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We first introduce and analyze one iterative algorithm by using the composite shrinking projection method for finding a solution
of the system of generalized equilibria with constraints of several problems: a generalized mixed equilibrium problem, finitely
many variational inequalities, and the common fixed point problem of an asymptotically strict pseudocontractive mapping in the
intermediate sense and infinitely many nonexpansive mappings in a real Hilbert space. We prove a strong convergence theorem
for the iterative algorithm under suitable conditions. On the other hand, we also propose another iterative algorithm involving
no shrinking projection method and derive its weak convergence under mild assumptions. Our results improve and extend the
corresponding results in the earlier and recent literature.

1. Introduction

Let 𝐻 be a real Hilbert space with inner product ⟨⋅, ⋅⟩ and
norm ‖ ⋅ ‖, 𝐶 a nonempty closed convex subset of 𝐻, and
𝑃𝐶 the metric projection of 𝐻 onto 𝐶. Let 𝑆 : 𝐶 → 𝐻 be a
nonlinear mapping on𝐶. We denote by Fix(𝑆) the set of fixed
points of 𝑆 and by R the set of all real numbers. A mapping𝑉

is called strongly positive on𝐻 if there exists a constant 𝛾 > 0

such that

⟨𝑉𝑥, 𝑥⟩ ≥ 𝛾‖𝑥‖
2
, ∀𝑥 ∈ 𝐻. (1)

A mapping 𝑆 : 𝐶 → 𝐻 is called 𝐿-Lipschitz continuous if
there exists a constant 𝐿 ≥ 0 such that

󵄩󵄩󵄩󵄩𝑆𝑥 − 𝑆𝑦
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶. (2)

In particular, if 𝐿 = 1 then 𝑆 is called a nonexpansive
mapping; if 𝐿 ∈ [0, 1) then 𝐴 is called a contraction.

Let 𝐴 : 𝐶 → 𝐻 be a nonlinear mapping on 𝐶. We
consider the following variational inequality problem (VIP):
find a point 𝑥 ∈ 𝐶 such that

⟨𝐴𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (3)

The solution set of VIP (3) is denoted by VI(𝐶, 𝐴).
TheVIP (3)was first discussed byLions [1] andnow iswell

known; there are a lot of different approaches towards solv-
ing VIP (3) in finite-dimensional and infinite-dimensional
spaces, and the research is intensively continued. The VIP
(3) has many applications in computational mathematics,
mathematical physics, operations research, mathematical
economics, optimization theory, and other fields; see, for
example, [2–5]. It is well known that if𝐴 is stronglymonotone
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and Lipschitz-continuous mapping on 𝐶, then VIP (3) has a
unique solution. Not only are the existence and uniqueness
of solutions important topics in the study of VIP (3), but
also how to actually find a solution of VIP (3) is important.
Up to now, there have been many iterative algorithms in the
literature, for finding approximate solutions of VIP (3) and its
extended versions; see, for example, [6–11].

In 1976, Korpelevič [12] proposed an iterative algorithm
for solving the VIP (3) in Euclidean space R𝑛:

𝑦
𝑛 = 𝑃𝐶 (𝑥𝑛 − 𝜏𝐴𝑥𝑛) ,

𝑥
𝑛+1

= 𝑃
𝐶
(𝑥
𝑛
− 𝜏𝐴𝑦

𝑛
) , ∀𝑛 ≥ 0,

(4)

with 𝜏 > 0 a given number, which is known as the
extragradient method. The literature on the VIP is vast
and Korpelevich’s extragradient method has received great
attention given by many authors, who improved it in various
ways; see, for example, [10, 11, 13–23] and references therein,
to name but a few.

Let 𝜑 : 𝐶 → R be a real-valued function, 𝐴 : 𝐻 → 𝐻

a nonlinear mapping, and Θ : 𝐶 × 𝐶 → R a bifunction. In
2008, Peng and Yao [18] introduced the following generalized
mixed equilibrium problem (GMEP) of finding 𝑥 ∈ 𝐶 such
that

Θ(𝑥, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑥) + ⟨𝐴𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶.

(5)

We denote the set of solutions of GMEP (5) by
GMEP(Θ, 𝜑, 𝐴). The GMEP (5) is very general in
the sense that it includes, as special cases, optimization
problems, variational inequalities, minimax problems,
Nash equilibrium problems in noncooperative games, and
others. The GMEP is further considered and studied; see, for
example, [20, 23–28].

If 𝜑 = 0, then GMEP (5) reduces to the generalized
equilibrium problem (GEP) which is to find 𝑥 ∈ 𝐶 such that

Θ(𝑥, 𝑦) + ⟨𝐴𝑥, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (6)

It is introduced and studied by S. Takahashi andW. Takahashi
[29]. The set of solutions of GEP is denoted by GEP(Θ, 𝐴).

If𝐴 = 0, thenGMEP (5) reduces to themixed equilibrium
problem (MEP) which is to find 𝑥 ∈ 𝐶 such that

Θ(𝑥, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑥) ≥ 0, ∀𝑦 ∈ 𝐶. (7)

It is considered and studied in [30–32].The set of solutions of
MEP is denoted by MEP(Θ, 𝜑).

If𝜑 = 0,𝐴 = 0, thenGMEP (5) reduces to the equilibrium
problem (EP) which is to find 𝑥 ∈ 𝐶 such that

Θ(𝑥, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (8)

It is considered and studied in [33, 34]. The set of solutions
of EP is denoted by EP(Θ). It is worth mentioning that the
EP is a unifiedmodel of several problems, namely, variational
inequality problems, optimization problems, saddle point
problems, complementarity problems, fixed point problems,
Nash equilibrium problems, and so forth.

Throughout this paper, we assume as in [18] that Θ : 𝐶 ×

𝐶 → R is a bifunction satisfying conditions (H1)–(H4) and
𝜑 : 𝐶 → R is a lower semicontinuous and convex function
with restriction (H5), where

(H1) Θ(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐶;

(H2) Θ is monotone; that is, Θ(𝑥, 𝑦) + Θ(𝑦, 𝑥) ≤ 0 for any
𝑥, 𝑦 ∈ 𝐶;

(H3) Θ is upper-hemicontinuous; that is, for each 𝑥, 𝑦, 𝑧 ∈

𝐶,

lim sup
𝑡→0
+

Θ(𝑡𝑧 + (1 − 𝑡) 𝑥, 𝑦) ≤ Θ (𝑥, 𝑦) ; (9)

(H4) Θ(𝑥, ⋅) is convex and lower semicontinuous for each
𝑥 ∈ 𝐶;

(H5) for each 𝑥 ∈ 𝐻 and 𝑟 > 0 there exists a bounded sub-
set𝐷𝑥 ⊂ 𝐶 and 𝑦𝑥 ∈ 𝐶 such that, for any 𝑧 ∈ 𝐶 \ 𝐷𝑥,

Θ(𝑧, 𝑦
𝑥
) + 𝜑 (𝑦𝑥) − 𝜑 (𝑧) +

1

𝑟
⟨𝑦𝑥 − 𝑧, 𝑧 − 𝑥⟩ < 0. (10)

Given a positive number 𝑟 > 0, let 𝑆(Θ,𝜑)
𝑟

: 𝐻 → 𝐶 be the
solution set of the auxiliary mixed equilibrium problem; that
is, for each 𝑥 ∈ 𝐻,

𝑆
(Θ,𝜑)

𝑟
(𝑥) := {𝑦 ∈ 𝐶 : Θ (𝑦, 𝑧) + 𝜑 (𝑧) − 𝜑 (𝑦)

+
1

𝑟
⟨𝐾
󸀠
(𝑦) − 𝐾

󸀠
(𝑥) , 𝑧 − 𝑦⟩ ≥ 0, ∀𝑧 ∈ 𝐶} .

(11)

In particular, whenever 𝐾(𝑥) = (1/2)‖𝑥‖
2, ∀𝑥 ∈ 𝐻, 𝑆(Θ,𝜑)

𝑟
is

rewritten as 𝑇(Θ,𝜑)
𝑟

.
LetΘ1, Θ2 : 𝐶 ×𝐶 → R be two bifunctions and𝐴1, 𝐴2 :

𝐶 → 𝐻 two nonlinear mappings. Consider the following
system of generalized equilibrium problems (SGEP): find
(𝑥
∗
, 𝑦
∗
) ∈ 𝐶 × 𝐶 such that

Θ
1 (𝑥
∗
, 𝑥) + ⟨𝐴1𝑦

∗
, 𝑥 − 𝑥

∗
⟩

+
1

]
1

⟨𝑥
∗
− 𝑦
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

Θ
2
(𝑦
∗
, 𝑦) + ⟨𝐴

2
𝑥
∗
, 𝑦 − 𝑦

∗
⟩

+
1

]2
⟨𝑦
∗
− 𝑥
∗
, 𝑦 − 𝑦

∗
⟩ ≥ 0, ∀𝑦 ∈ 𝐶,

(12)

where ]
1 > 0 and ]2 > 0 are two constants. It is introduced

and studied in [19]. Whenever Θ1 ≡ Θ2 ≡ 0, the SGEP
reduces to a system of variational inequalities, which is
considered and studied in [13]. It is worth mentioning that
the system of variational inequalities is a tool to solve the
Nash equilibrium problem for noncooperative games.

In 2010, Ceng and Yao [19] transformed the SGEP into a
fixed point problem in the following way.
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Proposition CY (see [19]). Let Θ
1
, Θ
2

: 𝐶 × 𝐶 → R be
two bifunctions satisfying conditions (H1)–(H4) and let 𝐴

𝑘
:

𝐶 → 𝐻 be 𝜁
𝑘
-inverse strongly monotone for 𝑘 = 1, 2. Let

]
𝑘
∈ (0, 2𝜁

𝑘
) for 𝑘 = 1, 2. Then (𝑥

∗
, 𝑦
∗
) ∈ 𝐶 × 𝐶 is a solution

of SGEP (12) if and only if 𝑥
∗ is a fixed point of the mapping

𝐺 : 𝐶 → 𝐶 defined by𝐺 = 𝑇
Θ
1

]
1

(𝐼−]
1
𝐴
1
)𝑇
Θ
2

]
2

(𝐼−]
2
𝐴
2
), where

𝑦
∗
= 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)𝑥
∗. Here, one denotes the fixed point set of

𝐺 by 𝑆𝐺𝐸𝑃(𝐺).
Let {𝑇

𝑛
}
∞

𝑛=1
be an infinite family of nonexpansive map-

pings on 𝐻 and {𝜆
𝑛
}
∞

𝑛=1
a sequence of nonnegative numbers

in [0, 1]. For any 𝑛 ≥ 1, define a mapping𝑊
𝑛
on𝐻 as follows:

𝑈
𝑛,𝑛+1 = 𝐼,

𝑈
𝑛,𝑛

= 𝜆
𝑛
𝑇
𝑛
𝑈
𝑛,𝑛+1

+ (1 − 𝜆
𝑛
) 𝐼,

𝑈
𝑛,𝑛−1

= 𝜆
𝑛−1

𝑇
𝑛−1

𝑈
𝑛,𝑛

+ (1 − 𝜆
𝑛−1

) 𝐼,

...

𝑈
𝑛,𝑘

= 𝜆
𝑘
𝑇
𝑘
𝑈
𝑛,𝑘+1

+ (1 − 𝜆
𝑘
) 𝐼,

𝑈
𝑛,𝑘−1

= 𝜆
𝑘−1

𝑇
𝑘−1

𝑈
𝑛,𝑘

+ (1 − 𝜆
𝑘−1

) 𝐼,

...

𝑈
𝑛,2

= 𝜆
2
𝑇
2
𝑈
𝑛,3

+ (1 − 𝜆
2
) 𝐼,

𝑊𝑛 = 𝑈𝑛,1 = 𝜆1𝑇1𝑈𝑛,2 + (1 − 𝜆1) 𝐼.

(13)

Such a mapping 𝑊
𝑛
is called the 𝑊-mapping generated by

𝑇
𝑛
, 𝑇
𝑛−1

, . . . , 𝑇
1
and 𝜆

𝑛
, 𝜆
𝑛−1

, . . . , 𝜆
1
.

In 2011, for the case where𝐶 = 𝐻, Yao et al. [25] proposed
the following hybrid iterative algorithm:

Θ(𝑦
𝑛
, 𝑧) + 𝜑 (𝑧) − 𝜑 (𝑦

𝑛
)

+
1

𝑟
⟨𝐾
󸀠
(𝑦
𝑛
) − 𝐾
󸀠
(𝑥
𝑛
) , 𝑧 − 𝑦

𝑛
⟩ ≥ 0, 𝑧 ∈ 𝐻,

𝑥
𝑛+1

= 𝛼
𝑛
(𝑢 + 𝛾𝑓 (𝑥

𝑛
)) + 𝛽

𝑛
𝑥
𝑛

+ ((1 − 𝛽𝑛) 𝐼 − 𝛼𝑛 (𝐼 + 𝜇𝑉))𝑊𝑛𝑦𝑛, ∀𝑛 ≥ 1,

(14)
where 𝑓 : 𝐻 → 𝐻 is a contraction, 𝐾 : 𝐻 → R is differen-
tiable and strongly convex, {𝛼

𝑛
}, {𝛽
𝑛
} ⊂ (0, 1), and 𝑥

0
, 𝑢 ∈ 𝐻

are given, for finding a common element of the setMEP(Θ, 𝜑)

and the fixed point set ∩∞
𝑛=1

Fix(𝑇
𝑛
) of an infinite family of

nonexpansivemappings {𝑇
𝑛
}
∞

𝑛=1
on𝐻.They proved the strong

convergence of the sequence generated by the hybrid iterative
algorithm (14) to a point𝑥∗ ∈ Ω := ∩

∞

𝑛=1
Fix(𝑇𝑛) ∩MEP(Θ, 𝜑)

under some appropriate conditions. This point 𝑥∗ also solves
the following optimization problem:

min
𝑥∈Ω

𝜇

2
⟨𝑉𝑥, 𝑥⟩ +

1

2
‖𝑥 − 𝑢‖

2
− ℎ (𝑥) , (15)

where ℎ : 𝐻 → R is the potential function of 𝛾𝑓.

Let 𝑓 : 𝐻 → 𝐻 be a contraction and 𝑉 a strongly
positive bounded linear operator on 𝐻. Assume that 𝜑 :

𝐻 → R is a lower semicontinuous and convex functional,
that Θ,Θ

1
, Θ
2

: 𝐻 × 𝐻 → R satisfy conditions (H1)–
(H4), and that 𝐴,𝐴

1
, 𝐴
2

: 𝐻 → 𝐻 are inverse strongly
monotone. Let the mapping 𝐺 be defined as in Proposition
CY. Very recently, Ceng et al. [20] introduced the following
hybrid extragradient-like iterative algorithm:

𝑧𝑛 = 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝑥𝑛 − 𝑟𝑛𝐴𝑥𝑛) ,

𝑥𝑛+1 = 𝛼𝑛 (𝑢 + 𝛾𝑓 (𝑥𝑛)) + 𝛽𝑛𝑥𝑛

+ ((1 − 𝛽
𝑛
) 𝐼 − 𝛼

𝑛
(𝐼 + 𝜇𝑉))𝑊

𝑛
𝐺𝑧
𝑛
, ∀𝑛 ≥ 0,

(16)

for finding a common solution of GMEP (5), SGEP (12), and
the fixed point problem of an infinite family of nonexpansive
mappings {𝑇

𝑛
}
∞

𝑛=1
on 𝐻, where {𝑟

𝑛
} ⊂ (0,∞), {𝛼

𝑛
}, {𝛽
𝑛
} ⊂

(0, 1), ]
𝑘

∈ (0, 2𝜁
𝑘
), 𝑘 = 1, 2, and 𝑥

0
, 𝑢 ∈ 𝐻 are given.

The authors proved the strong convergence of the sequence
generated by the hybrid iterative algorithm (16) to a point
𝑥
∗

∈ Ω := ∩
∞

𝑛=1
Fix(𝑇
𝑛
) ∩ GMEP(Θ, 𝜑, 𝐴) ∩ SGEP(𝐺)

under some suitable conditions. This point 𝑥∗ also solves the
following optimization problem:

min
𝑥∈Ω

𝜇

2
⟨𝑉𝑥, 𝑥⟩ +

1

2
‖𝑥 − 𝑢‖

2
− ℎ (𝑥) , (17)

where ℎ : 𝐻 → R is the potential function of 𝛾𝑓.
On the other hand, let 𝐶 be a nonempty subset of a

normed space 𝑋. A mapping 𝑆 : 𝐶 → 𝐶 is called uniformly
Lipschitzian if there exists a constantL > 0 such that

󵄩󵄩󵄩󵄩𝑆
𝑛
𝑥 − 𝑆
𝑛
𝑦
󵄩󵄩󵄩󵄩 ≤ L

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑛 ≥ 1, ∀𝑥, 𝑦 ∈ 𝐶. (18)

Recently, Kim and Xu [35] introduced the concept of asymp-
totically 𝑘-strict pseudocontractive mappings in a Hilbert
space as below.

Definition 1. Let 𝐶 be a nonempty subset of a Hilbert space
𝐻. A mapping 𝑆 : 𝐶 → 𝐶 is said to be an asymptotically 𝑘-
strict pseudocontractive mapping with sequence {𝛾

𝑛
} if there

exist a constant 𝑘 ∈ [0, 1) and a sequence {𝛾
𝑛
} in [0,∞) with

lim𝑛→∞𝛾𝑛 = 0 such that

󵄩󵄩󵄩󵄩𝑆
𝑛
𝑥 − 𝑆
𝑛
𝑦
󵄩󵄩󵄩󵄩

2
≤ (1 + 𝛾

𝑛
)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

+ 𝑘
󵄩󵄩󵄩󵄩𝑥 − 𝑆

𝑛
𝑥 − (𝑦 − 𝑆

𝑛
𝑦)

󵄩󵄩󵄩󵄩

2
,

∀𝑛 ≥ 1, ∀𝑥, 𝑦 ∈ 𝐶.

(19)

They studied weak and strong convergence theorems
for this class of mappings. It is important to note that
every asymptotically 𝑘-strict pseudocontractive mapping
with sequence {𝛾

𝑛
} is a uniformly L-Lipschitzian mapping

with L = sup{(𝑘 + √1 + (1 − 𝑘)𝛾
𝑛
)/(1 + 𝑘) : 𝑛 ≥ 1}.
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Subsequently, Sahu et al. [36] considered the concept of
asymptotically 𝑘-strict pseudocontractive mappings in the
intermediate sense, which are not necessarily Lipschitzian.

Definition 2. Let 𝐶 be a nonempty subset of a Hilbert space
𝐻. A mapping 𝑆 : 𝐶 → 𝐶 is said to be an asymptotically 𝑘-
strict pseudocontractive mapping in the intermediate sense
with sequence {𝛾

𝑛
} if there exist a constant 𝑘 ∈ [0, 1) and a

sequence {𝛾𝑛} in [0,∞) with lim𝑛→∞𝛾𝑛 = 0 such that

lim sup
𝑛→∞

sup
𝑥,𝑦∈𝐶

(
󵄩󵄩󵄩󵄩𝑆
𝑛
𝑥 − 𝑆
𝑛
𝑦
󵄩󵄩󵄩󵄩

2
− (1 + 𝛾𝑛)

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

−𝑘
󵄩󵄩󵄩󵄩𝑥 − 𝑆

𝑛
𝑥 − (𝑦 − 𝑆

𝑛
𝑦)

󵄩󵄩󵄩󵄩

2
) ≤ 0.

(20)

Put 𝑐
𝑛
:= max{0, sup

𝑥,𝑦∈𝐶
(‖𝑆
𝑛
𝑥 − 𝑆
𝑛
𝑦‖
2
−(1+𝛾

𝑛
)‖𝑥 − 𝑦‖

2
−

𝑘‖𝑥 − 𝑆
𝑛
𝑥 − (𝑦 − 𝑆

𝑛
𝑦)‖
2
)}. Then 𝑐𝑛 ≥ 0 (∀𝑛 ≥ 1), 𝑐𝑛 →

0 (𝑛 → ∞), and (13) reduces to the relation
󵄩󵄩󵄩󵄩𝑆
𝑛
𝑥 − 𝑆
𝑛
𝑦
󵄩󵄩󵄩󵄩

2
≤ (1 + 𝛾𝑛)

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

+ 𝑘
󵄩󵄩󵄩󵄩𝑥 − 𝑆

𝑛
𝑥 − (𝑦 − 𝑆

𝑛
𝑦)

󵄩󵄩󵄩󵄩

2
+ 𝑐
𝑛
,

∀𝑛 ≥ 1, ∀𝑥, 𝑦 ∈ 𝐶.

(21)

Whenever 𝑐
𝑛

= 0 for all 𝑛 ≥ 1 in (21) then 𝑆 is
an asymptotically 𝑘-strict pseudocontractive mapping with
sequence {𝛾𝑛}. In 2009, Sahu et al. [36] derived the weak and
strong convergence of the modifiedMann iteration processes
for an asymptotically 𝑘-strict pseudocontractive mapping in
the intermediate sense with sequence {𝛾𝑛}. More precisely,
they first established one weak convergence theorem for the
following iterative scheme:

𝑥1 = 𝑥 ∈ 𝐶 chosen arbitrarily,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑆
𝑛
𝑥
𝑛
, ∀𝑛 ≥ 1,

(22)

where 0 < 𝛿 ≤ 𝛼
𝑛
≤ 1 − 𝑘 − 𝛿, ∑∞

𝑛=1
𝛼
𝑛
𝑐
𝑛
< ∞, and ∑

∞

𝑛=1
𝛾
𝑛
<

∞, and then obtained another strong convergence theorem
for the following iterative scheme:

𝑥
1
= 𝑥 ∈ 𝐶 chosen arbitrary,

𝑦
𝑛
= (1 − 𝛼

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑆
𝑛
𝑥
𝑛
,

𝐶
𝑛
= {𝑧 ∈ 𝐶 :

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2
≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2
+ 𝜃
𝑛
} ,

𝑄
𝑛
= {𝑧 ∈ 𝐶 : ⟨𝑥

𝑛
− 𝑧, 𝑥 − 𝑥

𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛
∩𝑄
𝑛

𝑥, ∀𝑛 ≥ 1,

(23)

where 0 < 𝛿 ≤ 𝛼𝑛 ≤ 1 − 𝑘, 𝜃𝑛 = 𝑐𝑛 + 𝛾𝑛Δ 𝑛, and
Δ
𝑛 = sup{‖𝑥𝑛 − 𝑧‖

2
: 𝑧 ∈ Fix(𝑆)} < ∞. Subsequently,

the above iterative schemes are extended to develop new
iterative algorithms for finding a common solution of the
VIP and the fixed point problem of an asymptotically strict
pseudocontractivemapping in the intermediate sense; see, for
example, [10, 22].

In 2009, Yao et al. [30] proposed and analyzed iterative
algorithms for finding a common element of the set of fixed

points of an asymptotically 𝑘-strict pseudocontraction and
the set of solutions of a mixed equilibrium problem in a real
Hilbert space. Very recently, motivated by Yao et al. [30], Cai
and Bu [26] introduced and analyzed the following iterative
algorithm by the hybrid shrinking projection method:

pick any 𝑥0 ∈ 𝐻,

set 𝐶
1
= 𝐶, 𝑥

1
= 𝑃
𝐶
1

𝑥
0
,

𝑢
𝑛
= 𝑇
(Θ
𝑀
,𝜑
𝑀
)

𝑟
𝑀,𝑛

(𝐼 − 𝑟
𝑀,𝑛

𝐴
𝑀
) 𝑇
(Θ
𝑀−1
,𝜑
𝑀−1
)

𝑟
𝑀−1,𝑛

× (𝐼 − 𝑟
𝑀−1,𝑛

𝐴
𝑀−1

) ⋅ ⋅ ⋅ 𝑇
(Θ
1
,𝜑
1
)

𝑟
1,𝑛

(𝐼 − 𝑟
1,𝑛

𝐴
1
) 𝑥
𝑛
,

𝑧
𝑛
= 𝑃
𝐶
(𝐼 − 𝜆

𝑁,𝑛
𝐵
𝑁
)

× 𝑃𝐶 (𝐼 − 𝜆𝑁−1,𝑛𝐵𝑁−1) ⋅ ⋅ ⋅ 𝑃𝐶 (𝐼 − 𝜆2,𝑛𝐵2)

× 𝑃
𝐶
(𝐼 − 𝜆

1,𝑛
𝐵
1
) 𝑢
𝑛
,

𝑘𝑛 = 𝛿𝑛𝑧𝑛 + (1 − 𝛿𝑛) 𝑆
𝑛
𝑧𝑛,

𝑦
𝑛
= (1 − 𝛼

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑘
𝑛
,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
:
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2
≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2
+ 𝜃
𝑛
} ,

𝑥
𝑛+1 = 𝑃𝐶

𝑛+1

𝑥0, ∀𝑛 ≥ 0,

(24)

for finding a common element of the set
∩
𝑀

𝑘=1
GMEP(Θ

𝑘
, 𝜑
𝑘
, 𝐴
𝑘
) of solutions of finitely many gener-

alized mixed equilibrium problems, the set ∩𝑁
𝑖=1

VI(𝐶, 𝐵𝑖) of
solutions of finitely many variational inequalities for inverse
strong monotone mappings {𝐵

𝑖
}
𝑁

𝑖=1
, and the set Fix(𝑆) of

fixed points of an asymptotically 𝑘-strict pseudocontractive
mapping 𝑆 in the intermediate sense (provided that
Ω = ∩

𝑀

𝑘=1
GMEP(Θ

𝑘
, 𝜑
𝑘
, 𝐴
𝑘
) ∩ ∩

𝑁

𝑖=1
VI(𝐶, 𝐵

𝑖
) ∩ Fix(𝑆) is

nonempty and bounded), where 𝜃
𝑛

= 𝛾
𝑛
Δ
2

𝑛
+ 𝑐
𝑛
, Δ
𝑛

=

sup{‖𝑥
𝑛
−𝑝‖ : 𝑝 ∈ Ω} < ∞, {𝜆

𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂ (0, 2𝜂

𝑖
), {𝑟
𝑘,𝑛

} ⊂

[𝑒
𝑘
, 𝑓
𝑘
] ⊂ (0, 2𝜇

𝑘
), 𝑖 ∈ {1, 2, . . . , 𝑁}, 𝑘 ∈ {1, 2, . . . ,𝑀}. It

was proven in [26] that under appropriate conditions {𝑥
𝑛
}

converge strongly to 𝑃
Ω
𝑥
0
.

Motivated and inspired by the above facts, we first
introduce and analyze one iterative algorithm by using a
composite shrinking projectionmethod for finding a solution
of the system of generalized equilibria with constraints of
several problems: a generalized mixed equilibrium problem,
finitely many variational inequalities, and the common fixed
point problem of an asymptotically strict pseudocontractive
mapping in the intermediate sense and infinitely many
nonexpansive mappings in a real Hilbert space. We prove
strong convergence theorem for the iterative algorithm under
suitable conditions. On the other hand, we also propose
another iterative algorithm involving no shrinking projection
method and derive its weak convergence undermild assump-
tions. Our results improve and extend the corresponding
results in the earlier and recent literature.
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2. Preliminaries

Let𝐻 be a real Hilbert space whose inner product and norm
are denoted by ⟨⋅, ⋅⟩ and ‖⋅‖, respectively. Let𝐶 be a nonempty
closed convex subset of𝐻. We use the notations 𝑥𝑛 ⇀ 𝑥 and
𝑥𝑛 → 𝑥 to indicate the weak convergence of {𝑥𝑛} to 𝑥 and
the strong convergence of {𝑥𝑛} to 𝑥, respectively. Moreover,
we use 𝜔𝑤(𝑥𝑛) to denote the weak 𝜔-limit set of {𝑥𝑛}; that is,

𝜔𝑤 (𝑥𝑛) := {𝑥 ∈ 𝐻 : 𝑥𝑛
𝑖

⇀ 𝑥 for some

subsequence {𝑥
𝑛
𝑖

} of {𝑥
𝑛
}} .

(25)

Definition 3. A mapping 𝐴 : 𝐶 → 𝐻 is called

(i) monotone if

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝐶; (26)

(ii) 𝜂-strongly monotone if there exists a constant 𝜂 > 0

such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 𝜂
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
, ∀𝑥, 𝑦 ∈ 𝐶; (27)

(iii) 𝜁-inverse strongly monotone if there exists a constant
𝜁 > 0 such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 𝜁
󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩

2
, ∀𝑥, 𝑦 ∈ 𝐶. (28)

It is easy to see that the projection 𝑃
𝐶 is 1-inverse strongly

monotone. The inverse strongly monotone (also referred to
as cocoercive) operators have been applied widely in solving
practical problems in various fields.

Definition 4. A differentiable function𝐾 : 𝐻 → R is called

(i) convex if

𝐾(𝑦) − 𝐾 (𝑥) ≥ ⟨𝐾
󸀠
(𝑥) , 𝑦 − 𝑥⟩ , ∀𝑥, 𝑦 ∈ 𝐻, (29)

where𝐾󸀠(𝑥) is the Fréchet derivative of𝐾 at 𝑥;
(ii) strongly convex if there exists a constant 𝜎 > 0 such

that

𝐾(𝑦) − 𝐾 (𝑥) − ⟨𝐾
󸀠
(𝑥) , 𝑦 − 𝑥⟩ ≥

𝜎

2

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2
, ∀𝑥, 𝑦 ∈ 𝐻.

(30)

It is easy to see that if 𝐾 : 𝐻 → R is a differentiable
strongly convex function with constant 𝜎 > 0 then𝐾

󸀠
: 𝐻 →

𝐻 is strongly monotone with constant 𝜎 > 0.

Themetric (or nearest point) projection from𝐻 onto𝐶 is
the mapping 𝑃𝐶 : 𝐻 → 𝐶which assigns to each point 𝑥 ∈ 𝐻

the unique point 𝑃𝐶𝑥 ∈ 𝐶 satisfying the property
󵄩󵄩󵄩󵄩𝑥 − 𝑃

𝐶
𝑥
󵄩󵄩󵄩󵄩 = inf
𝑦∈𝐶

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 =: 𝑑 (𝑥, 𝐶) . (31)

Some important properties of projections are gathered in
the following proposition.

Proposition 5. For given 𝑥 ∈ 𝐻 and 𝑧 ∈ 𝐶,

(i) 𝑧 = 𝑃
𝐶
𝑥 ⇔ ⟨𝑥 − 𝑧, 𝑦 − 𝑧⟩ ≤ 0, ∀𝑦 ∈ 𝐶;

(ii) 𝑧 = 𝑃
𝐶
𝑥 ⇔ ‖𝑥 − 𝑧‖

2
≤ ‖𝑥 − 𝑦‖

2
− ‖𝑦 − 𝑧‖

2, ∀𝑦 ∈ 𝐶;

(iii) ⟨𝑃
𝐶
𝑥 − 𝑃
𝐶
𝑦, 𝑥 − 𝑦⟩ ≥ ‖𝑃

𝐶
𝑥 − 𝑃
𝐶
𝑦‖
2, ∀𝑦 ∈ 𝐻. (This

implies that 𝑃
𝐶
is nonexpansive and monotone.)

By using the technique of [32], we can readily obtain the
following elementary result.

Proposition 6 (see [20, Lemma 1 and Proposition 1]). Let 𝐶
be a nonempty closed convex subset of a real Hilbert space 𝐻

and let 𝜑 : 𝐶 → R be a lower semicontinuous and convex
function. Let Θ : 𝐶 × 𝐶 → R be a bifunction satisfying the
conditions (H1)–(H4). Assume that

(i) 𝐾 : 𝐻 → R is strongly convex with constant 𝜎 > 0

and the function 𝑥 󳨃→ ⟨𝑦 − 𝑥,𝐾
󸀠
(𝑥)⟩ is weakly upper

semicontinuous for each 𝑦 ∈ 𝐻;
(ii) for each 𝑥 ∈ 𝐻 and 𝑟 > 0 there exists a bounded subset

𝐷
𝑥
⊂ 𝐶 and 𝑦

𝑥
∈ 𝐶 such that, for any 𝑧 ∈ 𝐶 \ 𝐷

𝑥
,

Θ(𝑧, 𝑦
𝑥
) + 𝜑 (𝑦

𝑥
) − 𝜑 (𝑧)

+
1

𝑟
⟨𝐾
󸀠
(𝑧) − 𝐾

󸀠
(𝑥) , 𝑦𝑥 − 𝑧⟩ < 0.

(32)

Then the following hold:

(a) for each 𝑥 ∈ 𝐻, 𝑆
(Θ,𝜑)

𝑟
(𝑥) ̸= 0;

(b) 𝑆(Θ,𝜑)
𝑟

is single valued;

(c) 𝑆(Θ,𝜑)
𝑟

is nonexpansive if𝐾󸀠 is Lipschitz continuous with
constant ] > 0 and

⟨𝐾
󸀠
(𝑥
1
) − 𝐾
󸀠
(𝑥
2
) , 𝑢
1
− 𝑢
2
⟩

≤ ⟨𝐾
󸀠
(𝑢
1
) − 𝐾
󸀠
(𝑢
2
) , 𝑢
1
− 𝑢
2
⟩ ,

∀ (𝑥
1, 𝑥2) ∈ 𝐻 × 𝐻,

(33)

where 𝑢
𝑖
= 𝑆
(Θ,𝜑)

𝑟
(𝑥
𝑖
) for 𝑖 = 1, 2;

(d) for all 𝑠, 𝑡 > 0 and 𝑥 ∈ 𝐻,

⟨𝐾
󸀠
(𝑆
(Θ,𝜑)

𝑠
𝑥) − 𝐾

󸀠
(𝑆
(Θ,𝜑)

𝑡
𝑥) , 𝑆
(Θ,𝜑)

𝑠
𝑥 − 𝑆
(Θ,𝜑)

𝑡
𝑥⟩

≤
𝑠 − 𝑡

𝑠
⟨𝐾
󸀠
(𝑆
(Θ,𝜑)

𝑠
𝑥) − 𝐾

󸀠
(𝑥) , 𝑆

(Θ,𝜑)

𝑠
𝑥 − 𝑆
(Θ,𝜑)

𝑡
𝑥⟩ ;

(34)

(e) Fix(𝑆(Θ,𝜑)
𝑟

) = MEP(Θ, 𝜑);
(f) MEP(Θ, 𝜑) is closed and convex.

Remark 7. In Proposition 6, whenever Θ : 𝐶 × 𝐶 → R is a
bifunction satisfying the conditions (H1)–(H4) and 𝐾(𝑥) =

(1/2)‖𝑥‖
2, ∀𝑥 ∈ 𝐻, we have, for any 𝑥, 𝑦 ∈ 𝐻,

󵄩󵄩󵄩󵄩󵄩
𝑆
(Θ,𝜑)

𝑟
𝑥 − 𝑆
(Θ,𝜑)

𝑟
𝑦
󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨𝑆
(Θ,𝜑)

𝑟
𝑥 − 𝑆
(Θ,𝜑)

𝑟
𝑦, 𝑥 − 𝑦⟩ (35)
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(𝑆(Θ,𝜑)
𝑟

is firmly nonexpansive) and

󵄩󵄩󵄩󵄩󵄩󵄩
𝑆
(Θ,𝜑)

𝑠
𝑥 − 𝑆
(Θ,𝜑)

𝑡
𝑥
󵄩󵄩󵄩󵄩󵄩󵄩
≤

|𝑠 − 𝑡|

𝑠

󵄩󵄩󵄩󵄩󵄩
𝑆
(Θ,𝜑)

𝑠
𝑥 − 𝑥

󵄩󵄩󵄩󵄩󵄩
,

∀𝑠, 𝑡 > 0, 𝑥 ∈ 𝐻.

(36)

In this case, 𝑆(Θ,𝜑)
𝑟

is rewritten as 𝑇(Θ,𝜑)
𝑟

. If, in addition, 𝜑 ≡ 0,
then 𝑇

(Θ,𝜑)

𝑟
is rewritten as 𝑇

Θ

𝑟
; see [19, Lemma 2.1] for more

details.

We need some facts and tools in a real Hilbert space 𝐻

which are listed as lemmas below.

Lemma 8. Let 𝑋 be a real inner product space. Then the
following inequality holds:

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2
≤ ‖𝑥‖

2
+ 2 ⟨𝑦, 𝑥 + 𝑦⟩ , ∀𝑥, 𝑦 ∈ 𝑋. (37)

Lemma 9. Let 𝐻 be a real Hilbert space. Then the following
hold:

(a) ‖𝑥 − 𝑦‖
2
= ‖𝑥‖

2
− ‖𝑦‖
2
− 2⟨𝑥 − 𝑦, 𝑦⟩ for all 𝑥, 𝑦 ∈ 𝐻;

(b) ‖𝜆𝑥 + 𝜇𝑦‖
2
= 𝜆‖𝑥‖

2
+𝜇‖𝑦‖

2
−𝜆𝜇‖𝑥 − 𝑦‖

2 for all 𝑥, 𝑦 ∈

𝐻 and 𝜆, 𝜇 ∈ [0, 1] with 𝜆 + 𝜇 = 1;
(c) if {𝑥𝑛} is a sequence in 𝐻 such that 𝑥𝑛 ⇀ 𝑥, it follows

that

lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
󵄩󵄩󵄩󵄩

2
= lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
, ∀𝑦 ∈ 𝐻.

(38)

We have the following crucial lemmas concerning the 𝑊-
mappings defined by (13).

Lemma 10 (see [37, Lemma 3.2]). Let {𝑇
𝑛
}
∞

𝑛=1
be a sequence

of nonexpansive self-mappings on𝐻 such that ∩∞
𝑛=1

Fix(𝑇
𝑛
) ̸= 0

and let {𝜆
𝑛
} be a sequence in (0, 𝑏] for some 𝑏 ∈ (0, 1).Then, for

every 𝑥 ∈ 𝐻 and 𝑘 ≥ 1 the limit lim
𝑛→∞

𝑈
𝑛,𝑘

𝑥 exists, where
𝑈
𝑛,𝑘

is defined by (13).

Lemma 11 (see [37, Lemma 3.3]). Let {𝑇
𝑛
}
∞

𝑛=1
be a sequence of

nonexpansive self-mappings on 𝐻 such that ∩∞
𝑛=1

Fix(𝑇
𝑛
) ̸= 0,

and let {𝜆
𝑛
} be a sequence in (0, 𝑏] for some 𝑏 ∈ (0, 1). Then

Fix(𝑊) = ∩
∞

𝑛=1
Fix(𝑇
𝑛
).

Lemma 12 (see [38, Demiclosedness principle]). Let 𝐶 be a
nonempty closed convex subset of a real Hilbert space𝐻. Let 𝑇
be a nonexpansive self-mapping on𝐶.Then 𝐼−𝑇 is demiclosed.
That is, whenever {𝑥

𝑛
} is a sequence in 𝐶 weakly converging to

some 𝑥 ∈ 𝐶 and the sequence {(𝐼 − 𝑇)𝑥𝑛} strongly converges
to some 𝑦, it follows that (𝐼 − 𝑇)𝑥 = 𝑦. Here 𝐼 is the identity
operator of𝐻.

Lemma 13. Let 𝐴 : 𝐶 → 𝐻 be a monotone mapping. In the
context of the variational inequality problem the characteriza-
tion of the projection (see Proposition 5(i)) implies

𝑢 ∈ VI (𝐶, 𝐴) ⇐⇒ 𝑢 = 𝑃
𝐶 (𝑢 − 𝜆𝐴𝑢) , 𝜆 > 0. (39)

Lemma 14 (see [36, Lemma 2.5]). Let 𝐻 be a real Hilbert
space. Given a nonempty closed convex subset of 𝐻 and points
𝑥, 𝑦, 𝑧 ∈ 𝐻 and given also a real number 𝑎 ∈ R, the set

{V ∈ 𝐶 :
󵄩󵄩󵄩󵄩𝑦 − V󵄩󵄩󵄩󵄩

2
≤ ‖𝑥 − V‖2 + ⟨𝑧, V⟩ + 𝑎} (40)

is convex (and closed).

Recall that a set-valued mapping 𝑇 : 𝐷(𝑇) ⊂ 𝐻 → 2
𝐻 is

called monotone if, for all 𝑥, 𝑦 ∈ 𝐷(𝑇), 𝑓 ∈ 𝑇𝑥 and 𝑔 ∈ 𝑇𝑦

imply

⟨𝑓 − 𝑔, 𝑥 − 𝑦⟩ ≥ 0. (41)

A set-valued mapping 𝑇 is called maximal monotone if 𝑇 is
monotone and (𝐼+𝜆𝑇)𝐷(𝑇) = 𝐻 for each𝜆 > 0, where 𝐼 is the
identity mapping of 𝐻. We denote by 𝐺(𝑇) the graph of 𝑇. It
is known that a monotone mapping 𝑇 is maximal if and only
if, for (𝑥, 𝑓) ∈ 𝐻×𝐻, ⟨𝑓−𝑔, 𝑥−𝑦⟩ ≥ 0 for every (𝑦, 𝑔) ∈ 𝐺(𝑇)

implies 𝑓 ∈ 𝑇𝑥. Let𝐴 : 𝐶 → 𝐻 be a monotone, 𝑘-Lipschitz-
continuous mapping, and let𝑁

𝐶
V be the normal cone to 𝐶 at

V ∈ 𝐶; that is,

𝑁
𝐶
V = {𝑤 ∈ 𝐻 : ⟨V − 𝑢, 𝑤⟩ ≥ 0, ∀𝑢 ∈ 𝐶} . (42)

Define

𝑇V = {
𝐴V + 𝑁𝐶V, if V ∈ 𝐶,

0, if V ∉ 𝐶.
(43)

Then, 𝑇 is maximal monotone and 0 ∈ 𝑇V if and only if V ∈

VI(𝐶, 𝐴); see [39].

Lemma 15 (see [36, Lemma 2.6]). Let𝐶 be a nonempty subset
of a Hilbert space 𝐻 and 𝑆 : 𝐶 → 𝐶 an asymptotically
𝑘-strict pseudocontractive mapping in the intermediate sense
with sequence {𝛾

𝑛
}. Then

󵄩󵄩󵄩󵄩𝑆
𝑛
𝑥 − 𝑆
𝑛
𝑦
󵄩󵄩󵄩󵄩 ≤

1

1 − 𝑘

× (𝑘
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

+√(1 + (1 − 𝑘) 𝛾𝑛)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
+ (1 − 𝑘) 𝑐𝑛)

(44)

for all 𝑥, 𝑦 ∈ 𝐶 and 𝑛 ≥ 1.

Lemma 16 (see [36, Lemma 2.7]). Let𝐶 be a nonempty subset
of a Hilbert space 𝐻 and 𝑆 : 𝐶 → 𝐶 a uniformly continu-
ous asymptotically 𝑘-strict pseudocontractive mapping in the
intermediate sense with sequence {𝛾𝑛}. Let {𝑥𝑛} be a sequence
in 𝐶 such that ‖𝑥𝑛 − 𝑥𝑛+1‖ → 0 and ‖𝑥𝑛 − 𝑆

𝑛
𝑥𝑛‖ → 0 as

𝑛 → ∞. Then ‖𝑥𝑛 − 𝑆𝑥𝑛‖ → 0 as 𝑛 → ∞.

Lemma 17 (see Demiclosedness principle [36, Proposition
3.1]). Let 𝐶 be a nonempty closed convex subset of a Hilbert
space 𝐻 and 𝑆 : 𝐶 → 𝐶 a continuous asymptotically
𝑘-strict pseudocontractive mapping in the intermediate sense
with sequence {𝛾

𝑛
}. Then 𝐼−𝑆 is demiclosed at zero in the sense

that if {𝑥
𝑛
} is a sequence in 𝐶 such that 𝑥

𝑛
⇀ 𝑥 ∈ 𝐶 and

lim sup
𝑚→∞

lim sup
𝑛→∞

‖𝑥
𝑛
− 𝑆
𝑚
𝑥
𝑛
‖ = 0, then (𝐼 − 𝑆)𝑥 = 0.
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Lemma 18 (see [36, Proposition 3.2]). Let 𝐶 be a nonempty
closed convex subset of aHilbert space𝐻 and 𝑆 : 𝐶 → 𝐶 a con-
tinuous asymptotically 𝑘-strict pseudocontractive mapping in
the intermediate sense with sequence {𝛾

𝑛
} such that Fix(𝑆) ̸= 0.

Then Fix(𝑆) is closed and convex.

Remark 19. Lemmas 17 and 18 give some basic properties of
an asymptotically 𝑘-strict pseudocontractive mapping in the
intermediate sense with sequence {𝛾𝑛}. Moreover, Lemma 17
extends the Demiclosedness principles studied for certain
classes of nonlinear mappings in Kim and Xu [35], Górnicki
[40], Xu [41], and Marino and Xu [42].

Lemma 20 (see [43, page 80]). Let {𝑎𝑛}
∞

𝑛=1
, {𝑏𝑛}
∞

𝑛=1
, and

{𝛿𝑛}
∞

𝑛=1
be sequences of nonnegative real numbers satisfying the

inequality

𝑎
𝑛+1

≤ (1 + 𝛿
𝑛) 𝑎𝑛 + 𝑏

𝑛
, ∀𝑛 ≥ 1. (45)

If ∑∞
𝑛=1

𝛿
𝑛
< ∞ and ∑

∞

𝑛=1
𝑏
𝑛
< ∞, then lim

𝑛→∞
𝑎
𝑛
exists. If,

in addition, {𝑎
𝑛
}
∞

𝑛=1
has a subsequence which converges to zero,

then lim
𝑛→∞

𝑎
𝑛
= 0.

Recall that a Banach space 𝑋 is said to satisfy the Opial
condition [38] if, for any given sequence {𝑥

𝑛
} ⊂ 𝑋 which

converges weakly to an element 𝑥 ∈ 𝑋, there holds the
inequality

lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩 < lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑦 ∈ 𝑋, 𝑦 ̸= 𝑥.

(46)

It is well known in [38] that every Hilbert space 𝐻 satisfies
the Opial condition.

Lemma 21 (see [22, Proposition 3.1]). Let 𝐶 be a nonempty
closed convex subset of a real Hilbert space𝐻 and let {𝑥

𝑛
} be a

sequence in𝐻. Suppose that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2
≤ (1 + 𝜆

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛿
𝑛
, ∀𝑝 ∈ 𝐶, 𝑛 ≥ 1,

(47)

where {𝜆
𝑛
} and {𝛿

𝑛
} are sequences of nonnegative real numbers

such that ∑
∞

𝑛=1
𝜆
𝑛

< ∞ and ∑
∞

𝑛=1
𝛿
𝑛

< ∞. Then {𝑃
𝐶
𝑥
𝑛
}

converges strongly in 𝐶.

Lemma 22 (see [44]). Let𝐶 be a closed convex subset of a real
Hilbert space 𝐻. Let {𝑥

𝑛
} be a sequence in 𝐻 and 𝑢 ∈ 𝐻. Let

𝑞 = 𝑃
𝐶
𝑢. If {𝑥

𝑛
} is such that 𝜔

𝑤
(𝑥
𝑛
) ⊂ 𝐶 and satisfies the

condition
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑢 − 𝑞

󵄩󵄩󵄩󵄩 , ∀𝑛, (48)

then 𝑥
𝑛

→ 𝑞 as 𝑛 → ∞.

3. Strong Convergence Theorem

In this section, we will introduce and analyze one iterative
algorithm by using a composite shrinking projectionmethod
for finding a solution of the system of generalized equilibria
with constraints of several problems: a generalized mixed

equilibrium problem, finitely many variational inequalities,
and the common fixed point problem of an asymptotically
strict pseudocontractive mapping in the intermediate sense
and infinitely many nonexpansive mappings in a real Hilbert
space. Under appropriate conditions we will prove strong
convergence of the proposed algorithm.

Theorem 23. Let 𝐶 be a nonempty closed convex subset of
a real Hilbert space 𝐻. Let 𝑁 be an integer. Let Θ, Θ1, Θ2
be three bifunctions from 𝐶 × 𝐶 to R satisfying (H1)–(H4)
and let 𝜑 : 𝐶 → R be a lower semicontinuous and convex
functional. Let 𝐴,𝐴𝑘 : 𝐻 → 𝐻 and 𝐵𝑖 : 𝐶 → 𝐻 be 𝜁-
inverse strongly monotone, 𝜁𝑘-inverse strongly monotone, and
𝜂𝑖-inverse strongly monotone, respectively, where 𝑘 ∈ {1, 2}

and 𝑖 ∈ {1, 2, . . . , 𝑁}. Let 𝑆 : 𝐶 → 𝐶 be a uniformly con-
tinuous asymptotically 𝑘-strict pseudocontractive mapping in
the intermediate sense for some 0 ≤ 𝑘 < 1 with sequence
{𝛾
𝑛
} ⊂ [0,∞) such that lim

𝑛→∞
𝛾
𝑛
= 0 and {𝑐

𝑛
} ⊂ [0,∞) such

that lim
𝑛→∞

𝑐
𝑛
= 0. Let {𝑇

𝑛
}
∞

𝑛=1
be a sequence of nonexpansive

mappings on 𝐻 and {𝜆
𝑛
} a sequence in (0, 𝑏] for some 𝑏 ∈

(0, 1). Let 𝑉 be a 𝛾-strongly positive bounded linear operator
with 𝛾 ∈ (1, 2]. Let 𝑊

𝑛
be the 𝑊-mapping defined by (13).

Assume thatΩ := ∩
∞

𝑛=1
Fix(𝑇
𝑛
)∩𝐺𝑀𝐸𝑃(Θ, 𝜑, 𝐴)∩𝑆𝐺𝐸𝑃(𝐺)∩

∩
𝑁

𝑖=1
VI(𝐶, 𝐵𝑖) ∩ Fix(𝑆) is nonempty and bounded where 𝐺 is

defined as in Proposition CY. Let {𝑟𝑛} be a sequence in [0, 2𝜁]

and {𝛼𝑛}, {𝛽𝑛}, {𝜎𝑛}, and {𝛿
𝑛
} sequences in [0, 1] such that

lim
𝑛→∞

𝜎
𝑛

= 0, 0 < 𝛼 ≤ 𝛼
𝑛

≤ 1, and 𝑘 ≤ 𝛿
𝑛

≤ 𝑑 < 1.
Pick any 𝑥

0
∈ 𝐻 and set 𝐶

1
= 𝐶, 𝑥

1
= 𝑃
𝐶
1

𝑥
0
. Let {𝑥

𝑛
} be a

sequence generated by the following algorithm:

𝑢
𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
,

V
𝑛
= 𝑃
𝐶
(𝐼 − 𝜆

𝑁,𝑛
𝐵
𝑁
)

× 𝑃𝐶 (𝐼 − 𝜆𝑁−1,𝑛𝐵𝑁−1) ⋅ ⋅ ⋅ 𝑃𝐶 (𝐼 − 𝜆1,𝑛𝐵1) 𝑢𝑛,

𝑧
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ 𝜎
𝑛
𝐺V
𝑛
+ [(1 − 𝛽

𝑛
) 𝐼 − 𝜎

𝑛
𝑉]𝑊
𝑛
𝐺V
𝑛
,

𝑘
𝑛
= 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
) 𝑆
𝑛
𝑧
𝑛
,

𝑦𝑛 = (1 − 𝛼𝑛) 𝑥𝑛 + 𝛼𝑛𝑘𝑛,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
:
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2
≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2
+ 𝜃
𝑛
} ,

𝑥𝑛+1 = 𝑃𝐶
𝑛+1

𝑥0, ∀𝑛 ≥ 1,

(49)

where 𝜃
𝑛
= (𝜎
𝑛
+ 𝛾
𝑛
)(1 + 𝛾

𝑛
)Δ
𝑛
+ 𝑐
𝑛
, Δ
𝑛
= sup{‖𝑥

𝑛
− 𝑝‖
2
+

‖(𝐼 − 𝑉)𝑝‖
2
/(𝛾 − 1) : 𝑝 ∈ Ω} < ∞, ]𝑘 ∈ (0, 2𝜁𝑘), 𝑘 ∈ {1, 2},

and {𝜆𝑖,𝑛} ⊂ [𝑎𝑖, 𝑏𝑖] ⊂ (0, 2𝜂𝑖), ∀𝑖 ∈ {1, 2, . . . , 𝑁}. Assume that
the following conditions are satisfied:

(i) 𝐾 : 𝐻 → R is strongly convexwith constant𝜎 > 0 and
its derivative 𝐾

󸀠 is Lipschitz continuous with constant
] > 0 such that the function 𝑥 󳨃→ ⟨𝑦 − 𝑥,𝐾

󸀠
(𝑥)⟩ is

weakly upper semicontinuous for each 𝑦 ∈ 𝐻;
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(ii) for each 𝑥 ∈ 𝐻, there exists a bounded subset 𝐷
𝑥
⊂ 𝐶

and 𝑧
𝑥
∈ 𝐶 such that, for any 𝑦 ∉ 𝐷

𝑥
,

Θ(𝑦, 𝑧
𝑥
) + 𝜑 (𝑧

𝑥
) − 𝜑 (𝑦)

+
1

𝑟
⟨𝐾
󸀠
(𝑦) − 𝐾

󸀠
(𝑥) , 𝑧𝑥 − 𝑦⟩ < 0;

(50)

(iii) 0 < lim inf
𝑛→∞

𝛽
𝑛

≤ lim sup
𝑛→∞

𝛽
𝑛

< 1 and 0 <

lim inf
𝑛→∞

𝑟
𝑛
≤ lim sup

𝑛→∞
𝑟
𝑛
< 2𝜁.

Then {𝑥
𝑛
} converges strongly to 𝑥

∗
= 𝑃
Ω
𝑥
0
provided that 𝑆(Θ,𝜑)

𝑟

is firmly nonexpansive.

Proof. As lim
𝑛→∞

𝜎
𝑛

= 0, 0 < lim inf
𝑛→∞

𝛽
𝑛

≤

lim sup
𝑛→∞

𝛽
𝑛

< 1 and 0 < lim inf
𝑛→∞

𝑟
𝑛

≤

lim sup
𝑛→∞

𝑟
𝑛

< 2𝜁, we may assume, without loss of
generality, that {𝛽

𝑛
} ⊂ [𝑎, 𝑎] ⊂ [0, 1], {𝑟

𝑛
} ⊂ [𝑐, 𝑐] ⊂ (0, 2𝜁)

and 𝛽
𝑛
+ 𝜎
𝑛
‖𝑉‖ ≤ 1 for all 𝑛 ≥ 1. Since 𝑉 is a 𝛾-strongly

positive bounded linear operator on𝐻, we know that

‖𝑉‖ = sup {⟨𝑉𝑢, 𝑢⟩ : 𝑢 ∈ 𝐻, ‖𝑢‖ = 1} ≥ 𝛾 > 1. (51)

Taking into account that 𝛽
𝑛
+𝜎
𝑛
‖𝑉‖ ≤ 1 for all 𝑛 ≥ 1, we have

⟨((1 − 𝛽
𝑛) 𝐼 − 𝜎𝑛𝑉) 𝑢, 𝑢⟩ = 1 − 𝛽𝑛 − 𝜎𝑛 ⟨𝑉𝑢, 𝑢⟩

≥ 1 − 𝛽
𝑛
− 𝜎
𝑛 ‖𝑉‖

≥ 0;

(52)

that is, (1 − 𝛽
𝑛)𝐼 − 𝜎𝑛𝑉 is positive. It follows that

󵄩󵄩󵄩󵄩(1 − 𝛽
𝑛
) 𝐼 − 𝜎

𝑛
𝑉
󵄩󵄩󵄩󵄩

= sup {⟨((1 − 𝛽
𝑛
) 𝐼 − 𝜎

𝑛
𝑉) 𝑢, 𝑢⟩ : 𝑢 ∈ 𝐻, ‖𝑢‖ = 1}

= sup {1 − 𝛽
𝑛
− 𝜎
𝑛 ⟨𝑉𝑢, 𝑢⟩ : 𝑢 ∈ 𝐻, ‖𝑢‖ = 1}

≤ 1 − 𝛽
𝑛
− 𝜎
𝑛
𝛾.

(53)

Put

Λ
𝑖

𝑛
= 𝑃
𝐶
(𝐼 − 𝜆

𝑖,𝑛
𝐵
𝑖
) 𝑃
𝐶
(𝐼 − 𝜆

𝑖−1,𝑛
𝐵
𝑖−1

) ⋅ ⋅ ⋅ 𝑃
𝐶
(𝐼 − 𝜆

1,𝑛
𝐵
1
)

(54)

for all 𝑖 ∈ {1, 2, . . . , 𝑁}, and Λ
0

𝑛
= 𝐼, where 𝐼 is the identity

mapping on𝐻. Then we have V
𝑛
= Λ
𝑁

𝑛
𝑢
𝑛
.

We divide the rest of the proof into several steps.

Step 1. We show that {𝑥
𝑛
} is well defined. It is obvious that

𝐶
𝑛
is closed and convex. As the defining inequality in 𝐶

𝑛
is

equivalent to the inequality

⟨2 (𝑥
𝑛
− 𝑦
𝑛
) , 𝑧⟩ ≤

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑦𝑛

󵄩󵄩󵄩󵄩

2
+ 𝜃
𝑛
, (55)

by Lemma 14 we know that 𝐶
𝑛
is convex for every 𝑛 ≥ 1.

First of all, let us show thatΩ ⊂ 𝐶
𝑛
for all 𝑛 ≥ 1. Suppose

that Ω ⊂ 𝐶
𝑛
for some 𝑛 ≥ 1. Take 𝑝 ∈ Ω arbitrarily. Since

𝑝 = 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝑝 − 𝑟
𝑛
𝐴𝑝), 𝐴 is 𝜁-inverse strongly monotone, and

0 ≤ 𝑟
𝑛
≤ 2𝜁, we have, for any 𝑛 ≥ 1,

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴)𝑥
𝑛
− 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴)𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩(𝐼 − 𝑟

𝑛
𝐴) 𝑥
𝑛
− (𝐼 − 𝑟

𝑛
𝐴)𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(𝑥𝑛 − 𝑝) − 𝑟𝑛 (𝐴𝑥𝑛 − 𝐴𝑝)

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
− 2𝑟
𝑛
⟨𝑥
𝑛
− 𝑝, 𝐴𝑥

𝑛
− 𝐴𝑝⟩

+ 𝑟
2

𝑛

󵄩󵄩󵄩󵄩𝐴𝑥
𝑛
− 𝐴𝑝

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
− 2𝑟
𝑛
𝜁
󵄩󵄩󵄩󵄩𝐴𝑥
𝑛
− 𝐴𝑝

󵄩󵄩󵄩󵄩

2

+ 𝑟
2

𝑛

󵄩󵄩󵄩󵄩𝐴𝑥
𝑛
− 𝐴𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑟
𝑛
(𝑟
𝑛
− 2𝜁)

󵄩󵄩󵄩󵄩𝐴𝑥
𝑛
− 𝐴𝑝

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
.

(56)

Since 𝑝 = 𝑃
𝐶
(𝐼 − 𝜆

𝑖,𝑛
𝐵
𝑖
)𝑝, Λ𝑖

𝑛
𝑝 = 𝑝, and 𝐵

𝑖
is 𝜂
𝑖
-inverse

strongly monotone, where 𝜆
𝑖,𝑛

∈ (0, 2𝜂
𝑖
), 𝑖 ∈ {1, 2, . . . , 𝑁}, by

Proposition 5(iii) we deduce that for each 𝑛 ≥ 1

󵄩󵄩󵄩󵄩V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑃
𝐶 (𝐼 − 𝜆𝑁,𝑛𝐵𝑁) Λ

𝑁−1

𝑛
𝑢𝑛 − 𝑃𝐶 (𝐼 − 𝜆𝑁,𝑛𝐵𝑁) Λ

𝑁−1

𝑛
𝑝
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝜆

𝑁,𝑛
𝐵
𝑁
) Λ
𝑁−1

𝑛
𝑢
𝑛
− (𝐼 − 𝜆

𝑁,𝑛
𝐵
𝑁
) Λ
𝑁−1

𝑛
𝑝
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
Λ
𝑁−1

𝑛
𝑢
𝑛
− Λ
𝑁−1

𝑛
𝑝
󵄩󵄩󵄩󵄩󵄩

...

≤
󵄩󵄩󵄩󵄩󵄩
Λ
0

𝑛
𝑥𝑛 − Λ

0

𝑛
𝑝
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩 .

(57)

Combining (56) and (57), we have

󵄩󵄩󵄩󵄩V𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 . (58)

Since𝑝 = 𝐺𝑝 = 𝑇
Θ
1

]
1

(𝐼−]
1
𝐴
1
)𝑇
Θ
2

]
2

(𝐼−]
2
𝐴
2
)𝑝,𝐴
𝑘
is 𝜁
𝑘
-inverse

strongly monotone, for 𝑘 = 1, 2, and 0 ≤ ]
𝑘
≤ 2𝜁
𝑘
for 𝑘 = 1, 2,
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we deduce that, for any 𝑛 ≥ 1,

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑇
Θ
1

]
1

(𝐼 − ]
1
𝐴
1
) 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) V
𝑛

−𝑇
Θ
1

]
1

(𝐼 − ]
1
𝐴
1
) 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
(𝐼 − ]

1
𝐴
1
) 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) V
𝑛

− (𝐼 − ]1𝐴1) 𝑇
Θ
2

]
2

(𝐼 − ]2𝐴2) 𝑝
󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
[𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) V
𝑛
− 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑝]

−]
1 [𝐴1𝑇

Θ
2

]
2

(𝐼 − ]2𝐴2) V𝑛 − 𝐴1𝑇
Θ
2

]
2

(𝐼 − ]2𝐴2) 𝑝]
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) V
𝑛
− 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+ ]
1
(]
1
− 2𝜁
1
)

×
󵄩󵄩󵄩󵄩󵄩
𝐴
1𝑇
Θ
2

]
2

(𝐼 − ]2𝐴2)V𝑛 − 𝐴1𝑇
Θ
2

]
2

(𝐼 − ]2𝐴2)𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) V
𝑛
− 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩(𝐼 − ]

2
𝐴
2
) V
𝑛
− (𝐼 − ]

2
𝐴
2
) 𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(V𝑛 − 𝑝) − ]2 (𝐴2V𝑛 − 𝐴2𝑝)

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ ]
2
(]
2
− 2𝜁
2
)
󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴

2
𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
.

(59)

(This shows that 𝐺 is nonexpansive.) Also, from (49), (53),
(58), and (59) it follows that

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝛽𝑛 (𝑥𝑛 − 𝑝) + 𝜎

𝑛
(𝐺V
𝑛
− 𝑝) + [(1 − 𝛽

𝑛
) 𝐼 − 𝜎

𝑛
𝑉]

× (𝑊𝑛𝐺V𝑛 − 𝑝) + 𝜎𝑛 (𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝜎
𝑛

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩[(1 − 𝛽

𝑛) 𝐼 − 𝜎𝑛𝑉] (𝑊𝑛𝐺V𝑛 − 𝑝)
󵄩󵄩󵄩󵄩

+ 𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝜎
𝑛

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ (1 − 𝛽
𝑛
− 𝜎
𝑛
𝛾)

󵄩󵄩󵄩󵄩𝑊𝑛𝐺V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝛾
𝑛

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ (1 − 𝛽
𝑛
− 𝛾
𝑛
𝛾)

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

= 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + (1 − 𝛽

𝑛
− 𝜎
𝑛
(𝛾 − 1))

×
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + (1 − 𝛽

𝑛
− 𝜎
𝑛
(𝛾 − 1))

×
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + (1 − 𝛽

𝑛
− 𝜎
𝑛
(𝛾 − 1))

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

= (1 − 𝜎
𝑛
(𝛾 − 1))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

= (1 − 𝜎
𝑛
(𝛾 − 1))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝜎
𝑛
(𝛾 − 1)

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

𝛾 − 1
,

(60)

which hence yields

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
≤ (1 − 𝜎𝑛 (𝛾 − 1))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝜎𝑛 (𝛾 − 1)

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

2

(𝛾 − 1)
2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

2

𝛾 − 1
.

(61)

By Lemma 9(b), we deduce from (49) and (61) that

󵄩󵄩󵄩󵄩𝑘𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛿𝑛 (𝑧𝑛 − 𝑝) + (1 − 𝛿𝑛) (𝑆

𝑛
𝑧𝑛 − 𝑝)

󵄩󵄩󵄩󵄩

2

= 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛿

𝑛
)
󵄩󵄩󵄩󵄩𝑆
𝑛
𝑧
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛿𝑛 (1 − 𝛿𝑛)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑆

𝑛
𝑧𝑛

󵄩󵄩󵄩󵄩

2

≤ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛿

𝑛
)

× [(1 + 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑘

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑆
𝑛
𝑧
𝑛

󵄩󵄩󵄩󵄩

2
+ 𝑐
𝑛
]

− 𝛿
𝑛
(1 − 𝛿

𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑆

𝑛
𝑧
𝑛

󵄩󵄩󵄩󵄩

2

= [1 + 𝛾
𝑛
(1 − 𝛿

𝑛
)]

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛿

𝑛
)

× (𝑘 − 𝛿
𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑆

𝑛
𝑧
𝑛

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛿

𝑛
) 𝑐
𝑛

≤ (1 + 𝛾𝑛)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛿𝑛)

× (𝑘 − 𝛿
𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑆

𝑛
𝑧
𝑛

󵄩󵄩󵄩󵄩

2
+ 𝑐
𝑛

≤ (1 + 𝛾𝑛)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑐𝑛

≤ (1 + 𝛾
𝑛
)(

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ 𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

2

𝛾 − 1
) + 𝑐
𝑛
.

(62)
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So, from (49) and (62) we get

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(1 − 𝛼

𝑛
) (𝑥
𝑛
− 𝑝) + 𝛼

𝑛
(𝑘
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑘𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
[(1 + 𝛾

𝑛
) (

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ 𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

2

𝛾 − 1
) + 𝑐
𝑛
]

≤ (1 + 𝛾
𝑛
) (

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ 𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

2

𝛾 − 1
) + 𝑐
𝑛

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛾𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 + 𝛾
𝑛
) 𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

2

𝛾 − 1
+ 𝑐
𝑛

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛾𝑛 (1 + 𝛾𝑛)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝜎
𝑛
(1 + 𝛾

𝑛
)

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

2

𝛾 − 1
+ 𝑐
𝑛

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (𝛾𝑛 + 𝜎𝑛) (1 + 𝛾𝑛)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (𝜎
𝑛
+ 𝛾
𝑛
) (1 + 𝛾

𝑛
)

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

2

𝛾 − 1
+ 𝑐
𝑛

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (𝜎
𝑛
+ 𝛾
𝑛
) (1 + 𝛾

𝑛
)

× (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

2

𝛾 − 1
) + 𝑐
𝑛

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (𝜎
𝑛
+ 𝛾
𝑛
) (1 + 𝛾

𝑛
) Δ
𝑛
+ 𝑐
𝑛

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝜃
𝑛
,

(63)

where 𝜃
𝑛
= (𝜎
𝑛
+𝛾
𝑛
)(1+𝛾

𝑛
)Δ
𝑛
+𝑐
𝑛
and Δ

𝑛
= sup{‖𝑥

𝑛
− 𝑝‖
2
+

‖(𝐼 − 𝑉)𝑝‖
2
/(𝛾 − 1) : 𝑝 ∈ Ω} < ∞. Hence 𝑝 ∈ 𝐶

𝑛+1
. This

implies that Ω ⊂ 𝐶
𝑛
for all 𝑛 ≥ 1. Therefore, {𝑥

𝑛
} is well

defined.

Step 2. We prove that ‖𝑥
𝑛
− 𝑘
𝑛
‖ → 0, ‖𝑥

𝑛
− 𝑧
𝑛
‖ → 0, and

‖𝑆
𝑛
𝑧
𝑛
− 𝑧
𝑛
‖ → 0 as 𝑛 → ∞.

Indeed, let 𝑥∗ = 𝑃
Ω
𝑥
0
. From 𝑥

𝑛
= 𝑃
𝐶
𝑛

𝑥
0
and 𝑥

∗
∈ Ω ⊂

𝐶
𝑛
, we obtain

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥0
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥
∗
− 𝑥0

󵄩󵄩󵄩󵄩 . (64)

This implies that {𝑥
𝑛} is bounded and hence {𝑢𝑛}, {V𝑛}, {𝑧𝑛},

{𝑘𝑛}, and {𝑦
𝑛
} are also bounded. Since 𝑥

𝑛+1
∈ 𝐶
𝑛+1

⊂ 𝐶
𝑛
and

𝑥𝑛 = 𝑃𝐶
𝑛

𝑥0, we have
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

0

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

0

󵄩󵄩󵄩󵄩 , ∀𝑛 ≥ 1. (65)

Therefore lim
𝑛→∞

‖𝑥
𝑛
− 𝑥
0
‖ exists. From 𝑥

𝑛
= 𝑃
𝐶
𝑛

𝑥
0
, 𝑥
𝑛+1

∈

𝐶
𝑛+1

⊂ 𝐶
𝑛
, by Proposition 5(ii) we obtain
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

2
≤

󵄩󵄩󵄩󵄩𝑥0 − 𝑥
𝑛+1

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑥0 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

2
, (66)

which implies

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (67)

It follows from𝑥
𝑛+1

∈ 𝐶
𝑛+1

that ‖𝑦
𝑛
− 𝑥
𝑛+1

‖
2
≤ ‖𝑥
𝑛
− 𝑥
𝑛+1

‖
2
+

𝜃
𝑛
and hence

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩

2

≤ 2 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦

𝑛

󵄩󵄩󵄩󵄩

2
)

≤ 2 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩

2
+ 𝜃
𝑛
)

= 2 (2
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩

2
+ 𝜃
𝑛
) .

(68)

From (67) and lim
𝑛→∞𝜃𝑛 = 0, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
𝑛

󵄩󵄩󵄩󵄩 = 0. (69)

Since 𝑦
𝑛
− 𝑥
𝑛
= 𝛼
𝑛
(𝑘
𝑛
− 𝑥
𝑛
) and 0 < 𝛼 ≤ 𝛼

𝑛
≤ 1, we have

𝛼
󵄩󵄩󵄩󵄩𝑘𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 ≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑘𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 , (70)

which immediately leads to

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑘𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (71)

Also, utilizing Lemmas 8 and 9(b) we obtain from (49), (58),
(59), and (62) that

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛽𝑛𝑥𝑛 + 𝜎

𝑛
𝐺V
𝑛
+ [(1 − 𝛽

𝑛
) 𝐼 − 𝜎

𝑛
𝑉]𝑊
𝑛
𝐺V
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛽𝑛 (𝑥𝑛 − 𝑝) + (1 − 𝛽

𝑛
) (𝑊
𝑛
𝐺V
𝑛
− 𝑝)

+𝜎𝑛 (𝐺V𝑛 − 𝑉𝑊𝑛𝐺V𝑛)
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝛽𝑛 (𝑥𝑛 − 𝑝) + (1 − 𝛽

𝑛
) (𝑊
𝑛
𝐺V
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2𝜎𝑛 ⟨(𝐺V𝑛 − 𝑉𝑊𝑛𝐺V𝑛) , 𝑧𝑛 − 𝑝⟩

= 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑊𝑛𝐺V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛽𝑛 (1 − 𝛽𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑊𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛
⟨(𝐺V
𝑛
− 𝑉𝑊

𝑛
𝐺V
𝑛
) , 𝑧
𝑛
− 𝑝⟩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽𝑛)

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑊

𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝜎𝑛
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑉𝑊𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛽𝑛 (1 − 𝛽𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑊𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑉𝑊
𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩
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≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑊

𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝜎𝑛
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑉𝑊𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
− 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑊

𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑉𝑊
𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ,

(72)

and hence

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛼𝑛

󵄩󵄩󵄩󵄩𝑘𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛼𝑛 [(1 + 𝛾𝑛)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑐𝑛]

≤ (1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
[(1 + 𝛾

𝑛
)

× (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
− 𝛽
𝑛
(1 − 𝛽

𝑛
)

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑊

𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑉𝑊
𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩) + 𝑐
𝑛
]

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛼
𝑛
(1 + 𝛾

𝑛
)

× (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
− 𝛽𝑛 (1 − 𝛽𝑛)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑊𝑛𝐺V𝑛
󵄩󵄩󵄩󵄩

2

+ 2𝜎𝑛
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑉𝑊𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩) + 𝑐
𝑛

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛼
𝑛
(1 + 𝛾

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛼
𝑛
(1 + 𝛾

𝑛
) 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑊

𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩

2

+ (1 + 𝛾𝑛) 2𝜎𝑛
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑉𝑊𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝑐
𝑛

≤ (1 + 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
− 𝛼
𝑛
(1 + 𝛾

𝑛
)

× 𝛽𝑛 (1 − 𝛽𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑊𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛
(1 + 𝛾

𝑛
)
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑉𝑊

𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝑐
𝑛
.

(73)

So, it follows that

𝛼 (1 + 𝛾
𝑛) 𝑎 (1 − 𝑎)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑊𝑛𝐺V𝑛
󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛
(1 + 𝛾

𝑛
) 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑊

𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛
(1 + 𝛾

𝑛
)
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑉𝑊

𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝑐
𝑛

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩) + 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛
(1 + 𝛾

𝑛
)
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑉𝑊

𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝑐
𝑛
.

(74)

Since lim
𝑛→∞

𝜎
𝑛
= 0, lim

𝑛→∞
𝛾
𝑛
= 0, and lim

𝑛→∞
𝑐
𝑛
= 0,

it follows from (69) and the boundedness of {𝑥
𝑛
}, {𝑦
𝑛
}, {𝑧
𝑛
},

and {V
𝑛
} that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑊𝑛𝐺V𝑛
󵄩󵄩󵄩󵄩 = 0. (75)

Note that

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩(1 − 𝛽

𝑛) (𝑊𝑛𝐺V𝑛 − 𝑥𝑛) + 𝜎𝑛 (𝐺V𝑛 − 𝑉𝑊𝑛𝐺V𝑛)
󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑊𝑛𝐺V𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 + 𝜎
𝑛

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑉𝑊
𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑊𝑛𝐺V𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 + 𝜎
𝑛

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑉𝑊𝑛𝐺V𝑛
󵄩󵄩󵄩󵄩 .

(76)

Hence, it follows from (75) and lim
𝑛→∞𝜎𝑛 = 0 that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧𝑛
󵄩󵄩󵄩󵄩 = 0. (77)

Note that

󵄩󵄩󵄩󵄩𝑘𝑛 − 𝑧
𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑘𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩 . (78)

Thus, we deduce from (71) and (77) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑘𝑛 − 𝑧
𝑛

󵄩󵄩󵄩󵄩 = 0. (79)

Since 𝑘
𝑛
− 𝑧
𝑛
= (1 − 𝛿

𝑛
)(𝑆
𝑛
𝑧
𝑛
− 𝑧
𝑛
) and 𝑘 ≤ 𝛿

𝑛
≤ 𝑑 < 1, we

have

(1 − 𝑑)
󵄩󵄩󵄩󵄩𝑆
𝑛
𝑧
𝑛
− 𝑧
𝑛

󵄩󵄩󵄩󵄩 ≤ (1 − 𝛿
𝑛
)
󵄩󵄩󵄩󵄩𝑆
𝑛
𝑧
𝑛
− 𝑧
𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑘𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩 ,

(80)

which, together with (79), yields

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑆
𝑛
𝑧
𝑛
− 𝑧
𝑛

󵄩󵄩󵄩󵄩 = 0. (81)

Step 3.We prove that ‖𝑥
𝑛 − 𝑢𝑛‖ → 0, ‖𝑥𝑛 − V𝑛‖ → 0, ‖V𝑛 −

𝐺V𝑛‖ → 0, ‖𝑥𝑛−𝑊𝑥𝑛‖ → 0, and ‖𝑧𝑛−𝑆𝑧𝑛‖ → 0 as 𝑛 → ∞.
Indeed, from (57), (59), and 𝛾 ∈ (1, 2] it follows that

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛽𝑛 (𝑥𝑛 − 𝑝) + 𝜎

𝑛
(𝐺V
𝑛
− 𝑝)

+ [(1 − 𝛽𝑛) 𝐼 − 𝜎𝑛𝑉] (𝑊𝑛𝐺V𝑛 − 𝑝)

+𝜎
𝑛 (𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩

2
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≤
󵄩󵄩󵄩󵄩𝛽𝑛 (𝑥𝑛 − 𝑝) + 𝜎

𝑛
(𝐺V
𝑛
− 𝑝)

+ [(1 − 𝛽
𝑛
) 𝐼 − 𝜎

𝑛
𝑉] (𝑊

𝑛
𝐺V
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛
⟨(𝐼 − 𝑉) 𝑝, 𝑧𝑛 − 𝑝⟩

≤ [𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝜎
𝑛

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ (1 − 𝛽
𝑛
− 𝜎
𝑛
𝛾)

󵄩󵄩󵄩󵄩𝑊𝑛𝐺V𝑛 − 𝑝
󵄩󵄩󵄩󵄩]
2

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ [𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝜎
𝑛

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ (1 − 𝛽
𝑛
− 𝜎
𝑛
𝛾)

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝
󵄩󵄩󵄩󵄩]
2

+ 2𝜎𝑛
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

= [𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + (1 − 𝛽

𝑛
− 𝜎
𝑛
(𝛾 − 1))

×
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝

󵄩󵄩󵄩󵄩]
2

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ [𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝

󵄩󵄩󵄩󵄩]
2

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(82)

Next let us show that
lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛
󵄩󵄩󵄩󵄩 = 0. (83)

For 𝑝 ∈ Ω, we find that
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟𝑛𝐴) 𝑥𝑛 − 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟𝑛𝐴)𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩(𝐼 − 𝑟

𝑛
𝐴) 𝑥
𝑛
− (𝐼 − 𝑟

𝑛
𝐴)𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝 − 𝑟

𝑛
(𝐴𝑥
𝑛
− 𝐴𝑝)

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑟
𝑛
(𝑟
𝑛
− 2𝜁)

󵄩󵄩󵄩󵄩𝐴𝑥
𝑛
− 𝐴𝑝

󵄩󵄩󵄩󵄩

2
.

(84)

Combining (82) and (84), we obtain
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛽𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽𝑛)

× [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑟
𝑛
(𝑟
𝑛
− 2𝜁)

󵄩󵄩󵄩󵄩𝐴𝑥
𝑛
− 𝐴𝑝

󵄩󵄩󵄩󵄩

2
]

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
) 𝑟
𝑛
(𝑟
𝑛
− 2𝜁)

×
󵄩󵄩󵄩󵄩𝐴𝑥
𝑛
− 𝐴𝑝

󵄩󵄩󵄩󵄩

2
+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ,

(85)

which immediately implies that

(1 − 𝑎) 𝑐 (2𝜁 − 𝑐)
󵄩󵄩󵄩󵄩𝐴𝑥
𝑛
− 𝐴𝑝

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛽𝑛) 𝑟𝑛 (2𝜁 − 𝑟𝑛)
󵄩󵄩󵄩󵄩𝐴𝑥
𝑛 − 𝐴𝑝

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜎𝑛
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩)

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(86)

Since lim
𝑛→∞

𝜎
𝑛

= 0 and {𝑥
𝑛
} and {𝑧

𝑛
} are bounded

sequences, it follows from (77) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝐴𝑥
𝑛 − 𝐴𝑝

󵄩󵄩󵄩󵄩 = 0. (87)

Furthermore, from the firm nonexpansivity of 𝑆(Θ,𝜑)
𝑟
𝑛

, we have

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟𝑛𝐴) 𝑥𝑛 − 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟𝑛𝐴)𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨(𝐼 − 𝑟𝑛𝐴) 𝑥𝑛 − (𝐼 − 𝑟𝑛𝐴)𝑝, 𝑢𝑛 − 𝑝⟩

=
1

2
[
󵄩󵄩󵄩󵄩(𝐼 − 𝑟

𝑛
𝐴) 𝑥
𝑛
− (𝐼 − 𝑟

𝑛
𝐴)𝑝

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩(𝐼 − 𝑟

𝑛𝐴) 𝑥𝑛 − (𝐼 − 𝑟𝑛𝐴)𝑝 − (𝑢𝑛 − 𝑝)
󵄩󵄩󵄩󵄩

2
]

≤
1

2
[
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛
− 𝑟
𝑛
(𝐴𝑥
𝑛
− 𝐴𝑝)

󵄩󵄩󵄩󵄩

2
]

=
1

2
[
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩

2

+2𝑟
𝑛
⟨𝐴𝑥
𝑛
− 𝐴𝑝, 𝑥

𝑛
− 𝑢
𝑛
⟩ − 𝑟
2

𝑛

󵄩󵄩󵄩󵄩𝐴𝑥
𝑛
− 𝐴𝑝

󵄩󵄩󵄩󵄩

2
] ,

(88)

which leads to

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝑟
𝑛

󵄩󵄩󵄩󵄩𝐴𝑥
𝑛
− 𝐴𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢
𝑛

󵄩󵄩󵄩󵄩 .

(89)
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From (82) and (89), we have
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤ 𝛽𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽𝑛)

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽𝑛)

× [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝑟
𝑛

󵄩󵄩󵄩󵄩𝐴𝑥
𝑛
− 𝐴𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢
𝑛

󵄩󵄩󵄩󵄩]

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
− (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝑟
𝑛

󵄩󵄩󵄩󵄩𝐴𝑥
𝑛
− 𝐴𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢
𝑛

󵄩󵄩󵄩󵄩

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ,

(90)

which hence implies that
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 2𝑟𝑛

󵄩󵄩󵄩󵄩𝐴𝑥
𝑛 − 𝐴𝑝

󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩 + 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩)

+ 2𝑟
𝑛

󵄩󵄩󵄩󵄩𝐴𝑥
𝑛
− 𝐴𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢
𝑛

󵄩󵄩󵄩󵄩

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(91)

Since lim
𝑛→∞𝜎𝑛 = 0 and {𝑥𝑛}, {𝑢𝑛}, and {𝑧𝑛} are bounded

sequences, it follows from (77) and (87) that (83) holds.
Next we show that lim𝑛→∞‖𝐵𝑖Λ

𝑖

𝑛
𝑢𝑛 − 𝐵𝑖𝑝‖ = 0, 𝑖 =

1, 2, . . . , 𝑁. As a matter of fact, observe that
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖

𝑛
𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑃
𝐶 (𝐼 − 𝜆𝑖,𝑛𝐵𝑖) Λ

𝑖−1

𝑛
𝑢𝑛 − 𝑃𝐶 (𝐼 − 𝜆𝑖,𝑛𝐵𝑖) 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝜆

𝑖,𝑛
𝐵
𝑖
) Λ
𝑖−1

𝑛
𝑢
𝑛
− (𝐼 − 𝜆

𝑖,𝑛
𝐵
𝑖
) 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+ 𝜆
𝑖,𝑛

(𝜆
𝑖,𝑛

− 2𝜂
𝑖
)
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝜆
𝑖,𝑛

(𝜆
𝑖,𝑛

− 2𝜂
𝑖
)
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝜆
𝑖,𝑛

(𝜆
𝑖,𝑛

− 2𝜂
𝑖
)
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝
󵄩󵄩󵄩󵄩󵄩

2

.

(92)

Combining (59), (82), and (92), we have
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
)

× [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝜆
𝑖,𝑛

(𝜆
𝑖,𝑛

− 2𝜂
𝑖
)

×
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝
󵄩󵄩󵄩󵄩󵄩

2

]

+ 2𝜎𝑛
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
) 𝜆
𝑖,𝑛

× (𝜆
𝑖,𝑛

− 2𝜂
𝑖
)
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝
󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜎𝑛
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ,

(93)

which together with {𝜆
𝑖,𝑛} ⊂ [𝑎𝑖, 𝑏𝑖] ⊂ (0, 2𝜂𝑖), ∀𝑖 ∈

{1, 2, . . . , 𝑁}, implies that

(1 − 𝑎) 𝑎𝑖 (2𝜂𝑖 − 𝑏
𝑖
)
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛽
𝑛
) 𝜆
𝑖,𝑛

(2𝜂
𝑖
− 𝜆
𝑖,𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩)

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(94)

Since lim
𝑛→∞

𝜎
𝑛

= 0 and {𝑥
𝑛
} and {𝑧

𝑛
} are bounded

sequences, it follows from (77) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝
󵄩󵄩󵄩󵄩󵄩
= 0, 𝑖 = 1, 2, . . . , 𝑁. (95)

By Proposition 5(iii) and Lemma 9(a), we obtain

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑃
𝐶 (𝐼 − 𝜆𝑖,𝑛𝐵𝑖) Λ

𝑖−1

𝑛
𝑢𝑛 − 𝑃𝐶 (𝐼 − 𝜆𝑖,𝑛𝐵𝑖) 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨(𝐼 − 𝜆
𝑖,𝑛
𝐵
𝑖
) Λ
𝑖−1

𝑛
𝑢
𝑛
− (𝐼 − 𝜆

𝑖,𝑛
𝐵
𝑖
) 𝑝, Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝⟩
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=
1

2
(
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝜆

𝑖,𝑛
𝐵
𝑖
) Λ
𝑖−1

𝑛
𝑢
𝑛
− (𝐼 − 𝜆

𝑖,𝑛
𝐵
𝑖
) 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝜆

𝑖,𝑛
𝐵
𝑖
) Λ
𝑖−1

𝑛
𝑢
𝑛

− (𝐼 − 𝜆𝑖,𝑛𝐵𝑖) 𝑝 − (Λ
𝑖

𝑛
𝑢𝑛 − 𝑝)

󵄩󵄩󵄩󵄩󵄩

2

)

≤
1

2
(
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖

𝑛
𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛
− 𝜆
𝑖,𝑛

(𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝)

󵄩󵄩󵄩󵄩󵄩

2

)

≤
1

2
(
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛
− 𝜆
𝑖,𝑛

(𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝)

󵄩󵄩󵄩󵄩󵄩

2

)

≤
1

2
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢𝑛 − Λ

𝑖

𝑛
𝑢𝑛 − 𝜆𝑖,𝑛 (𝐵𝑖Λ

𝑖−1

𝑛
𝑢𝑛 − 𝐵𝑖𝑝)

󵄩󵄩󵄩󵄩󵄩

2

) ,

(96)

which implies

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛
− 𝜆
𝑖,𝑛

(𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝)

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢𝑛 − Λ

𝑖

𝑛
𝑢𝑛

󵄩󵄩󵄩󵄩󵄩

2

− 𝜆
2

𝑖,𝑛

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖Λ
𝑖−1

𝑛
𝑢𝑛 − 𝐵𝑖𝑝

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑖,𝑛

⟨Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛
, 𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝⟩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜆𝑖,𝑛

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢𝑛 − Λ

𝑖

𝑛
𝑢𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖Λ
𝑖−1

𝑛
𝑢𝑛 − 𝐵𝑖𝑝

󵄩󵄩󵄩󵄩󵄩
.

(97)

Combining (59), (82), and (97), we have

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽𝑛)

× [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑖,𝑛

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝
󵄩󵄩󵄩󵄩󵄩
]

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
− (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑖,𝑛

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝
󵄩󵄩󵄩󵄩󵄩

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(98)

So, we conclude that

(1 − 𝑎)
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑖,𝑛

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝
󵄩󵄩󵄩󵄩󵄩

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩)

+ 2𝑏
𝑖

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝
󵄩󵄩󵄩󵄩󵄩

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(99)

Since lim
𝑛→∞𝜎𝑛 = 0 and {𝑥𝑛}, {𝑧𝑛}, and {𝑢𝑛} are bounded,

from (77) and (95) we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0. (100)

From (100) we get
󵄩󵄩󵄩󵄩𝑢𝑛 − V

𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
Λ
0

𝑛
𝑢
𝑛
− Λ
𝑁

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
Λ
0

𝑛
𝑢
𝑛
− Λ
1

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
Λ
1

𝑛
𝑢
𝑛
− Λ
2

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩

+ ⋅ ⋅ ⋅ +
󵄩󵄩󵄩󵄩󵄩
Λ
𝑁−1

𝑛
𝑢
𝑛
− Λ
𝑁

𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩
󳨀→ 0

as 𝑛 󳨀→ ∞.

(101)

Taking into account that ‖𝑥
𝑛
− V
𝑛
‖ ≤ ‖𝑥

𝑛
−𝑢
𝑛
‖ + ‖𝑢

𝑛
− V
𝑛
‖, we

conclude from (83) and (101) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − V𝑛
󵄩󵄩󵄩󵄩 = 0. (102)

On the other hand, for simplicity, we write 𝑝 = 𝑇
Θ
2

]
2

(𝐼 −

]
2
𝐴
2
)𝑝, Ṽ
𝑛

= 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
)V
𝑛
, and 𝑤

𝑛
= 𝐺V
𝑛

= 𝑇
Θ
1

]
1

(𝐼 −

]
1
𝐴
1
)Ṽ
𝑛
for all 𝑛 ≥ 1. Then

𝑝 = 𝐺𝑝 = 𝑇
Θ
1

]
1

(𝐼 − ]1𝐴1) 𝑝

= 𝑇
Θ
1

]
1

(𝐼 − ]1𝐴1) 𝑇
Θ
2

]
2

(𝐼 − ]2𝐴2) 𝑝.
(103)
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We now show that lim
𝑛→∞

‖𝐺V
𝑛
− V
𝑛
‖ = 0; that is,

lim
𝑛→∞

‖𝑤
𝑛
− V
𝑛
‖ = 0. As a matter of fact, for 𝑝 ∈ Ω, it

follows from (58), (59), and (82) that

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ 𝛽𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽𝑛)

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

= 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽𝑛)

󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽𝑛)

× [
󵄩󵄩󵄩󵄩Ṽ𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ ]
1
(]
1
− 2𝜁
1
)
󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴

1
𝑝
󵄩󵄩󵄩󵄩

2
]

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽𝑛)

× [
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ ]
2
(]
2
− 2𝜁
2
)
󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴

2
𝑝
󵄩󵄩󵄩󵄩

2

+]
1
(]
1
− 2𝜁
1
)
󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴

1
𝑝
󵄩󵄩󵄩󵄩

2
]

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
)

× [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ ]
2
(]
2
− 2𝜁
2
)
󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴

2
𝑝
󵄩󵄩󵄩󵄩

2

+]1 (]1 − 2𝜁1)
󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴1𝑝

󵄩󵄩󵄩󵄩

2
]

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
)

× []2 (]2 − 2𝜁2)
󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴2𝑝

󵄩󵄩󵄩󵄩

2

+]
1
(]
1
− 2𝜁
1
)
󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴

1
𝑝
󵄩󵄩󵄩󵄩

2
]

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ,

(104)

which immediately yields

(1 − 𝑎) []2 (2𝜁2 − ]
2
)
󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴

2
𝑝
󵄩󵄩󵄩󵄩

2

+]
1
(2𝜁
1
− ]
1
)
󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴

1
𝑝
󵄩󵄩󵄩󵄩

2
]

≤ (1 − 𝛽
𝑛
) []
2
(2𝜁
2
− ]
2
)
󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴

2
𝑝
󵄩󵄩󵄩󵄩

2

+]
1
(2𝜁
1
− ]
1
)
󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴

1
𝑝
󵄩󵄩󵄩󵄩

2
]

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧𝑛

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩)

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(105)

Since lim
𝑛→∞

𝜎
𝑛

= 0 and {𝑥
𝑛
} and {𝑧

𝑛
} are bounded, from

(77) we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴
2
𝑝
󵄩󵄩󵄩󵄩 = 0, lim

𝑛→∞

󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴
1
𝑝
󵄩󵄩󵄩󵄩 = 0.

(106)

Also, in terms of the firm nonexpansivity of 𝑇Θ𝑘]
𝑘

and the 𝜁
𝑘
-

inverse strong monotonicity of 𝐴
𝑘
for 𝑘 = 1, 2, we obtain

from ]
𝑘
∈ (0, 2𝜁

𝑘
), 𝑘 ∈ {1, 2}, and (59) that

󵄩󵄩󵄩󵄩Ṽ𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) V
𝑛
− 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨(𝐼 − ]2𝐴2) V𝑛 − (𝐼 − ]2𝐴2) 𝑝, Ṽ𝑛 − 𝑝⟩

=
1

2
[
󵄩󵄩󵄩󵄩(𝐼 − ]

2𝐴2) V𝑛 − (𝐼 − ]2𝐴2) 𝑝
󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩Ṽ𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩(𝐼 − ]

2
𝐴
2
) V
𝑛
− (𝐼 − ]

2
𝐴
2
) 𝑝 − (Ṽ

𝑛
− 𝑝)

󵄩󵄩󵄩󵄩

2
]

≤
1

2
[
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩Ṽ𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩(V𝑛 − Ṽ𝑛) − ]2 (𝐴2V𝑛 − 𝐴2𝑝) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2
]

=
1

2
[
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩Ṽ𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩(V𝑛 − Ṽ

𝑛
) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2]
2
⟨(V
𝑛
− Ṽ
𝑛
) − (𝑝 − 𝑝) , 𝐴

2
V
𝑛
− 𝐴
2
𝑝⟩

−]2
2

󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴
2
𝑝
󵄩󵄩󵄩󵄩

2
] ,

󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝑇
Θ
1

]
1

(𝐼 − ]1𝐴1) Ṽ𝑛 − 𝑇
Θ
1

]
1

(𝐼 − ]1𝐴1) 𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨(𝐼 − ]1𝐴1) Ṽ𝑛 − (𝐼 − ]1𝐴1) 𝑝, 𝑤𝑛 − 𝑝⟩

=
1

2
[
󵄩󵄩󵄩󵄩(𝐼 − ]

1𝐴1) Ṽ𝑛 − (𝐼 − ]1𝐴1) 𝑝
󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩(𝐼 − ]

1
𝐴
1
) Ṽ
𝑛
− (𝐼 − ]

1
𝐴
1
) 𝑝 − (𝑤

𝑛
− 𝑝)

󵄩󵄩󵄩󵄩

2
]

≤
1

2
[
󵄩󵄩󵄩󵄩Ṽ𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤

𝑛
) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2]1 ⟨𝐴1Ṽ𝑛 − 𝐴1𝑝, (Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)⟩

−]2
1

󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴
1
𝑝
󵄩󵄩󵄩󵄩

2
]

≤
1

2
[
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤

𝑛
) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2]1 ⟨𝐴1Ṽ𝑛 − 𝐴1𝑝, (Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)⟩] .

(107)
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Thus, we have

󵄩󵄩󵄩󵄩Ṽ𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
≤

󵄩󵄩󵄩󵄩V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩(V𝑛 − Ṽ

𝑛
) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2]
2
⟨(V
𝑛
− Ṽ
𝑛
) − (𝑝 − 𝑝) , 𝐴

2
V
𝑛
− 𝐴
2
𝑝⟩

− ]2
2

󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴
2
𝑝
󵄩󵄩󵄩󵄩

2
,

(108)

󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
≤

󵄩󵄩󵄩󵄩V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤

𝑛
) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2]1
󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴1𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)
󵄩󵄩󵄩󵄩 .

(109)

Consequently, from (58), (104), and (108) it follows that

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
)

× [
󵄩󵄩󵄩󵄩Ṽ𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ ]1 (]1 − 2𝜁1)

󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴1𝑝
󵄩󵄩󵄩󵄩

2
]

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩Ṽ𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜎𝑛
󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
)

× [
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2]2 ⟨(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝) , 𝐴2V𝑛 − 𝐴2𝑝⟩

−]2
2

󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴
2
𝑝
󵄩󵄩󵄩󵄩

2
]

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽𝑛)

× [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩(V𝑛 − Ṽ

𝑛
) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2]
2

󵄩󵄩󵄩󵄩(V𝑛 − Ṽ
𝑛
) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴
2
𝑝
󵄩󵄩󵄩󵄩]

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
− (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩(V𝑛 − Ṽ

𝑛
) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2]
2

󵄩󵄩󵄩󵄩(V𝑛 − Ṽ
𝑛
) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴
2
𝑝
󵄩󵄩󵄩󵄩

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ,

(110)

which hence leads to

(1 − 𝑎)
󵄩󵄩󵄩󵄩(V𝑛 − Ṽ

𝑛
) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩(V𝑛 − Ṽ

𝑛
) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2]2
󵄩󵄩󵄩󵄩(V𝑛 − Ṽ𝑛) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴2𝑝
󵄩󵄩󵄩󵄩

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧𝑛

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩)

+ 2]
2

󵄩󵄩󵄩󵄩(V𝑛 − Ṽ
𝑛
) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴
2
𝑝
󵄩󵄩󵄩󵄩

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(111)

Since lim
𝑛→∞

𝜎
𝑛

= 0 and {𝑥
𝑛
}, {𝑧
𝑛
}, {V
𝑛
}, and {Ṽ

𝑛
} are

bounded sequences, we conclude from (77) and (106) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩(V𝑛 − Ṽ
𝑛
) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩 = 0. (112)

Furthermore, from (58), (104), and (109) it follows that
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤ 𝛽𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽𝑛)

󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽𝑛)

× [
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤

𝑛
) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2]
1

󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴
1
𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤
𝑛
) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩]

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽

𝑛
)

× [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤

𝑛
) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2]
1

󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴
1
𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤
𝑛
) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩]

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
− (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤

𝑛
) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2]
1

󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴
1
𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤
𝑛
) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ,

(113)

which hence yields

(1 − 𝑎)
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤

𝑛
) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛽𝑛)
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 2]
1

󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴
1
𝑝
󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩)

+ 2]
1

󵄩󵄩󵄩󵄩𝐴1Ṽ𝑛 − 𝐴
1
𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤
𝑛
) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(114)
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Since lim
𝑛→∞

𝜎
𝑛

= 0 and {𝑥
𝑛
}, {𝑧
𝑛
}, {𝑤
𝑛
}, and {Ṽ

𝑛
} are

bounded sequences, we conclude from (77) and (106) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤
𝑛) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩 = 0. (115)

Note that
󵄩󵄩󵄩󵄩V𝑛 − 𝑤

𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩(V𝑛 − Ṽ

𝑛
) − (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(Ṽ𝑛 − 𝑤

𝑛
) + (𝑝 − 𝑝)

󵄩󵄩󵄩󵄩 .

(116)

Hence from (112) and (115) we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩V𝑛 − 𝐺V
𝑛

󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩V𝑛 − 𝑤
𝑛

󵄩󵄩󵄩󵄩 = 0, (117)

then by (75), (102), and (117), we have
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑊

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑊

𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑊𝑛𝐺V𝑛 − 𝑊

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑊

𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑊𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐺V𝑛 − V𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩V𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0

as 𝑛 󳨀→ ∞.

(118)

Also, observe that
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑊𝑥

𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑊

𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑊𝑛𝑥𝑛 − 𝑊𝑥

𝑛

󵄩󵄩󵄩󵄩 . (119)

From (118), [45, Remark 3.2], and the boundedness of {𝑥
𝑛
}we

immediately obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑊𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (120)

In addition, from (67) and (77), we have
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0

as 𝑛 󳨀→ ∞.

(121)

We note that
󵄩󵄩󵄩󵄩󵄩
𝑆
𝑛
𝑧𝑛 − 𝑆

𝑛+1
𝑧𝑛

󵄩󵄩󵄩󵄩󵄩
≤

󵄩󵄩󵄩󵄩𝑆
𝑛
𝑧𝑛 − 𝑧𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧𝑛+1

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛+1 − 𝑆

𝑛+1
𝑧𝑛+1

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑆
𝑛+1

𝑧
𝑛+1

− 𝑆
𝑛+1

𝑧
𝑛

󵄩󵄩󵄩󵄩󵄩
.

(122)

From (81), (121), and Lemma 15, we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑛
𝑧𝑛 − 𝑆

𝑛+1
𝑧𝑛

󵄩󵄩󵄩󵄩󵄩
= 0. (123)

In the meantime, we note that
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑆𝑧

𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑆

𝑛
𝑧
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑆
𝑛
𝑧
𝑛
− 𝑆
𝑛+1

𝑧
𝑛

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑆
𝑛+1

𝑧
𝑛
− 𝑆𝑧
𝑛

󵄩󵄩󵄩󵄩󵄩
.

(124)

From (81), (123), and the uniform continuity of 𝑆, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑆𝑧𝑛
󵄩󵄩󵄩󵄩 = 0. (125)

Step 4.We prove that 𝑥
𝑛

→ 𝑥
∗
= 𝑃
Ω
𝑥
0
as 𝑛 → ∞.

Indeed, since {𝑥
𝑛
} is bounded, there exists a subsequence

{𝑥
𝑛
𝑖

} which converges weakly to some 𝑤. From (102), (83),
(100), and (77), we have that V

𝑛
𝑖

⇀ 𝑤, 𝑢
𝑛
𝑖

⇀ 𝑤,Λ
𝑚

𝑛
𝑖

𝑢
𝑛
𝑖

⇀ 𝑤,
and 𝑧

𝑛
𝑖

⇀ 𝑤, where 𝑚 ∈ {1, 2, . . . , 𝑁}. Since 𝑆 is uniformly
continuous, by (125) we get lim

𝑛→∞‖𝑧𝑛 − 𝑆
𝑚
𝑧𝑛‖ = 0 for any

𝑚 ≥ 1. Hence from Lemma 17, we obtain 𝑤 ∈ Fix(𝑆). In
the meantime, utilizing Lemma 12, we deduce from V𝑛

𝑖

⇀

𝑤, 𝑥𝑛
𝑖

⇀ 𝑤, (117), and (120) that 𝑤 ∈ SGEP(𝐺) and 𝑤 ∈

Fix(𝑊) = ∩
∞

𝑛=1
Fix(𝑇𝑛) (due to Lemma 11). Next, we prove

that 𝑤 ∈ ∩
𝑁

𝑚=1
VI(𝐶, 𝐵

𝑚
). As a matter of fact, let

𝑇̃
𝑚
V = {

𝐵
𝑚
V + 𝑁

𝐶
V, V ∈ 𝐶,

0, V ∉ 𝐶,
(126)

where 𝑚 ∈ {1, 2, . . . , 𝑁}. Let (V, 𝑢) ∈ 𝐺(𝑇̃
𝑚
). Since 𝑢 − 𝐵

𝑚
V ∈

𝑁𝐶V and Λ
𝑚

𝑛
𝑢
𝑛
∈ 𝐶, we have

⟨V − Λ
𝑚

𝑛
𝑢
𝑛
, 𝑢 − 𝐵

𝑚
V⟩ ≥ 0. (127)

On the other hand, from Λ
𝑚

𝑛
𝑢
𝑛
= 𝑃
𝐶
(𝐼 − 𝜆

𝑚,𝑛
𝐵
𝑚
)Λ
𝑚−1

𝑛
𝑢
𝑛
and

V ∈ 𝐶, we have

⟨V − Λ
𝑚

𝑛
𝑢𝑛, Λ
𝑚

𝑛
𝑢𝑛 − (Λ

𝑚−1

𝑛
𝑢𝑛 − 𝜆𝑚,𝑛 𝐵𝑚Λ

𝑚−1

𝑛
𝑢𝑛)⟩ ≥ 0,

(128)

and hence

⟨V − Λ
𝑚

𝑛
𝑢
𝑛
,
Λ
𝑚

𝑛
𝑢
𝑛
− Λ
𝑚−1

𝑛
𝑢
𝑛

𝜆𝑚,𝑛

+ 𝐵
𝑚
Λ
𝑚−1

𝑛
𝑢
𝑛
⟩ ≥ 0. (129)

Therefore we have

⟨V − Λ
𝑚

𝑛
𝑖

𝑢𝑛
𝑖

, 𝑢⟩

≥ ⟨V − Λ
𝑚

𝑛
𝑖

𝑢
𝑛
𝑖

, 𝐵
𝑚
V⟩

≥ ⟨V − Λ
𝑚

𝑛
𝑖

𝑢
𝑛
𝑖

, 𝐵
𝑚
V⟩

− ⟨V − Λ
𝑚

𝑛
𝑖

𝑢
𝑛
𝑖

,

Λ
𝑚

𝑛
𝑖

𝑢
𝑛
𝑖

− Λ
𝑚−1

𝑛
𝑖

𝑢
𝑛
𝑖

𝜆𝑚,𝑛
𝑖

+ 𝐵
𝑚
Λ
𝑚−1

𝑛
𝑖

𝑢
𝑛
𝑖

⟩

= ⟨V − Λ
𝑚

𝑛
𝑖

𝑢
𝑛
𝑖

, 𝐵
𝑚
V − 𝐵
𝑚
Λ
𝑚

𝑛
𝑖

𝑢
𝑛
𝑖

⟩

+ ⟨V − Λ
𝑚

𝑛
𝑖

𝑢𝑛
𝑖

, 𝐵𝑚Λ
𝑚

𝑛
𝑖

𝑢𝑛
𝑖

− 𝐵𝑚Λ
𝑚−1

𝑛
𝑖

𝑢𝑛
𝑖

⟩

− ⟨V − Λ
𝑚

𝑛
𝑖

𝑢𝑛
𝑖

,

Λ
𝑚

𝑛
𝑖

𝑢
𝑛
𝑖

− Λ
𝑚−1

𝑛
𝑖

𝑢
𝑛
𝑖

𝜆
𝑚,𝑛
𝑖

⟩

≥ ⟨V − Λ
𝑚

𝑛
𝑖

𝑢𝑛
𝑖

, 𝐵𝑚Λ
𝑚

𝑛
𝑖

𝑢𝑛
𝑖

− 𝐵𝑚Λ
𝑚−1

𝑛
𝑖

𝑢𝑛
𝑖

⟩

− ⟨V − Λ
𝑚

𝑛
𝑖

𝑢
𝑛
𝑖

,

Λ
𝑚

𝑛
𝑖

𝑢
𝑛
𝑖

− Λ
𝑚−1

𝑛
𝑖

𝑢
𝑛
𝑖

𝜆
𝑚,𝑛
𝑖

⟩.

(130)

From (100) and since 𝐵
𝑚
is uniformly continuous, we obtain

that lim
𝑛→∞‖𝐵𝑚Λ

𝑚

𝑛
𝑢𝑛 − 𝐵𝑚Λ

𝑚−1

𝑛
𝑢𝑛‖ = 0. From Λ

𝑚

𝑛
𝑖

𝑢𝑛
𝑖

⇀ 𝑤,
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{𝜆
𝑚,𝑛

} ⊂ [𝑎
𝑚
, 𝑏
𝑚
] ⊂ (0, 2𝜂

𝑚
), ∀𝑚 ∈ {1, 2, . . . , 𝑁}, and (100),

we have

⟨V − 𝑤, 𝑢⟩ ≥ 0. (131)

Since 𝑇̃
𝑚

is maximal monotone, we have 𝑤 ∈ 𝑇̃
−1

𝑚
0 and

hence 𝑤 ∈ VI(𝐶, 𝐵
𝑚
), 𝑚 = 1, 2, . . . , 𝑁, which implies 𝑤 ∈

∩
𝑁

𝑚=1
VI(𝐶, 𝐵

𝑚
).

Next, we show that 𝑤 ∈ GMEP(Θ, 𝜑, 𝐴). In fact, from
𝑢
𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴)𝑥
𝑛
, we know that

Θ(𝑢
𝑛
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑛
) + ⟨𝐴𝑥

𝑛
, 𝑦 − 𝑢

𝑛
⟩

+
1

𝑟𝑛

⟨𝐾
󸀠
(𝑢
𝑛
) − 𝐾
󸀠
(𝑥
𝑛
) , 𝑦 − 𝑢

𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶.

(132)

From (H2) it follows that

𝜑 (𝑦) − 𝜑 (𝑢𝑛) + ⟨𝐴𝑥𝑛, 𝑦 − 𝑢𝑛⟩

+
1

𝑟
𝑛

⟨𝐾
󸀠
(𝑢𝑛) − 𝐾

󸀠
(𝑥𝑛) , 𝑦 − 𝑢𝑛⟩ ≥ Θ (𝑦, 𝑢𝑛) ,

∀𝑦 ∈ 𝐶.

(133)

Replacing 𝑛 by 𝑛
𝑖
, we have

𝜑 (𝑦) − 𝜑 (𝑢𝑛
𝑖

) + ⟨𝐴𝑥𝑛
𝑖

, 𝑦 − 𝑢𝑛
𝑖

⟩

+ ⟨

𝐾
󸀠
(𝑢
𝑛
𝑖

) − 𝐾
󸀠
(𝑥
𝑛
𝑖

)

𝑟
𝑛
𝑖

, 𝑦 − 𝑢𝑛
𝑖

⟩ ≥ Θ(𝑦, 𝑢𝑛
𝑖

) ,

∀𝑦 ∈ 𝐶.

(134)

Put 𝑢
𝑡
= 𝑡𝑦 + (1 − 𝑡)𝑤 for all 𝑡 ∈ (0, 1] and 𝑦 ∈ 𝐶. Then from

(134) we have

⟨𝑢
𝑡
− 𝑢
𝑛
𝑖

, 𝐴𝑢
𝑡
⟩

≥ ⟨𝑢
𝑡
− 𝑢
𝑛
𝑖

, 𝐴𝑢
𝑡
⟩ − 𝜑 (𝑢

𝑡
) + 𝜑 (𝑢

𝑛
𝑖

) − ⟨𝑢
𝑡
− 𝑢
𝑛
𝑖

, 𝐴𝑥
𝑛
𝑖

⟩

− ⟨

𝐾
󸀠
(𝑢𝑛
𝑖

) − 𝐾
󸀠
(𝑥𝑛
𝑖

)

𝑟
𝑛
𝑖

, 𝑢
𝑡
− 𝑢
𝑛
𝑖

⟩ + Θ(𝑢
𝑡
, 𝑢
𝑛
𝑖

)

≥ ⟨𝑢
𝑡
− 𝑢
𝑛
𝑖

, 𝐴𝑢
𝑡
− 𝐴𝑢
𝑛
𝑖

⟩ + ⟨𝑢
𝑡
− 𝑢
𝑛
𝑖

, 𝐴𝑢
𝑛
𝑖

− 𝐴𝑥
𝑛
𝑖

⟩

− 𝜑 (𝑢𝑡) + 𝜑 (𝑢𝑛
𝑖

)

− ⟨

𝐾
󸀠
(𝑢
𝑛
𝑖

) − 𝐾
󸀠
(𝑥
𝑛
𝑖

)

𝑟
𝑛
𝑖

, 𝑢𝑡 − 𝑢𝑛
𝑖

⟩ + Θ(𝑢𝑡, 𝑢𝑛
𝑖

) .

(135)

Since ‖𝑢𝑛
𝑖

− 𝑥𝑛
𝑖

‖ → 0 as 𝑖 → ∞, we deduce from the
Lipschitz continuity of 𝐴 and 𝐾

󸀠 that ‖𝐴𝑢
𝑛
𝑖

− 𝐴𝑥
𝑛
𝑖

‖ → 0

and ‖𝐾
󸀠
(𝑢𝑛
𝑖

) − 𝐾
󸀠
(𝑥𝑛
𝑖

)‖ → 0 as 𝑖 → ∞. Further, from the
monotonicity of 𝐴, we have ⟨𝑢

𝑡
− 𝑢
𝑛
𝑖

, 𝐴𝑢
𝑡
− 𝐴𝑢
𝑛
𝑖

⟩ ≥ 0. So,
from (H4), the weakly lower semicontinuity of 𝜑, (𝐾󸀠(𝑢

𝑛
𝑖

) −

𝐾
󸀠
(𝑥
𝑛
𝑖

))/𝑟
𝑛
𝑖

→ 0 and 𝑢
𝑛
𝑖

⇀ 𝑤, we have

⟨𝑢
𝑡
− 𝑤,𝐴𝑢

𝑡
⟩ ≥ −𝜑 (𝑢

𝑡
) + 𝜑 (𝑤) + Θ (𝑢

𝑡
, 𝑤) , as 𝑖 󳨀→ ∞.

(136)

From (H1), (H4), and (136) we also have

0 = Θ (𝑢
𝑡
, 𝑢
𝑡
) + 𝜑 (𝑢

𝑡
) − 𝜑 (𝑢

𝑡
)

≤ 𝑡Θ (𝑢
𝑡
, 𝑦) + (1 − 𝑡)Θ (𝑢

𝑡
, 𝑤)

+ 𝑡𝜑 (𝑦) + (1 − 𝑡) 𝜑 (𝑤) − 𝜑 (𝑢𝑡)

= 𝑡 [Θ (𝑢
𝑡
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑡
)]

+ (1 − 𝑡) [Θ (𝑢𝑡, 𝑤) + 𝜑 (𝑤) − 𝜑 (𝑤) − 𝜑 (𝑢𝑡)]

≤ 𝑡 [Θ (𝑢
𝑡
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑡
)]

+ (1 − 𝑡) ⟨𝑢𝑡 − 𝑤,𝐴𝑢
𝑡
⟩

= 𝑡 [Θ (𝑢𝑡, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢𝑡)]

+ (1 − 𝑡) 𝑡 ⟨𝑦 − 𝑤,𝐴𝑢
𝑡
⟩ ,

(137)

and hence

0 ≤ Θ (𝑢
𝑡
, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑢

𝑡
) + (1 − 𝑡) ⟨𝑦 − 𝑤,𝐴𝑢

𝑡
⟩ .

(138)

Letting 𝑡 → 0
+, we have, for each 𝑦 ∈ 𝐶,

0 ≤ Θ (𝑤, 𝑦) + 𝜑 (𝑦) − 𝜑 (𝑤) + ⟨𝐴𝑤, 𝑦 − 𝑤⟩ . (139)

This implies that 𝑤 ∈ GMEP(Θ, 𝜑, 𝐴). Consequently,
𝑤 ∈ Ω = ∩

∞

𝑛=1
Fix(𝑇
𝑛
) ∩ GMEP(Θ, 𝜑, 𝐴) ∩ SGEP(𝐺) ∩

⋂
𝑁

𝑖=1
VI(𝐶, 𝐵

𝑖
) ∩ Fix(𝑆). This shows that 𝜔

𝑤
(𝑥
𝑛
) ⊂ Ω. From

(64) and Lemma 22 we infer that 𝑥
𝑛

→ 𝑥
∗

= 𝑃
Ω
𝑥
0
as

𝑛 → ∞. This completes the proof.

Corollary 24. Choose𝑁 = 2 in Theorem 23. For any 𝑥0 ∈ 𝐻,
𝐶1 = 𝐶, and 𝑥1 = 𝑃𝐶

1

𝑥0, the iterative scheme (49) reduces to
the following iterative one:

𝑢
𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
,

V
𝑛
= 𝑃
𝐶
(𝐼 − 𝜆

2,𝑛
𝐵
2
) 𝑃
𝐶
(𝐼 − 𝜆

1,𝑛
𝐵
1
) 𝑢
𝑛
,

𝑧
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ 𝜎
𝑛
𝐺V
𝑛
+ [(1 − 𝛽

𝑛
) 𝐼 − 𝜎

𝑛
𝑉]𝑊
𝑛
𝐺V
𝑛
,

𝑘𝑛 = 𝛿𝑛𝑧𝑛 + (1 − 𝛿𝑛) 𝑆
𝑛
𝑧𝑛,

𝑦
𝑛
= (1 − 𝛼

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑘
𝑛
,

𝐶
𝑛+1 = {𝑧 ∈ 𝐶𝑛 :

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2
≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2
+ 𝜃𝑛} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛+1

𝑥
0
, ∀𝑛 ≥ 1,

(140)

where 𝜃𝑛 = (𝜎𝑛 + 𝛾𝑛)(1 + 𝛾𝑛)Δ 𝑛 + 𝑐𝑛, Δ 𝑛 = sup {‖𝑥𝑛 − 𝑝‖
2
+

‖(𝐼 − 𝑉)𝑝‖
2
/(𝛾 − 1) : 𝑝 ∈ Ω} < ∞, ]𝑘 ∈ (0, 2𝜁𝑘), 𝑘 =

1, 2, and {𝜆𝑖,𝑛} ⊂ [𝑎𝑖, 𝑏𝑖] ⊂ (0, 2𝜂𝑖), 𝑖 = 1, 2. Then {𝑥𝑛}

converges strongly to 𝑥
∗

= 𝑃
Ω
𝑥
0
provided that 𝑆(Θ,𝜑)

𝑟
is firmly

nonexpansive.
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Corollary 25. Choose𝑁 = 1 and 𝑇
𝑛
≡ 𝐼 the identity operator

of𝐻 inTheorem 23. For any 𝑥
0
∈ 𝐻, 𝐶

1
= 𝐶, and 𝑥

1
= 𝑃
𝐶
1

𝑥
0
,

the iterative scheme (49) reduces to the following iterative one:

𝑢
𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
,

V
𝑛
= 𝑃
𝐶
(𝐼 − 𝜆

1,𝑛
𝐵
1
) ,

𝑧𝑛 = 𝛽𝑛𝑥𝑛 + (1 − 𝛽𝑛) 𝐺V𝑛 + 𝜎𝑛 (𝐼 − 𝑉)𝐺V𝑛,

𝑘
𝑛
= 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
) 𝑆
𝑛
𝑧
𝑛
,

𝑦𝑛 = (1 − 𝛼𝑛) 𝑥𝑛 + 𝛼𝑛𝑘𝑛,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
:
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2
≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2
+ 𝜃
𝑛
} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛+1

𝑥
0
, ∀𝑛 ≥ 1,

(141)

where 𝜃
𝑛
= (𝜎
𝑛
+ 𝛾
𝑛
)(1 + 𝛾

𝑛
)Δ
𝑛
+ 𝑐
𝑛
, Δ
𝑛
= sup{‖𝑥

𝑛
− 𝑝‖
2
+

‖(𝐼 − 𝑉)𝑝‖
2
/(𝛾 − 1) : 𝑝 ∈ Ω} < ∞, ]

𝑘
∈ (0, 2𝜁

𝑘
), 𝑘 = 1, 2,

and {𝜆
1,𝑛

} ⊂ [𝑎
1
, 𝑏
1
] ⊂ (0, 2𝜂

1
). Then {𝑥

𝑛
} converges strongly

to 𝑥
∗
= 𝑃
Ω
𝑥
0
provided that 𝑆(Θ,𝜑)

𝑟
is firmly nonexpansive.

Proof. In Theorem 23, putting 𝑁 = 1 and 𝑇
𝑛
≡ 𝐼 the identity

operator of𝐻, we have𝑊𝑛 ≡ 𝐼. In this case, we get

𝑧
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ 𝜎
𝑛
𝐺V
𝑛
+ [(1 − 𝛽

𝑛
) 𝐼 − 𝜎

𝑛
𝑉]𝑊
𝑛
𝐺V
𝑛

= 𝛽𝑛𝑥𝑛 + 𝜎𝑛𝐺V𝑛 + [(1 − 𝛽𝑛) 𝐼 − 𝜎𝑛𝑉]𝐺V𝑛

= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝐺V
𝑛
+ 𝜎
𝑛 (𝐼 − 𝑉)𝐺V𝑛.

(142)

So, the iterative scheme (49) reduces to the iterative one (141).
UtilizingTheorem 23, we derive the desired result.

Remark 26. Theorem 23 extends, improves, supplements,
and develops Ceng et al.’s [20, Theorem 1] in the following
aspects.

(i) The problem of finding a point

𝑥
∗
∈

𝑁

⋂

𝑖=1

Fix (𝑇𝑛) ∩ GMEP (Θ, 𝜑, 𝐴) ∩

SGEP (𝐺) ∩

𝑁

⋂

𝑖=1

VI (𝐶, 𝐵𝑖) ∩ Fix (𝑆)

(143)

inTheorem 23 is very different from the problem of finding a
point

𝑥
∗
∈ ∩
∞

𝑛=1
Fix (𝑇𝑛) ∩ GMEP (Θ, 𝜑, 𝐴) ∩ SGEP (𝐺) (144)

in Ceng et al.’s [20, Theorem 1]. There is no doubt that
our problem of finding a point 𝑥

∗
∈ ∩
∞

𝑛=1
Fix(𝑇𝑛) ∩

GMEP(Θ, 𝜑, 𝐴) ∩ SGEP(𝐺) ∩ ⋂
𝑁

𝑖=1
VI(𝐶, 𝐵𝑖) ∩ Fix(𝑆) is more

general and more subtle than the problem of finding a point
𝑥
∗

∈ ∩
∞

𝑛=1
Fix(𝑇
𝑛
) ∩ GMEP(Θ, 𝜑, 𝐴) ∩ SGEP(𝐺) in [20,

Theorem 1].
(ii) The iterative scheme in [20, Theorem 1] is extended

to develop the iterative scheme in Theorem 23 by the virtue
of Mann-type iterative method and the shrinking projection

method.The iterative scheme inTheorem 23 ismore advanta-
geous andmore flexible than the iterative scheme in [20,The-
orem 1] because it involves solving four problems: the GMEP
(5), the SGEP (12), finitely many variational inequalities, and
the common fixed point problem of an asymptotically strict
pseudocontractive mapping in the intermediate sense and
infinitely many nonexpansive mappings.

(iii) The iterative scheme in Theorem 23 is very different
from the iterative scheme in [20, Theorem 1] because the
iterative scheme in Theorem 23 involves Mann-type iter-
ative method and the shrinking projection method. The
proof of [20, Theorem 1] makes use of Lemma 12 (i.e.,
Demiclosedness principle for a nonexpansive mapping) but
no use of Lemma 17 (i.e., Demiclosedness principle for an
asymptotically strict pseudocontractivemapping in the inter-
mediate sense). However, the proof of Theorem 23 depends
on not only Lemma 12 but also Lemma 17 because there
is an asymptotically strict pseudocontractive mapping in
the intermediate sense and infinitely many nonexpansive
mappings appearing in the problem of Theorem 23.

(iv) The proof of Theorem 23 combines Cai and Bu
convergence analysis for Mann-type iterative method and
the shrinking projection method to solve finitely many
GMEPs, finitely many VIPs, and the fixed point problem of
an asymptotically strict pseudocontractive mapping in the
intermediate sense (see [26, Theorem 3.1]) and Ceng et al.’s
convergence analysis for hybrid extragradient-like iterative
algorithm (see [20, Theorem 3.1]), where 𝛾 ∈ (0, 1] for a 𝛾-
strongly positive bounded linear operator 𝑉. Because in iter-
ative scheme (49) the composite shrinking projectionmethod
involves a 𝛾-strongly positive bounded linear operator𝑉with
𝛾 ∈ (1, 2] and infinitely many nonexpansive mappings, the
properties of the𝑊-mappings𝑊𝑛 and𝑊 and the operator𝑉
play a key role in the proof of Theorem 23.

(v) Theorem 23 extends Ceng et al.’s [20, Theorem 1]
from the fixed point problem of infinitely many nonex-
pansive mappings to the common fixed point problem of
an asymptotically strict pseudocontractive mapping in the
intermediate sense and infinitely many nonexpansive map-
pings and generalizes Ceng et al.’s [20, Theorem 1] to the
setting of finitely many variational inequalities. The proof
of Theorem 23 depends on the properties of the 𝛾-strongly
positive bounded linear operator 𝑉 with 𝛾 ∈ (1, 2], the result
on the𝑊-mappings𝑊

𝑛
and𝑊 (i.e., lim

𝑛→∞
‖𝑊
𝑛
𝑥
𝑛
−𝑊𝑥
𝑛
‖ =

0 for any bounded sequence {𝑥
𝑛
} ⊂ 𝐶) (see [45, Remark 3.2]),

and the properties of asymptotically strict pseudocontractive
mapping in the intermediate sense (see Lemmas 15–18).

Remark 27. Theorem 23 extends, improves, supplements, and
develops Yao et al.’s [30,Theorem 3.1] in the following aspects.

(i) Theorem 23 generalizes and extends [30, Theorem
3.1] from the asymptotically 𝑘-strict pseudocontrac-
tive mapping to the asymptotically 𝑘-strict pseudo-
contractive mapping in the intermediate sense and
from the MEP to the GMEP and generalizes [30,
Theorem 3.1] to the setting of SGEP.

(ii) We add finitely many variational inequalities and
infinitely many nonexpansive mappings {𝑇

𝑛
}
∞

𝑛=1



20 Abstract and Applied Analysis

in our algorithm such that it can be applied to find
a common solution of the GMEP (5), the SGEP
(12), finitely many variational inequalities for inverse
strongly monotone mappings, and the common
fixed point problem of an asymptotically 𝑘-strict
pseudocontractivemapping in the intermediate sense
and infinitely many nonexpansive mappings {𝑇𝑛}

∞

𝑛=1
.

4. Weak Convergence Theorem

In this section, we will propose and analyze another iterative
algorithm (involving no shrinking projection method) for
finding a solution of the system of generalized equilibria
with constraints of several problems: a generalized mixed
equilibrium problem, finitely many variational inequalities,
and the common fixed point problem of an asymptotically
strict pseudocontractive mapping in the intermediate sense
and infinitely many nonexpansive mappings in a real Hilbert
space. Moreover, under mild conditions we will prove weak
convergence of the proposed algorithm.

Theorem 28. Let 𝐶,𝑁,Θ,Θ1, Θ2, 𝜑, 𝐴, 𝐴𝑘, 𝐵𝑖, 𝑉, {𝑇𝑛}
∞

𝑛=1
,

{𝜆𝑛}, and 𝑊𝑛 be the same notations as in Theorem 23, where
𝑘 ∈ {1, 2} and 𝑖 ∈ {1, 2, . . . , 𝑁}. Let 𝑆 : 𝐶 → 𝐶 be a uniformly
continuous asymptotically 𝑘-strict pseudocontractive mapping
in the intermediate sense for some 0 ≤ 𝑘 < 1 with the sequence
{𝛾𝑛} ⊂ [0,∞) such that ∑

∞

𝑛=1
𝛾𝑛 < ∞ and {𝑐𝑛} ⊂ [0,∞)

such that ∑
∞

𝑛=1
𝑐𝑛 < ∞. Assume that Ω⋂

𝑁

𝑖=1
Fix(𝑇𝑛) ∩

GMEP(Θ, 𝜑, 𝐴) ∩ SGEP(𝐺) ∩ ⋂
𝑁

𝑖=1
VI(𝐶, 𝐵𝑖) ∩ Fix(𝑆) is

nonempty where 𝐺 is defined as in Proposition CY. Let {𝑟𝑛}

be a sequence in [0, 2𝜁] and let {𝛼𝑛}, {𝛽𝑛}, {𝜎𝑛}, and {𝛿
𝑛
} be

sequences in [0, 1] such that ∑∞
𝑛=1

𝜎
𝑛
< ∞, 0 < 𝛼 ≤ 𝛼

𝑛
≤ 1,

and 0 < 𝑘 + 𝜖 ≤ 𝛿
𝑛
≤ 𝑑 < 1. Pick any 𝑥

1
∈ 𝐻 and let {𝑥

𝑛
} be a

sequence generated by the following algorithm:

𝑢
𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
,

V
𝑛
= 𝑃
𝐶
(𝐼 − 𝜆

𝑁,𝑛
𝐵
𝑁
)

× 𝑃
𝐶
(𝐼 − 𝜆

𝑁−1,𝑛
𝐵
𝑁−1

) ⋅ ⋅ ⋅ 𝑃
𝐶
(𝐼 − 𝜆

1,𝑛
𝐵
1
) 𝑢
𝑛
,

𝑧
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ 𝜎
𝑛
𝐺V
𝑛
+ [(1 − 𝛽

𝑛
) 𝐼 − 𝜎

𝑛
𝑉]𝑊
𝑛
𝐺V
𝑛
,

𝑘𝑛 = 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
) 𝑆
𝑛
𝑧
𝑛
,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑘
𝑛
, ∀𝑛 ≥ 1,

(145)

where ]
𝑘

∈ (0, 2𝜁
𝑘
), 𝑘 ∈ {1, 2}, and {𝜆

𝑖,𝑛
} ⊂ [𝑎

𝑖
, 𝑏
𝑖
] ⊂

(0, 2𝜂
𝑖
), ∀𝑖 ∈ {1, 2, . . . , 𝑁}. Assume that the conditions (i)–(iii)

are satisfied.Then {𝑥
𝑛
} converges weakly to𝑥∗ = lim

𝑛→∞
𝑃
Ω
𝑥
𝑛

provided that 𝑆(Θ,𝜑)
𝑟

is firmly nonexpansive.

Proof. As lim
𝑛→∞

𝜎
𝑛

= 0, 0 < lim inf
𝑛→∞

𝛽
𝑛

≤

lim sup
𝑛→∞

𝛽
𝑛

< 1 and 0 < lim inf
𝑛→∞

𝑟
𝑛

≤

lim sup
𝑛→∞

𝑟
𝑛

< 2𝜁, we may assume, without loss of
generality, that {𝛽

𝑛
} ⊂ [𝑎, 𝑎] ⊂ [0, 1], {𝑟

𝑛
} ⊂ [𝑐, 𝑐] ⊂ (0, 2𝜁),

and 𝛽
𝑛
+ 𝜎
𝑛
‖𝑉‖ ≤ 1 for all 𝑛 ≥ 1. First, let us show that

lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖ exists for any 𝑝 ∈ Ω. Put

Λ
𝑖

𝑛
= 𝑃𝐶 (𝐼 − 𝜆𝑖,𝑛𝐵𝑖) 𝑃𝐶 (𝐼 − 𝜆𝑖−1,𝑛𝐵𝑖−1) ⋅ ⋅ ⋅ 𝑃𝐶 (𝐼 − 𝜆1,𝑛𝐵1)

(146)

for all 𝑖 ∈ {1, 2, . . . , 𝑁}, 𝑛 ≥ 1, and Λ
0

𝑛
= 𝐼, where 𝐼 is the

identity mapping on 𝐻. Then we get V
𝑛
= Λ
𝑁

𝑛
𝑢
𝑛
. Take 𝑝 ∈ Ω

arbitrarily. Repeating the same arguments as in the proof of
Theorem 23, we can obtain that

󵄩󵄩󵄩󵄩(1 − 𝛽
𝑛
) 𝐼 − 𝜎

𝑛
𝑉
󵄩󵄩󵄩󵄩 ≤ 1 − 𝛽

𝑛
− 𝜎
𝑛
𝛾, (147)

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ 𝑟
𝑛
(𝑟
𝑛
− 2𝜁)

󵄩󵄩󵄩󵄩𝐴𝑥
𝑛
− 𝐴𝑝

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
,

(148)

󵄩󵄩󵄩󵄩V𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑝
󵄩󵄩󵄩󵄩 , (149)

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) V
𝑛
− 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+ ]
1
(]
1
− 2𝜁
1
)

×
󵄩󵄩󵄩󵄩󵄩
𝐴
1
𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) V
𝑛
− 𝐴
1
𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) V
𝑛
− 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ ]
2
(]
2
− 2𝜁
2
)
󵄩󵄩󵄩󵄩𝐴2V𝑛 − 𝐴

2
𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩V𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
,

(150)

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖

𝑛
𝑢
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝜆
𝑖,𝑛

(𝜆
𝑖,𝑛

− 2𝜂
𝑖
)

×
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖
Λ
𝑖−1

𝑛
𝑢
𝑛
− 𝐵
𝑖
𝑝
󵄩󵄩󵄩󵄩󵄩

2

, 𝑖 ∈ {1, 2, . . . , 𝑁} ,

(151)

󵄩󵄩󵄩󵄩𝑘𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 + 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛿

𝑛
)

× (𝑘 − 𝛿
𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑆

𝑛
𝑧
𝑛

󵄩󵄩󵄩󵄩

2
+ 𝑐
𝑛

≤ (1 + 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑐
𝑛

≤ (1 + 𝛾𝑛)(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝜎𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

2

𝛾 − 1
) + 𝑐𝑛,

(152)

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖

𝑛
𝑢𝑛 − 𝑝

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢𝑛 − Λ

𝑖

𝑛
𝑢𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝜆𝑖,𝑛

󵄩󵄩󵄩󵄩󵄩
Λ
𝑖−1

𝑛
𝑢𝑛 − Λ

𝑖

𝑛
𝑢𝑛

󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩󵄩
𝐵
𝑖Λ
𝑖−1

𝑛
𝑢𝑛 − 𝐵𝑖𝑝

󵄩󵄩󵄩󵄩󵄩
, 𝑖 ∈ {1, 2, . . . , 𝑁} .

(153)
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Utilizing (145) and (152), we obtain

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛼𝑛

󵄩󵄩󵄩󵄩𝑘𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
[(1 + 𝛾

𝑛
) (

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ 𝜎
𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

2

𝛾 − 1
) + 𝑐
𝑛
]

≤ (1 + 𝛾𝑛) (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝜎𝑛

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

2

𝛾 − 1
) + 𝑐𝑛

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝜎
𝑛
(1 + 𝛾

𝑛
)

󵄩󵄩󵄩󵄩(𝐼 − 𝑉) 𝑝
󵄩󵄩󵄩󵄩

2

𝛾 − 1
+ 𝑐
𝑛
.

(154)

Since ∑
∞

𝑛=1
𝜎
𝑛

< ∞, ∑
∞

𝑛=1
𝛾
𝑛

< ∞, and ∑
∞

𝑛=1
𝑐
𝑛

< ∞, by
Lemma 21 we have that lim

𝑛→∞
‖𝑥
𝑛
− 𝑝‖ exists. Thus {𝑥

𝑛
} is

bounded and so are the sequences {𝑢
𝑛
}, {V
𝑛
}, {𝑧
𝑛
}, and {𝑘

𝑛
}.

Also, utilizing Lemmas 8 and 9(b), we obtain from (145),
(148), (149), and (152) that

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛽𝑛 (𝑥𝑛 − 𝑝) + (1 − 𝛽

𝑛
) (𝑊
𝑛
𝐺V
𝑛
− 𝑝)

+𝜎
𝑛
(𝐺V
𝑛
− 𝑉𝑊

𝑛
𝐺V
𝑛
)
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝛽𝑛 (𝑥𝑛 − 𝑝) + (1 − 𝛽𝑛) (𝑊𝑛𝐺V𝑛 − 𝑝)

󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛
⟨𝐺V
𝑛
− 𝑉𝑊

𝑛
𝐺V
𝑛
, 𝑧
𝑛
− 𝑝⟩

= 𝛽𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛽𝑛)

󵄩󵄩󵄩󵄩𝑊𝑛GV𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑊

𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑉𝑊
𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
− 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑊

𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝜎𝑛
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑉𝑊𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑉𝑊
𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ,

(155)

and hence

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛼𝑛

󵄩󵄩󵄩󵄩𝑘𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
[(1 + 𝛾

𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑐
𝑛
]

≤ (1 − 𝛼
𝑛)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
[(1 + 𝛾

𝑛
)

× (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑊

𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑉𝑊
𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩) + 𝑐
𝑛
]

≤ (1 + 𝛾𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
− 𝛼𝑛 (1 + 𝛾𝑛) 𝛽𝑛

× (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑊

𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝜎𝑛 (1 + 𝛾𝑛)
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑉𝑊𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝑐
𝑛.

(156)

So, it follows that

𝛼 (1 + 𝛾
𝑛
) 𝑎 (1 − 𝑎)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑊
𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛
(1 + 𝛾

𝑛
) 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑊

𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝜎𝑛 (1 + 𝛾𝑛)
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑉𝑊𝑛𝐺V𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝑐
𝑛.

(157)

Since lim
𝑛→∞

𝜎
𝑛

= 0, lim
𝑛→∞

𝛾
𝑛

= 0, and lim
𝑛→∞

𝑐
𝑛

= 0,
it follows from the existence of lim𝑛→∞‖𝑥𝑛 − 𝑝‖ and the
boundedness of {𝑥𝑛}, {𝑧𝑛}, and {V𝑛} that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑊𝑛𝐺V𝑛
󵄩󵄩󵄩󵄩 = 0. (158)

Note that
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩(1 − 𝛽

𝑛) (𝑊𝑛𝐺V𝑛 − 𝑥𝑛) + 𝜎𝑛 (𝐺V𝑛 − 𝑉𝑊𝑛𝐺V𝑛)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑊𝑛𝐺V𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 + 𝜎
𝑛

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑉𝑊
𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩 .

(159)

Hence, it follows from (158) and lim
𝑛→∞

𝜎
𝑛
= 0 that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
𝑛

󵄩󵄩󵄩󵄩 = 0. (160)

In the meantime, from (152) and (155) it follows that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛼𝑛

󵄩󵄩󵄩󵄩𝑘𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
[(1 + 𝛾

𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ (1 − 𝛿

𝑛
)

× (𝑘 − 𝛿
𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑆

𝑛
𝑧
𝑛

󵄩󵄩󵄩󵄩

2
+ 𝑐
𝑛
]
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≤ (1 − 𝛼
𝑛)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
[(1 + 𝛾

𝑛
)

× (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑉𝑊
𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩)

+ (1 − 𝛿
𝑛) (𝑘 − 𝛿𝑛)

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑆
𝑛
𝑧𝑛

󵄩󵄩󵄩󵄩

2
+ 𝑐𝑛]

≤ (1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛼
𝑛
(1 + 𝛾

𝑛
)

× (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 2𝜎
𝑛

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑉𝑊
𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩)

+ 𝛼
𝑛
(1 − 𝛿

𝑛
) (𝑘 − 𝛿

𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑆

𝑛
𝑧
𝑛

󵄩󵄩󵄩󵄩

2
+ 𝑐
𝑛

≤ (1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛼𝑛 (1 + 𝛾𝑛)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2 (1 + 𝛾
𝑛
) 𝜎
𝑛

󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑉𝑊
𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝛼
𝑛 (1 − 𝛿𝑛) (𝑘 − 𝛿𝑛)

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑆
𝑛
𝑧𝑛

󵄩󵄩󵄩󵄩

2
+ 𝑐𝑛

≤ (1 + 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 2𝜎
𝑛
(1 + 𝛾

𝑛
)

×
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑉𝑊

𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
(1 − 𝛿

𝑛
) (𝑘 − 𝛿

𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑆

𝑛
𝑧
𝑛

󵄩󵄩󵄩󵄩

2
+ 𝑐
𝑛
,

(161)

which, together with 0 < 𝑘 + 𝜖 ≤ 𝛿
𝑛
≤ 𝑑 < 1, leads to

𝛼 (1 − 𝑑) 𝜖
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑆

𝑛
𝑧𝑛

󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛
(1 − 𝛿

𝑛
) (𝛿
𝑛
− 𝑘)

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑆
𝑛
𝑧
𝑛

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛾𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝜎
𝑛
(1 + 𝛾

𝑛
)
󵄩󵄩󵄩󵄩𝐺V𝑛 − 𝑉𝑊

𝑛
𝐺V
𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝑐
𝑛
.

(162)

Consequently, from lim
𝑛→∞

𝜎
𝑛

= 0, lim
𝑛→∞

𝛾
𝑛

= 0,
lim
𝑛→∞

𝑐
𝑛

= 0, and the existence of lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖, we

get

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑆
𝑛
𝑧𝑛

󵄩󵄩󵄩󵄩 = 0. (163)

Since 𝑘
𝑛
− 𝑧
𝑛
= (1 − 𝛿

𝑛
)(𝑆
𝑛
𝑧
𝑛
− 𝑧
𝑛
), from (163) we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑘𝑛 − 𝑧
𝑛

󵄩󵄩󵄩󵄩 = 0. (164)

Note that
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩 = 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑘𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑘𝑛 − 𝑧𝑛
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 . (165)

Hence from (160) and (164) we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (166)

Repeating the same arguments as those of Step 3 in the proof
ofTheorem 23, we can obtain that ‖𝑥

𝑛−𝑢𝑛‖ → 0, ‖𝑥𝑛−V𝑛‖ →

0, ‖V𝑛 − 𝐺V𝑛‖ → 0, ‖𝑥𝑛 − 𝑊𝑥𝑛‖ → 0, ‖𝑧𝑛 − 𝑆𝑧𝑛‖ → 0, and
‖Λ
𝑖−1

𝑛
𝑢
𝑛
− Λ
𝑖

𝑛
𝑢
𝑛
‖ → 0, 𝑖 ∈ {1, 2, . . . , 𝑁} as 𝑛 → ∞.

Since {𝑥
𝑛
} is bounded, there exists a subsequence {𝑥

𝑛
𝑖

}

of {𝑥
𝑛
} which converges weakly to 𝑤. It is easy to see that

V
𝑛
𝑖

⇀ 𝑤, 𝑢
𝑛
𝑖

⇀ 𝑤, Λ
𝑚

𝑛
𝑖

𝑢
𝑛
𝑖

⇀ 𝑤, and 𝑧
𝑛
𝑖

⇀ 𝑤, where
𝑚 ∈ {1, 2, . . . , 𝑁}. Since 𝑆 is uniformly continuous and ‖𝑧

𝑛 −

𝑆𝑧𝑛‖ → 0 as 𝑛 → ∞, we get lim𝑛→∞‖𝑧𝑛 − 𝑆
𝑚
𝑧𝑛‖ = 0 for

any 𝑚 ≥ 1. Hence from Lemma 17, we obtain 𝑤 ∈ Fix(𝑆).
In the meantime, utilizing Lemma 12, we deduce from V𝑛

𝑖

⇀

𝑤, 𝑥𝑛
𝑖

⇀ 𝑤, ‖V𝑛−𝐺V𝑛‖ → 0, and ‖𝑥𝑛−𝑊𝑥𝑛‖ → 0 that𝑤 ∈

SGEP(𝐺) and𝑤 ∈ Fix(𝑊) = ∩
∞

𝑛=1
Fix(𝑇𝑛) (due to Lemma 11).

Repeating the same arguments as those of Step 4 in the proof
of Theorem 23, we can conclude that 𝑤 ∈ ⋂

𝑁

𝑚=1
VI(𝐶, 𝐵

𝑚
)

and 𝑤 ∈ GMEP(Θ, 𝜑, 𝐴). Consequently, 𝑤 ∈ Ω. This shows
that 𝜔

𝑤
(𝑥
𝑛
) ⊂ Ω.

Next let us show that 𝜔
𝑤
(𝑥
𝑛
) is a single-point set. As a

matter of fact, let {𝑥
𝑛
𝑗

} be another subsequence of {𝑥
𝑛
} such

that 𝑥
𝑛
𝑗

⇀ 𝑤
󸀠. Then we get 𝑤󸀠 ∈ Ω. If 𝑤 ̸=𝑤

󸀠, from the Opial
condition, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤
󵄩󵄩󵄩󵄩

= lim
𝑖→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
𝑖

− 𝑤
󵄩󵄩󵄩󵄩󵄩
< lim
𝑖→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
𝑖

− 𝑤
󸀠󵄩󵄩󵄩󵄩󵄩

= lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑤
󸀠󵄩󵄩󵄩󵄩󵄩

= lim
𝑗→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
𝑗

− 𝑤
󸀠
󵄩󵄩󵄩󵄩󵄩󵄩

< lim
𝑗→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
𝑗

− 𝑤
󵄩󵄩󵄩󵄩󵄩󵄩
= lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤
󵄩󵄩󵄩󵄩 .

(167)

This attains a contradiction. So we have 𝑤 = 𝑤
󸀠. Put 𝑤

𝑛
=

𝑃
Ω
𝑥
𝑛
. Since 𝑤 ∈ Ω, we have ⟨𝑥

𝑛
− 𝑤
𝑛
, 𝑤
𝑛
− 𝑤⟩ ≥ 0. By

Lemma 21, we have that {𝑤
𝑛
} converges strongly to some𝑤 ∈

Ω. Since {𝑥
𝑛
} converges weakly to 𝑤, we have

⟨𝑤 − 𝑤,𝑤 − 𝑤⟩ ≥ 0. (168)

Therefore we obtain 𝑤 = 𝑤 = lim
𝑛→∞

𝑃
Ω
𝑥
𝑛
. This completes

the proof.

Corollary 29. Choose 𝑁 = 2 in Theorem 28. For any 𝑥
1
∈ 𝐻

the iterative scheme (145) reduces to the following iterative one:

𝑢
𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
,

V
𝑛
= 𝑃
𝐶
(𝐼 − 𝜆

2,𝑛
𝐵
2
) 𝑃
𝐶
(𝐼 − 𝜆

1,𝑛
𝐵
1
) 𝑢
𝑛
,

𝑧
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝐺V
𝑛
+ 𝜎
𝑛 (𝐼 − 𝑉)𝐺V𝑛,

𝑘
𝑛
= 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
) 𝑆
𝑛
𝑧
𝑛
,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑘
𝑛
, ∀𝑛 ≥ 1,

(169)

where ]
𝑘 ∈ (0, 2𝜁𝑘) and {𝜆𝑖,𝑛} ⊂ [𝑎𝑖, 𝑏𝑖] ⊂ (0, 2𝜂𝑖) for 𝑘 = 1, 2

and 𝑖 = 1, 2.Then {𝑥𝑛} converges weakly to 𝑥∗ = lim𝑛→∞𝑃Ω𝑥𝑛
provided that 𝑆(Θ,𝜑)

𝑟
is firmly nonexpansive.
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Corollary 30. Choose𝑁 = 1 and 𝑇
𝑛
≡ 𝐼 the identity operator

of𝐻 in Theorem 28. For any 𝑥
1
∈ 𝐻 the iterative scheme (145)

reduces to the following iterative one:

𝑢
𝑛
= 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
,

V
𝑛
= 𝑃
𝐶
(𝐼 − 𝜆

1,𝑛
𝐵
1
) 𝑢
𝑛
,

𝑧
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ 𝜎
𝑛
𝐺V
𝑛
+ [(1 − 𝛽

𝑛
) 𝐼 − 𝜎

𝑛
𝑉]𝐺V

𝑛
,

𝑘𝑛 = 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
) 𝑆
𝑛
𝑧
𝑛
,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑘
𝑛
, ∀𝑛 ≥ 1,

(170)

where ]
𝑘
∈ (0, 2𝜁

𝑘
) and {𝜆

1,𝑛
} ⊂ [𝑎

1
, 𝑏
1
] ⊂ (0, 2𝜂

1
) for 𝑘 = 1, 2.

Then {𝑥
𝑛
} converges weakly to 𝑥

∗
= lim

𝑛→∞
𝑃
Ω
𝑥
𝑛
provided

that 𝑆(Θ,𝜑)
𝑟

is firmly nonexpansive.

In the following, we provide a numerical example to
illustrate how Corollary 30 works.

Example 31. Let 𝐻 = R2 with inner product ⟨⋅, ⋅⟩ and norm
‖ ⋅ ‖ which are defined by

⟨𝑥, 𝑦⟩ = 𝑎𝑐 + 𝑏𝑑, ‖𝑥‖ = √𝑎2 + 𝑏2, (171)

for all𝑥, 𝑦 ∈ R2with𝑥 = (𝑎, 𝑏) and𝑦 = (𝑐, 𝑑). Let𝐶 = {(𝑎, 𝑎) :

𝑎 ∈ R}. Clearly, 𝐶 is a nonempty closed convex subset of a
real Hilbert space 𝐻 = R2. Let 𝐾(𝑥) = (1/2)‖𝑥‖

2, ∀𝑥 ∈ 𝐻,
Θ(𝑥, 𝑦) = Θ

1
(𝑥, 𝑦) = Θ

2
(𝑥, 𝑦) = 0, ∀(𝑥, 𝑦) ∈ 𝐶 × 𝐶, and

𝜑 = 0, ∀𝑥 ∈ 𝐶. Then Θ, Θ1, andΘ2 are three bifunctions
from 𝐶 × 𝐶 to R satisfying (H1)–(H4) and 𝜑 : 𝐶 → R is
a lower semicontinuous and convex functional. Let 𝑉 be a
𝛾-strongly positive bounded linear operator with 𝛾 ∈ (1, 2],
let 𝐴,𝐴𝑘 : 𝐻 → 𝐻 and 𝐵1 : 𝐶 → 𝐻 be 𝜁-inverse
strongly monotone, 𝜁𝑘-inverse strongly monotone, and 𝜂1-
inverse strongly monotone, respectively, for 𝑘 = 1, 2, and let
𝑆 : 𝐶 → 𝐶 be a uniformly continuous asymptotically 𝑘-
strict pseudocontractive mapping in the intermediate sense
for some 0 ≤ 𝑘 < 1 with sequence {𝛾

𝑛
} ⊂ [0,∞) such that

∑
∞

𝑛=1
𝛾
𝑛
< ∞ and {𝑐

𝑛
} ⊂ [0,∞) such that ∑∞

𝑛=1
𝑐
𝑛
< ∞ such

that Ω := GMEP(Θ, 𝜑, 𝐴) ∩ SGEP(𝐺) ∩ VI(𝐶, 𝐵) ∩ Fix(𝑆) is
nonempty, for instance, putting

𝐴 =

{{{

{{{

{

3

5

2

5

2

5

3

5

}}}

}}}

}

, 𝐵1 = 𝑆 =

{{{

{{{

{

2

3

1

3

1

3

2

3

}}}

}}}

}

,

𝑉 =
5

4
𝐴, 𝐴

1
= 𝐼 − 𝐴 =

{{{

{{{

{

2

5
−
2

5

−
2

5

2

5

}}}

}}}

}

,

𝐴
2
= 𝐼 − 𝐵

1
=

{{{

{{{

{

1

3
−
1

3

−
1

3

1

3

}}}

}}}

}

.

(172)

It is easy to see that ‖𝐴‖ = ‖𝐵
1
‖ = ‖𝑆‖ = 1, that 𝐴 is 𝜁-inverse

strongly monotone with 𝜁 = 1/2, that 𝑉 is a 5/4-strongly

positive bounded linear operator, that 𝐵
1
, 𝐴
1
, and 𝐴

2
are

1/2-inverse strongly monotone, and that 𝑆 is a nonexpansive
mapping, that is, a uniformly continuous asymptotically 0-
strict pseudocontractive mapping in the intermediate sense
with sequences {𝛾

𝑛
} (𝛾
𝑛
≡ 0) and {𝑐

𝑛
} (𝑐
𝑛
≡ 0). Moreover, it is

clear that Fix(𝑆) = 𝐶, GMEP(Θ, 𝜑, 𝐴) = {0}, VI(𝐶, 𝐵
1
) =

{0}, and SGEP(𝐺) = 𝐶. Hence, Ω := GMEP(Θ, 𝜑, 𝐴) ∩

SGEP(𝐺)∩VI(𝐶, 𝐵1)∩Fix(𝑆) = {0}. In this case, from iterative
scheme (170) in Corollary 30, we obtain that, for any given
𝑥1 ∈ 𝐶,

𝑢
𝑛 = 𝑆
(Θ,𝜑)

𝑟
𝑛

(𝐼 − 𝑟𝑛𝐴) 𝑥𝑛 = 𝑃𝐶 (𝐼 − 𝑟𝑛𝐴) 𝑥𝑛 = (1 − 𝑟𝑛) 𝑥𝑛,

V𝑛 = 𝑃𝐶 (𝐼 − 𝜆1,𝑛𝐵1) 𝑢𝑛 = (1 − 𝜆1,𝑛) 𝑢𝑛

= (1 − 𝜆
1,𝑛

) (1 − 𝑟
𝑛
) 𝑥
𝑛
,

𝑧𝑛 = 𝛽𝑛𝑥𝑛 + (1 − 𝛽𝑛) 𝐺V𝑛 + 𝜎𝑛 (𝐼 − 𝑉)𝐺V𝑛

= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑇
Θ
1

]
1

(𝐼 − ]
1
𝐴
1
) 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) V
𝑛

+ 𝜎
𝑛 (𝐼 − 𝑉) 𝑇

Θ
1

]
1

(𝐼 − ]
1
𝐴
1
) 𝑇
Θ
2

]
2

(𝐼 − ]
2
𝐴
2
) V
𝑛

= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) V
𝑛
+ 𝜎
𝑛
(𝐼 −

5

4
𝐴) V
𝑛

= 𝛽𝑛𝑥𝑛 + (1 − 𝛽𝑛) V𝑛 −
1

4
𝜎𝑛V𝑛

= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
−

1

4
𝜎
𝑛
) V
𝑛

= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
−

1

4
𝜎
𝑛
) (1 − 𝜆

1,𝑛
) (1 − 𝑟

𝑛
) 𝑥
𝑛

= [𝛽
𝑛
+ (1 − 𝛽

𝑛
−

1

4
𝜎
𝑛
) (1 − 𝜆

1,𝑛
) (1 − 𝑟

𝑛
)] 𝑥
𝑛
,

𝑘
𝑛
= 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
) 𝑆
𝑛
𝑧
𝑛
= 𝛿
𝑛
𝑧
𝑛
+ (1 − 𝛿

𝑛
) 𝑧
𝑛
= 𝑧
𝑛

= [𝛽
𝑛
+ (1 − 𝛽

𝑛
−

1

4
𝜎
𝑛
) (1 − 𝜆

1,𝑛
) (1 − 𝑟

𝑛
)] 𝑥
𝑛
,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑘
𝑛

= (1 − 𝛼
𝑛
) 𝑥
𝑛

+ 𝛼
𝑛
[𝛽
𝑛
+ (1 − 𝛽

𝑛
−

1

4
𝜎
𝑛
) (1 − 𝜆

1,𝑛
) (1 − 𝑟

𝑛
)] 𝑥
𝑛

= {1 − 𝛼
𝑛

+𝛼
𝑛
[𝛽
𝑛
+ (1 − 𝛽

𝑛
−

1

4
𝜎𝑛) (1 − 𝜆

1,𝑛
) (1 − 𝑟

𝑛
)]} 𝑥
𝑛
.

(173)

Whenever 0 < 𝛼 ≤ 𝛼
𝑛 ≤ 1, {𝜆1,𝑛} ⊂ [𝑎1, 𝑏1] ⊂ (0, 1), {𝛽𝑛} ⊂

[𝑐, 𝑐] ⊂ (0, 1), {𝑟𝑛} ⊂ [𝑒, 𝑒] ⊂ (0, 1) and {𝜎𝑛} ⊂ [0, 1] satisfying
(1/4)𝜎𝑛 ≤ 1 − 𝑐, we have
󵄩󵄩󵄩󵄩𝑥𝑛+1

󵄩󵄩󵄩󵄩

= {1 − 𝛼
𝑛
+ 𝛼
𝑛
[𝛽
𝑛
+ (1 − 𝛽

𝑛
−

1

4
𝜎
𝑛
)
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× (1 − 𝜆
1,𝑛

) (1 − 𝑟
𝑛
)]}

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩

≤ {1 − 𝛼
𝑛
+ 𝛼
𝑛
[𝛽
𝑛
+ (1 − 𝛽

𝑛
)

× (1 − 𝜆1,𝑛) (1 − 𝑟𝑛)]}
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩

≤ {1 − 𝛼
𝑛
+ 𝛼
𝑛
[𝛽
𝑛
+ (1 − 𝛽

𝑛
)

× (1 − 𝑎
1
) (1 − 𝑒)]}

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩

= [1 − 𝛼
𝑛 (1 − 𝛽𝑛) + 𝛼𝑛 (1 − 𝛽𝑛)

× (1 − 𝑎
1
) (1 − 𝑒)]

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩

= [1 − 𝛼
𝑛 (1 − 𝛽𝑛) (1 − (1 − 𝑎1) (1 − 𝑒))]

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩

≤ [1 − 𝛼 (1 − 𝑐) (1 − (1 − 𝑎
1
) (1 − 𝑒))]

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩

...

≤ [1 − 𝛼 (1 − 𝑐) (1 − (1 − 𝑎
1
) (1 − 𝑒))]

𝑛 󵄩󵄩󵄩󵄩𝑥1
󵄩󵄩󵄩󵄩 .

(174)

Since 0 < 𝛼(1− 𝑐)(1− (1−𝑎
1
)(1− 𝑒)) < 1, we immediately get

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (175)

This shows that {𝑥
𝑛
} converges to the unique element 0 ofΩ.
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