for all 𝑥 ∈ 𝐷, and 𝑓 and 𝑔 are differentiable functions on
𝑆 ⊆ 𝑀.

We now prove various duality results for (VOP) and
(MVD).

Theorem 38 (weak duality). Let 𝑥 and (𝑢, 𝜆, 𝜇) be feasible for
(VOP) and (MVD), respectively. If also either

(a) 𝜆
𝑗
> 0 for all 𝑗 = 1, 2, . . . , 𝑘 and ∑

𝑘

𝑗=1
𝜆
𝑗
𝑓
𝑗
is GPBIX

with respect to 𝜂 and 𝑏 at 𝑢, ∑𝑚
𝑖=1

𝜇
𝑖
𝑔
𝑖
is GQBIX with

respect to 𝜂 and 𝑏 at 𝑢, and 𝑏(𝑥, 𝑢) > 0, 𝑏(𝑥, 𝑢) > 0, or

(b) ∑
𝑘

𝑗=1
𝜆
𝑗
𝑓
𝑗
is strictly GPBIX with respect to 𝜂 and 𝑏 at

𝑢,∑𝑚
𝑖=1

𝜇
𝑖
𝑔
𝑖
is GQBIX with respect to 𝜂 and 𝑏 at 𝑢, and

𝑏(𝑥, 𝑢) > 0,

then 𝑓(𝑥) ≰ 𝑓(𝑢).

Proof. We proceed by contradiction. If 𝑓(𝑥) ≤ 𝑓(𝑢), then for
𝜆
𝑗
> 0, 𝑗 = 1, 2, . . . , 𝑘 and 𝑏 > 0, we get

𝑏 (𝑥, 𝑢)

𝑘

∑

𝑗=1

𝜆
𝑗
𝑓
𝑗
(𝑥) < 𝑏 (𝑥, 𝑢)

𝑘

∑

𝑗=1

𝜆
𝑗
𝑓
𝑗
(𝑢) , (82)

or for 𝜆
𝑗
≧ 0, 𝑗 = 1, 2, . . . , 𝑘, ∑𝑘

𝑖=1
𝜆
𝑗
= 1, we have

𝑏 (𝑥, 𝑢)

𝑘

∑

𝑗=1

𝜆
𝑗
𝑓
𝑗
(𝑥) ≦ 𝑏 (𝑥, 𝑢)

𝑘

∑

𝑗=1

𝜆
𝑗
𝑓
𝑗
(𝑢) . (83)

Now since ∑
𝑘

𝑗=1
𝜆
𝑗
𝑓
𝑗
is GPBIX or strictly GPBIX, the above

two inequalities both give

𝑘

∑

𝑗=1

𝜆
𝑗
𝑑(𝑓
𝑗
)
𝑢

𝜂 (𝑥, 𝑢) < 0, ∀𝑥 ∈ 𝐷. (84)

It follows from (79) that
𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖
(𝑥) ≦ 0 ≦

𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖
(𝑢) , ∀𝑥 ∈ 𝐷, (85)

and the GQBIX of ∑𝑚
𝑖=1

𝜇
𝑖
𝑔
𝑖
gives

𝑏 (𝑥, 𝑢) 𝑑(

𝑚

∑

𝑖=1

𝜇
𝑖
𝑔
𝑖
)

𝑢

𝜂 (𝑥, 𝑢)

= 𝑏 (𝑥, 𝑢)

𝑚

∑

𝑖=1

𝜇
𝑖
𝑑(𝑔
𝑖
)
𝑢
𝜂 (𝑥, 𝑢) ≦ 0.

(86)

By adding (84) and (86), we obtain a contradiction to (78).
This completes the proof.

Theorem 39 (strong duality). Let 𝑥
0 be an efficient solution

for (VOP) at which the Kuhn-Tucker conditions are satisfied. If
for all feasible solutions (𝑢, 𝜆, 𝜇) of (MVD)∑𝑘

𝑗=1
𝜆
𝑗
𝑓
𝑗
is strictly

GPBIX with respect to 𝜂 and 𝑏 and ∑
𝑘

𝑖=1
𝜇
𝑖
𝑔
𝑖
is GQBIX with

respect to 𝜂 and 𝑏, where 𝑏(𝑥, 𝑢) > 0 for all 𝑥 ∈ 𝐷, then there
exists (𝑥

0

, 𝜇
0

) ∈ 𝑅
𝑘

× 𝑅
𝑚 such that (𝑥0, 𝜆0, 𝜇0) is efficient for

(MVD) and the objective function values of (VOP) and (MVD)
are equal.

Proof. The assumption in the above theorem implies that
there exist scalars 𝜆

0

𝑗
≧ 0, 𝑗 = 1, 2, . . . , 𝑘, ∑𝑘

𝑗=1
𝜆
𝑗

= 1, and
𝜇
0

𝑖
≧ 0, 𝑖 = 1, 2, . . . , 𝑚 such that the Kuhn-Tucker conditions

hold:
𝑘

∑

𝑗=1

𝜆
0

𝑗
𝑑(𝑓
𝑗
)
𝑥
0
𝜂 (𝑥, 𝑥

0

) +

𝑚

∑

𝑖=1

𝜇
0

𝑖
𝑑(𝑔
𝑖
)
𝑥
0𝜂 (𝑥, 𝑥

0

) = 0,

𝑚

∑

𝑖=1

𝜇
0

𝑖
𝑔
𝑖
(𝑥
0

) = 0,

(87)

which gives that the triplet (𝑥0, 𝜆0, 𝜇0) is feasible for (MVD).
If (𝑥
0

, 𝜆
0

, 𝜇
0

) is not efficient, then there exists a feasible
(𝑢, 𝜆, 𝜇) for (MVD) such that 𝑓(𝑥

0

) ≤ 𝑓(𝑢), which contra-
dicts the weak duality. This completes the proof.
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Theorem 40. Let 𝑥0 be feasible for (VOP), and let (𝑢0, 𝜆0, 𝜇0)
be feasible for (MVD) such that

𝑘

∑

𝑗=1

𝜆
0

𝑗
𝑓
𝑗
(𝑥
0

) =

𝑘

∑

𝑗=1

𝜆
0

𝑗
𝑓
𝑗
(𝑢
0

) . (88)

Suppose that ∑𝑘
𝑗=1

𝜆
0

𝑗
𝑓
𝑗
is strictly GPBIX at 𝑢0 with respect to

𝜂 and 𝑏, and ∑
𝑚

𝑖=1
𝜇
0

𝑖
𝑔
𝑖
is GQBIX at 𝑢0 with respect to 𝜂 and 𝑏.

If 𝑏(𝑥0, 𝑢0) > 0 and 𝑏(𝑥
0

, 𝑢
0

) > 0, then 𝑥
0

= 𝑢
0.

Proof. Let 𝑥0 ̸= 𝑢
0. Since ∑

𝑚

𝑖=1
𝜇
0

𝑖
𝑔
𝑖
is GQBIX and (𝑢

0

, 𝜆
0

, 𝜇
0

)

is feasible for (MVD), we conclude
𝑚

∑

𝑖=1

𝜇
0

𝑖
𝑔
𝑖
(𝑥
0

) ≦

𝑚

∑

𝑖=1

𝜇
0

𝑖
𝑔
𝑖
(𝑢
0

) 󳨐⇒ 𝑏 (𝑥
0

, 𝑢
0

)

×

𝑚

∑

𝑖=1

𝜇
0

𝑖
𝑑(𝑔
𝑖
)
𝑢
0𝜂 (𝑥
0

, 𝑢
0

) ≦ 0.

(89)

It follows from (78) that

𝑘

∑

𝑗=1

𝜆
0

𝑗
𝑑(𝑓
𝑗
)
𝑢
0
𝜂 (𝑥
0

, 𝑢
0

) ≧ 0. (90)

Again from the strict GPBIX of ∑𝑘
𝑗=1

𝜆
𝑗
𝑓
𝑗
, we have

𝑏 (𝑥
0

, 𝑢
0

)

𝑘

∑

𝑗=1

𝜆
0

𝑗
𝑓
𝑗
(𝑥
0

) > 𝑏 (𝑥
0

, 𝑢
0

)

𝑘

∑

𝑗=1

𝜆
0

𝑗
𝑓 (𝑢
0

) . (91)

This is a contradiction.Therefore, 𝑥0 = 𝑢
0.This completes the

proof.

Theorem 41. Suppose that there exist a feasible 𝑥
0 for (VOP)

and a feasible (𝑢
0

, 𝜆
0

, 𝜇
0

) for (MVD) such that

𝑓
𝑗
(𝑥
0

) = 𝑓
𝑗
(𝑢
0

) , 𝑗 = 1, 2, . . . , 𝑘. (92)

If for 𝑗 = 1, 2, . . . , 𝑘, 𝜆
𝑗
> 0 and

∑
𝑘

𝑗=1
𝜆
0

𝑗
𝑓
𝑗

∑
𝑚

𝑖=1
𝜇
0

𝑖
𝑔
𝑖

(93)

is GPBIX/GQBIX with respect to 𝜂 and 𝑏/𝑏 at 𝑢
0, then 𝑥

0 is
properly efficient for (VOP). Also if for each feasible (𝑢, 𝜆, 𝜇) of
(MVD),

∑
𝑘

𝑗=1
𝜆
𝑗
𝑓
𝑗

∑
𝑚

𝑖=1
𝜇
𝑖
𝑔
𝑖

(94)

is GPBIX/GQBIX with respect to 𝜂 and 𝑏/𝑏 and 𝑏(𝑥
0

, 𝑢
0

) > 0,
𝑏(𝑥
0

, 𝑢
0

) > 0, then 𝑢
0 is properly efficient of (MVD).

Proof. Suppose that 𝑥0 is not an efficient solution for (VOP).
Then there exists a feasible 𝑥 for (VOP) such that

𝑓 (𝑥) ≤ 𝑓 (𝑥
0

) . (95)

Using condition (92), we contradict theweak duality.Thus,𝑥0
is efficient for (VOP). If 𝑥0 is not properly efficient for (VOP),
then there exist a feasible 𝑥 and an index 𝑖 such that

𝑓
𝑖
(𝑥
0

) − 𝑓
𝑖
(𝑥) > 𝑀(𝑓

𝑗
(𝑥) − 𝑓

𝑗
(𝑥
0

)) , (96)

for all 𝑀 > 0 and all 𝑗 such that 𝑓
𝑗
(𝑥) > 𝑓

𝑗
(𝑥
0

) whenever
𝑓
𝑖
(𝑥) < 𝑓

𝑖
(𝑥
0

). Again utilizing condition (92), we obtain

𝑓
𝑖
(𝑥) − 𝑓

𝑖
(𝑢
0

) < −𝑀(𝑓
𝑗
(𝑥) − 𝑓

𝑗
(𝑢
0

)) (97)

for all 𝑀 > 0 and all 𝑗 such that

𝑓
𝑗
(𝑥) > 𝑓

𝑗
(𝑢
0

) , (98)

whenever

𝑓
𝑖
(𝑥) < 𝑓

𝑖
(𝑢
0

) . (99)

Since 𝑀 can be made large, hence for 𝜆
0

𝑗
> 0, we get the

inequality

𝑘

∑

𝑗=1

𝜆
0

𝑗
(𝑓
𝑗
(𝑥) − 𝑓

𝑗
(𝑢
0

)) < 0, (100)

which contradicts the weak duality. Therefore, 𝑥0 is properly
efficient for (VOP).

To prove the second half of this theorem, let us assume
on the contrary that (𝑢0, 𝜆0, 𝜇0) is not an efficient solution of
(MVD). Then there exists a feasible point (𝑢, 𝜆, 𝜇) of (MVD)
such that

𝑓 (𝑢
0

) ≤ 𝑓 (𝑢) . (101)

By applying condition (92), we get a contradiction to weak
duality. Hence, (𝑢0, 𝜆0, 𝜇0) is an efficient solution of (MVD).

If (𝑢
0

, 𝜆
0

, 𝜇
0

) is not properly efficient for (MVD), then
there exist a feasible (𝑢, 𝜆, 𝜇) of (MVD) and an index 𝑖 such
that

𝑓
𝑖
(𝑢) − 𝑓

𝑖
(𝑢
0

) > 𝑀(𝑓
𝑗
(𝑢
0

) − 𝑓
𝑗
(𝑢)) (102)

for all 𝑀 > 0 and for all 𝑗 such that

𝑓
𝑗
(𝑢
0

) > 𝑓
𝑗
(𝑢) , (103)

whenever

𝑓
𝑖
(𝑢
0

) < 𝑓
𝑖
(𝑢) . (104)

Utilizing (92) again, we obtain

𝑓
𝑖
(𝑢) − 𝑓

𝑖
(𝑥
0

) > 𝑀(𝑓
𝑗
(𝑥
0

) − 𝑓
𝑗
(𝑢)) , (105)

for all 𝑀 > 0 and for all 𝑗 such that

𝑓
𝑗
(𝑥
0

) > 𝑓
𝑗
(𝑢) , (106)
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whenever

𝑓
𝑖
(𝑥
0

) < 𝑓
𝑖
(𝑢) . (107)

Now using the same argument as in the first part of the
theorem, we get

𝑘

∑

𝑗=1

𝜆
0

𝑗
(𝑓
𝑗
(𝑥
0

) − 𝑓
𝑗
(𝑢)) < 0, (108)

which contradicts the weak duality.This completes the proof.
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