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Circulant matrices have important applications in solving various differential equations. The level-k scaled factor circulant matrix
over any field is introduced. Algorithms for finding the minimal polynomial of this kind of matrices over any field are presented
by means of the algorithm for the Gröbner basis of the ideal in the polynomial ring. And two algorithms for finding the inverses
of such matrices are also presented. Finally, an algorithm for computing the inverse of partitioned matrix with level-k scaled factor
circulant matrix blocks over any field is given by using the Schur complement, which can be realized by CoCoA 4.0, an algebraic
system, over the field of rational numbers or the field of residue classes of modulo prime number.

1. Introduction

Circulant matrices play an important role in solving many
different differential equations, such as ordinary, partial,
matrix, linear second-order partial, bi-Hamiltonian partial,
parameterized delay, fractional order, and singular pertur-
bation delay. Lee et al. investigated a high-order compact
(HOC) scheme for the general two-dimensional (2D) linear
partial differential equation in [1] with a mixed deriva-
tive. Meanwhile, in order to establish the CCD2 scheme,
they rewrote equation (1.1) into (2.1) in [1]. To write the
CCD2 system in a concise style, they employed circulant
matrix to obtain the corresponding whole CCD2 linear
system (2.10), whose entries are circulant block. Using circu-
lant matrix, Karasözen and Şimşek [2] considered periodic
boundary conditions such that no additional boundary terms
will appear after semidiscretization. Guo et al. concerned
generic Dn-Hopf bifurcation to a delayed Hopfield-Cohen-
Grossberg model of neural networks (5.17) in [3], where
𝑇 denoted an interconnection matrix. In particular, they
assumed that 𝑇 is a symmetric circulant matrix. Trench
considered nonautonomous systems of linear differential
equations (1) in [4] with some constraints on the coefficient
matrix 𝐴(𝑡). One case is that the 𝐴(𝑡) is a variable block
circulant matrix. In [5], some Routh-Hurwitz stability con-
ditions are generalized to the fractional order case. Ahmed
et al. considered the 1-system CML (10) in [5]. They selected

a circulant matrix, which reads a tridiagonal matrix. In [6],
Jin et al. proposed the GMRES method with the Strang-
type block-circulant preconditioner for solving singular per-
turbation delay differential equations. In [7], Claeyssen and
Leal introduce factor circulant matrices: matrices with the
structure of circulants, butwith the entries below the diagonal
multiplied by the same factor. The diagonalization of a
circulantmatrix and spectral decomposition are conveniently
generalized to block matrices with the structure of factor
circulants. Matrix and partial differential equations involving
factor circulants are considered.Wilde [8] developed a theory
for the solution of ordinary and partial differential equations
whose structure involves the algebra of circulants. He showed
how the algebra of 2×2 circulants is related to the study of the
harmonic oscillator, Cauchy-Riemann equations, Laplace’s
equation, the Lorentz transformation, and the wave equation.
And he used 𝑛×𝑛 circulants to suggest natural generalizations
of these equations to higher dimensions.

With the development of the mathematical research,
multilevel circulant matrix had been defined. And it has
been used on network engineering, approximate calculation,
and Image processing [9–12]. Jiang and Liu [13] introduced
the level-𝑚 scaled circulant factor matrix over the complex
number field and discussed its diagonalization and spectral
decomposition and representation. Zhang et al. [14] gave
algorithms for the minimal polynomial and the inverse of a
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level-𝑛(𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑛
)-block circulant matrix over any field by

means of the algorithm for the Gröbner basis for the ideal of
the polynomial ring over the field.Morhac andMatousek [15]
present an efficient algorithm to solve a one-dimensional as
well as 𝑛-dimensional circulant convolution system. Rezghi
and Elden [16] defined tensors with diagonal and circulant
structure and developed a framework for the analysis of
such tensors. Georgiou and Koukouvinos [17] presented
a new method for constructing multilevel supersaturated
designs. Trench [18, 19] considered properties of unilevel
block circulants andmultilevel block 𝛼-circulants. Block [20]
considered the property of circulants of level-𝑘. Baker et al.
discussed the structure of multiblock circulants in [21]. More
details onmultilevel circulantmatrix can be found in [22–24].

This paper is devoted to study the level-𝑘 scaled factor
circulant matrix, and it is organized as follows.

In Section 2, a level-𝑘 scaled factor circulant matrix over
any field is introduced and its algebraic properties are given.

In Section 3, we first show that the ring of all level-𝑘 scaled
factor circulant matrices over a field is isomorphic to a factor
ring of a polynomial ring in 𝑘 variables over the same field,
and then we present an algorithm for finding the minimal
polynomial of a level-𝑘 scaled factor circulantmatrix bymean
of the algorithm for the Gröbner basis for a kernel of a ring
homomorphism.

In Section 4, we give a sufficient and necessary condition
to determine whether a level-𝑘 scaled factor circulant matrix
over a field is singular or not and then present an algorithm
for finding the inverse of such a matrix over a field.

In Section 5, an algorithm for finding the inverse of
partitioned matrix with level-𝑘 scaled factor circulant matrix
blocks over a field is presented by using the Schur comple-
ment and Buchberger’s algorithm.

We first introduce some terminologies and notations
used in the equations. Let F be a field and F[𝑥

1
, . . . , 𝑥

𝑘
]

the polynomial ring of 𝑘 variables over field F . By Hilbert
basis Theorem, we know that every ideal I in F[𝑥

1
, . . . , 𝑥

𝑘
]

is finitely generated. Fixing a term order in F[𝑥
1
, . . . , 𝑥

𝑘
], a

set of nonzero polynomials G = {𝑔
1
, . . . , 𝑔

𝑡
} in an ideal I

is called a Gröbner basis for I if and only if, for all nonzero
𝑓 ∈ I, there exists 𝑖 ∈ {1, . . . , 𝑡} such that 𝑙𝑝(𝑔

𝑖
) divides 𝑙𝑝(𝑓),

where 𝑙𝑝(𝑔
𝑖
) and 𝑙𝑝(𝑓) are the leading power products of 𝑔

𝑖

and𝑓, respectively. A Gröbner basisG = {𝑔
1
, . . . , 𝑔

𝑡
} is called

a reduced Gröbner basis if and only if, for all 𝑖, 𝑙𝑐(𝑔
𝑖
) = 1 and

𝑔
𝑖
is reduced with respect to G − 𝑔

𝑖
; that is, for all 𝑖, no non-

zero term in 𝑔
𝑖
is divisible by any 𝑙𝑝 (𝑔

𝑖
) for any 𝑗 ̸= 𝑖, where

𝑙𝑐(𝑔
𝑖
) is the leading coefficient of 𝑔

𝑖
.

In this paper, we set 𝐴0 = 𝐼 for a square matrix 𝐴, and
⟨𝑓
1
, . . . , 𝑓

𝑚
⟩ denotes an ideal of F[𝑥

1
, . . . , 𝑥

𝑘
] generated by

polynomials 𝑓
1
, . . . , 𝑓

𝑚
.

2. Level-𝑘 Scaled Factor Circulant Matrices

If 𝑅 is an 𝑛 × 𝑛 matrix over field F which is the product of a
diagonal matrix𝐷 and a circulant permutationmatrix𝐶, this
is

𝐷 = diag (𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
) ,

𝐶 =(

0 1 0 0 ⋅ ⋅ ⋅ 0

0 0 1 0 ⋅ ⋅ ⋅ 0

...
...

...
...

...
...

0 0 0 0 ⋅ ⋅ ⋅ 1

1 0 0 0 ⋅ ⋅ ⋅ 0

)

𝑛×𝑛

. (1)

Then, the matrix 𝑅 = 𝐷𝐶 is called a scaled circulant
permutation matrix over field F .

When field F is the complex field, this kind of matrix is
the same as in [25].

For the remainder of the paper, the indices 1, 2, . . . , 𝑛 are
congruence classes modulo 𝑛. We will use 0 instead of 𝑛. For
convenience, we will refer to such a matrix as an SCPMF.

As 𝑅 = 𝐷𝐶 is a scaled circulant permutation matrix over
field F , then

det𝑅 = (−1)𝑛−1
𝑛

∏

𝑗=1

𝑑
𝑗
,

𝑅
𝑛
= (

𝑛

∏

𝑗=1

𝑑
𝑗
)𝐼
𝑛
.

(2)

In this paper, focus on the case where 𝑅
𝑖
= 𝐷
𝑖
𝐶
𝑖
is

nonsingular SCPMF, where

𝐷
𝑖
= diag (𝑑

𝑖1
, 𝑑
𝑖2
, . . . , 𝑑

𝑖𝑛𝑖
) ,

𝐶
𝑖
=(

0 1 0 0 ⋅ ⋅ ⋅ 0

0 0 1 0 ⋅ ⋅ ⋅ 0

...
...

...
...

...
...

0 0 0 0 ⋅ ⋅ ⋅ 1

1 0 0 0 ⋅ ⋅ ⋅ 0

)

𝑛𝑖×𝑛𝑖

, 𝑖 = 1, 2, . . . , 𝑘.

(3)

It is easy to show that the polynomial 𝑥𝑛𝑖
𝑖
− ∏
𝑛𝑖

𝑗𝑖=1
𝑑
𝑖𝑗𝑖
is both

the minimal polynomial and the characteristic polynomial of
𝑅
𝑖
.
Let 𝐼
𝑛𝑖
be the 𝑛

𝑖
× 𝑛
𝑖
unit matrix for 𝑖 = 1, 2, . . . , 𝑘 and

𝑁 = 𝑛
1
𝑛
2
⋅ ⋅ ⋅ 𝑛
𝑘
. Set

𝜎
𝑖
= 𝐼
𝑛1
⊗ ⋅ ⋅ ⋅ ⊗ 𝐼

𝑛𝑖−1
⊗ 𝑅
𝑖
⊗ 𝐼
𝑛𝑖+1
⊗ ⋅ ⋅ ⋅ ⊗ 𝐼

𝑛𝑘
, (4)

where ⊗ is a Kronecker product of matrices.

Definition 1. An 𝑁 × 𝑁 maxtrix 𝐴 over F is callled a level-𝑘
scaled factor circulant matrix if there exists a polynomial

𝑓 (𝑥
1
, . . . , 𝑥

𝑘
) =

𝑛1−1

∑

𝑖1=0

𝑛2−1

∑

𝑖2=0

⋅ ⋅ ⋅

𝑛𝑘−1

∑

𝑖𝑘=0

𝑎
𝑖1 ⋅⋅⋅𝑖𝑘
𝑥
𝑖1

1
⋅ ⋅ ⋅ 𝑥
𝑖𝑘

𝑘

∈ F [𝑥
1
, . . . , 𝑥

𝑘
]

(5)

such that
𝐴 = 𝑓 (𝜎

1
, . . . , 𝜎

𝑘
)

=

𝑛1−1

∑

𝑖1=0

𝑛2−1

∑

𝑖2=0

⋅ ⋅ ⋅

𝑛𝑘−1

∑

𝑖𝑘=0

𝑎
𝑖1 ⋅⋅⋅𝑖𝑘
𝜎
𝑖1

1
⋅ ⋅ ⋅ 𝜎
𝑖𝑘

𝑘
,

(6)

where 𝑓(𝑥
1
, . . . , 𝑥

𝑘
) will be called the representer of a level-𝑘

scaled factor circulant matrix 𝐴.
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Obviously, when field F is the complex field and 𝑘 = 1,
this kind of matrix is same as in [25], and when the field F is
the complex field, this kind of matrix is the same as in [13],
and if 𝐷

𝑖
= diag (1, 1, . . . , 1, 𝑟

𝑖
), 𝑖 = 1, 2, . . . , 𝑘, this kind of

matrix is as in [14, 18, 22], and if 𝐷
𝑖
= 𝐼
𝑛𝑖
, 𝑖 = 1, 2, . . . , 𝑘, then

we obtain the multilevel circulant matrix [9–12, 15, 19–22].
From the property of the Kronecker product of matrices,

the level-𝑘 scaled factor circulant matrix 𝐴 can also be
expressed as

𝐴 =

𝑛1−1

∑

𝑖1=0

𝑛2−1

∑

𝑖2=0

⋅ ⋅ ⋅

𝑛𝑘−1

∑

𝑖𝑘=0

𝑎
𝑖1 ⋅⋅⋅𝑖𝑘
𝑅
𝑖1

1
⊗ 𝑅
𝑖2

2
⊗ ⋅ ⋅ ⋅ ⊗ 𝑅

𝑖𝑘

𝑘
. (7)

For amatrix𝐴 over F , 𝐴 is a level-𝑘 scaled factor circulant
matrix if and only if 𝐴 commutes with (𝑅

1
⊗ 𝑅
2
⊗ ⋅ ⋅ ⋅ ⊗ 𝑅

𝑘
);

that is,

𝐴 (𝑅
1
⊗ 𝑅
2
⊗ ⋅ ⋅ ⋅ ⊗ 𝑅

𝑘
) = (𝑅

1
⊗ 𝑅
2
⊗ ⋅ ⋅ ⋅ ⊗ 𝑅

𝑘
) 𝐴. (8)

In addition to the algebraic properties that can be easily
derived from representation (6), we mention that level-𝑘
scaled factor circulant matrices have very nice structure. The
product of two level-𝑘 scaled factor circulant matrices is also
a level-𝑘 scaled factor circulant matrix. Furthermore, level-𝑘
scaled factor circulant matrices commute under multiplica-
tion and 𝐴−1 is also a level-𝑘 scaled factor circulant matrix.

3. Minimal Polynomials of Level-𝑘 Scaled
Factor Circulant Matrices

Let F[𝜎
1
, . . . , 𝜎

𝑘
] = {𝐴 | 𝐴 = 𝑓(𝜎

1
, . . . , 𝜎

𝑘
), 𝑓(𝑥

1
, . . . , 𝑥

𝑘
) ∈

F[𝑥
1
, . . . , 𝑥

𝑘
]}. It is a routine to prove that F[𝜎

1
, . . . , 𝜎

𝑘
] is a

commutative ring with the matrix addition and multiplica-
tion.

Theorem 2. Consider F[𝑥
1
, . . . , 𝑥

𝑘
]/⟨𝑥
𝑛1

1
−

∏
𝑛1

𝑗1=1
𝑑
1𝑗1
, . . . , 𝑥

𝑛𝑘

𝑘
−∏
𝑛𝑘

𝑗𝑘=1
𝑑
𝑘𝑗𝑘
⟩ ≅ F[𝜎

1
, . . . , 𝜎

𝑘
].

Proof. Consider the following 𝐹-algebra homomorphism:

𝜑 : F [𝑥
1
, . . . , 𝑥

𝑘
] 󳨀→ F [𝜎

1
, . . . , 𝜎

𝑘
]

𝑓 (𝑥
1
, . . . , 𝑥

𝑘
) 󳨃󳨀→ 𝐴 = 𝑓 (𝜎

1
, . . . , 𝜎

𝑘
)

(9)

for 𝑓(𝑥
1
, . . . , 𝑥

𝑘
) ∈ F[𝑥

1
, . . . , 𝑥

𝑘
]. It is clear that 𝜑 is an 𝐹-

algebra epimorphism. So, we have

F [𝑥
1
, . . . , 𝑥

𝑘
]

ker𝜑 ≅ F [𝜎
1
, . . . , 𝜎

𝑘
]
. (10)

We can prove that

ker𝜑 = ⟨𝑥𝑛1
1
−

𝑛1

∏

𝑗1=1

𝑑
1𝑗1
, . . . , 𝑥

𝑛𝑘

𝑘
−

𝑛𝑘

∏

𝑗𝑘=1

𝑑
𝑘𝑗𝑘
⟩. (11)

In fact, for 𝑖 = 1, 2, . . . , 𝑘, 𝑥𝑛𝑖
𝑖
−∏
𝑛𝑖

𝑗𝑖=1
𝑑
𝑖𝑗𝑖
∈ ker𝜑 because 𝜎𝑛𝑖

𝑖
−

∏
𝑛𝑖

𝑗𝑖=1
𝑑
𝑖𝑗𝑖
𝐼
𝑛𝑖
= 0. Hence, ker𝜑 ⊇ ⟨𝑥𝑛1

1
− ∏
𝑛1

𝑗1=1
𝑑
1𝑗1
, . . . , 𝑥

𝑛𝑘

𝑘
−

∏
𝑛𝑘

𝑗𝑘=1
𝑑
𝑘𝑗𝑘
⟩.

Conversely, for any 𝑓(𝑥
1
, . . . , 𝑥

𝑘
) ∈ ker 𝜑, we have

𝐴 = 𝑓(𝜎
1
, . . . , 𝜎

𝑘
) = 0. Fix the lexicographical order on

F[𝑥
1
, . . . , 𝑥

𝑘
] with 𝑥

1
> 𝑥
2
> ⋅ ⋅ ⋅ > 𝑥

𝑘
. Consider 𝑥𝑛1

1
− ∏
𝑛1

𝑗1=1

𝑑
1𝑗1

dividing 𝑓(𝑥
1
, . . . , 𝑥

𝑘
), and there exist

𝑢
1
(𝑥
1
, . . . , 𝑥

𝑘
) , V
1
(𝑥
1
, . . . , 𝑥

𝑘
) ∈ F [𝑥

1
, . . . , 𝑥

𝑘
] (12)

such that

𝑓 (𝑥
1
, . . . , 𝑥

𝑘
) = 𝑢
1
(𝑥
1
, . . . , 𝑥

𝑘
)(𝑥
𝑛1

1
−

𝑛1

∏

𝑗1=1

𝑑
1𝑗1
)

+ V
1
(𝑥
1
, . . . , 𝑥

𝑘
) ,

(13)

where V
1
(𝑥
1
, . . . , 𝑥

𝑘
) = 0 or the largest degree of 𝑥

1
in

V
1
(𝑥
1
, . . . , 𝑥

𝑘
) is less than 𝑛

1
. If V
1
(𝑥
1
, . . . , 𝑥

𝑘
) = 0, then

𝑓(𝑥
1
, . . . , 𝑥

𝑘
) ∈ ⟨𝑥

𝑛1

1
− ∏
𝑛1

𝑗1=1
𝑑
1𝑗1
, . . . , 𝑥

𝑛𝑘

𝑘
− ∏
𝑛𝑘

𝑗𝑘=1
𝑑
𝑘𝑗𝑘
⟩.

Otherwise, 𝑥𝑛2
2
−∏
𝑛2

𝑗2=1
𝑑
2𝑗2

dividing V
1
(𝑥
1
, . . . , 𝑥

𝑘
), and there

exist 𝑢
2
(𝑥
1
, . . . , 𝑥

𝑘
), V
2
(𝑥
1
, . . . , 𝑥

𝑘
) ∈ F[𝑥

1
, . . . , 𝑥

𝑘
], such that

V
1
(𝑥
1
, . . . , 𝑥

𝑘
) = 𝑢
2
(𝑥
1
, . . . , 𝑥

𝑘
)(𝑥
𝑛2

2
−

𝑛2

∏

𝑗2=1

𝑑
2𝑗2
)

+ V
2
(𝑥
1
, . . . , 𝑥

𝑘
) ,

(14)

where V
2
(𝑥
1
, . . . , 𝑥

𝑘
) = 0 or the largest degree of 𝑥

2

in V
2
(𝑥
1
, . . . , 𝑥

𝑘
) is less than 𝑛

2
. If V

2
(𝑥
1
, . . . , 𝑥

𝑘
) = 0,

then 𝑓(𝑥
1
, . . . , 𝑥

𝑘
) ∈ ⟨𝑥

𝑛1

1
− ∏
𝑛1

𝑗1=1
𝑑
1𝑗1
, 𝑥
𝑛2

2
− ∏
𝑛2

𝑗2=1
𝑑
2𝑗2
,

. . . , 𝑥
𝑛𝑘

𝑘
− ∏
𝑛𝑘

𝑗𝑘=1
𝑑
𝑘𝑗𝑘
⟩. Otherwise, the largest degree of

𝑥
1

in V
2
(𝑥
1
, . . . , 𝑥

𝑘
) is less than 𝑛

1
because 𝑥

1
does

not appear in 𝑥𝑛2
2
− ∏
𝑛2

𝑗2=1
𝑑
2𝑗2
. Continuing this pro-

cedure, there exist 𝑢
1
(𝑥
1
, . . . , 𝑥

𝑘
), . . . , 𝑢

𝑘
(𝑥
1
, . . . , 𝑥

𝑘
), and

V
𝑘
(𝑥
1
, . . . , 𝑥

𝑘
) ∈ F[𝑥

1
, . . . , 𝑥

𝑘
], such that 𝑓(𝑥

1
, . . . , 𝑥

𝑘
) =

𝑢
1
(𝑥
1
, . . . , 𝑥

𝑘
)(𝑥
𝑛1

1
−∏
𝑛1

𝑗1=1
𝑑
1𝑗1
)+⋅ ⋅ ⋅+𝑢

𝑘
(𝑥
1
, . . . , 𝑥

𝑘
)(𝑥
𝑛𝑘

𝑘
−∏
𝑛𝑘

𝑗𝑘=1

𝑑
𝑘𝑗𝑘
) + V
𝑘
(𝑥
1
, . . . , 𝑥

𝑘
), where V

𝑘
(𝑥
1
, . . . , 𝑥

𝑘
) = 0 or the degrees

of 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
in V
𝑘
(𝑥
1
, . . . , 𝑥

𝑘
) are less than 𝑛

1
, 𝑛
2
, . . . , 𝑛

𝑘
,

respectively. Since 𝑓(𝜎
1
, . . . , 𝜎

𝑘
) = 0, 𝜎

𝑛𝑖

𝑖
− ∏
𝑛𝑖

𝑗𝑖=1
𝑑
𝑖𝑗𝑖
𝐼
𝑛𝑖
= 0.

For 𝑖 = 1, 2, . . . , 𝑘, 𝑢
𝑘
(𝜎
1
, . . . , 𝜎

𝑘
) = 0. The coeffi-

cients of all terms in V
𝑘
(𝑥
1
, . . . , 𝑥

𝑘
) are the entries of the

matrix V
𝑘
(𝜎
1
, . . . , 𝜎

𝑘
) because the degrees of 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘

in V
𝑘
(𝑥
1
, . . . , 𝑥

𝑘
) are less than 𝑛

1
, 𝑛
2
, . . . , 𝑛

𝑘
, respectively.

Therefore, the coefficient of each term in V
𝑘
(𝑥
1
, . . . , 𝑥

𝑘
) is 0;

that is, V
𝑘
(𝑥
1
, . . . , 𝑥

𝑘
) = 0. Thus,

𝑓 (𝑥
1
, . . . , 𝑥

𝑘
) ∈ ⟨𝑥

𝑛1

1
−

𝑛1

∏

𝑗1=1

𝑑
1𝑗1
, . . . , 𝑥

𝑛𝑘

𝑘
−

𝑛𝑘

∏

𝑗𝑘=1

𝑑
𝑘𝑗𝑘
⟩. (15)

Definition 3. Let I be a nonzero ideal of the polynomial
ring F[𝑦

1
, . . . , 𝑦

𝑡
]. Then, I is called an annihilation ideal

of square matrices 𝐴
1
, . . . , 𝐴

𝑡
, denoted by I(𝐴

1
, . . . , 𝐴

𝑡
), if

𝑓(𝐴
1
, . . . , 𝐴

𝑡
) = 0 for all 𝑓(𝑦

1
, . . . , 𝑦

𝑡
) ∈ I.

Definition 4. Suppose that 𝐴
1
, . . . , 𝐴

𝑡
∈ F[𝜎

1
, . . . , 𝜎

𝑘
] are

not all zero matrices. The unique monic polynomial 𝑔(𝑥) of
minimum degree that simultaneously annihilates 𝐴

1
, . . . , 𝐴

𝑡

is called the common minimal polynomial of 𝐴
1
, . . . , 𝐴

𝑡
.
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We give the special case of Theorem 2.4.10 [26] here for
the convenience of applications.

Lemma 5. Let I be an ideal of F[𝑥
1
, . . . , 𝑥

𝑘
]. Given

𝑓
1
, . . . , 𝑓

𝑚
∈ F[𝑥

1
, . . . , 𝑥

𝑘
], consider the following F-algebra

homomorphism:

𝜙 : F [𝑦
1
, . . . , 𝑦

𝑚
] 󳨀→

F [𝑥
1
, . . . , 𝑥

𝑘
]

I
𝑦
1
󳨃󳨀→ 𝑓
1
+ I

...

𝑦
𝑚
󳨃󳨀→ 𝑓
𝑚
+ I.

(16)

Let E = ⟨I, 𝑦
1
− 𝑓
1
, . . . , 𝑦

𝑚
− 𝑓
𝑚
⟩ be an ideal of F[𝑥

1
, . . . ,

𝑥
𝑘
, 𝑦
1
, . . . , 𝑦

𝑚
] generated by I, 𝑦

1
− 𝑓
1
, . . . , 𝑦

𝑚
− 𝑓
𝑚
. Then,

𝑘𝑒𝑟 𝜙 = E ∩ F[𝑦
1
, . . . , 𝑦

𝑚
].

The following lemma is well known [27].

Lemma 6. Let 𝐴 be a nonzero matrix over field F . If the
minimal polynomial of 𝐴 is

𝑝 (𝑥) = 𝑎
𝑛
𝑥
𝑛
+ 𝑎
𝑛−1
𝑥
𝑛−1
+ ⋅ ⋅ ⋅ + 𝑎

1
𝑥 + 𝑎
0
, 𝑎
0
̸= 0, (17)

then

𝐴
−1
=
1

𝑎
0

(−𝑎
𝑛
𝐴
𝑛−1
− 𝑎
𝑛−1
𝐴
𝑛−2
− ⋅ ⋅ ⋅ − 𝑎

1
) . (18)

The following lemma is the Exercise 2.38 of [26].

Lemma 7. Let L
1
, L
2
, . . . , L

𝑚
be ideals of F[𝑥

1
, . . . , 𝑥

𝑘
]

and let J = ⟨1 − ∑
𝑚

𝑖=1
𝜔
𝑖
, 𝜔
1
L
1
, 𝜔
2
L
2
, . . . , 𝜔

𝑚
L
𝑚
⟩

be an ideal of F[𝑥
1
, . . . , 𝑥

𝑘
, 𝜔
1
, . . . , 𝜔

𝑚
] generated by

1 − ∑
𝑚

𝑖=1
𝜔
𝑖
, 𝜔
1
L
1
, 𝜔
2
L
2
, . . . , 𝜔

𝑚
L
𝑚
. Then, ⋂𝑚

𝑖=1
L
𝑖
=

J ∩ F[𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
].

By Theorem 2 and Lemma 5, we can prove the following
theorem.

Theorem 8. The minimal polynomial of the level-𝑘 scaled
factor circulant matrix 𝐴 ∈ F[𝜎

1
, . . . , 𝜎

𝑘
] is the monic

polynomial that generates the ideal

⟨𝑥
𝑛1

1
−

𝑛1

∏

𝑗1=1

𝑑
1𝑗1
, 𝑥
𝑛2

2
−

𝑛2

∏

𝑗2=1

𝑑
2𝑗2
, . . . , 𝑥

𝑛𝑘

𝑘
−

𝑛𝑘

∏

𝑗𝑘=1

𝑑
𝑘𝑗𝑘
,

𝑦 − 𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
)⟩ > ∩F [𝑦] ,

(19)

where the polynomial 𝑓(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
) is the representer of 𝐴.

Proof. Consider the following 𝐹-algebra homomorphism:

𝜙 : F [𝑦] 󳨀→
F [𝑥
1
, . . . , 𝑥

𝑘
]

⟨𝑥
𝑛1

1
−∏
𝑛1

𝑗1=1
𝑑
1𝑗1
, . . . , 𝑥

𝑛𝑘

𝑘
−∏
𝑛𝑘

𝑗𝑘=1
𝑑
𝑘𝑗𝑘
⟩

>󳨀→ F [𝜎
1
, . . . , 𝜎

𝑘
] ,

𝑦 󳨃󳨀→ 𝑓 (𝑥
1
, . . . , 𝑥

𝑘
)

+⟨𝑥
𝑛1

1
−

𝑛1

∏

𝑗1=1

𝑑
1𝑗1
, . . . , 𝑥

𝑛𝑘

𝑘
−

𝑛𝑘

∏

𝑗𝑘=1

𝑑
𝑘𝑗𝑘
⟩

>󳨃󳨀→ 𝐴 = 𝑓 (𝜎
1
, . . . , 𝜎

𝑘
) .

(20)

It is clear that 𝑞(𝑦) ∈ ker𝜙 if and only if 𝑞(𝐴) = 0. In view of
Lemma 5, we have

ker𝜙 = ⟨𝑥𝑛1
1
−

𝑛1

∏

𝑗1=1

𝑑
1𝑗1
, . . . , 𝑥

𝑛𝑘

𝑘
−

𝑛𝑘

∏

𝑗𝑘=1

𝑑
𝑘𝑗𝑘
,

𝑦 − 𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
)⟩ > ∩F [𝑦] .

(21)

We know fromTheorem 8 and Lemma 6 that theminimal
polynomial and the inverse of a level-𝑘 scaled factor circulant
matrix 𝐴 ∈ F[𝜎

1
, . . . , 𝜎

𝑘
] is calculated by a Gröbner basis for

a kernel of an 𝐹-algebra homomorphism.Therefore, we have
the following algorithm to calculate the minimal polynomial
and the inverse of a level-𝑘 scaled factor circulant matrix𝐴 =
𝑓(𝜎
1
, . . . , 𝜎

𝑘
).

Step 1. Calculate the reduced Gröbner basis G for the ideal

⟨𝑥
𝑛1

1
−

𝑛1

∏

𝑗1=1

𝑑
1𝑗1
, . . . , 𝑥

𝑛𝑘

𝑘
−

𝑛𝑘

∏

𝑗𝑘=1

𝑑
𝑘𝑗𝑘
,

𝑦 − 𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
)⟩ > ∩F [𝑦]

(22)

by CoCoA 4.0, using an elimination order with 𝑥
1
> 𝑥
2
>

⋅ ⋅ ⋅ > 𝑥
𝑘
> 𝑦.

Step 2. Find the polynomial in G in which the variables
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
do not appear. This polynomial 𝑝(𝑥) is the

minimal polynomial of 𝐴.

Step 3. By Step 2, if 𝑎
0
in the minimal polynomial of 𝐴,

𝑝 (𝑥) = 𝑎
𝑛
𝑥
𝑛
+ 𝑎
𝑛−1
𝑥
𝑛−1
+ ⋅ ⋅ ⋅ + 𝑎

1
𝑥 + 𝑎
0

(23)

is zero; stop. Otherwise, calculate

𝐴
−1
=
1

𝑎
0

(−𝑎
𝑛
𝐴
𝑛−1
− 𝑎
𝑛−1
𝐴
𝑛−2
− ⋅ ⋅ ⋅ − 𝑎

1
) . (24)
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Example 9. Let 𝐴 = 𝑓(𝜎
1
, 𝜎
2
) be a level-2 scaled factor

circulant matrix, where

𝑓 (𝑥, 𝑦) = 𝑥
3
𝑦
2
+ 3𝑥
3
𝑦 + 4𝑥

2
𝑦
2

+ 2𝑥
3
+ 7𝑥
2
𝑦 + 𝑥
2
+ 𝑥𝑦
2

+ 2𝑦
2
+ 7𝑥𝑦 + 2𝑥 + 5𝑦 + 8,

𝜎
1
= 𝑅
1
⊗ 𝐼
3
, 𝜎

2
= 𝐼
4
⊗ 𝑅
2
,

𝑅
1
=(

0 −
1

2
0 0

0 0
3

5
0

0 0 0 3

−4 0 0 0

), 𝑅
2
= (

0
1

3
0

0 0 −2

5 0 0

) ,

𝐼
3
= (

1 0 0

0 1 0

0 0 1

) , 𝐼
4
= (

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

) .

(25)

We now calculate the minimal polynomial and the inverse of
𝐴 with entries in field Z

11
.

In fact, the reduced Gröbner basis for the ideal

⟨𝑥
4
−
18

5
, 𝑦
3
+
10

3
, 𝑧 − 𝑓 (𝑥, 𝑦)⟩ (26)

is

G = {𝑧10 − 5𝑧9 − 𝑧8 + 2𝑧7 + 2𝑧6

+ 5𝑧
5
+ 𝑧
4
− 4𝑧
3
− 𝑧
2
− 5𝑧 − 1, 𝑥

− 5𝑦𝑧 − 5𝑦 − 2𝑧
9
+ 5𝑧
8
− 3𝑧
7

+ 5𝑧
6
+ 3𝑧
5
+ 𝑧
3
+ 4𝑧 + 2, 𝑦

2

+ 5𝑦 − 5𝑧
9
− 4𝑧
8
− 4𝑧
7
+ 3𝑧
6

+ 5𝑧
5
+ 3𝑧
3
+ 3𝑧
2
− 5𝑧 + 1, 𝑦𝑧

2

− 3𝑦𝑧 + 3𝑦 + 3𝑧
9
− 5𝑧
8
− 5𝑧
7

+ 5𝑧
6
− 2𝑧
5
+ 3𝑧
4
+ 3𝑧
3
− 𝑧
2
− 𝑧} .

(27)

So, the minimal polynomial of 𝐴 is

𝑧
10
− 5𝑧
9
− 𝑧
8
+ 2𝑧
7
+ 2𝑧
6
+ 5𝑧
5

+ 𝑧
4
− 4𝑧
3
− 𝑧
2
− 5𝑧 − 1,

(28)

and the inverse of 𝐴 is

𝐴
−1
= 𝐴
9
− 5𝐴
8
− 𝐴
7
+ 2𝐴
6

+ 2𝐴
5
+ 5𝐴
4
+ 𝐴
3
− 4𝐴
2
− 𝐴 − 5𝐼.

(29)

Theorem 10. The annihilation ideal of the level-𝑘 scaled factor
circulant matrices 𝐴

1
, . . . , 𝐴

𝑡
∈ F[𝜎
1
, . . . , 𝜎

𝑘
] is

⟨𝑥
𝑛1

1
−

𝑛1

∏

𝑗1=1

𝑑
1𝑗1
, . . . , 𝑥

𝑛𝑘

𝑘
−

𝑛𝑘

∏

𝑗𝑘=1

𝑑
𝑘𝑗𝑘
,

𝑦
1
− 𝑓
1
(𝑥
1
, . . . , 𝑥

𝑘
) , . . . , 𝑦

𝑡
− 𝑓
𝑡
(𝑥
1
, . . . , 𝑥

𝑘
)⟩

> ∩F [𝑦
1
, . . . , 𝑦

𝑡
] ,

(30)

where the polynomial 𝑓
𝑖
(𝑥
1
, . . . , 𝑥

𝑘
) is the representer of

𝐴
𝑖
, 𝑖 = 1, 2, . . . , 𝑡.

Proof. Consider the following 𝐹-algebra homomorphism:

𝜙 : F [𝑦
1
, . . . , 𝑦

𝑡
] 󳨀→ F [𝑥

1
, . . . , 𝑥

𝑘
]

⟨𝑥
𝑛1

1
−∏
𝑛1

𝑗1=1
𝑑
1𝑗1
, . . . , 𝑥

𝑛𝑘

𝑘
−∏
𝑛𝑘

𝑗𝑘=1
𝑑
𝑘𝑗𝑘
⟩

>󳨀→ F [𝜎
1
, . . . , 𝜎

𝑘
] ,

𝑦
1
󳨃󳨀→ 𝑓
1
(𝑥
1
, . . . , 𝑥

𝑘
)

+⟨𝑥
𝑛1

1
−

𝑛1

∏

𝑗1=1

𝑑
1𝑗1
, . . . , 𝑥

𝑛𝑘

𝑘
−

𝑛𝑘

∏

𝑗𝑘=1

𝑑
𝑘𝑗𝑘
⟩

>󳨃󳨀→ 𝐴
1
= 𝑓
1
(𝜎
1
, . . . , 𝜎

𝑘
) , . . . ,

𝑦
𝑡
󳨃󳨀→ 𝑓
𝑡
(𝑥
1
, . . . , 𝑥

𝑘
)

+⟨𝑥
𝑛1

1
−

𝑛1

∏

𝑗1=1

𝑑
1𝑗1
, . . . , 𝑥

𝑛𝑘

𝑘
−

𝑛𝑘

∏

𝑗𝑘=1

𝑑
𝑘𝑗𝑘
⟩

>󳨃󳨀→ 𝐴
𝑡
= 𝑓
𝑡
(𝜎
1
, . . . , 𝜎

𝑘
) .

(31)

It is clear that 𝜙(𝑔(𝑦
1
, . . . , 𝑦

𝑡
)) = 0 if and only if

𝑔(𝐴
1
, . . . , 𝐴

𝑡
) = 0. Hence, by Lemma 5

I (𝐴
1
, . . . , 𝐴

𝑡
) = ker𝜙 = J ∩ F [𝑦

1
, . . . , 𝑦

𝑡
] . (32)

According to Theorem 10, we give the following algo-
rithm for the annihilation ideal of the level-𝑘 scaled factor
circulant matrices 𝐴

1
, . . . , 𝐴

𝑡
∈ F[𝜎
1
, . . . , 𝜎

𝑘
].

Step 4. Calculate the reduced Gröbner basis G for the ideal

⟨𝑥
𝑛1

1
−

𝑛1

∏

𝑗1=1

𝑑
1𝑗1
, . . . , 𝑥

𝑛𝑘

𝑘
−

𝑛𝑘

∏

𝑗𝑘=1

𝑑
𝑘𝑗𝑘
,

𝑦
1
− 𝑓
1
(𝑥
1
, . . . , 𝑥

𝑘
) , . . . , 𝑦

𝑡
− 𝑓
𝑡
(𝑥
1
, . . . , 𝑥

𝑘
)⟩

(33)

by CoCoA 4.0, using an elimination order with 𝑥
1
> ⋅ ⋅ ⋅ >

𝑥
𝑘
> 𝑦
1
> ⋅ ⋅ ⋅ > 𝑦

𝑘
.
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Step 5. Find the polynomial in G in which the variables
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
do not appear. Then, the ideal generated by

these polynomials is the annihilation ideal of 𝐴
1
, . . . , 𝐴

𝑡
.

Example 11. Let 𝐴
1
= 𝑓
1
(𝜎
1
, 𝜎
2
) and 𝐴

2
= 𝑓
2
(𝜎
1
, 𝜎
2
) be both

level-2 scaled circulant factor matrices, where

𝑓
1
(𝑥, 𝑦) = 7𝑥

2
𝑦
2
+ 5𝑥
2
𝑦 + 3𝑥

2

+ 𝑥𝑦
2
+ 8𝑥𝑦 + 4𝑥 + 9𝑦

2
+ 2𝑦 + 9,

𝑓
2
(𝑥, 𝑦) = 10𝑥

2
𝑦
2
+ 4𝑥
2
𝑦 + 7𝑥

2

+ 𝑥𝑦
2
+ 3𝑥𝑦 + 9𝑥 + 4𝑦

2
+ 6𝑦 + 1,

𝜎
1
= 𝑅
1
⊗ 𝐼
3
, 𝜎

2
= 𝐼
3
⊗ 𝑅
2
,

𝑅
1
= (

0
1

2
0

0 0 6

−3 0 0

) , 𝑅
2
= (

0 −1 0

0 0 −9

1

3
0 0

) ,

𝐼
3
= (

1 0 0

0 1 0

0 0 1

) .

(34)

We calculate the annihilation ideal of 𝐴
1
and 𝐴

2
over field

Z
11
as follows.

By CoCoA 4.0, we obtain that the reduced Gröbner basis
for the ideal

⟨𝑥
3
+ 9, 𝑦

3
− 3, 𝑧 − 𝑓

1
(𝑥, 𝑦) , 𝑢 − 𝑓

2
(𝑥, 𝑦)⟩ (35)

is

G = {𝑢8 + 4𝑢7 + 𝑢6 + 5𝑢5 − 4𝑢3 + 3𝑢2 + 4𝑢 − 1,

+ 3𝑧 + 5𝑢
7
+ 3𝑢
6
− 4𝑢
5

− 4𝑢
4
+ 4𝑢
3
− 3𝑢
2
+ 𝑢 − 3,

− 4𝑧 − 4𝑢
7
− 4𝑢
6
− 3𝑢
5
− 𝑢
4

− 𝑢
3
+ 3𝑢
2
+ 5𝑢 + 2,

− 3𝑧 − 5𝑢
7
+ 3𝑢
5
− 2𝑢
4
+ 5𝑢
3
− 4𝑢
2

− 𝑢 + 3, 𝑧𝑢 − 2𝑧 − 𝑢
7
− 5𝑢
5

− 5𝑢
3
+ 𝑢
2
− 4𝑢 + 2} .

(36)

So, the annihilation ideal of 𝐴
1
and 𝐴

2
is

⟨𝑢
8
+ 4𝑢
7
+ 𝑢
6
+ 5𝑢
5
− 4𝑢
3
+ 3𝑢
2

+ 4𝑢 − 1, 𝑧
2
− 3𝑧 − 5𝑢

7
+ 3𝑢
5
− 2𝑢
4

+ 5𝑢
3
− 4𝑢
2
− 𝑢 + 3, 𝑧𝑢 − 2𝑧 − 𝑢

7
− 5𝑢
5

−5𝑢
3
+ 𝑢
2
− 4𝑢 + 2⟩ .

(37)

To calculate the common minimal polynomial of
𝐴
1
, . . . , 𝐴

𝑡
, we first prove the following theorem.

Theorem 12. Let ℎ(𝑥) be the least common multiple of 𝑝
1
(𝑥),

𝑝
2
(𝑥), . . . , 𝑝

𝑘
(𝑥). Then,

𝑘

⋂

𝑖=1

⟨𝑝
𝑖
(𝑥)⟩ = ⟨ℎ (𝑥)⟩ . (38)

Proof. For any 𝑓(𝑥) ∈ ⋂𝑘
𝑖=1
⟨𝑝
𝑖
(𝑥)⟩, we have 𝑝

𝑖
(𝑥) | 𝑓(𝑥) for

𝑖 = 1, 2, . . . , 𝑘. Since ℎ(𝑥) is the least common multiple of
𝑝
1
(𝑥), 𝑝
2
(𝑥), . . . , 𝑝

𝑘
(𝑥), ℎ(𝑥) | 𝑓(𝑥). So 𝑓(𝑥) ∈ ⟨ℎ(𝑥)⟩. Hence

𝑘

⋂

𝑖=1

⟨𝑝
𝑖
(𝑥)⟩ ⊆ ⟨ℎ (𝑥)⟩ . (39)

Conversely, 𝑝
𝑖
(𝑥) | 𝑓(𝑥) for 𝑖 = 1, 2, . . . , 𝑘 because

ℎ(𝑥) is the least common multiple of 𝑝
1
(𝑥), 𝑝
2
(𝑥), . . . , 𝑝

𝑘
(𝑥).

Therefore,

𝑘

⋂

𝑖=1

⟨𝑝
𝑖
(𝑥)⟩ ⊇ ⟨ℎ (𝑥)⟩ . (40)

Let 𝐴
𝑖
∈ F[𝜎

1
, . . . , 𝜎

𝑘
] be level-𝑘 scaled factor circulant

matrix for 𝑖 = 1, 2, . . . , 𝑡. If the minimal polynomial of
𝐴
𝑖
is 𝑝
𝑖
(𝑥) for 𝑖 = 1, 2, . . . , 𝑡, then the common minimal

polynomial of 𝐴
1
, . . . , 𝐴

𝑡
is the least common multiple of

𝑝
1
(𝑥), 𝑝
2
(𝑥), . . . , 𝑝

𝑡
(𝑥). By Theorem 12 and Lemma 7, we

have the following algorithm for finding the common min-
imal polynomial of level-𝑘 scaled factor circulant matrices
𝐴
𝑖
= 𝑓
𝑖
(𝜎
1
, . . . , 𝜎

𝑘
) for 𝑖 = 1, 2, . . . , 𝑡.

Step 6. Calculate the Gröbner basis G
𝑖
for the ideal ⟨𝑥𝑛1

1
−

∏
𝑛1

𝑗1=1
𝑑
1𝑗1
, . . . , 𝑥

𝑛𝑘

𝑘
− ∏
𝑛𝑘

𝑗𝑘=1
𝑑
𝑘𝑗𝑘
, 𝑦 − 𝑓

𝑖
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
)⟩ by

CoCoA 4.0 for each 𝑖 = 1, 2, . . . , 𝑡, using an elimination order
with 𝑥

1
> ⋅ ⋅ ⋅ > 𝑥

𝑘
> 𝑦.

Step 7. Find out the polynomial 𝑔
𝑖
(𝑦) in G

𝑖
in which the

variables 𝑥
1
, . . . , 𝑥

𝑘
do not appear for each 𝑖 = 1, 2, . . . , 𝑡.

Step 8. Calculate the Gröbner basis G for the ideal

⟨1 −

𝑡

∑

𝑖=1

𝜔
𝑖
, 𝜔
1
𝑔
1
(𝑦) , . . . , 𝜔

𝑡
𝑔
𝑡
(𝑦)⟩ (41)

by CoCoA 4.0, using elimination with 𝜔
1
> ⋅ ⋅ ⋅ > 𝜔

𝑡
> 𝑦.

Step 9. Find out the polynomial 𝑔(𝑦) in G in which the
variables𝜔

1
, . . . , 𝜔

𝑡
do not appear.Then, the polynomial 𝑔(𝑦)

is the commonminimal polynomial of𝐴
𝑖
= 𝑓
𝑖
(𝜎
1
, . . . , 𝜎

𝑘
) for

𝑖 = 1, 2, . . . , 𝑡.

Example 13. Wenow calculate the commonminimal polyno-
mial of 𝐴

1
and 𝐴

2
of Example 11 over field Z

11
as follows.

By CoCoA 4.0, we obtain that the reduced Gröbner basis
for the ideal

⟨𝑥
3
+ 9, 𝑦

3
− 3, 𝑧 − 𝑓

1
(𝑥, 𝑦)⟩ (42)
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is

G
1
= {𝑧
7
− 4𝑧
6
− 3𝑧
5
+ 𝑧
4
− 3𝑧
2

+ 4𝑧 + 3, 𝑥 + 2𝑦 − 5𝑧
6
− 2𝑧
4

+ 2𝑧
3
+ 4𝑧
2
+ 3𝑧 + 3, 𝑦

2
− 5𝑦𝑧

+ 𝑦 + 5𝑧
6
+ 5𝑧
5
+ 4𝑧
4
+ 𝑧
3

+ 𝑧
2
− 3𝑧, 𝑦𝑧

2
+ 𝑦 + 5𝑧

6
− 4𝑧
5

+ 4𝑧
4
+ 2𝑧
3
− 5𝑧 + 1} .

(43)

So, the minimal polynomial 𝑝
1
(𝑧) of 𝐴

1
is

𝑧
7
− 4𝑧
6
− 3𝑧
5
+ 𝑧
4
− 3𝑧
2
+ 4𝑧 + 3. (44)

Similarly, we get that the reduced Gröbner basis for the
ideal

⟨𝑥
3
+ 9, 𝑦

3
− 3, 𝑧 − 𝑓

2
(𝑥, 𝑦)⟩ (45)

is

G
2
= {𝑧
8
+ 4𝑧
7
+ 𝑧
6
+ 5𝑧
5
− 4𝑧
3

+ 3𝑧
2
+ 4𝑧 − 1, 𝑥 − 2𝑦 + 2𝑧

7

+ 2𝑧
5
− 2𝑧
4
− 5𝑧
3
+ 2𝑧
2

+ 2𝑧 + 4, 𝑦
2
− 2𝑦 − 2𝑧

7
− 𝑧
6

− 3𝑧
5
− 2𝑧
4
+ 𝑧
3
− 3𝑧
2
− 5𝑧

+ 4, 𝑦𝑧 − 2𝑦 + 5𝑧
7
− 2𝑧
6
+ 5𝑧
5

+ 𝑧
4
+ 2𝑧
3
+ 4𝑧
2
+ 3𝑧} .

(46)

Thus, the minimal polynomial 𝑝
2
(𝑧) of 𝐴

2
is

𝑧
8
+ 4𝑧
7
+ 𝑧
6
+ 5𝑧
5
− 4𝑧
3
+ 3𝑧
2
+ 4𝑧 − 1. (47)

In addition, we obtain that the reduced Gröbner basis for the
ideal

⟨1 − 𝑢 − V, 𝑢𝑝
1
(𝑧) , V𝑝

2
(𝑧)⟩ (48)

is

G = {𝑢 + V − 1, V𝑧 − 2V − 4𝑧13

+ 5𝑧
12
− 3𝑧
11
+ 2𝑧
10
+ 3𝑧
9
− 2𝑧
8
+ 2𝑧
7

+ 5𝑧
6
− 3𝑧
5
− 2𝑧
3
− 3𝑧
2
+ 𝑧 + 1,

𝑧
14
+ 2𝑧
13
− 3𝑧
12
− 5𝑧
11
+ 4𝑧
10
− 2𝑧
9

+ 𝑧
8
+ 4𝑧
6
+ 4𝑧
5
− 2𝑧
4
+3𝑧
3
+ 5𝑧
2
+ 5𝑧 − 4} .

(49)

So, the common minimal polynomial 𝑝(𝑧) of 𝐴
1
and 𝐴

2
is

𝑧
14
+ 2𝑧
13
− 3𝑧
12
− 5𝑧
11
+ 4𝑧
10
− 2𝑧
9

+ 𝑧
8
+ 4𝑧
6
+ 4𝑧
5
− 2𝑧
4
+ 3𝑧
3
+ 5𝑧
2
+ 5𝑧 − 4.

(50)

4. Inverses of Level-𝑘 Scaled Factor
Circulant Matrices

In this section, we discuss the nonsingularity and the inverse
of a level-𝑘 scaled factor circulant matrix.

Theorem 14. Let𝐴 ∈ F[𝜎
1
, . . . , 𝜎

𝑘
] be an𝑁×𝑁 level-𝑘 scaled

factor circulant matrix. Then, 𝐴 is nonsingular if and only if

1 ∈ ⟨𝑓 (𝑥
1
, . . . , 𝑥

𝑘
) , 𝑥
𝑛1

1
−

𝑛1

∏

𝑗1=1

𝑑
1𝑗1
,

𝑥
𝑛2

2
−

𝑛2

∏

𝑗2=1

𝑑
2𝑗2
, . . . , 𝑥

𝑛𝑘

𝑘
−

𝑛𝑘

∏

𝑗𝑘=1

𝑑
𝑘𝑗𝑘
⟩,

(51)

where the polynomial 𝑓(𝑥
1
, . . . , 𝑥

𝑘
) is the representer of 𝐴.

Proof. 𝐴 is nonsingular if and only if

𝑓 (𝑥
1
, . . . , 𝑥

𝑘
) +⟨𝑥

𝑛1

1
−

𝑛1

∏

𝑗1=1

𝑑
1𝑗1
,

𝑥
𝑛2

2
−

𝑛2

∏

𝑗2=1

𝑑
2𝑗2
, . . . , 𝑥

𝑛𝑘

𝑘
−

𝑛𝑘

∏

𝑗𝑘=1

𝑑
𝑘𝑗𝑘
⟩

(52)

is an invertible element in

F [𝑥
1
, . . . , 𝑥

𝑘
]

⟨𝑥
𝑛1

1
−∏
𝑛1

𝑗1=1
𝑑
1𝑗1
, 𝑥
𝑛2

2
−∏
𝑛2

𝑗2=1
𝑑
2𝑗2
, . . . , 𝑥

𝑛𝑘

𝑘
−∏
𝑛𝑘

𝑗𝑘=1
𝑑
𝑘𝑗𝑘
⟩

.

(53)

By Theorem 2, if and only if there exists ℎ(𝑥
1
, . . . , 𝑥

𝑘
) +

⟨𝑥
𝑛1

1
− ∏
𝑛1

𝑗1=1
𝑑
1𝑗1
, . . . , 𝑥

𝑛𝑘

𝑘
− ∏
𝑛𝑘

𝑗𝑘=1
𝑑
𝑘𝑗𝑘
⟩ ∈ F[𝑥

1
, . . . , 𝑥

𝑘
]/

⟨𝑥
𝑛1

1
−∏
𝑛1

𝑗1=1
𝑑
1𝑗1
, . . . , 𝑥

𝑛𝑘

𝑘
−∏
𝑛𝑘

𝑗𝑘=1
𝑑
𝑘𝑗𝑘
⟩ such that 𝑓(𝑥

1
, . . . , 𝑥

𝑘
)

ℎ(𝑥
1
, . . . , 𝑥

𝑘
) + ⟨𝑥

𝑛1

1
− ∏
𝑛1

𝑗1=1
𝑑
1𝑗1
, . . . , 𝑥

𝑛𝑘

𝑘
− ∏
𝑛𝑘

𝑗𝑘=1
𝑑
𝑘𝑗𝑘
⟩ ≡ 1 +

⟨𝑥
𝑛1

1
−∏
𝑛1

𝑗1=1
𝑑
1𝑗1
, . . . , 𝑥

𝑛𝑘

𝑘
−∏
𝑛𝑘

𝑗𝑘=1
𝑑
𝑘𝑗𝑘
⟩ if and only if there exist

ℎ, 𝑢
1
, . . . , 𝑢

𝑘
∈ F[𝑥

1
, . . . , 𝑥

𝑘
] such that

ℎ𝑓 + 𝑢
1
(𝑥
𝑛1

1
−

𝑛1

∏

𝑗1=1

𝑑
1𝑗1
) + 𝑢

2
(𝑥
𝑛2

2
−

𝑛2

∏

𝑗2=1

𝑑
2𝑗2
)

+ ⋅ ⋅ ⋅ + 𝑢
𝑘
(𝑥
𝑛𝑘

𝑘
−

𝑛𝑘

∏

𝑗𝑘=1

𝑑
𝑘𝑗𝑘
) = 1

(54)

if and only if

1 ∈ ⟨𝑓 (𝑥
1
, . . . , 𝑥

𝑘
) , 𝑥
𝑛1

1
−

𝑛1

∏

𝑗1=1

𝑑
1𝑗1
,

𝑥
𝑛2

2
−

𝑛2

∏

𝑗2=1

𝑑
2𝑗2
, . . . , 𝑥

𝑛𝑘

𝑘
−

𝑛𝑘

∏

𝑗𝑘=1

𝑑
𝑘𝑗𝑘
⟩.

(55)
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Let 𝐴 ∈ F[𝜎
1
, . . . , 𝜎

𝑘
] be an 𝑁 × 𝑁 level-𝑘 scaled

factor circulant matrix. ByTheorem 14, we have the following
algorithm which can find the inverse of the matrix 𝐴.

Step 10. Calculate the reduced Gröbner basis G for the ideal

⟨𝑓(𝑥
1
, . . . , 𝑥

𝑘
) , 𝑥
𝑛1

1
−

𝑛1

∏

𝑗1=1

𝑑
1𝑗1
,

𝑥
𝑛2

2
−

𝑛2

∏

𝑗2=1

𝑑
2𝑗2
, . . . , 𝑥

𝑛𝑘

𝑘
−

𝑛𝑘

∏

𝑗𝑘=1

𝑑
𝑘𝑗𝑘
⟩,

(56)

where the polynomial 𝑓(𝑥
1
, . . . , 𝑥

𝑘
) is the representer of 𝐴,

by CoCoA 4.0, using a given term order with 𝑥
1
> ⋅ ⋅ ⋅ > 𝑥

𝑘
.

If G ̸= {1}, then 𝐴 is singular. Stop. Otherwise, go to Step 11.

Step 11. Using Buchberger’s algorithm for computing
Gröbner bases, by keeping track of linear combinations that
give rise to the new polynomials in the generating set, we get
ℎ, 𝑢
1
, . . . , 𝑢

𝑘
∈ F[𝑥

1
, . . . , 𝑥

𝑘
] such that

ℎ𝑓 + 𝑢
1
(𝑥
𝑛1

1
−

𝑛1

∏

𝑗1=1

𝑑
1𝑗1
) + 𝑢

2
(𝑥
𝑛2

2
−

𝑛2

∏

𝑗2=1

𝑑
2𝑗2
)

+ ⋅ ⋅ ⋅ + 𝑢
𝑘
(𝑥
𝑛𝑘

𝑘
−

𝑛𝑘

∏

𝑗𝑘=1

𝑑
𝑘𝑗𝑘
) = 1.

(57)

Step 12. The variables 𝑥
1
, . . . , 𝑥

𝑘
in formula (57) are replaced

by 𝜎
1
, . . . , 𝜎

𝑘
, respectively. We have

𝐴
−1
= ℎ (𝜎

1
, . . . , 𝜎

𝑘
) . (58)

5. Inverse of Partitioned Matrix with Level-𝑘
Scaled Factor Circulant Matrix Blocks

Let 𝐴
1
, 𝐴
2
, 𝐴
3
, and 𝐴

4
be level-𝑘 scaled factor circulant

matrices with the representers 𝑓
1
, 𝑓
2
, 𝑓
3
, and 𝑓

4
, respectively.

If 𝐴
1
is nonsingular, let

Σ = (
𝐴
1
𝐴
2

𝐴
3
𝐴
4

) , Π
1
= (

𝐼 0

−𝐴
3
𝐴
−1

1
𝐼
) ,

Π
2
= (
𝐼 −𝐴

−1

1
𝐴
2

0 𝐼
) .

(59)

Then,

Π
1
ΣΠ
2
= (
𝐴
1

0

0 𝐴
4
− 𝐴
3
𝐴
−1

1
𝐴
2

) . (60)

So, Σ is nonsingular if and only if 𝐴
4
− 𝐴
3
𝐴
−1

1
𝐴
2
is

nonsingular. Since 𝐴
1
, 𝐴
2
, 𝐴
3
, and 𝐴

4
are all level-𝑘 scaled

factor circulant matrices, then 𝐴
𝑖
commutes with 𝐴

𝑗
if 𝑖 ̸= 𝑗.

Thus,

𝐴
1
(𝐴
4
− 𝐴
3
𝐴
−1

1
𝐴
2
) = 𝐴

1
𝐴
4
− 𝐴
2
𝐴
3
. (61)

From (61), we conclude that Σ is nonsingular if and only
if 𝐴
1
𝐴
4
− 𝐴
2
𝐴
3
is nonsingular. Since 𝑓

1
𝑓
4
− 𝑓
2
𝑓
3
is the

representer of 𝐴
1
𝐴
4
− 𝐴
2
𝐴
3
, then Σ is nonsingular if and

only if

1 ∈ ⟨𝑓
1
𝑓
4
− 𝑓
2
𝑓
3
, 𝑥
𝑛1

1
−

𝑛1

∏

𝑗1=1

𝑑
1𝑗1
,

𝑥
𝑛2

2
−

𝑛2

∏

𝑗2=1

𝑑
2𝑗2
, . . . , 𝑥

𝑛𝑘

𝑘
−

𝑛𝑘

∏

𝑗𝑘=1

𝑑
𝑘𝑗𝑘
⟩.

(62)

Furthermore, if Σ is nonsingular, by (60), we have

Σ
−1
= (

𝐼 −𝐴
−1

1
𝐴
2

0 𝐼
)(
𝐴
−1

1
0

0 (𝐴
4
− 𝐴
3
𝐴
−1

1
𝐴
2
)
−1)

× (
𝐼 0

−𝐴
3
𝐴
−1

1
𝐼
)

= (

𝐴
−1

1
+ Δ
−1

1
𝐴
2
𝐴
3
𝐴
−1

1
−Δ
−1

1
𝐴
2

−Δ
−1

1
𝐴
3

Δ
−1

1
𝐴
1

) ,

(63)

where Δ
1
= 𝐴
1
𝐴
4
− 𝐴
2
𝐴
3
.

We summarize our discussion as the following.

Theorem 15. Let

Σ = (
𝐴
1
𝐴
2

𝐴
3
𝐴
4

) , (64)

where𝐴
1
, 𝐴
2
, 𝐴
3
, and𝐴

4
are all level-𝑘 scaled factor circulant

matrices with the representers 𝑓
1
, 𝑓
2
, 𝑓
3
, and 𝑓

4
, respectively. If

𝐴
1
is nonsingular, then Σ is nonsingular if and only if

1 ∈ ⟨𝑓
1
𝑓
4
− 𝑓
2
𝑓
3
, 𝑥
𝑛1

1
−

𝑛1

∏

𝑗1=1

𝑑
1𝑗1
,

𝑥
𝑛2

2
−

𝑛2

∏

𝑗2=1

𝑑
2𝑗2
, . . . , 𝑥

𝑛𝑘

𝑘
−

𝑛𝑘

∏

𝑗𝑘=1

𝑑
𝑘𝑗𝑘
⟩.

(65)

Moreover, if Σ is nonsingular, then

Σ
−1
= (

𝐴
−1

1
+ Δ
−1

1
𝐴
2
𝐴
3
𝐴
−1

1
−Δ
−1

1
𝐴
2

−Δ
−1

1
𝐴
3

Δ
−1

1
𝐴
1

) , (66)

where Δ
1
= 𝐴
1
𝐴
4
− 𝐴
2
𝐴
3
.

Theorem 16. Let

Σ = (
𝐴
1
𝐴
2

𝐴
3
𝐴
4

) , (67)

where𝐴
1
, 𝐴
2
, 𝐴
3
, and𝐴

4
are all level-𝑘 scaled factor circulant

matrices with the representers 𝑓
1
, 𝑓
2
, 𝑓
3
, and 𝑓

4
, respectively. If

𝐴
4
is nonsingular, then Σ is nonsingular if and only if

1 ∈ ⟨𝑓
1
𝑓
4
− 𝑓
2
𝑓
3
, 𝑥
𝑛1

1
−

𝑛1

∏

𝑗1=1

𝑑
1𝑗1
,

𝑥
𝑛2

2
−

𝑛2

∏

𝑗2=1

𝑑
2𝑗2
, . . . , 𝑥

𝑛𝑘

𝑘
−

𝑛𝑘

∏

𝑗𝑘=1

𝑑
𝑘𝑗𝑘
⟩.

(68)
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In addition, if Σ is nonsingular, then

Σ
−1
= (
Δ
−1

1
𝐴
4

−Δ
−1

1
𝐴
2

−Δ
−1

1
𝐴
3
𝐴
−1

4
+ Δ
−1

1
𝐴
2
𝐴
3
𝐴
−1

4

) , (69)

where Δ
1
= 𝐴
1
𝐴
4
− 𝐴
2
𝐴
3
.

Proof. Since 𝐴
4
is nonsingular, then

(
𝐼 −𝐴

2
𝐴
−1

4

0 𝐼
)Σ(

𝐼 0

−𝐴
−1

4
𝐴
3
𝐼
)

= (
𝐴
1
− 𝐴
2
𝐴
−1

4
𝐴
3
0

0 𝐴
4

) .

(70)

So. Σ is nonsingular if and only if 𝐴
1
− 𝐴
2
𝐴
−1

4
𝐴
3
is

nonsingular. Since 𝐴
1
, 𝐴
2
, 𝐴
3
, and 𝐴

4
are all level-𝑘 scaled

factor circulant matrices, then 𝐴
𝑖
commutes with 𝐴

𝑗
if 𝑖 ̸= 𝑗.

Thus,

𝐴
4
(𝐴
1
− 𝐴
2
𝐴
−1

4
𝐴
3
) = 𝐴

1
𝐴
4
− 𝐴
2
𝐴
3
. (71)

By (71), we conclude that Σ is nonsingular if and only if
𝐴
1
𝐴
4
− 𝐴
2
𝐴
3
is nonsingular. Since 𝑓

1
𝑓
4
− 𝑓
2
𝑓
3
is the

representer of 𝐴
1
𝐴
4
− 𝐴
2
𝐴
3
, then Σ is nonsingular if and

only if

1 ∈ ⟨𝑓
1
𝑓
4
− 𝑓
2
𝑓
3
, 𝑥
𝑛1

1
−

𝑛1

∏

𝑗1=1

𝑑
1𝑗1
,

𝑥
𝑛2

2
−

𝑛2

∏

𝑗2=1

𝑑
2𝑗2
, . . . , 𝑥

𝑛𝑘

𝑘
−

𝑛𝑘

∏

𝑗𝑘=1

𝑑
𝑘𝑗𝑘
⟩.

(72)

If Σ is nonsingular, by (70), we have

Σ
−1
= (

𝐼 0

−𝐴
−1

4
𝐴
3
𝐼
)(
(𝐴
1
− 𝐴
2
𝐴
−1

4
𝐴
3
)
−1

0

0 𝐴
−1

4

)

× (
𝐼 −𝐴

2
𝐴
−1

4

0 𝐼
)

= (

Δ
−1

1
𝐴
4

−Δ
−1

1
𝐴
2

−Δ
−1

1
𝐴
3
𝐴
−1

4
+ Δ
−1

1
𝐴
2
𝐴
3
𝐴
4

) ,

(73)

where Δ
1
= 𝐴
1
𝐴
4
− 𝐴
2
𝐴
3
.

We have the following algorithm for determining the
nonsingularity and computing the inverse of Σ if it is
nonsingular.

Step 13. Calculate the bases G
1
,G
4
for the ideals

⟨𝑓
1
, 𝑥
𝑛1

1
−

𝑛1

∏

𝑗1=1

𝑑
1𝑗1
, 𝑥
𝑛2

2
−

𝑛2

∏

𝑗2=1

𝑑
2𝑗2
, . . . , 𝑥

𝑛𝑘

𝑘
−

𝑛𝑘

∏

𝑗𝑘=1

𝑑
𝑘𝑗𝑘
⟩,

⟨𝑓
4
, 𝑥
𝑛1

1
−

𝑛1

∏

𝑗1=1

𝑑
1𝑗1
, 𝑥
𝑛2

2
−

𝑛2

∏

𝑗2=1

𝑑
2𝑗2
, . . . , 𝑥

𝑛𝑘

𝑘
−

𝑛𝑘

∏

𝑗𝑘=1

𝑑
𝑘𝑗𝑘
⟩,

(74)

respectively. If G
1
̸= {1},G

4
̸= {1} Stop. Otherwise, go to

Step 14.

Step 14. If G
1
= {1}, find 𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑘
, ℎ
1
∈ F[𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘
]

such that

ℎ
1
𝑓
1
+ 𝑢
1
(𝑥
𝑛1

1
−

𝑛1

∏

𝑗1=1

𝑑
1𝑗1
) + 𝑢

2
(𝑥
𝑛2

2
−

𝑛2

∏

𝑗2=1

𝑑
2𝑗2
)

+ ⋅ ⋅ ⋅ + 𝑢
𝑘
(𝑥
𝑛𝑘

𝑘
−

𝑛𝑘

∏

𝑗𝑘=1

𝑑
𝑘𝑗𝑘
) = 1.

(75)

Then, ℎ
1
is the representer of 𝐴−1

1
, and go to Step 16.

Otherwise, go to Step 15.

Step 15. If G
4
= {1}, find 𝑢󸀠

1
, 𝑢
󸀠

2
, . . . , 𝑢

󸀠

𝑘
, ℎ
4
∈ F[𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘
]

such that

ℎ
4
𝑓
4
+ 𝑢
󸀠

1
(𝑥
𝑛1

1
−

𝑛1

∏

𝑗1=1

𝑑
1𝑗1
) + 𝑢

󸀠

2
(𝑥
𝑛2

2
−

𝑛2

∏

𝑗2=1

𝑑
2𝑗2
)

+ ⋅ ⋅ ⋅ + 𝑢
󸀠

𝑘
(𝑥
𝑛𝑘

𝑘
−

𝑛𝑘

∏

𝑗𝑘=1

𝑑
𝑘𝑗𝑘
) = 1.

(76)

Then, ℎ
4
is the representer of 𝐴−1

4
, and go to Step 16.

Step 16. Calculate the Gröbner bases G for the ideal

⟨𝑓
1
𝑓
4
− 𝑓
2
𝑓
3
, 𝑥
𝑛1

1
−

𝑛1

∏

𝑗1=1

𝑑
1𝑗1
,

𝑥
𝑛2

2
−

𝑛2

∏

𝑗2=1

𝑑
2𝑗2
, . . . , 𝑥

𝑛𝑘

𝑘
−

𝑛𝑘

∏

𝑗𝑘=1

𝑑
𝑘𝑗𝑘
⟩.

(77)

IfG ̸= {1}, then𝐴
1
𝐴
4
−𝐴
2
𝐴
3
is singular, Stop. Otherwise, go

to Step 17.

Step 17. Find V
1
, V
2
, . . . , V

𝑘
, ℎ ∈ F[𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘
] such that

ℎ (𝑓
1
𝑓
4
− 𝑓
2
𝑓
3
) + V
1
(𝑥
𝑛1

1
−

𝑛1

∏

𝑗1=1

𝑑
1𝑗1
) + V

2
(𝑥
𝑛2

2
−

𝑛2

∏

𝑗2=1

𝑑
2𝑗2
)

+ ⋅ ⋅ ⋅ + V
𝑘
(𝑥
𝑛𝑘

𝑘
−

𝑛𝑘

∏

𝑗𝑘

𝑑
𝑘𝑗𝑘
) = 1.

(78)

Then, ℎ is the representer of (𝐴
1
𝐴
4
− 𝐴
2
𝐴
3
)
−1. Thus, we

obtain that
if 𝐴
1
is nonsingular, then

Σ
−1
= (

𝜇
1

−ℎ (𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑘
) 𝐴
2

−ℎ (𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑘
) 𝐴
3
ℎ (𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑘
) 𝐴
1

) ,

(79)

where 𝜇
1
= ℎ
1
(𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑘
)[𝐼 + ℎ(𝜎

1
, 𝜎
2
, . . . , 𝜎

𝑘
) × 𝐴
2
𝐴
3
].
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If 𝐴
4
is nonsingular, then

Σ
−1
= (
ℎ (𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑘
) 𝐴
4
−ℎ (𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑘
) 𝐴
2

−ℎ (𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑘
) 𝐴
3

𝜇
2

) ,

(80)

where 𝜇
2
= ℎ
4
(𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑘
)[𝐼 + ℎ(𝜎

1
, 𝜎
2
, . . . , 𝜎

𝑘
) × 𝐴
2
𝐴
3
].

6. Conclusion

Algorithms for finding theminimal polynomial of the level-𝑘
scaled factor circulant matrices over any field are presented.
And two algorithms for finding the inverses of such matrices
are also presented. Finally, an algorithm for computing the
inverse of partitioned matrix with level-𝑘 scaled factor circu-
lant matrix blocks over any field is given. In the future, we
will investigate the application in solving various differential
equations based on multilevel circulant matrices.
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