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We investigate a class of abstract functional stochastic evolution equations driven by a fractional Brownianmotion in a real separable
Hilbert space. Global existence results concerningmild solutions are formulated under various growth and compactness conditions.
Continuous dependence estimates and convergence results are also established. Analysis of three stochastic partial differential
equations, including a second-order stochastic evolution equation arising in the modeling of wave phenomena and a nonlinear
diffusion equation, is provided to illustrate the applicability of the general theory.

1. Introduction

The purpose of this paper is to study the global existence and
convergence properties of mild solutions to a class of abstract
functional stochastic evolution equations of the general form

𝑑𝑥 (𝑡) = (𝐴𝑥 (𝑡) +F (𝑥) (𝑡)) 𝑑𝑡 + 𝑔 (𝑡) 𝑑𝛽
𝐻
(𝑡) ,

0 ≤ 𝑡 ≤ 𝑇,

𝑥 (0) = 𝑥
0
,

(1)

in a real separableHilbert space𝑈. Here,𝐴 : 𝐷(𝐴) ⊂ 𝑈 → 𝑈

is a linear (possibly unbounded) operator which generates
a strongly continuous semigroup {𝑆(𝑡) : 𝑡 ≥ 0} on U;
F : C ( [0, 𝑇];L2

(Ω;𝑈)) → L2
((0, 𝑇);L2

(Ω;𝑈)) is a
given mapping; 𝑔 : [0, 𝑇] → (𝑉;𝑈) is a bounded, strongly
measurable mapping (where 𝑉 is a real separable Hilbert
space and L(𝑉; 𝑈) denotes the space of Hilbert-Schmidt
operators from 𝑉 into 𝑈 with norm ‖ ⋅ ‖L(𝑉;𝑈) equipped with
the strong topology); {𝛽𝐻(𝑡) : 𝑡 ≥ 0} is a U-valued fBm with
Hurst parameter𝐻 ∈ (1/2, 1); and 𝑥

0
∈ L2

0
(Ω;𝑈).

Stochastic partial functional differential equations natu-
rally arise in the mathematical modeling of phenomena in
the natural sciences (see [1–6]). It has been shown that some

applications, such as communication networks and certain
financial models, exhibit a self-similarity property in the
sense that the processes {𝑥(𝛼𝑡) : 0 ≤ 𝑡 ≤ 𝑇} and {𝛼𝐻𝑥(𝑡) :
0 ≤ 𝑡 ≤ 𝑇} have the same law (see [4, 7]). Concrete data
from a variety of applications have exhibited behavior that
differs from standard Brownian motion (𝐻 = 1/2), and it
seems that these differences enter in a nonnegligible way in
the modeling of this phenomena. In fact, since 𝛽𝐻(𝑡) is not
a semimartingale unless 𝐻 = 1/2, the standard stochastic
calculus involving the Itó integral cannot be used in the
analysis of related stochastic evolution equations. There have
been several papers devoted to the formulation of stochastic
calculus for fBm [8–11] and differential/evolution equations
driven by fBm [12–14] published in the past decade. We pro-
vide an outline of only the necessary concomitant technical
details concerning the construction of the stochastic integral
driven by an fBm and some of its properties in Section 2.

The present work may be regarded as a direct attempt to
extend results developed in [1, 12, 15–18] to a broader class
of functional stochastic equations. The equations considered
in the aforementioned papers can be viewed as special cases
of (1) by appropriately defining the functionalF, the correct
space U, and the appropriate value of 𝐻. In particular,
the existence and convergence results we present constitute
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generalizations of the theory governing standard models
arising in the mathematical modeling of nonlinear diffusion
processes [1, 15, 18–22] and communication networks [4].

The outline of the paper is as follows. We collect some
preliminary information about certain function spaces, linear
semigroups, probability measures, the definition of fBm, and
the stochastic integral driven by a fBmin Section 2. The
main existence results in the Lipschitz and compactness cases
are discussed in Section 3, while convergence results are
developed in Section 4. An extension of an existence result
of the case of second-order stochastic evolution equations is
discussed in Section 5.The paper concludes with a discussion
of three different stochastic partial differential equations in
Section 6 as an illustration of the abstract theory.

2. Preliminaries

For further background of this section, we refer the reader to
[6, 8, 9, 12, 23–28] and the references therein.Throughout this
paper,U is a real separable Hilbert space with norm ‖ ⋅ ‖

𝑈
and

inner product ⟨⋅, ⋅⟩
𝑈
equipped with a complete orthonormal

basis {𝑒
𝑗
| 𝑗 = 1, 2, . . .}, and (Ω,G, 𝑃) is a complete probability

space.We suppress the dependence of all randomvariables on
𝜔 ∈ Ω throughout the manuscript and write 𝑥(𝑡) instead of
𝑥(𝑡; 𝜔).

Wemake use of several different function spaces through-
out this paper. The space of all bounded linear operators on
𝑈 is denoted by BL(𝑈), whileL2

(Ω;𝑈) stands for the space
of all U-valued random variables 𝑦 for which 𝐸‖𝑦‖2

𝑈
< ∞,

where the expectation, E, is defined by 𝐸(𝑔) = ∫
Ω
𝑔(𝜔)𝑑𝑃. An

important subspace is given by

L
2

0
(Ω; 𝑈)

{𝑓 ∈ L
2
(Ω;𝑈) : 𝑓 is (G

0
,B (𝑈)) -measurable} ,

(2)

where {G
𝑡
: 0 ≤ 𝑡 ≤ 𝑇} is the family of 𝜎-algebras G

𝑡

generated by {𝛽𝐻(𝑠) : 0 ≤ 𝑠 ≤ 𝑡} and B(𝑈) is the Borel
class on 𝑈. The space of L2-continuous U-valued random
variables 𝑦 : [0, 𝑇] → 𝑈 such that

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
2

C
≡
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
2

C([0,𝑇];L2(Ω;𝑈))
= sup

0≤𝑡≤𝑇

𝐸
󵄩󵄩󵄩󵄩𝑦 (𝑡)

󵄩󵄩󵄩󵄩
2

𝑈
< ∞ (3)

is denoted by C([0, 𝑇];L2
(Ω;𝑈)).

The following alternative of the Leray-Schauder principle
[29] plays a role in Section 3.

Theorem 1. Let X be a Banach space, and let Φ : 𝑋 → 𝑋 be
a completely continuous map. Then, eitherΦ has a fixed point,
or the set 𝜉(Φ) = {𝑥 ∈ 𝑋 : 𝜆𝑥 = Φ𝑥, for some 𝜆 ≥ 1} is
unbounded.

The probability measure 𝑃 induced by a U-valued ran-
dom variable 𝑋 : Ω → 𝑈, denoted by 𝑃

𝑋
, is defined by

𝑃 ∘ 𝑋
−1

: B(𝑈) → [0, 1]. A sequence {𝑃
𝑛
} ⊂ ℘(𝑈) is

said to be weakly convergent to 𝑃 if ∫
Ω
𝑓𝑑𝑃

𝑛
→ ∫

Ω
𝑓𝑑𝑃, for

every bounded, continuous function 𝑓 : 𝑈 → R; in such
case, we write 𝑃

𝑛

𝑤

󳨀→ 𝑃. A family {𝑃
𝑛
} is tight if for each

𝜀 > 0, there exists a compact set 𝐾
𝜀
such that 𝑃

𝑛
(𝐾

𝜀
) ≥

1 − 𝜀, for all 𝑛. Kunita [27] established the equivalence of
tightness and relative compactness of a family of probability
measures. Consequently, the Arzelá-Ascoli theorem can be
used to establish tightness.

Definition 2. Let 𝑃 ∈ ℘(𝑈) and 0 ≤ 𝑡
1

< 𝑡
2

<

⋅ ⋅ ⋅ < 𝑡
𝑘
≤ 𝑇. Define 𝜋

𝑡
1
,...,𝑡
𝑘

: C ([0, 𝑇];L2
(Ω;𝑈)) →

𝑈
𝑘 by 𝜋

𝑡
1
,...,𝑡
𝑘

(𝑋) = (𝑋(𝑡
1
), . . . , 𝑋(𝑡

𝑘
)). The probability

measures induced by 𝜋
𝑡
1
,...,𝑡
𝑘

are the finite dimensional joint
distributions of 𝑃.

Proposition 3. If a sequence {𝑋
𝑛
: Ω → 𝑈} of U-valued

random variables converges weakly to a U-valued random
variable 𝑋 : Ω → 𝑈 in the mean-square sense, then the
sequence of finite dimensional joint distributions corresponding
to {𝑃

𝑋
𝑛

} converges weakly to the finite dimensional joint
distribution of 𝑃

𝑋
.

The next theorem, in conjunction with Proposition 3, is
the main tool used to prove one of the convergence results in
this paper.

Theorem 4. Let {𝑃
𝑛
} ⊂ ℘(𝑈). If the sequence of finite

dimensional joint distributions corresponding to {𝑃
𝑛
} converges

weakly to the finite dimensional joint distribution of𝑃 and {𝑃
𝑛
}

is relatively compact, then 𝑃
𝑛

𝑤

󳨀→ 𝑃.

We next make precise the definition of a U-valued
fBm and related stochastic integral used in this paper. The
approach we use coincides with the one formulated and
analyzed in [12, 30]. Let {𝛽𝐻

𝑗
(𝑡) | 𝑡 ≥ 0}

∞

𝑗=1
be a sequence of

independent, one-dimensional fBms with Hurst parameter
𝐻 ∈ (1/2, 1) such that, for all 𝑗 = 1, 2, . . .,

(i) 𝛽𝐻
𝑗
(0) = 0,

(ii) 𝐸[𝛽𝐻
𝑗
(𝑡) − 𝛽

𝐻

𝑗
(𝑠)]

2

= |𝑡 − 𝑠|
2𝐻]

𝑗
,

(iii) 𝐸[𝛽𝐻
𝑗
(1)]

2

= ]
𝑗
> 0,

(iv) ∑∞

𝑗=1
]
𝑗
< ∞.

In such case, ∑∞

𝑗=1
𝐸‖𝛽

𝐻

𝑗
(𝑡)𝑒

𝑗
‖
2

𝑈
= 𝑡

2𝐻
∑
∞

𝑗=1
]
𝑗
< ∞, so that

the following definition is meaningful.

Definition 5. For every 𝑡 ≥ 0, 𝛽𝐻(𝑡) = ∑
∞

𝑗=1
𝛽
𝐻

𝑗
(𝑡)𝑒

𝑗
is a U-

valued fBm, where the convergence is understood to be in the
mean-square sense.

It has been shown in [12, 30] that the covariance operator
of {𝛽𝐻(𝑡) : 𝑡 ≥ 0} is a positive nuclear operator 𝑄 such that

tr𝑄 (𝑡, 𝑠) =
1

2

∞

∑

𝑗=1

]
𝑗
[𝑡
2𝐻

+ 𝑠
2𝐻

− |𝑡 − 𝑠|
2𝐻
] . (4)

Next, we outline the discussion leading to the definition of
the stochastic integral associated with {𝛽

𝐻
(𝑡) : 𝑡 ≥ 0}
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for bounded, strongly measurable functions 𝑔 : [0, 𝑇] →

L(𝑉; 𝑈). To begin, assume that such a function 𝑔 is simple,
meaning that there exists {𝑔

𝑖
: 𝑖 = 1, . . . , 𝑛} ⊆ L(𝑉; 𝑈) such

that

𝑔 (𝑡) = 𝑔
𝑖
, ∀𝑡

𝑖−1
≤ 𝑡 < 𝑡

𝑖
, (5)

where 0 = 𝑡
0

< 𝑡
1

< ⋅ ⋅ ⋅ < 𝑡
𝑛−1

< 𝑡
𝑛

= 𝑇 and
max

1≤𝑖≤𝑛
‖𝑔

𝑖
‖L(𝑉;𝑈) = 𝐾.

Definition 6. TheU-valued stochastic integral ∫𝑇
0
𝑔(𝑡)𝑑𝛽

𝐻
(𝑡)

is defined by

∫

𝑇

0

𝑔 (𝑡) 𝑑𝛽
𝐻
(𝑡) =

∞

∑

𝑗=1

(∫

𝑇

0

𝑔 (𝑡) 𝑑𝛽
𝐻

𝑗
(𝑡)) 𝑒𝑗

=

∞

∑

𝑗=1

(

𝑛

∑

𝑖=1

𝑔
𝑖
[𝛽

𝐻

𝑗
(𝑡
𝑖
) − 𝛽

𝐻

𝑗
(𝑡
𝑖−1
)]) 𝑒

𝑗
.

(6)

As argued in Lemma 2.2 of [30], this integral is well defined
since

𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑇

0

𝑔 (𝑡) 𝑑𝛽
𝐻
(𝑡)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑈

≤ 𝐾
2
𝑇
2𝐻

∞

∑

𝑗=1

]
𝑗
< ∞. (7)

Since the set of simple functions is dense in the space of
bounded, strongly measurable L(𝑉; 𝑈)-valued functions, a
standard density argument can be used to extendDefinition 6
to the case of a general bounded, strongly measurable
integrand.

3. Existence Results

We consider mild solutions of (1) in the following sense.

Definition 7. A stochastic process 𝑥 ∈ C ([0, 𝑇];L2
(Ω;𝑈)) is

a mild solution of (1) if

𝑥 (𝑡) = 𝑆 (𝑡) 𝑥0 + ∫

𝑡

0

𝑆 (𝑡 − 𝑠)F (𝑥) (𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝑔 (𝑠) 𝑑𝛽
𝐻
(𝑠) ,

∀0 ≤ 𝑡 ≤ 𝑇, a.s. [𝑃] .

(8)

For our first result, we impose the following conditions on (1):

(H1) 𝐴 : 𝐷(𝐴) ⊂ 𝑈 → 𝑈 is the infinitesimal generator of
a strongly continuous semigroup {𝑆(𝑡) : 𝑡 ≥ 0} on 𝑈
such that ‖𝑆(𝑡)‖BL(𝑈) ≤ 𝑀 exp(𝛼𝑡), for all 0 ≤ 𝑡 ≤ 𝑇,
for some𝑀 ≥ 1 and 𝛼 > 0;

(H2) F : C ([0, 𝑇];L2
(Ω;𝑈)) → L2

((0, 𝑇);L2
(Ω;𝑈))

is such that there exists a positive constant 𝑀F for
which
󵄩󵄩󵄩󵄩F (𝑥) −F(𝑦)

󵄩󵄩󵄩󵄩L2 ≤ 𝑀F
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩C,

for all 𝑥, 𝑦 ∈ C ([0, 𝑇] ;L
2
(Ω;𝑈)) ;

(9)

(H3) 𝑔 : [0, 𝑇] → L(𝑉; 𝑈) is a bounded, strongly
measurable mapping;

(H4) {𝛽𝐻(𝑡) : 𝑡 ≥ 0} is a U-valued fBm;

(H5) 𝑥
0
∈ L2

0
(Ω;𝑈).

(Henceforth, we write 𝑀
𝑆
= max

0≤𝑡≤𝑇
‖𝑆(𝑡)‖BL(𝑈), which

can be shown to be finite by using (H1) and the Uniform
Boundedness Principle.)

The following technical properties involving the stochas-
tic integral ∫𝑡

0
𝑆(𝑡 − 𝑠)𝑔(𝑠)𝑑𝛽

𝐻
(𝑠), under assumptions (H1),

(H3), and (H4), are used in the proofs of the main results in
this paper.

Lemma 8. Assume (H1), (H3), and (H4). Then, for all 0 ≤ 𝑡 ≤

𝑇,

(i) 𝐸‖ ∫𝑡
0
𝑆(𝑡 − 𝑠)𝑔(𝑠)𝑑𝛽

𝐻
(𝑠)‖

2

𝑈
≤ 𝐶

𝑡
∑
∞

𝑗=1
]
𝑗
,

(ii) lim
ℎ→0

𝐸‖ ∫
𝑡+ℎ

0
[𝑆(𝑡 + ℎ − 𝑠) − 𝑆(𝑡 − 𝑠)]𝑔(𝑠)𝑑𝛽

𝐻
(𝑠)‖

2

𝑈= 0.

Here, 𝐶
𝑡
is a positive constant depending on 𝑡, {𝑆(𝑡) : 0 ≤

𝑡 ≤ 𝑇}, and K (cf. (5)), and {]
𝑗
: 𝑗 ∈ N} is defined as in the

discussion leading to Definition 5.

Proof. Property (i) can be established as in Lemma 6 in [12].
To verify property (ii), let 0 ≤ 𝑡 ≤ 𝑇 and observe that

𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

[𝑆 (𝑡 + ℎ − 𝑠) − 𝑆 (𝑡 − 𝑠)] 𝑔 (𝑠) 𝑑𝛽
𝐻
(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑈

= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑

𝑗=1

∫

𝑡

0

[𝑆 (𝑡 + ℎ − 𝑠) − 𝑆 (𝑡 − 𝑠)] 𝑔 (𝑠) 𝑒𝑗𝑑𝛽
𝐻

𝑗
(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑈

≤ 2𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑚

∑

𝑗=1

∫

𝑡

0

[𝑆 (𝑡 + ℎ − 𝑠) − 𝑆 (𝑡 − 𝑠)] 𝑔 (𝑠) 𝑒𝑗𝑑𝛽
𝐻

𝑗
(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑈

+ 2𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑

𝑗=𝑚+1

∫

𝑡

0

[𝑆 (𝑡 + ℎ − 𝑠) − 𝑆 (𝑡 − 𝑠)] 𝑔 (𝑠) 𝑒𝑗𝑑𝛽
𝐻

𝑗
(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑈

.

(10)

The strong continuity of 𝑆(⋅), together with (H3), guarantees
that the first term on the right side of (10) goes to zero as ℎ →

0. To argue the second term goes to zero, we first assume that
𝑔 is a simple function as defined in (5). Arguing as in [12]
yields the estimate

𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

[𝑆 (𝑡 + ℎ − 𝑠) − 𝑆 (𝑡 − 𝑠)] 𝑔(𝑠)𝑒𝑗𝑑𝛽
𝐻

𝑗
(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑈

≤ 𝐶
𝑡
𝑡
2ℎ]

𝑗
,

(11)
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where 𝐶
𝑡
is defined as in part (i) of this lemma. Using (11) in

the second term on the right side of (10) yields

𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑

𝑗=𝑚+1

∫

𝑡

0

[𝑆 (𝑡 + ℎ − 𝑠) − 𝑆 (𝑡 − 𝑠)] 𝑔 (𝑠) 𝑒𝑗𝑑𝛽
𝐻

𝑗
(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑈

≤

∞

∑

𝑗=𝑚+1

𝐶
𝑡
𝑡
2ℎ]

𝑗
.

(12)

The convergence of∑∞

𝑗=1
]
𝑗
ensures that the right side of (12)

goes to zero as 𝑚 → ∞. As such, property (ii) holds for a
simple function 𝑔. It is not difficult to extend the argument
to general bounded, strongly measurable functions 𝑔. This
completes the proof.

Consider the solution map Φ : C ([0, 𝑇];L2
(Ω;𝑈)) →

C ([0, 𝑇];L2
(Ω;𝑈)) defined by

Φ (𝑥) (𝑡) = 𝑆 (𝑡) 𝑥0 + ∫

𝑡

0

𝑆 (𝑡 − 𝑠)F (𝑥) (𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝑔 (𝑠) 𝑑𝛽
𝐻
(𝑠) , 0 ≤ 𝑡 ≤ 𝑇.

(13)

The first integral on the right side of (13) is taken in the
Bochner sense, while the second is defined in Section 2. The
operatorΦ satisfies the following properties.

Lemma 9. Assume that (H1)–(H5) hold. Then, Φ is a well-
defined, continuous map.

Proof. Using the discussion in Section 2 and the properties
of 𝑥, one can see that for any 𝑥 ∈ C ([0, 𝑇];L2

(Ω; 𝑈)),
Φ(𝑥)(𝑡) is a well-defined stochastic process, for each 0 ≤

𝑡 ≤ 𝑇. In order to verify the continuity of Φ on [0, 𝑇], let
𝑧 ∈ C ([0, 𝑇];L2

(Ω;𝑈)) and consider 0 ≤ 𝑡
∗
≤ 𝑇 and |ℎ|

sufficiently small. Observe that

𝐸
󵄩󵄩󵄩󵄩Φ (𝑧) (𝑡

∗
+ ℎ) − Φ (𝑧) (𝑡

∗
)
󵄩󵄩󵄩󵄩
2

𝑈

≤ 3[𝐸
󵄩󵄩󵄩󵄩[𝑆 (𝑡

∗
+ ℎ − 𝑠) − 𝑆 (𝑡

∗
− 𝑠)] 𝑥

0

󵄩󵄩󵄩󵄩
2

𝑈

+ 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡
∗
+ℎ

0

𝑆 (𝑡
∗
+ ℎ − 𝑠)F (𝑧) (𝑠) 𝑑𝑠

− ∫

𝑡
∗

0

𝑆 (𝑡
∗
− 𝑠)F (𝑧) (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑈

+ 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡
∗
+ℎ

0

𝑆 (𝑡
∗
+ ℎ − 𝑠) 𝑔 (𝑠) 𝑑𝛽

𝐻
(𝑠)

− ∫

𝑡
∗

0

𝑆 (𝑡
∗
− 𝑠) 𝑔 (𝑠) 𝑑𝛽

𝐻
(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑈

]

= 3

3

∑

𝑖=1

󵄩󵄩󵄩󵄩𝐼𝑖 (𝑡
∗
+ ℎ) − 𝐼

𝑖
(𝑡
∗
)
󵄩󵄩󵄩󵄩 .

(14)

The semigroup property enables us to write
󵄩󵄩󵄩󵄩𝐼1 (𝑡

∗
+ ℎ) − 𝐼

1
(𝑡
∗
)
󵄩󵄩󵄩󵄩 = 𝐸

󵄩󵄩󵄩󵄩((𝑆(𝑡
∗
+ ℎ) − 𝑆 (𝑡

∗
)) 𝑥

0
)
󵄩󵄩󵄩󵄩
2

𝑈

= 𝐸
󵄩󵄩󵄩󵄩(𝑆(ℎ) (𝑆 (𝑡

∗
) 𝑥

0
) − 𝑆 (𝑡

∗
) 𝑥

0
)
󵄩󵄩󵄩󵄩
2

𝑈
.

(15)

So, the strong continuity of 𝑆(⋅) implies that the right side of
(15) goes to 0 as | ℎ | → 0. Next, using the Hölder inequality
with (H2) yields

𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡
∗
+ℎ

𝑡
∗

𝑆 (𝑡
∗
+ ℎ − 𝑠)F (𝑧) (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑈

≤ 2𝑀
2

F𝑀
2

𝑆
ℎ
2
[1 + ‖𝑧‖

2

C + ‖F (0)‖
2

C]

(16)

which clearly goes to 0 as | ℎ | → 0. Also, the strong
continuity of 𝑆(⋅)with (H2) enables us to conclude, with the
help of the dominated convergence theorem, that

𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡
∗

0

[𝑆 (𝑡
∗
+ ℎ − 𝑠) − 𝑆 (𝑡

∗
− 𝑠)]F (𝑧) (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑈

󳨀→ 0 (17)

as | ℎ | → 0. Consequently, since ‖𝐼
2
(𝑡
∗
+ ℎ) − 𝐼

2
(𝑡
∗
)‖ is

dominated by the expressions in (16) and (17), both of which
go to 0 as |ℎ| → 0, it follows that ‖𝐼

2
(𝑡
∗
+ ℎ) − 𝐼

2
(𝑡
∗
)‖ → 0

as |ℎ| → 0.
It remains to show that ‖𝐼

3
(𝑡
∗
+ℎ)−𝐼

3
(𝑡
∗
)‖ → 0 as | ℎ | →

0. Observe that
󵄩󵄩󵄩󵄩𝐼3 (𝑡

∗
+ ℎ) − 𝐼

3
(𝑡
∗
)
󵄩󵄩󵄩󵄩

= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡
∗
+ℎ

0

𝑆 (𝑡
∗
+ ℎ − 𝑠) 𝑔 (𝑠) 𝑑𝛽

𝐻
(𝑠)

− ∫

𝑡
∗

0

𝑆 (𝑡
∗
− 𝑠) 𝑔 (𝑠) 𝑑𝛽

𝐻
(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑈

= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡
∗
+ℎ

𝑡
∗

𝑆 (𝑡
∗
+ ℎ − 𝑠) 𝑔 (𝑠) 𝑑𝛽

𝐻
(𝑠)

+ ∫

𝑡
∗

0

[𝑆 (𝑡
∗
+ ℎ − 𝑠) − 𝑆 (𝑡

∗
− 𝑠)] 𝑔 (𝑠) 𝑑𝛽

𝐻
(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑈

≤ 2𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑

𝑗=1

∫

𝑡
∗
+ℎ

𝑡
∗

𝑆 (𝑡
∗
+ ℎ − 𝑠) 𝑔 (𝑠) 𝑒𝑗𝑑𝛽

𝐻

𝑗
(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑈

+ 2𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡
∗

0

[𝑆 (𝑡
∗
+ ℎ − 𝑠) − 𝑆 (𝑡

∗
− 𝑠)] 𝑔 (𝑠) 𝑑𝛽

𝐻
(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑈

(18)

and that

𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑

𝑗=1

∫

𝑡
∗
+ℎ

𝑡
∗

𝑆 (𝑡
∗
+ ℎ − 𝑠) 𝑔 (𝑠) 𝑒𝑗𝑑𝛽

𝐻

𝑗
(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑈

= 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑

𝑗=1

∫

ℎ

0

𝑆 (𝑢) 𝑔 (𝑡
∗
+ ℎ − 𝑢) 𝑒

𝑗
𝑑𝛽

𝐻

𝑗
(𝑡
∗
+ ℎ − 𝑢)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑈

.

(19)
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Using the property 𝐸(𝛽𝐻
𝑗
(𝑠) − 𝛽

𝐻

𝑗
(𝑡))

2

= |𝑡 − 𝑠|
2𝐻]

𝑗
with 𝑠 =

𝑡
∗
+ ℎ and 𝑡 = 𝑡

∗ enables us to conclude that the right side
of (19) goes to 0 as |ℎ| → 0. The second term on the right
side of (18) goes to 0 as |ℎ| → 0 by Lemma 8(ii). Thus,
‖𝐼
3
(𝑡
∗
+ ℎ) − 𝐼

3
(𝑡
∗
)‖ → 0 as | ℎ | → 0 when 𝑔 is a simple

function. Since the set of all such simple functions is dense in
L(𝑉; 𝑈), a standard density argument can be used to extend
this conclusion to a general bounded, measurable function 𝑔.
This establishes the continuity ofΦ.

Finally, we assert that Φ(C ([0, 𝑇];L2
(Ω;𝑈))) ⊂

C ([0, 𝑇];L2
(Ω;𝑈)). Successive applications of Hölder’s

inequality yields

[𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

𝑆 (𝑡 − 𝑠)F (𝑧) (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑈

]

1/2

≤ 𝑇
1/2
𝑀

𝑆
[∫

𝑇

0

‖F (𝑧) (𝑠)‖
2

L2(Ω;𝑈)𝑑𝑠]

1/2

≤ 𝑇
1/2
𝑀

𝑆‖F (𝑧)‖L2 .

(20)

Subsequently, an application of (H2), together with
Minkowski’s inequality, enables us to continue the string of
inequalities in (20) to conclude that

[𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

𝑆 (𝑡 − 𝑠)F (𝑧) (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑈

]

1/2

≤ 𝑇
1/2
𝑀

𝑆
[𝑀F‖𝑧‖C + ‖F (0)‖L2] .

(21)

Taking the supremum over [0, 𝑇] in (21) then implies that
∫
𝑡

0
𝑆(𝑡 − 𝑠)F(𝑧)(𝑠)𝑑𝑠 ∈ C ([0, 𝑇];L2

(Ω; 𝑈)), for any 𝑧 ∈

C ([0, 𝑇];L2
(Ω;𝑈)). The other estimates can be established

as above, and when used in conjunction with Lemma 8, one
can readily verify that sup

0≤𝑡≤𝑇
𝐸‖Φ(𝑧)(𝑡)‖

2

𝑈
< ∞, for any

𝑧 ∈ C ([0, 𝑇]; 𝑈). Thus, we conclude that Φ is well defined,
and the proof of Lemma 9 is complete.

Our first existence result is as follows.

Theorem 10. Assume that (H1)–(H5) hold. Then, (1) has a
unique mild solution on [0, 𝑇].

Proof. We know that Φ is well defined and continuous from
Lemma 9. Let 𝛿 = 1/(𝑀

2

𝑆
𝑀

2

F + 1). We prove that Φ has
a unique fixed point in C ([0, 𝛿];L2

(Ω;𝑈)). To this end, let
𝑥, 𝑦 ∈ C ([0, 𝛿];L2

(Ω;𝑈)). Observe that (13) implies that

(Φ𝑥) (𝑡) − (Φ𝑦) (𝑡) = ∫

𝑡

0

𝑆 (𝑡 − 𝑠) [F (𝑥) (𝑠) −F (𝑦) (𝑠)] 𝑑𝑠.

(22)

Squaring both sides and taking the expectation in (22) yields,
with the help of Young’s inequality,

𝐸
󵄩󵄩󵄩󵄩(Φ𝑥) (𝑡) − (Φ𝑦) (𝑡)

󵄩󵄩󵄩󵄩
2

𝑈

≤ 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

𝑆 (𝑡 − 𝑠) [F (𝑥) (𝑠) −F (𝑦) (𝑠)] 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑈

.

(23)

Taking the supremum over [0, 𝛿] in (23) and applying
reasoning similar to that which led to (16) yield

󵄩󵄩󵄩󵄩Φ𝑥 − Φ𝑦
󵄩󵄩󵄩󵄩C ([0,𝛿];L2(Ω;𝑈))

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

𝑆 (𝑡 − 𝑠) [F (𝑥) (𝑠) −F (𝑦) (𝑠)] 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩C ([0,𝛿];L2(Ω;𝑈))

≤ 𝑀
𝑆
𝑀F 𝛿

1/2󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩C ([0,𝛿];L2(Ω;𝑈))

<
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩C ([0,𝛿];L2(Ω;𝑈))
,

(24)

where the last inequality in (24) follows from the choice of
𝛿. Hence, Φ is a strict contraction on [0, 𝛿] and so has a
unique fixed point which coincides with amild solution of (1)
on [0, 𝛿]. Performing this same argument on [𝛿, 2𝛿], [2𝛿, 3𝛿],
and so on enables us to construct in finitely many steps
a unique piecewise-defined function in C ([0, 𝑇];L2

(Ω;𝑈))

which is a unique mild solution of (1) on the original interval
[0, 𝑇]. This completes the proof.

Next, we consider the following initial-value problem:

𝑑𝑥 (𝑡)

= (𝐴𝑥 (𝑡) + ∫

𝑡

0

𝐵 (𝑡, 𝑠) 𝑓1 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 + 𝑓2 (𝑡, 𝑥 (𝑡))) 𝑑𝑡

+ 𝑔 (𝑡) 𝑑𝛽
𝐻
(𝑡) , 0 ≤ 𝑡 ≤ 𝑇,

𝑥 (0) = 𝑥
0
,

(25)

where {𝐵(𝑡, 𝑠) : 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝑇} ⊂ BL(𝑈) and𝑓
𝑖
: [0, 𝑇]×𝑈 →

𝑈 (𝑖 = 1, 2) satisfy the following conditions:

(H6) {𝐵(𝑡, 𝑠) : 𝑈 → 𝑈 | 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝑇} is a collection
of bounded linear operators for which there exists a
positive constant𝑀

𝐵
such that

‖𝐵(𝑡, 𝑠)‖BL(𝑈) ≤ 𝑀
𝐵
, ∀0 ≤ 𝑡 ≤ 𝑠 ≤ 𝑇. (26)

(H7) 𝑓
𝑖
: [0, 𝑇] ×𝑈 → 𝑈 (𝑖 = 1, 2) is such that there exists

a positive constant𝑀
𝑓
𝑖

for which

󵄩󵄩󵄩󵄩𝑓𝑖 (𝑡, 𝑥) − 𝑓𝑖 (𝑡, 𝑦)
󵄩󵄩󵄩󵄩𝑈 ≤ 𝑀

𝑓
𝑖

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩𝑈,

∀𝑡 ∈ [0, 𝑇] , 𝑥, 𝑦 ∈ 𝑈.

(27)

Corollary 11. If (H1), (H4), (H5), (H6a), and (H6) hold, then
(22) has a unique mild solution on [0, 𝑇].

Proof. Define F : C([0, 𝑇];L2
(Ω;𝑈)) → L2

((0, 𝑇);
L2

(Ω;𝑈)) by

F (𝑥) (𝑡) = ∫

𝑡

0

𝐵 (𝑡, 𝑠) 𝑓1 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 + 𝑓2 (𝑡, 𝑥 (𝑡)) ,

0 ≤ 𝑡 ≤ 𝑇.

(28)
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Standard computations involving properties of expectation
andHölder’s inequality imply, with the help of (H6) and (H7),
that, for all 𝑥, 𝑦 ∈ C ([0, 𝑇];L2

(Ω;𝑈)),

󵄩󵄩󵄩󵄩F (𝑥) −F (𝑦)
󵄩󵄩󵄩󵄩
2

L2

≤ 2∫

𝑇

0

[𝑇𝑀
2

𝐵
∫

𝑆

0

𝐸
󵄩󵄩󵄩󵄩𝑓1 (𝜏, 𝑥 (𝜏)) − 𝑓1 (𝜏, 𝑦 (𝜏))

󵄩󵄩󵄩󵄩
2

𝑈
𝑑𝜏

+ 𝐸
󵄩󵄩󵄩󵄩𝑓2 (𝑠, 𝑥 (𝑠)) − 𝑓2 (𝑠, 𝑦 (𝑠))

󵄩󵄩󵄩󵄩
2

𝑈
] 𝑑𝑠

≤ 2𝑇 [𝑇𝑀
2

𝐵
𝑀

2

𝑓
1

+𝑀
2

𝑓
2

]
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩C.

(29)

Thus, if we let 𝑀F = 2𝑇[𝑇𝑀
2

𝐵
𝑀

2

𝑓
1

+ 𝑀
2

𝑓
2

] in (H2), we
can conclude from Theorem 10 that (25) has a unique mild
solution on [0, 𝑇].

We now develop existence results for (1) in which the
Lipschitz condition on F is replaced by the combination of
continuity and a sublinear growth condition. This is done at
the expense of a compactness restriction on the semigroup.
Precisely, we use the following assumptions instead:

(H8) 𝐴 generates a compact𝐶
0
-semigroup {𝑆(𝑡) : 𝑡 ≥ 0} on

U;
(H9) F : C ([0, 𝑇];L2

(Ω;𝑈)) → L2
((0, 𝑇);L2

(Ω;𝑈))

is a continuous map such that there exists positive
constants 𝑐

1
and 𝑐

2
such that

‖F (𝑥)‖L2 ≤ 𝑐
1‖𝑥‖C + 𝑐2, (30)

for all 𝑥 ∈ C ([0, 𝑇];L2
(Ω;𝑈)).

We begin by establishing certain compactness prop-
erties of the mapping Φ

1
: L2

((0, 𝑇);L2
(Ω;𝑈)) →

C ([0, 𝑇];L2
(Ω;𝑈)) defined by

Φ
1 (V) (𝑡) = ∫

𝑡

0

𝑆 (𝑡 − 𝑠) V (𝑠) 𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇. (31)

Thewell definedness of thismapping is essentially a stochastic
analog of Lemma 3.1 in [31] (where 𝑆(𝑡) plays the role of the
resolvent operator) and its proof follows similarly by making
the natural modifications.

Lemma 12. Assume that {𝑆(𝑡) : 0 ≤ 𝑡 ≤ 𝑇} is a
compact semigroup on 𝑈. Then, Φ

1
is a compact map from

L2
((0, 𝑇);L2

(Ω;𝑈)) into C ([0, 𝑇];L2
(Ω;𝑈)).

Theorem 13. Assume that (H3), (H4), (H5), (H8), and (H9)
hold. Then, (1) has at least one mild solution on [0, 𝑇].

Proof. We use Schaefer’s theorem to prove thatΦ (as defined
in (13)) has a fixed point. The well definedness of Φ under
(H3), (H4), (H5), (H8), and (H9) can be established using rea-
soning similar to that employed in the proof of Theorem 10.
To verify the continuity of Φ, let {𝜇

𝑛
}
∞

𝑛=1
be a sequence in

C([0, 𝑇];L2
(Ω; 𝑈)) such that 𝜇

𝑛
→ 𝜇 as 𝑛 → ∞. Standard

computations yield
󵄩󵄩󵄩󵄩Φ (𝜇

𝑛
) − Φ (𝜇)

󵄩󵄩󵄩󵄩C

≤ 𝑀
𝑆
(𝐸(∫

𝑇

0

󵄩󵄩󵄩󵄩F (𝜇
𝑛
) (𝑠) −F (𝜇) (𝑠)

󵄩󵄩󵄩󵄩𝑈𝑑𝑠)

2

)

1/2

≤ 𝑀
𝑆
𝑇
1/2󵄩󵄩󵄩󵄩F (𝜇

𝑛
) −F (𝜇)

󵄩󵄩󵄩󵄩L2 .

(32)

The continuity ofF ensures that the right side of (32) goes to
0 as 𝑛 → ∞, thereby verifying the continuity ofΦ.

Next, let𝛿 = 1/(3𝑀
2

𝑆
𝑐
2

1
+1).Wewill show that the set 𝜉(Φ),

as defined in Theorem 1 with C ([0, 𝛿];L2
(Ω;𝑈)) in place of

X, is bounded. Let V ∈ 𝜉(Φ) and observe that, arguing as in
(20), applications of the Hölder and Young inequalities (with
(H8)) yield

𝛿
1/2
(𝐸∫

𝛿

0

󵄩󵄩󵄩󵄩F (𝜇) (𝑠)
󵄩󵄩󵄩󵄩
2

𝑈
𝑑𝑠)

1/2

≤ 𝛿
1/2

(𝑐
1

󵄩󵄩󵄩󵄩𝜇
󵄩󵄩󵄩󵄩C + 𝑐2) .

(33)

Also, from Lemma 8 we can infer that

𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

𝑆 (𝑡 − 𝑠) 𝑔 (𝑠) 𝑑𝛽
𝐻
(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑈

≤ 𝐶
𝑡√

∞

∑

𝑗=1

]
𝑗
. (34)

Thus, we conclude that, for all 𝜇 ∈ 𝜉 (Φ) and 0 ≤ 𝑡 ≤ 𝛿,

𝜆
󵄩󵄩󵄩󵄩𝜇
󵄩󵄩󵄩󵄩C ≤ √3[

[

𝑀
𝑆

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩L2
0
(Ω;𝑈)

+𝑀
𝑆
𝛿
1/2

(𝑐
1

󵄩󵄩󵄩󵄩𝜇
󵄩󵄩󵄩󵄩C + 𝑐2) + 𝐶𝑡√

∞

∑

𝑗=1

]
𝑗
]

]

.

(35)

Taking into account that 𝜆 ≥ 1 and the choice of 𝛿, we
conclude from (33) that ‖𝜇‖C ≤ 𝜂, where 𝜂 is a constant
independent of 𝜇 and 𝜆. So, 𝜉(Φ) is bounded.

In order to apply Schaefer’s theorem, it remains to show
thatΦ is compact. To this end, let 𝑟 > 0 and define𝐾

𝑟
= {𝜇 ∈

C([0, 𝛿];L2
(Ω;𝑈)) : ‖𝜇‖C ≤ 𝑟}. Using the notation of (13)

and (31), we have

Φ(𝜇) = 𝑆 (⋅) 𝑥0 + Φ1
(F (𝜇) (⋅)) + ∫

⋅

0

𝑆 (⋅ − 𝑠) 𝑔 (𝑠) 𝑑𝛽
𝐻
(𝑠) ,

𝜇 ∈ C ([0, 𝛿] ;L
2
(Ω; 𝑈)) .

(36)

We assert that Φ(𝐾
𝑟
) is precompact in C ([0, 𝛿];L2

(Ω;𝑈)).
Indeed, the fact that {F(𝜇) : 𝜇 ∈ 𝐾

𝑟
} is a bounded

subset of L2
((0, 𝛿);L2

(Ω;𝑈)) (cf. (H9)), it follows from
Lemma 12 that the set {Φ

1
(F(𝜇)) : 𝜇 ∈ 𝐾

𝑟
} is precompact

in C ([0, 𝛿];L2
(Ω;𝑈)). Since the set

{𝑆 (⋅) 𝑥0 + ∫

⋅

0

𝑆 (⋅ − 𝑠) 𝑔 (𝑠) 𝑑𝛽
𝐻
(𝑠) : 𝜇 ∈ 𝐾𝑟

} (37)
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is trivially precompact, we conclude that Φ(𝐾
𝑟
) is precom-

pact in C ([0, 𝛿];L2
(Ω;𝑈)). So, Schaefer’s theorem implies

that Φ has a fixed point 𝑥 ∈ C ([0, 𝛿];L2
(Ω;𝑈)) which

is a mild solution to (1) on [0, 𝛿]. Performing this same
argument on [𝛿, 2𝛿], [2𝛿, 3𝛿], and so on enables us to con-
struct in finitely many steps a piecewise-defined function in
C ([0, 𝑇];L2

(Ω;𝑈)), that is, a mild solution of (1) on the
original interval [0, 𝑇]. This completes the proof.

Next, we state a corollary regarding (25) under the
following assumptions on 𝑓

𝑖
:

(H10) 𝑓
𝑖
: [0, 𝑇] × 𝑈 → 𝑈 (𝑖 = 1, 2) satisfies the following:

(i) 𝑓
𝑖
(𝑡, ⋅) : 𝑈 → 𝑈 is continuous, for almost all

𝑡 ∈ [0, 𝑇];
(ii) 𝑓

𝑖
(⋅, 𝑥) : [0, 𝑇] → 𝑈 is stronglyG

𝑡
-measurable,

for all 𝑥 ∈ 𝑈;
(iii) There exist positive constants 𝑎

𝑖,1
and 𝑎

𝑖,2
such

that
󵄩󵄩󵄩󵄩𝑓𝑖 (𝑡, 𝑥)

󵄩󵄩󵄩󵄩𝑈 ≤ 𝑎
𝑖,1‖𝑥‖𝑈 + 𝑎𝑖,2, (38)

for almost all 𝑡 ∈ [0, 𝑇] and for all 𝑥 ∈ 𝑈.

Corollary 14. If (H3), (H4), (H5), (H8), and (H10) hold, then
(25) has at least one mild solution on [0, 𝑇].

Proof. An argument similar to the one used in [32, Chapter
26, pg. 561] shows that (H10) guarantees the mapping F̃ :

C ([0, 𝑇];L2
(Ω;𝑈)) → L2

((0, 𝑇);L2
(Ω;𝑈)) defined in

(28) is well defined and continuous. Routine calculations
show that F̃ satisfies (H9) with 𝑐

1
= 2𝑇(𝑎

1,1
𝑀

𝐵
𝑇
3/2

+ 𝑎
2,1
)

and 𝑐
2
= 2𝑇(𝑎

1,2
𝑀

𝐵
𝑇
3/2
+𝑎

2,2
). Consequently, (25) has at least

one mild solution byTheorem 13.

We can formulate a stronger version of Corollary 14 by
replacing assumption (H10) by the following:

(H11) 𝑓
𝑖
: [0, 𝑇] × 𝑈 → 𝑈 (𝑖 = 1, 2) satisfies (H10) (i) and

(ii), and

(i) for each 𝑘 ∈ N, there exists 𝑔
𝑖,𝑘

∈

L1
((0, 𝑇); (0,∞)) such that for almost all 𝑡 ∈

(0, 𝑇),

sup
‖𝑥‖𝑈≤𝑘

𝐸
󵄩󵄩󵄩󵄩𝑓𝑖 (𝑡, 𝑥)

󵄩󵄩󵄩󵄩
2

𝑈
≤ 𝑔

𝑖,𝑘 (𝑡) ; (39)

(ii) lim
𝑘→∞

𝑘
−2
∫
𝑇

0
𝑔
𝑖,𝑘
(𝑠)𝑑𝑠 = 𝛼

𝑖
< ∞.

Proposition 15. Assume that (H3), (H4), (H5), (H8), and
(H11) hold. Then, (25) has at least one mild solution on [0, 𝑇].

Proof. Weuse Schauder’s fixed-point theorem to argue thatΦ
(as defined in (13) withF given by (28)) has a fixed point.The
continuity and compactness follow by making slight changes
to the proof of Theorem 13. Choose 𝛿 such that

4𝑀
𝑆
[𝛿

1/2
𝛼
1/2

2
+𝑀

𝐵
𝛿𝛼

1/2

1
] < 1. (40)

For 𝑛 ∈ N, define the set 𝐵
𝑛
= {𝑥 ∈ C ([0, 𝛿];L2

(Ω;𝑈)) :

‖𝑥‖C ≤ 𝑛}. It remains to show that there exists an 𝑛 ∈ N such
that Φ (𝐵

𝑛
) ⊂ 𝐵

𝑛
. Suppose, by way of contradiction, that,

for each 𝑘 ∈ N, there exists 𝑢
𝑘
∈ 𝐵

𝑘
such that Φ(𝑢

𝑘
) ∉ 𝐵

𝑘
.

Then,

1 ≤ lim
𝑘→∞

𝑘
−1󵄩󵄩󵄩󵄩Φ (𝑢

𝑘
)
󵄩󵄩󵄩󵄩C. (41)

Observe that

󵄩󵄩󵄩󵄩Φ (𝑢
𝑘
)
󵄩󵄩󵄩󵄩C

≤ 4𝑀
𝑆

[
[

[

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩L2
0
(Ω;𝑈)

+ 𝛿
1/2
(𝛿

1/2
𝑀

𝐵
(∬

𝛿

0

𝐸
󵄩󵄩󵄩󵄩𝑓1 (𝜏, 𝑢𝑘 (𝜏))

󵄩󵄩󵄩󵄩
2

𝑈
𝑑𝜏 𝑑𝑠)

1/2

+ (∫

𝛿

0

𝐸
󵄩󵄩󵄩󵄩𝑓2 (𝑠, 𝑢𝑘 (𝑠))

󵄩󵄩󵄩󵄩
2

𝑈
𝑑𝑠)

1/2

)

+ 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝛿

0

𝑆 (𝑡 − 𝑠) 𝑔 (𝑠) 𝑑𝛽
𝐻
(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑈

]
]

]

.

(42)

Note that for each 𝑘 ∈ N, 𝑢
𝑘
∈ 𝐵

𝑘
and hence, ‖𝑢

𝑘
(𝑠)‖

𝑈
≤ 𝑘,

for all 0 ≤ 𝑠 ≤ 𝛿. So, by (H11), there exists 𝑔
𝑖,𝑘
(𝑖 = 1, 2),

𝑗
𝑘
∈ L1

((0, 𝛿); (0,∞)) such that, for almost all 0 ≤ 𝑠 ≤ 𝛿,

𝐸
󵄩󵄩󵄩󵄩𝑓𝑖 (𝑠, 𝑢𝑘 (𝑠))

󵄩󵄩󵄩󵄩
2

𝑈
≤ 𝑔

𝑖,𝑘 (𝑠) , (𝑖 = 1, 2) , (43)

Using (43) in (42) yields

󵄩󵄩󵄩󵄩Φ (𝑢
𝑘
)
󵄩󵄩󵄩󵄩C

≤ 2𝑀
𝑆
[
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩L2
0
(Ω;𝑈)

+ 𝛿
1/2
(∫

𝛿

0

𝑔
2,𝑘 (𝑠) 𝑑𝑠)

1/2

+𝑀
𝐵
𝛿
3/2
(∫

𝛿

0

𝑔
1,𝑘 (𝑠) 𝑑𝑠)

1/2

+ 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝛿

0

𝑆 (𝑡 − 𝑠) 𝑔 (𝑠) 𝑑𝛽
𝐻
(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑈

] ,

(44)
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and subsequently,

lim
𝑘→∞

𝑘
−1󵄩󵄩󵄩󵄩Φ (𝑢

𝑘
)
󵄩󵄩󵄩󵄩C

≤ 2𝑀
𝑆
lim
𝑘→∞

[𝑘
−1󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩L2
0
(Ω;𝑈)

+ 𝛿
1/2
(𝑘

−2
∫

𝛿

0

𝑔
2,𝑘
(𝑠)𝑑𝑠)

1/2

+𝑀
𝐵
𝛿
3/2
(𝑘

−2
∫

𝛿

0

𝑔
1,𝑘 (𝑠) 𝑑𝑠)

1/2

+2𝑘
−1
𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝛿

0

𝑆 (𝑡 − 𝑠) 𝑔 (𝑠) 𝑑𝛽
𝐻
(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑈

]

≤ 2𝑀
𝑆
𝛿
1/2

(𝛼
1/2

2
+𝑀

𝐵
𝛿𝛼

1/2

1
) < 1,

(45)

contradicting (41). Consequently, there is an 𝑛
0
∈ N such

that Φ(𝐵
𝑛
0

) ⊂ 𝐵
𝑛
0

. Thus, Schauder’s fixed point theorem
guarantees the existence of 𝑥 ∈ 𝐵

𝑛
0

such that Φ(𝑥) = 𝑥,
which is a mild solution of (25) on [0, 𝛿]. Performing this
same argument on [𝛿, 2𝛿], [2𝛿, 3𝛿], and so on enables us to
construct in finitely many steps a piecewise-defined function
in C([0, 𝑇];L2

(Ω;𝑈)), that is, a mild solution of (1) on the
original interval [0, 𝑇]. This completes the proof.

4. Convergence and Approximation Results

Throughout this section we assume that A, F, and 𝑔 satisfy
(H1)–(H5).

For each 𝑛 ∈ N, consider a linear operator 𝐴
𝑛
: 𝐷(𝐴

𝑛
) (=

𝐷(𝐴)) → 𝑈 and mappings F
𝑛
: C ([0, 𝑇];L2

(Ω;𝑈)) →

L2
((0, 𝑇);L2

(Ω;𝑈)), and 𝑔
𝑛
: [0, 𝑇] → L(𝑉; 𝑈) satisfying

the following conditions:

(H12) 𝐴
𝑛
generates a 𝐶

0
-semigroup {𝑆

𝑛
(𝑡) : 𝑡 ≥ 0} such that

‖𝑆
𝑛
(𝑡)‖BL(𝑈) ≤ 𝑀

𝑆
𝑒
𝛼𝑡, for some 𝛼 > 0 (independent

of n), for each 𝑛 ∈ N, and ‖𝐴
𝑛
𝑥 − 𝐴𝑥‖

𝑈
→ 0 as 𝑛 →

∞, for each 𝑥 ∈ 𝐷 (𝐴);

(H13) (i) ‖F
𝑛
(𝑥) −F

𝑛
(𝑦)‖L2 ≤ 𝑀F‖𝑥 − 𝑦‖C, for all

𝑥, 𝑦 ∈ C ([0, 𝑇];L2
(Ω;𝑈));

(ii) ‖F
𝑛
(𝑥) −F(𝑥)‖L2 → 0 as 𝑛 → ∞, for all

𝑥 ∈ C ([0, 𝑇];L2
(Ω;𝑈));

(H14) 𝑔
𝑛

: [0, 𝑇] → L(𝑉; 𝑈) is a bounded, strongly
measurable mapping and ‖𝑔

𝑛
(𝑡) − 𝑔(𝑡)‖L(𝑉;𝑈) → 0 as

𝑛 → ∞, for all 0 ≤ 𝑡 ≤ 𝑇.

(Here, the constant 𝑀F is the same one appearing in (H2)
and so is independent of n.)

Assume that (H1)–(H5) hold. Then, by Theorem 10, (1)
has a unique mild solution 𝑥 ∈ C ([0, 𝑇];L2

(Ω;𝑈)). By

virtue of (H4), (H12)–(H14), Theorem 10 implies that, for
each 𝑛 ∈ N, the initial-value problem

𝑑𝑥
𝑛 (𝑡) = (𝐴

𝑛
𝑥
𝑛 (𝑡) +F

𝑛
(𝑥

𝑛
) (𝑡)) 𝑑𝑡 + 𝑔𝑛 (𝑡) 𝑑𝛽

𝐻
(𝑡) ,

0 ≤ 𝑡 ≤ 𝑇,

𝑥
𝑛 (0) = 𝑥

0

(46)

has a unique mild solution 𝑥
𝑛
∈ C ([0, 𝑇];L2

(Ω;𝑈)).
Consider the following initial-value problem:

𝑑𝑦
𝑛 (𝑡) = (𝐴

𝑛
𝑦
𝑛 (𝑡) +F

𝑛 (𝑥) (𝑡)) 𝑑𝑡 + 𝑔𝑛 (𝑡) 𝑑𝛽
𝐻
(𝑡) ,

0 ≤ 𝑡 ≤ 𝑇,

𝑦
𝑛 (0) = 𝑥

0

(47)

Since 𝑥
0
is a fixed element ofL2

0
(Ω;𝑈), a standard argument

guarantees the existence of a unique mild solution 𝑦
𝑛
of (47).

We need the following lemma.

Lemma 16. If (H12)–(H14) hold, then ‖𝑦
𝑛
− 𝑥‖C → 0 as 𝑛 →

∞.

Proof. Using (H12) in conjunction with Theorem 4.1 in [24,
pg. 46], we infer that 𝑆

𝑛
(𝑡) 𝑧 → 𝑆(𝑡)𝑧 as 𝑛 → ∞, for all

𝑧 ∈ 𝑈, uniformly in 𝑡 ∈ [0, 𝑇]. Observe that

𝐸
󵄩󵄩󵄩󵄩𝑦𝑛 (𝑡) − 𝑥 (𝑡)

󵄩󵄩󵄩󵄩
2

𝑈

≤ 4𝐸
󵄩󵄩󵄩󵄩(𝑆𝑛 (𝑡) − 𝑆 (𝑡)) 𝑥0

󵄩󵄩󵄩󵄩
2

𝑈

+ 4𝐸∫

𝑡

0

󵄩󵄩󵄩󵄩𝑆𝑛 (𝑡 − 𝑠) (F𝑛 (𝑥) (𝑠) −F (𝑥) (𝑠))
󵄩󵄩󵄩󵄩
2

𝑈
𝑑𝑠

+ 4𝐸∫

𝑡

0

󵄩󵄩󵄩󵄩(𝑆𝑛 (𝑡 − 𝑠) − 𝑆 (𝑡 − 𝑠))F (𝑥) (𝑠)
󵄩󵄩󵄩󵄩
2

𝑈
𝑑𝑠

+ 4𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

[𝑆
𝑛 (𝑡 − 𝑠) (𝑔𝑛 (𝑠) − 𝑔 (𝑠))

+ (𝑆
𝑛 (𝑡 − 𝑠) − 𝑆 (𝑡 − 𝑠)) 𝑔 (𝑠)] 𝑑𝛽

𝐻
(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑈

.

(48)

A standard argument invoking (H12) and (H13), involving the
Trotter-KatoTheorem [28], can be used to conclude that each
of the first three terms on the right side of (48) goes to 0 as
𝑛 → ∞. As for the fourth term, observe that

𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

[𝑆
𝑛 (𝑡 − 𝑠) (𝑔𝑛 (𝑠) − 𝑔 (𝑠))

+ (𝑆
𝑛 (𝑡 − 𝑠) − 𝑆 (𝑡 − 𝑠)) 𝑔 (𝑠)] 𝑑𝛽

𝐻
(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑈

≤ 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

𝑆
𝑛 (𝑡 − 𝑠) (𝑔𝑛 (𝑠) − 𝑔 (𝑠)) 𝑑𝛽

𝐻
(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑈

+ 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

(𝑆
𝑛 (𝑡 − 𝑠) − 𝑆 (𝑡 − 𝑠)) 𝑔 (𝑠) 𝑑𝛽

𝐻
(𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑈

.

(49)
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The uniform boundedness of {𝑆
𝑛
(𝑡) : 0 ≤ 𝑡 ≤ 𝑇, 𝑛 ∈ N} (cf.

(H12)) with (H14) guarantees that the supremum (over [0, 𝑇])
of the first term on the right side of (49) goes to 0 as 𝑛 → ∞.
An argument in the spirit of the one used to verify Lemma 8
(ii) can be used to show the supremum (over [0, 𝑇]) of the
second term in (49) and also goes to 0 as 𝑛 → ∞, as needed.
This completes the proof.

The following is the first of our two main convergence
results.

Theorem 17. If (H1)–(H5) and (H12)–(H14) hold and
4 𝑀

𝑆
𝑇𝑀F < 1, where𝑀

𝑆
= 𝑀

𝑆
𝑒
𝛼𝑇, then ‖𝑥

𝑛
− 𝑥‖C → 0 as

𝑛 → ∞.

Proof. Let 𝑦
𝑛
be the mild solution of (47). Observe that

󵄩󵄩󵄩󵄩𝑥𝑛 (𝑡) − 𝑥 (𝑡)
󵄩󵄩󵄩󵄩
2

𝑈

≤ 2 [
󵄩󵄩󵄩󵄩𝑥𝑛 (𝑡) − 𝑦𝑛 (𝑡)

󵄩󵄩󵄩󵄩
2

𝑈
+
󵄩󵄩󵄩󵄩𝑦𝑛 (𝑡) − 𝑥 (𝑡)

󵄩󵄩󵄩󵄩
2

𝑈
]

≤ 2{(∫

𝑡

0

󵄩󵄩󵄩󵄩𝑆𝑛 (𝑡 − 𝑠) (F𝑛
(𝑥

𝑛
) (𝑠) −F

𝑛 (𝑥) (𝑠))
󵄩󵄩󵄩󵄩𝑈𝑑𝑠)

2

+
󵄩󵄩󵄩󵄩𝑦𝑛 (𝑡) − 𝑥 (𝑡)

󵄩󵄩󵄩󵄩
2

𝑈
} .

(50)

Taking the expectation, followed by taking square roots in
(50), yields the following estimate after some computation
󵄩󵄩󵄩󵄩𝑥𝑛 (𝑡) − 𝑥 (𝑡)

󵄩󵄩󵄩󵄩L2(Ω;𝑈)

≤ 2{2𝑇
1/2

(∫

𝑇

0

𝐸
󵄩󵄩󵄩󵄩𝑆𝑛 (𝑡 − 𝑠)

× (F
𝑛
(𝑥

𝑛
) (𝑠) −F

𝑛 (𝑥) (𝑠))
󵄩󵄩󵄩󵄩
2

𝑈
𝑑𝑠)

1/2

+
󵄩󵄩󵄩󵄩𝑦𝑛 (𝑡) − 𝑥 (𝑡)

󵄩󵄩󵄩󵄩L2(Ω;𝑈)} .

(51)

Observe that (H12) yields, with the help of Hölder’s inequal-
ity,

(∫

𝑇

0

𝐸
󵄩󵄩󵄩󵄩𝑆𝑛 (𝑡 − 𝑠) (F𝑛

(𝑥
𝑛
) (𝑠) −F

𝑛 (𝑥) (𝑠))
󵄩󵄩󵄩󵄩
2

𝑈
𝑑𝑠)

1/2

≤ 𝑇
1/2

𝑀
𝑆

󵄩󵄩󵄩󵄩F𝑛
(𝑥

𝑛
) −F

𝑛 (𝑥)
󵄩󵄩󵄩󵄩L2

≤ 𝑇
1/2

𝑀
𝑆
𝑀F

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩C.

(52)

Using (51) and (52) in (50) yields, after taking supremumover
[0, 𝑇],

1

2
(1 − 4𝑀

𝑆
𝑇𝑀F)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩C ≤

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
󵄩󵄩󵄩󵄩C.

(53)

In view of (H12)–(H14) and the fact that1 − 4 𝑀
𝑆
𝑇𝑀F >

0, we can apply Lemma 16 to conclude from (53) that
‖𝑥

𝑛
− 𝑥‖C → 0 as 𝑛 → ∞. This completes the proof.

Now, let 𝑃
𝑥
and 𝑃

𝑥
𝑛

denote the probability measures on
C ([0, 𝑇];L2

(Ω;𝑈)) induced by the mild solutions 𝑥 and 𝑥
𝑛

of (1) and (46), respectively. UsingTheorem 17, we will prove
that 𝑃

𝑥
𝑛

𝑤

󳨀→ 𝑃
𝑥
as 𝑛 → ∞, for a special subclass of initial-

value problems. Precisely, we have the following.

Theorem 18. Assume that (H1), (H3), (H4), and (H5) hold, in
addition to the following:

(H15) 𝑥
0
∈ L4

0
(Ω;𝑈);

(H16) F : C ([0, 𝑇];L2
(Ω;𝑈)) → L𝑝

((0, 𝑇);L2
(Ω;𝑈))

(where 𝑝 ≥ 4) is such that there exists a positive
constant𝑀F for which

󵄩󵄩󵄩󵄩F (𝑥) −F (𝑦)
󵄩󵄩󵄩󵄩L𝑝 ≤ 𝑀F

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩C,

∀𝑥, 𝑦 ∈ C ([0, 𝑇] ;L
2
(Ω;𝑈)) ;

(54)

(H17) F
𝑛
: C ([0, 𝑇];L2

(Ω;𝑈)) → L𝑝
((0, 𝑇);L2

(Ω;𝑈))

(where 𝑝 ≥ 4) is such that

(i) ‖F
𝑛
(𝑥) −F

𝑛
(𝑦)‖L𝑝 ≤ 𝑀F‖𝑥 − 𝑦‖C, for all

𝑥, 𝑦 ∈ C ([0, 𝑇];L2
(Ω;𝑈)),

(ii) ‖F
𝑛
(𝑥) −F(𝑥)‖L𝑝 → 0 as 𝑛 → ∞, for all 𝑥 ∈

C ([0, 𝑇];L2
(Ω; 𝑈)), where 𝑀F is the constant

defined in (H15);

(H18) The operators 𝐴
𝑛
: 𝐷(𝐴) ⊂ 𝑈 → 𝑈 are bounded and

linear.

If 1−𝑀
𝑆

2

𝑇
2/𝑞

𝑀F

2

> 0 (where 1/𝑝+1/𝑞 = 1), then𝑃
𝑥
𝑛

𝑤

󳨀→ 𝑃
𝑥

as 𝑛 → ∞.

Proof. We begin by showing that {𝑃
𝑥
𝑛

}
∞

𝑛=1
is relatively com-

pact inC ([0, 𝑇];L2
(Ω;𝑈)) by appealing to the Arzelá-Ascoli

theorem. To this end, we will first show that there exists 𝜂 > 0

such that

sup
𝑛∈N

sup
0≤𝑡≤𝑇

󵄩󵄩󵄩󵄩𝑥𝑛(𝑡)
󵄩󵄩󵄩󵄩L2(Ω;𝑈) = 𝜂 < ∞. (55)

Note that 𝑥
𝑛
is given by

𝑥
𝑛 (𝑡) = 𝑆

𝑛 (𝑡) 𝑥0 + ∫

𝑡

0

𝑆
𝑛 (𝑡 − 𝑠)F𝑛

(𝑥
𝑛
) (𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝑆
𝑛 (𝑡 − 𝑠) 𝑔𝑛 (𝑠) 𝑑𝛽

𝐻
(𝑠) , 0 ≤ 𝑡 ≤ 𝑇.

(56)

Observe that
󵄩󵄩󵄩󵄩𝑆𝑛 (𝑡) 𝑥0

󵄩󵄩󵄩󵄩
2

L2(Ω;𝑈)
≤ 𝑀

𝑆

2󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩
2

L2
0
(Ω;𝑈)

. (57)

Likewise, (H16) guarantees the existence of a positive con-
stant 𝑀F such that ‖F

𝑛
(0)‖L𝑝 ≤ 𝑀F, for all n, so that a

standard argument now yields

𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

𝑆
𝑛 (𝑡 − 𝑠)F𝑛

(𝑥
𝑛
) (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑈

≤ 𝑇
2/𝑞
𝑀

𝑆

2

[𝑀
2

F

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩
2

C
+𝑀F

2

] .

(58)
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Also, {𝐸‖ ∫𝑡
0
𝑆
𝑛
(𝑡 − 𝑠)𝑔

𝑛
(𝑠)𝑑𝛽

𝐻
(𝑠)‖

2

𝑈
: 𝑛 ∈ N} is uniformly

bounded because of (H12) and (H14) and the uniformbound-
edness of {𝑔

𝑛
: 𝑛 ∈ N} in L(𝑉; 𝑈). Combining the estimates

(57) and (58) and rearranging terms enable us to conclude
from (56) that (55) holds because 1 − 𝑀

𝑆

2

𝑇
2/𝑞
𝑀F

2

> 0 and
all constants in (56)–(58) are independent of n.

Next, we establish the equicontinuity by showing
𝐸‖𝑥

𝑛
(𝑡) − 𝑥

𝑛
(𝑠)‖

4

𝑈
→ 0 as (𝑡 − 𝑠) → 0, for all 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇,

uniformly for all 𝑛 ∈ N. We estimate each term of the
expression for 𝑥

𝑛
(𝑡) − 𝑥

𝑛
(𝑠) separately. The boundedness of

{‖𝐴
𝑛
‖BL(𝑈) : 𝑛 ∈ N} (as guaranteed by (H18)) ensures that

𝑀
𝑆𝐴
= sup

𝑛∈N

󵄩󵄩󵄩󵄩𝑆𝑛 (⋅) 𝐴𝑛

󵄩󵄩󵄩󵄩BL(𝑈)
< ∞. (59)

Employing Theorem 2.4(d) in [28] and taking into account
(H12), (H14), and (59), we conclude that

𝐸
󵄩󵄩󵄩󵄩[𝑆𝑛 (𝑡) − 𝑆𝑛 (𝑠)] 𝑥0

󵄩󵄩󵄩󵄩
4

𝑈
≤ 𝑇

4/3
∫

𝑡

𝑆

𝐸
󵄩󵄩󵄩󵄩𝑆𝑛 (𝜏) 𝐴𝑛

𝑥
0

󵄩󵄩󵄩󵄩
4

𝑈
𝑑𝜏

≤ 𝑇
4/3
𝑀

4

𝑆𝐴

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩
4

L4
0
(Ω;𝑈)

(𝑡 − 𝑠)
2
.

(60)

Next, observe that

∫

𝑡

0

𝑆
𝑛 (𝑡 − 𝜏)F𝑛

(𝑥
𝑛
) (𝜏) 𝑑𝜏 − ∫

𝑆

0

𝑆
𝑛 (𝑠 − 𝜏)F𝑛

(𝑥
𝑛
) (𝜏) 𝑑𝜏

= ∫

𝑆

0

[𝑆
𝑛 (𝑡 − 𝜏) − 𝑆𝑛 (𝑠 − 𝜏)]F𝑛

(𝑥
𝑛
) (𝜏) 𝑑𝜏

+ ∫

𝑡

𝑆

𝑆
𝑛 (𝑡 − 𝜏)F𝑛

(𝑥
𝑛
) (𝜏) 𝑑𝜏.

(61)

Using (59), (H12), and (H13) when estimating each of the two
integrals on the right side of (61) separately yields

𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑆

0

[𝑆
𝑛 (𝑡 − 𝜏) − 𝑆𝑛 (𝑠 − 𝜏)]F𝑛

(𝑥
𝑛
) (𝜏) 𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

4

𝑈

≤ 𝑇
8/3

∫

𝑆

0

∫

𝑡−𝜏

𝑠−𝜏

𝐸
󵄩󵄩󵄩󵄩𝑆𝑛 (𝑤)𝐴𝑛

F
𝑛
(𝑥

𝑛
) (𝑤)

󵄩󵄩󵄩󵄩
4

𝑈
𝑑𝑤𝑑𝜏

≤ 𝑀
4

𝑆𝐴
𝑇
11/3

[𝑀
4

F

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩
4

C
+𝑀F

4

] (𝑡 − 𝑠)
(𝑝−4)/𝑝

.

(62)

Next,

𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑆
𝑛 (𝑡 − 𝜏) 𝑔𝑛 (𝜏) 𝑑𝛽

𝐻
(𝜏) − ∫

𝑆

0

𝑆
𝑛 (𝑠 − 𝜏) 𝑔𝑛 (𝜏) 𝑑𝛽

𝐻
(𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

4

𝑈

≤ 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑

𝑗=1

[∫

𝑡

0

𝑆
𝑛 (𝑡 − 𝜏) 𝑔𝑛 (𝜏) 𝑒𝑗𝑑𝛽

𝐻

𝑗
(𝜏)

−∫

𝑆

0

𝑆
𝑛 (𝑠 − 𝜏) 𝑔𝑛 (𝜏) 𝑒𝑗𝑑𝛽

𝐻

𝑗
(𝜏)]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

4

𝑈

≤ 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑

𝑗=1

∫

𝑠

0

[𝑆
𝑛 (𝑡 − 𝜏) − 𝑆𝑛 (𝑠 − 𝜏)] 𝑔𝑛 (𝜏) 𝑒𝑗𝑑𝛽

𝐻

𝑗
(𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

4

𝑈

+ 𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑

𝑗=1

∫

𝑡

𝑠

𝑆
𝑛 (𝑡 − 𝜏) 𝑔𝑛 (𝜏) 𝑒𝑗𝑑𝛽

𝐻

𝑗
(𝜏)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

4

𝑈

.

(63)

Using the uniform boundedness of {𝑔
𝑛
: 𝑛 ∈ N} in L(𝑉; 𝑈),

one can argue as in Lemma 8 to show that the right side of
(63) goes to 0 as (𝑡 − 𝑠) → 0. We conclude from the above
estimates that 𝐸‖𝑥

𝑛
(𝑡) − 𝑥

𝑛
(𝑠)‖

4

𝑈
→ 0 as (𝑡 − 𝑠) → 0,

uniformly for 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 and 𝑛 ∈ N, as desired. Thus, the
family {𝑃

𝑥
𝑛

}
∞

𝑛=1
is relatively compact in C ([0, 𝑇];L2

(Ω;𝑈))

and hence tight (by Prokorhov’s theorem [9]).
To finish the proof, we remark that Theorem 17 implies

that the finite-dimensional joint distributions of𝑃
𝑥
𝑛

converge
weakly to those of P (cf. Proposition 3). Hence, Theorem 4
ensures that 𝑃

𝑥
𝑛

𝑤

󳨀→ 𝑃
𝑥
as 𝑛 → ∞. This completes the proof.

5. Extension to the Second-Order Case

Consider the abstract second-order stochastic Cauchy prob-
lem

𝑑𝑥
󸀠
(𝑡) = (B𝑥

󸀠
(𝑡) +C𝑥 (𝑡) + 𝐹 (𝑥) (𝑡)) 𝑑𝑡 + 𝐺 (𝑡) 𝑑𝛽

𝐻
(𝑡) ,

0 ≤ 𝑡 ≤ 𝑇,

𝑥 (0) = 𝑥
0
, 𝑥

󸀠
(0) = 𝑥

1

(64)

in a real separable Hilbert space 𝑈̃. Here, B : 𝑈̃ → 𝑈̃ is a
bounded linear operator; C : 𝐷(C) ⊂ 𝑈̃ → 𝑈̃ is a linear
(possibly unbounded) operator for which (−C)

1/2 exists; F
and 𝐺 are mappings that satisfy (H2) and (H3), respectively;
{𝛽

𝐻
(𝑡) : 𝑡 ≥ 0} is a 𝑈̃-valued fBm with Hurst parameter

𝐻 ∈ (1/2, 1); and 𝑥
0
, 𝑥

1
∈ L2

0
(Ω; 𝑈̃).

We will convert (64) to a first-order system that, in turn,
can be represented abstractly in the form (1). To this end, let

𝑧
1 (𝑡) = 𝑥 (𝑡) , 𝑧

1 (0) = 𝑥
0
,

𝑧
2 (𝑡) = 𝑥

󸀠
(𝑡) , 𝑧

2 (0) = 𝑥
1
.

(65)
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Then,

𝑑𝑧
1 (𝑡) = 𝑧

2 (𝑡) 𝑑𝑡,

𝑑𝑧
2 (𝑡) = (B𝑧

2 (𝑡) +C𝑧
1 (𝑡) + 𝐹 (𝑧1) (𝑡)) 𝑑𝑡 + 𝐺 (𝑡) 𝑑𝛽

𝐻
(𝑡) .

(66)

As such,

𝑑 [
𝑧
1 (𝑡)

𝑧
2 (𝑡)

]

= ([
0 𝐼

C 0
] [

𝑧
1 (𝑡)

𝑧
2 (𝑡)

] + [
0 0

0 B
] [

𝑧
1 (𝑡)

𝑧
2 (𝑡)

] + [
0

𝐹 (𝑧
1
) (𝑡)

]) 𝑑𝑡

+ [
0

𝐺 (𝑡)
] 𝑑𝛽

𝐻
(𝑡) , 0 ≤ 𝑡 ≤ 𝑇,

[
𝑧
1 (0)

𝑧
2 (0)

] = [
𝑥
0

𝑥
1

] .

(67)

The space𝑈 = 𝐷(C1/2
)× 𝑈̃ is a Banach space when equipped

with the usual graph norm. Define 𝑋 : [0, 𝑇] → 𝑈, 𝐴 :

𝐷(𝐴) ⊂ 𝑈 → 𝑈, 𝐵 : 𝐷(𝐵) ⊂ 𝑈 → 𝑈, 𝑔 : [0, 𝑇] → L(𝑉; 𝑈),
and 𝐹 : C ([0, 𝑇];L2

(Ω;𝑈)) → L2
((0, 𝑇);L2

(Ω;𝑈)) by

𝑋(𝑡) = [
𝑧
1 (𝑡)

𝑧
2 (𝑡)

] ,

𝐴 = [
0 𝐼

C 0
] , 𝐷 (𝐴) = 𝐷 (C) × 𝐷 (C

1/2
) ⊂ 𝑈,

𝐵 = [
0 0

0 B
] , 𝐷 (𝐵) = 𝐷 (C

1/2
) × 𝑈̃ ⊂ 𝑈,

𝑔 (𝑡) = [
0

𝐺 (𝑡)
] , 𝐹 (𝑋) (𝑡) = [

0

𝐹 (𝑧
1
)
] (𝑡) .

(68)

Since

𝑋 (0) = [
𝑧
1 (0)

𝑧
2 (0)

] = [
𝑥
0

𝑥
1

] , (69)

we can use these identifications to rewrite (64) abstractly in
the form

𝑑𝑋 (𝑡) = ((𝐴 + 𝐵)𝑋 (𝑡) +F (𝑋) (𝑡)) 𝑑𝑡 + 𝑔 (𝑡) 𝑑𝛽
𝐻
(𝑡) ,

0 ≤ 𝑡 ≤ 𝑇,

𝑋 (0) = 𝑋
0
.

(70)

We assume that the following conditions are satisfied.

(H19) B : 𝐷(B) ⊂ 𝑈̃ → 𝑈̃ is a bounded linear operator.
(H20) C : 𝐷(C) ⊂ 𝑈̃ → 𝑈̃ generates a strongly continuous

cosine family on 𝑈̃ and (−C)1/2 exists.

SinceB ∈ BL(𝑈), it follows that 𝐴 + 𝐵 generates a strongly
continuous semigroup on 𝑈. As such, we can view (70) (and
so, (64)) as a special case of (1). Theorem 10 can be applied
directly to (70) under the same hypotheses to conclude that
(64) has a unique mild solution𝑋 ∈ C ([0, 𝑇];L2

(Ω;𝑈)).

6. Applications

Let D be a bounded domain in R𝑁 with smooth boundary
𝜕D and consider the initial-boundary value problem

𝑥
𝑡 (𝑡, 𝑧)

= Δ
𝑧
𝑥 (𝑡, 𝑧)

+ ∫

𝑡

0

𝑎 (𝑡, 𝑠) 𝑓1 (𝑠, 𝑥 (𝑠, 𝑧) , ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑥 (𝜏, 𝑧)) 𝑑𝜏) 𝑑𝑠

+ 𝑓
2 (𝑡, 𝑧) 𝑑𝛽

𝐻
(𝑡) , a.e. on (0, 𝑇) ×D,

𝑥 (0, 𝑧) = 𝑥
0 (𝑧) , a.e. on D,

𝑥 (𝑡, 𝑧) = 0, a.e. on (0, 𝑇) × 𝜕D,

(71)

We consider (71) under the following conditions on the data:
(H22) 𝑓

1
: [0, 𝑇] × R × R → R satisfies the Caratheódory

conditions (i.e., measurable in (𝑡, 𝑥) and continuous
in the third variable), and

(i) 𝑓
𝑖
(⋅, 0, 0) ∈ 𝐿

2
(0, 𝑇);

(ii) there exists a positive constant𝑀
𝑓
1

such that
󵄨󵄨󵄨󵄨𝑓1 (𝑡, 𝑥1, 𝑦1) − 𝑓1 (𝑡, 𝑥2, 𝑦2)

󵄨󵄨󵄨󵄨 ≤ 𝑀
𝑓
1

[
󵄨󵄨󵄨󵄨𝑥1 − 𝑥2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑦1 − 𝑦2

󵄨󵄨󵄨󵄨] ,

(72)

for all 𝑥
1
, 𝑥

2
, 𝑦

1
, 𝑦

2
∈ R and almost all 𝑡 ∈ (0, 𝑇);

(H23) 𝑓
2
: [0, 𝑇] ×D → L(L2

(D);L2
(D)) is a bounded,

strongly measurable mapping;
(H24) 𝑎 ∈ 𝐿2 ( (0, 𝑇)2);
(H25) 𝑘 : 𝑍 × R → R,where 𝑍 = {(𝑡, 𝑠) : 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝑇},

satisfies the Caratheódory conditions and there exists
a positive constant𝑀

𝑘
such that

󵄨󵄨󵄨󵄨𝑘 (𝑡, 𝑠, 𝑥1) − 𝑘 (𝑡, 𝑠, 𝑥2)
󵄨󵄨󵄨󵄨 ≤ 𝑀

𝑘

󵄨󵄨󵄨󵄨𝑥1 − 𝑥2
󵄨󵄨󵄨󵄨 , (73)

for all 𝑥
1
, 𝑥

2
∈ R and almost all (𝑡, 𝑠) ∈ 𝑍.

Let 𝑈 = 𝑉 = L2
(D) and set

𝐴 = Δ
𝑧
, 𝐷 (𝐴) = 𝐻

2
(D) ∩ 𝐻

1

0
(D) . (74)

It is well known that 𝐴 generates a 𝐶
0
-semigroup on 𝐷(𝐴)

(see [28], Chapter 7).
Next, define

F : C ([0, 𝑇] ;L
2
(Ω;𝑈)) 󳨀→ L

2
((0, 𝑇) ;L

2
(Ω;𝑈)) ,

𝑓
2
: [0, 𝑇] ×D 󳨀→ L (L

2
(D) ;L

2
(D)) ,

(75)

respectively, by

𝐹 (𝑥) (𝑡, ⋅)

= ∫

𝑡

0

𝑎 (𝑡, 𝑠) 𝑓1 (𝑠, 𝑥 (𝑠, ⋅) , ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑥 (𝜏, ⋅)) 𝑑𝜏) 𝑑𝑠,

𝑔 (𝑡) (⋅) = 𝑓
2 (𝑡, ⋅) .

(76)
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One can use (H22)–(H25) to verify that 𝐹 satisfies (H2) with

𝑀F = 2𝑀
𝑓
1

𝑇|𝑎|
𝐿
2
((0,𝑇)

2
)
(1 +𝑀

𝑘
𝑇
3
)
1/2 (77)

and that 𝑔 is strongly measurable. Thus, (71) can be rewritten
in the form (1) inU, withA,F, and 𝑔 defined above so that an
application of Theorem 10 immediately yields the following
result.

Theorem 19. If (H22)–(H25) hold (with 𝑀F given by (77)),
then (71) has a unique mild solution 𝑥 ∈ C ([0, 𝑇];
L2

(Ω;L2
(D))).

Example 20. We now consider a modified version of (71)
which constitutes a model related to the one in [12]. Precisely,
let D = R and consider the initial-boundary value problem
given by

𝜕𝑥 (𝑡, 𝑧)

= ( − (𝐼 − Δ
𝑧
)
𝛾/2
(−Δ

𝑧
)
𝛼/2
𝑥 (𝑡, 𝑧)

+∫

𝑡

0

𝑎 (𝑡, 𝑠) 𝑓1 (𝑠, 𝑥 (𝑠, 𝑧) , ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑥 (𝜏, 𝑧)) 𝑑𝜏) 𝑑𝑠) 𝜕𝑡

+ 𝑓
2 (𝑡, 𝑧) 𝑑𝛽

𝐻
(𝑡) , a.e. on (0, 𝑇) ×D,

𝑥 (𝑡, 𝑧) = 0, a.e. on (0, 𝑇) × 𝜕D,

𝑥 (0, 𝑧) = 𝑥
0 (𝑧) , a.e. on D.

(78)

The operator (−Δ
𝑧
)
𝛼/2 is defined by

(−Δ
𝑧
)
𝛼/2
ℎ (𝑧) =

1

√2𝜋
∫
R

𝑒
𝑖𝑧𝑦󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨
𝛼
ℎ̂ (𝑦) 𝑑𝑦,

𝐷 ((−Δ
𝑧
)
𝛼/2
)

= {ℎ ∈ L
2

𝑤
(R) : ℎ,

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
𝛼
ℎ̂ (𝑦) ∈ L

1
(R) ∩L

2
(R) ,

1

√2𝜋
∫
R

𝑒
𝑖𝑧𝑦󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨
𝛼
ℎ̂ (𝑦) 𝑑𝑦 ∈ L

2

𝑤
(R)} ,

(79)

where ℎ̂ denotes the Fourier transform of h, and the space
L2

𝑤
(R) is given by

L
2

𝑤
(R) = {ℎ : ℎ is measurable,

‖ℎ‖L2
𝑤
(R) = ∫

R
|ℎ(𝑧)|

2
𝑤 (𝑧) 𝑑𝑧 < ∞} ,

(80)

where 𝑤(𝑧) = (1 + 𝑧
2
)
−𝜉/2, for 𝜉 > 1. Also, the operator

(𝐼 − Δ
𝑧
)
𝛾/2 is defined by

(𝐼 − Δ
𝑧
)
𝛾/2
ℎ (𝑧) =

1

√2𝜋
∫
R

𝑒
𝑖𝑧𝑦
(1 + 𝑦

2
)
𝛾/2

ℎ̂ (𝑦) 𝑑𝑦,

𝐷 ((𝐼 − Δ
𝑧
)
𝛾/2
)

= {ℎ ∈ L
2

𝑤
(R) : ℎ, (1 + 𝑦

2
)
𝛾/2

ℎ̂ (𝑦) ∈ L
1
(R) ∩L

2
(R) ,

1

√2𝜋
∫
R

𝑒
𝑖𝑧𝑦
(1 + 𝑦

2
)
𝛾/2

ℎ̂ (𝑦) 𝑑𝑦 ∈ L
2

𝑤
(R)} .

(81)

As shown in Proposition 1 of [12], the operator
−(𝐼 − Δ

𝑧
)
𝛾/2
(−Δ

𝑧
)
𝛼/2 generates a strongly continuous

semigroup on L2

𝑤
(R), assuming that 𝛼 + 𝛾 > (𝜆 − 1)/2

and 𝜆 < 1. As such, by taking 𝑈 = L2

𝑤
(R) and 𝑉 = R and

defining the operator 𝐴 = −(𝐼 − Δ
𝑧
)
𝛾/2
(−Δ

𝑧
)
𝛼/2, we can

argue as in (71) to show that (78) has a unique mild solution
𝑥 ∈ C ([0, 𝑇];L2

(Ω;L2

𝑤
(R))).

Example 21. LetD be a bounded domain inR𝑛 with smooth
boundary 𝜕D. Consider the following initial-boundary value
problem:

𝜕(
𝜕𝑥 (𝑡, 𝑧⃗)

𝜕𝑡
)

= (B(
𝜕𝑥 (𝑡, 𝑧⃗)

𝜕𝑡
)

𝑛

∑

𝑗=1

𝑛

∑

𝑘=1

𝜕

𝜕𝑧
𝑗

(𝑎
𝑗𝑘
(𝑧⃗)

𝜕𝑥 (𝑡, 𝑧⃗)

𝜕𝑧
𝑗

))𝜕𝑡

+ 𝑐 (𝑧⃗) 𝑥 (𝑡, 𝑧⃗) 𝜕𝑡

+ (𝑓
1
(𝑡, 𝑥 (𝑡, 𝑧⃗)) + ∫

𝑡

0

𝑏 (𝑡 − 𝑠) 𝑓2 (𝑠, 𝑥 (𝑠, 𝑧⃗)) 𝑑𝑠) 𝜕𝑡

+ 𝑓
3
(𝑡, 𝑧⃗) 𝑑𝛽

𝐻
(𝑡) , 0 < 𝑡 < 𝑇, 𝑧⃗ ∈ D,

𝑥 (0, 𝑧⃗) = 𝑥
0
(𝑧⃗) ,

𝜕𝑥 (0, 𝑧⃗)

𝜕𝑡
= 𝑥

1
(𝑧⃗) , a.e. onD,

𝑥 (𝑡, 𝑧⃗) = 0, a.e. on (0, 𝑇) × 𝜕D,

(82)

where 𝑧⃗ = ⟨𝑧
1
, . . . , 𝑧

𝑛
⟩ ∈ D, 𝑥

0
(⋅) ∈ 𝐷(𝐴) ∩L2

0
(Ω;L2

(D)),
and 𝑥

1
(⋅) ∈ 𝐸 ∩ L2

0
(Ω;L2

(D)). Here, 𝑎
𝑗𝑘

: D → R and
𝑐 : D → R are bounded, stronglymeasurablemappings; and
𝑓
𝑖
(𝑖 = 1, 2, 3), B, and 𝑏 satisfy the following assumptions:

(H26) 𝑓
𝑖
: [0, 𝑇] × R → R (𝑖 = 1, 2) satisfies the

Carathéodory conditions, and

(i) (𝑓
𝑖
(⋅, 0) ∈ 𝐿

2
(0, 𝑇);

(ii) there exists a positive constant𝑀
𝑓
𝑖

such that
󵄨󵄨󵄨󵄨𝑓𝑖 (𝑡, 𝑥) − 𝑓𝑖 (𝑡, 𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝑀
𝑓
𝑖

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 , (83)

for all 𝑥, 𝑦 ∈ R, and almost all 𝑡 ∈ (0, 𝑇);
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(H27) 𝑓
3
: [0, 𝑇] ×D → L(L2

(D);L2
(D)) is a bounded,

strongly measurable mapping;
(H28) B : L2

(D) → L2
(D) is a bounded linear operator;

(H29) 𝑏 ∈ L2
((0, 𝑇)

2
).

Let 𝑈 = 𝑉 = L2
(D) and define 𝐴 : 𝑈 → 𝑈 by

𝐴𝑥 (𝑡, ⋅) =

𝑛

∑

𝑗=1

𝑛

∑

𝑘=1

𝜕

𝜕𝑧
𝑗

(𝑎
𝑗𝑘 (⋅)

𝜕𝑥 (𝑡, ⋅)

𝜕𝑧
𝑗

) + 𝑐 (⋅) 𝑥 (𝑡, ⋅) . (84)

It is known that 𝐴 is a uniformly elliptic, densely-
defined, symmetric, and self-adjoint operator which gen-
erates a strongly continuous cosine family on U (see [27,
p. 100]). Next, define F : C ([0, 𝑇];L2

(Ω; 𝑈)) →

L2
((0, 𝑇);L2

(Ω;𝑈)) by

F (𝑥) (𝑡, ⋅) = 𝑓
1 (𝑡, 𝑥 (𝑡, ⋅)) + ∫

𝑡

0

𝑏 (𝑡 − 𝑠) 𝑓2 (𝑠, 𝑥 (𝑠, ⋅)) 𝑑𝑠.

(85)

In view of (H26)–(H29), together with the Hölder and Young
inequalities, one can verify thatF satisfies (H2) with

𝑀F = 2 (𝑀
𝑓
1

√𝑇 +𝑀
𝑓
2
|𝑏|L2((0,𝑇)2)) . (86)

Hence, (82) can be written in the abstract form (64) in𝑈 and
so can be transformed into (1) via the procedure outlined in
Section 5. As such, an application ofTheorem 10 immediately
yields the following result.

Theorem 22. If (H26)–(H29) are satisfied, then (82) has a
unique mild solution 𝑥 ∈ C ([0, 𝑇];L2

(Ω;L2
(D))).
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