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An averaging principle for a class of stochastic differential delay equations (SDDEs) driven by fractional Brownian motion (fBm)
with Hurst parameter in (1/2, 1) is considered, where stochastic integration is convolved as the path integrals. The solutions to the
original SDDEs can be approximated by solutions to the corresponding averaged SDDEs in the sense of both convergence in mean
square and in probability, respectively. Two examples are carried out to illustrate the proposed averaging principle.

1. Introduction

The averaging principle in stochastic dynamical systems is
often used, and it is useful and effective for exploring stochas-
tic differential equations (SDEs) inmany different fields [1–4].
In Gaussian randomfluctuations case, this analytic technique
has been developed by Stratonovich [5, 6] and Khasminskii
[7, 8]. Shortly afterwards, researchers began to study the
averaging principle of SDEs driven by Poisson noises [9,
10]. Recently, Zhu and his coworkers also investigated this
averaging principle for a class of nonlinear systems with
Poisson noises [11–13]. Instead of Poisson noises, Xu et al.
established an averaging principle for SDEs with Lévy noise
[14].

However, random fluctuations with long-range depen-
dence, or correlated noises, are abundant, which may be
modeled by fractional Brownian motion (fBm) with Hurst
parameter in (1/2, 1). Therefore, SDEs with fBm have played
an increasingly significant role in various fields of applica-
tions, such as hydrology, queueing theory, and mathematical
finance [15–18]. Against this background, Xu et al. presented
an averaging principle for SDEs with fBm [19]. It should be
noted that one assumes the future states will have nothing
to do with the past states besides the present states of the
systems, for most of the applications. However, under closer
scrutiny, it becomes apparent that a more realistic model

would include some of the past states of the systems. For-
tunately, stochastic differential delay equations (SDDEs) give
a mathematical formulation for such kinds of systems. For
this reason, SDDEs have attracted more and more attentions
except the averaging principle for SDDEs driven by fBm [20–
22].

Therefore, we in the present paper will consider an
averaging principle for the following SDDEs on 𝑅

𝑑 of the
form:

𝑋(𝑡) = 𝑋 (0) + ∫
𝑡

0

𝑏 (𝑠, 𝑋 (𝑠)) 𝑑𝑠

+ ∫
𝑡

0

𝜎 (𝑠, 𝑋 (𝑠 − 𝜏)) 𝑑
−
𝐵
𝐻
(𝑠) , 𝑡 ∈ (0, 𝑇] ,

𝑋 (𝑡) = 𝜂 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(1)

where 𝜏 denotes a strictly positive time delay, 𝐵𝐻 = (𝐵𝐻,𝑗, 𝑗 =
1, . . . 𝑚) are independent fBm with Hurst parameter 𝐻 in
(1/2, 1) defined in a complete probability space (Ω,F, 𝑃),
and 𝑏(𝑠, 𝑋) the hereditary term, which is a measurable
function, depends on the path {𝑋(𝑠1), −𝜏 < 𝑠1 < 𝑠}, while
𝜂[−𝜏, 0] → R𝑑 is a continuous and smooth function. 𝜎(𝑠, 𝑋)
is a measurable function. ∫𝑡

0
⋅𝑑−𝐵𝐻(𝑠) represents the forward

integral which is interpreted in Definition 1.

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 479195, 10 pages
http://dx.doi.org/10.1155/2014/479195

http://dx.doi.org/10.1155/2014/479195


2 Abstract and Applied Analysis

The simplified systems to (1) will be introduced as the
so-called averaged systems, whose solutions will be applied
to approximate the solutions of the original systems. And,
we prove that the solutions of the original SDDEs converge
to solutions of the corresponding averaged SDDEs in the
sense of mean square and probability. In addition, the
similar conclusion holds for SDDEs with fBm, where the
stochastic differential or stochastic integral is of symmetric
and backward types.

2. Some Preliminaries

Since SDEs are interpreted via stochastic integrals, it is
necessary to specify the integrals with respect to fBm [23–26].

Firstly, the process of fBm is Gaussian, and, hence we
can develop a stochastic calculus of variation [16, 24, 26] (or
Malliavin calculus) with respect to fBm.

Let 𝑔 : R+ → R be Borel measurable, 1/2 < 𝐻 < 1.
𝜑 : R+ ×R+ → R+ is given by

𝜑 (𝑡, 𝑠) = 𝐻 (2𝐻 − 1) |𝑡 − 𝑠|
2𝐻−2

, 𝑡, 𝑠 ∈ R+. (2)

Then we say that 𝑔 ∈ 𝐿2
𝜑
(R+) if

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝜑
= ∫

R
+

∫
R
+

𝑔 (𝑡) 𝑔 (𝑠) 𝜑 (𝑡, 𝑠) 𝑑𝑠 𝑑𝑡 < ∞. (3)

If we equip 𝐿2
𝜑
with the inner product

⟨𝑔1, 𝑔2⟩𝜑 = ∫
R
+

∫
R
+

𝑔1 (𝑡) 𝑔2 (𝑠) 𝜑 (𝑡, 𝑠) 𝑑𝑠 𝑑𝑡,

𝑔1, 𝑔2 ∈ 𝐿
2

𝜑
(R+) ,

(4)

then 𝐿2
𝜑
(R+) becomes a separable Hilbert space.

Let S be the set of smooth and cylindrical random
variables of the form

𝐹 = 𝑓 (𝐵
𝐻
(𝜓1) , 𝐵

𝐻
(𝜓2) ⋅ ⋅ ⋅ 𝐵

𝐻
(𝜓𝑛)) , (5)

where 𝑛 ≥ 1, 𝑓 ∈ C∞
𝑏
(R𝑛) (i.e.,𝑓 and all its partial derivatives

are bounded), 𝜑𝑖 ∈ H, 𝑖 = 1, 2 . . . 𝑛, andH is a Hilbert space.
The elements of H may not be functions but distributions
of negative order. Thanks to this reason, it is convenient to
introduce the space |H| of measurable function ℎ on [0, 𝑇]
satisfying

‖ℎ‖
2

|H| = ∫
𝑇

0

∫
𝑇

0

|ℎ (𝑡)| |ℎ (𝑠)| 𝜑 (𝑡, 𝑠) 𝑑𝑠 𝑑𝑡 < ∞. (6)

And it is not difficult to show that |H| is a Banach space with
the norm ‖ ⋅ ‖

2

|H|.
The derivative operator 𝐷𝐻

𝑡
of a smooth and cylindrical

random variable 𝐹 is defined as the H-valued random
variable:

𝐷
𝐻

𝑡
𝐹 =

𝑛

∑
𝑖=1

𝜕𝑓

𝜕𝑥𝑖
(𝐵
𝐻
(𝜓1) , 𝐵

𝐻
(𝜓2) ⋅ ⋅ ⋅ 𝐵

𝐻
(𝜓𝑛)) 𝜓𝑖. (7)

Then, for any 𝑝 ≥ 1, the derivative operator 𝐷𝐻
𝑡
is a closable

operator from 𝐿𝑝(Ω) into 𝐿𝑝(Ω;H). In addition, we denote
𝐷𝐻,𝑘
𝑡

as the iteration of the derivative operator for any integer
𝑘 ≥ 1. And the Sobolev space D𝑘,𝑝 is the closure of S with
respect to the norm for any 𝑝 ≥ 1 (⊗ denotes the tensor
product)

‖𝐹‖
𝑝

𝑘,𝑝
= 𝐸|𝐹|

𝑝
+ 𝐸

𝑘

∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝐷
𝐻,𝑗

𝑡

󵄩󵄩󵄩󵄩󵄩

𝑝

H⊗𝑗
. (8)

Similarly, for a Hilbert space 𝑈, we denote by D𝑘,𝑝(𝑈) the
corresponding Sobolev space of 𝑈-valued random variables.
For any 𝑝 > 1 we denote by D1,𝑝(|H|) the subspace of
D1,𝑝(H) formed by the elements ℎ such that ℎ ∈ |H|.

By [23], we introduce the 𝜑-derivative of 𝐹:

𝐷
𝜑

𝑡
𝐹 = ∫

R
+

𝜑 (𝑡, V) 𝐷𝐻V 𝐹𝑑V. (9)

Refer to [23, 26] to obtain more details.
Secondly, recall the definitions of the three types of

pathwise integrals introduced by Russo and Vallois in [27].

Definition 1. Let 𝑢(𝑡) be a stochastic process with integrable
trajectories.

(1) The symmetric integral ∫𝑇
0
𝑢(𝑠)𝑑 ∘ 𝐵𝐻(𝑠) of 𝑢(𝑡) with

respect to 𝐵𝐻(𝑡) is defined as the limit in probability
as 𝜀 tends to zero of

1

2𝜀
∫
𝑇

0

𝑢 (𝑠) [𝐵
𝐻
(𝑠 + 𝜀) − 𝐵

𝐻
(𝑠 − 𝜀)] 𝑑𝑠, (10)

provided this limit exists.

(2) The forward integral ∫𝑇
0
𝑢(𝑠)𝑑−𝐵𝐻(𝑠) of 𝑢(𝑡) with

respect to 𝐵𝐻(𝑡) is defined as the limit in probability
as 𝜀 tends to zero of

1

𝜀
∫
𝑇

0

𝑢 (𝑠) [
𝐵𝐻 (𝑠 + 𝜀) − 𝐵

𝐻
(𝑠)

𝜀
] 𝑑𝑠, (11)

provided this limit exists.

(3) The backward integral ∫𝑇
0
𝑢(𝑠)𝑑+𝐵𝐻(𝑠) of 𝑢(𝑡) with

respect to 𝐵𝐻(𝑡) is defined as the limit in probability
as 𝜀 tends to zero of

1

𝜀
∫
𝑇

0

𝑢 (𝑠) [
𝐵𝐻 (𝑠 − 𝜀) − 𝐵

𝐻
(𝑠)

𝜀
] 𝑑𝑠, (12)

provided this limit exists.

At last, we introduce some auxiliary results.

Lemma 2. Let 𝑢(𝑡) be a stochastic process in the space
D1,2(|H|) and satisfy

∫
𝑇

0

∫
𝑇

0

󵄨󵄨󵄨󵄨󵄨
𝐷
𝐻

𝑠
𝑢 (𝑡)

󵄨󵄨󵄨󵄨󵄨 |
𝑡 − 𝑠|
2𝐻−2

𝑑𝑠 𝑑𝑡 < ∞. (13)
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By Remark 1 in [26] and Proposition 6.2.3 in [23], then the
symmetric integral coincides with the forward and backward
integrals.

Definition 3. The space L𝜑[0, 𝑇] of integrands is defined as
the family of stochastic processes 𝑢(𝑡) on [0, 𝑇], if 𝐸‖𝑢(𝑡)‖2

𝜑
<

∞, 𝑢(𝑡) is 𝜑-differentiable, the trace of 𝐷𝜑
𝑠
𝑢(𝑡) exists, 0 ≤ 𝑠 ≤

𝑇, 0 ≤ 𝑡 ≤ 𝑇, and

𝐸∫
𝑇

0

∫
𝑇

0

[𝐷
𝜑

𝑠
𝑢 (𝑡)]
2
𝑑𝑠 𝑑𝑡 < ∞, (14)

and for each sequence of partitions (𝜋𝑛, 𝑛 ∈ N) such that
|𝜋𝑛| → 0 as 𝑛 → ∞,

𝑛−1

∑
𝑖=0

𝐸[∫
𝑡
(𝑛)

𝑖+1

𝑡
(𝑛)

𝑖

∫
𝑡
(𝑛)

𝑗+1

𝑡
(𝑛)

𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐷
𝜑

𝑠
𝑢
𝜋

𝑡
(𝑛)

𝑖

𝐷
𝜑

𝑡
𝑢
𝜋

𝑡
(𝑛)

𝑗

− 𝐷
𝜑

𝑠
𝑢𝑡𝐷
𝜑

𝑡
𝑢𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑠 𝑑𝑡] ,

𝐸 [
󵄩󵄩󵄩󵄩𝑢
𝜋
− 𝑢

󵄩󵄩󵄩󵄩
2

𝜑
]

(15)

tend to 0 as 𝑛 → ∞, where 𝜋𝑛 = 𝑡
(𝑛)

0
< 𝑡
(𝑛)

1
< ⋅ ⋅ ⋅ < 𝑡

(𝑛)

𝑛−1
<

𝑡(𝑛)
𝑛
= 𝑇, |𝜋| := max𝑖(𝑡𝑖+1 − 𝑡𝑖) and 𝑢

𝜋 = 𝑢𝑡
𝑖

.

Remark 4. If 𝑢(𝑡) ∈ L𝜑[0, 𝑇], then the three types of
pathwise integrals exist and the following relations hold:

∫
𝑇

0

𝑢 (𝑠) 𝑑 ∘ 𝐵
𝐻
(𝑠) = ∫

𝑇

0

𝑢 (𝑠) 𝑑 ⬦ 𝐵
𝐻
(𝑠) + ∫

𝑇

0

𝐷
𝜑

𝑠
𝑢 (𝑠) 𝑑𝑠,

∫
𝑇

0

𝑢 (𝑠) 𝑑
−
𝐵
𝐻
(𝑠) = ∫

𝑇

0

𝑢 (𝑠) ⬦ 𝑑𝐵
𝐻
(𝑠) + ∫

𝑇

0

𝐷
𝜑

𝑠
𝑢 (𝑠) 𝑑𝑠,

∫
𝑇

0

𝑢 (𝑠) 𝑑
+
𝐵
𝐻
(𝑠) = ∫

𝑇

0

𝑢 (𝑠) ⬦ 𝑑𝐵
𝐻
(𝑠) + ∫

𝑇

0

𝐷
𝜑

𝑠
𝑢 (𝑠) 𝑑𝑠,

(16)

where ⬦ denotes the Wick product.
Wenote that the result of Remark 4 also follows by Propo-

sition 6.2.2 in [23] and Lemma 2. The proof of Remark 4 can
be found byTheorem 6.2.5 in [23].

Lemma 5. Let 𝑢(𝑠) be a stochastic process in L𝜑[0, 𝑇]; there
exists a constant 𝐶 such that

𝐸[∫
𝑇

0

𝑢 (𝑠) ⬦ 𝑑𝐵
𝐻
(𝑠)]

2

≤ 𝐻𝑇
2𝐻−1

𝐸[∫
𝑇

0

|𝑢 (𝑠)|
2
𝑑𝑠] + 𝐶𝑇

2
.

(17)

Lemma 6. Suppose that 𝑢(𝑠) is a stochastic process in
L𝜑[0, 𝑇]; there exists a constant 𝐶 such that

𝐸[∫
𝑇

0

𝑢 (𝑠) 𝑑 ∘ 𝐵
𝐻
(𝑠)]

2

≤ 2𝐻𝑇
2𝐻−1

𝐸[∫
𝑇

0

|𝑢 (𝑠)|
2
𝑑𝑠] + 4𝐶𝑇

2
.

(18)

The detailed proofs of Lemmas 5 and 6 are in [19].

Remark 7. In the same conditions with Lemmas 2, 5 and
6 and under Remark 4, we can get the symmetric, forward
and backward integrals cases have the same conclusions as
symmetric integral case in Lemma 6.

3. An Averaging Principle for SDDEs with fBm

3.1. SDDEs Driven by fBm. One can define the integral with
respect to fBm using a pathwise approach with 1/2 < 𝐻 < 1.
Indeed, if there is a stochastic process 𝑢(𝑡), whose trajectories
are 𝜆-Hölder continuous with 𝜆 > 1 −𝐻, then the Riemann-
Stieltjes integral ∫𝑇

0
𝑢(𝑠)𝑑𝐵𝐻(𝑠) exists for each trajectory [28].

Moreover, the pathwise Riemann-Stieltjes integral coin-
cides with the symmetric integral in the Russo-Vallois sense
which has been proved in [25, 29]. Therefore, in terms
of Lemma 2 and [29], we can conclude that the pathwise
Riemann-Stieltjes integral coincides with the three types of
pathwise integrals in this paper.

In this section the forward integral of SDDEs with respect
to fBm is firstly concerned.Then, the other two kinds of cases
are given subsequently.

Now, considering the following assumptions on the coef-
ficients of (1),

(H1) 𝜎 : [0, 𝑇] ×R𝑑 → R𝑑 ×R𝑚 is a measurable function
𝜎(𝑡, 𝑥) which is differentiable in 𝑥, and there exist
some constants 0 < 𝛾, 𝛿 ≤ 1 and for every𝑁 ≥ 0 there
exists𝑀𝑁 > 0 such that the following properties hold:

(C1) |𝜎(𝑡, 𝑥) − 𝜎(𝑡, 𝑦)| ≤ 𝑀0|𝑥 − 𝑦|, for all 𝑥, 𝑦 ∈ R𝑑,
for all 𝑡 ∈ [0, 𝑇],

(C2) |𝜕𝑥𝑖𝜎(𝑡, 𝑥) − 𝜕𝑦𝑖𝜎(𝑡, 𝑦)| ≤ 𝑀𝑁|𝑥 − 𝑦|
𝛿, for all

|𝑥|, |𝑦| ≤ 𝑁, for all 𝑡 ∈ [0, 𝑇], for each 𝑖 =

1, . . . 𝑑,
(C3) |𝜎(𝑡, 𝑥) − 𝜎(𝑠, 𝑥)| + |𝜕𝑥𝑖𝜎(𝑡, 𝑥) − 𝜕𝑥𝑖𝜎(𝑠, 𝑥)| ≤

𝑀0|𝑡 − 𝑠|
𝛾, for all 𝑥 ∈ R𝑑, for all 𝑡, 𝑠 ∈ [0, 𝑇]

for each 𝑖 = 1, . . . 𝑑;

(H2) 𝑏 : [0, 𝑇] × 𝐶(−𝜏, 𝑇;R𝑑) → R𝑑 is a measurable
function such that, for every 𝑡 > 0 and ℎ ∈

𝐶(−𝜏, 𝑇;R𝑑), 𝑏(𝑡, ℎ) depends only on {ℎ(𝑠); −𝜏 < 𝑠 <

𝑡}.

Moreover, there exists 𝑏0 ∈ 𝐿𝜌(0, 𝑇;R𝑑) with 𝜌 ≥ 2

and for all𝑁 ≥ 0 there exists 𝐿𝑁 > 0 such that

(C4) |𝑏(𝑡, 𝑥) − 𝑏(𝑡, 𝑦)| ≤ 𝐿𝑁 sup−𝜏≤𝑠≤𝑡|𝑥(𝑠) − 𝑦(𝑠)|, for
all 𝑡 ∈ [0, 𝑇], for all 𝑥, 𝑦, ‖𝑥‖∞(𝜏) ≤ 𝑁, ‖𝑦‖

∞(𝜏)
≤

𝑁, where ‖𝑥‖∞(𝜏) = sup
𝑠∈[−𝜏,𝑇]

|𝑥(𝑠)|, ‖𝑦‖
∞(𝜏)

=

sup
𝑠∈[−𝜏,𝑇]

|𝑦(𝑠)|,
(C5) |𝑏(𝑡, 𝑥)| ≤ 𝐿0 sup−𝜏≤𝑠≤𝑡|𝑥(𝑠)| + 𝑏0(𝑡), for all 𝑡 ∈

[0, 𝑇].

The existence and uniqueness of solutions of the SDDEs
driven by fBm under the above assumptions (H1-H2) have
been proved by Ferrante and Rovira in [30].
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3.2. Main Results. In this section, we discuss a standard
SDDE using an averaging principle.

The standard SDDE is defined as

𝑋𝜀 (𝑡) = 𝑋 (0) + 𝜀
2𝐻
∫
𝑡

0

𝑏 (𝑠, 𝑋𝜀 (𝑠)) 𝑑𝑠

+ 𝜀
𝐻
∫
𝑡

0

𝜎 (𝑠, 𝑋𝜀 (𝑠 − 𝜏)) 𝑑
−
𝐵
𝐻
(𝑠) ,

(19)

where𝑋(0) = 𝜂(0) is a given 𝑑-dimensional random variable
as the initial condition, 𝑡 ∈ [0, 𝑇] and the coefficients have
the same conditions as in (1), and 𝜀 ∈ (0, 𝜀0] is a positive
parameter with 𝜀0 a fixed number.

Then, we introduce the averaged SDDE:

𝑍𝜀 (𝑡) = 𝑋 (0) + 𝜀
2𝐻
∫
𝑡

0

𝑏 (𝑍𝜀 (𝑠)) 𝑑𝑠

+ 𝜀
𝐻
∫
𝑡

0

𝜎 (𝑍𝜀 (𝑠 − 𝜏)) 𝑑
−
𝐵
𝐻
(𝑠) .

(20)

Assume that (C1)–(C5) are satisfied for (20); besides the
mappings 𝜎 : R𝑑 → R𝑑 × R𝑚, 𝑏 : 𝐶(−𝜏, 𝑇;R𝑑) → R𝑑 are
measurable.

Moreover, we presume the coefficients meet the following
additional inequalities:

(C6) (1/𝑇1) ∫
𝑇
1

0
|𝑏(𝑠, 𝑦) − 𝑏(𝑦)|𝑑𝑠 ≤ 𝜑1(𝑇1)(1 + |𝑦|),

(C7) (1/𝑇1) ∫
𝑇
1

0
|𝜎(𝑠, 𝑦) − 𝜎(𝑦)|

2
𝑑𝑠 ≤ 𝜑2(𝑇1)(1+|𝑦|

2
),

where𝑇1 ∈ [0, 𝑇], 𝜑𝑖(𝑇1) are positive bounded functions with
lim𝑇

1
→∞𝜑𝑖(𝑇1) = 0, 𝑖 = 1, 2.

Obviously, under similar conditions such as (19), (20)
also has a unique solution 𝑍𝜀(𝑡). In the rest of the paper, we
will consider the connections between the solution processes
𝑍𝜀(𝑡) and𝑋𝜀(𝑡).

Now we prove the following main theorems to show
relationship between solution processes 𝑍𝜀(𝑡) and𝑋𝜀(𝑡).

Theorem 8. Assume that the original SDDE (19) and the
averaged SDDE (20) both satisfy the assumptions (H1), (H2)
and (C6), (C7). For a given arbitrarily small number 𝛿1 > 0,
there exist 𝐿 > 0, 𝜀1 ∈ (0, 𝜀0], and 𝛽 ∈ (0, 1), such that, for any
𝜀 ∈ (0, 𝜀1],

𝐸 (
󵄨󵄨󵄨󵄨𝑋𝜀 (𝑡) − 𝑍𝜀 (𝑡)

󵄨󵄨󵄨󵄨
2
) ≤ 𝛿1. (21)

Proof. By the above analysis, we start with

𝑋𝜀 (𝑡) − 𝑍𝜀 (𝑡)

= 𝜀
2𝐻
∫
𝑡

0

[𝑏 (𝑠, 𝑋𝜀 (𝑠)) − 𝑏 (𝑍𝜀 (𝑠))] 𝑑𝑠

+ 𝜀
𝐻
∫
𝑡

0

[𝜎 (𝑠, 𝑋𝜀 (𝑠 − 𝜏)) − 𝜎 (𝑍𝜀 (𝑠 − 𝜏))] 𝑑
−
𝐵
𝐻
(𝑠)

(22)

and employ the following inequality for 𝑚 ∈ N and 𝑥1,

𝑥2, . . . 𝑥𝑚 ∈ R:
󵄨󵄨󵄨󵄨𝑥1 + 𝑥2 + ⋅ ⋅ ⋅ 𝑥𝑚

󵄨󵄨󵄨󵄨
2
≤ 𝑚(

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨
2
+
󵄨󵄨󵄨󵄨𝑥2
󵄨󵄨󵄨󵄨
2
+ ⋅ ⋅ ⋅

󵄨󵄨󵄨󵄨𝑥𝑚
󵄨󵄨󵄨󵄨
2
) . (23)

We obtain that
󵄨󵄨󵄨󵄨𝑋𝜀 (𝑡) − 𝑍𝜀 (𝑡)

󵄨󵄨󵄨󵄨
2

≤ 2𝜀
4𝐻
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

[𝑏 (𝑠, 𝑋𝜀 (𝑠)) − 𝑏 (𝑍𝜀 (𝑠))] 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+ 2𝜀
2𝐻
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

[𝜎 (𝑠, 𝑋𝜀 (𝑠 − 𝜏)) − 𝜎 (𝑍𝜀 (𝑠 − 𝜏))] 𝑑
−
𝐵
𝐻
(𝑠)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

= 𝐼
2

1
+ 𝐼
2

2
,

(24)

where [0, 𝑡] ⊆ [0, 𝑢] ⊆ [0, 𝑇], 𝐼𝑖, 𝑖 = 1, 2 denote the above
terms, respectively.

Now we present some estimates for 𝐼𝑖, 𝑖 = 1, 2.
Firstly, we apply the inequality (23) to yield

𝐼
2

1
= 2𝜀
4𝐻
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

[𝑏 (𝑠, 𝑋𝜀 (𝑠)) − 𝑏 (𝑍𝜀 (𝑠))] 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

= 2𝜀
4𝐻
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

[𝑏 (𝑠, 𝑋𝜀 (𝑠)) − 𝑏 (𝑠, 𝑍𝜀 (𝑠))

+𝑏 (𝑠, 𝑍𝜀 (𝑠)) − 𝑏 (𝑍𝜀 (𝑠))] 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ 4𝜀
4𝐻
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

[𝑏 (𝑠, 𝑋𝜀 (𝑠)) − 𝑏 (𝑠, 𝑍𝜀 (𝑠))] 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+ 4𝜀
4𝐻
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

[𝑏 (𝑠, 𝑍𝜀 (𝑠)) − 𝑏 (𝑍𝜀 (𝑠))] 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

= 𝐼
2

11
+ 𝐼
2

12
,

(25)

where

𝐼
2

11
= 4𝜀
4𝐻
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

[𝑏 (𝑠, 𝑋𝜀 (𝑠)) − 𝑏 (𝑠, 𝑍𝜀 (𝑠))] 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

,

𝐼
2

12
= 4𝜀
4𝐻
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

[𝑏 (𝑠, 𝑍𝜀 (𝑠)) − 𝑏 (𝑍𝜀 (𝑠))] 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

.

(26)

By the Cauchy-Schwarz inequality for 𝐼2
11
, we arrive at

𝐼
2

11
≤ 4𝜀
4𝐻
𝑡 ∫
𝑡

0

󵄨󵄨󵄨󵄨𝑏 (𝑠, 𝑋𝜀 (𝑠)) − 𝑏 (𝑠, 𝑍𝜀 (𝑠))
󵄨󵄨󵄨󵄨
2
𝑑𝑠. (27)

According to condition (C5), the elementary inequality
(𝑎 − 𝑏)

2
≤ 2(𝑎2 + 𝑏2) and 𝑏0 ∈ 𝐿𝜌(0, 𝑇;R𝑑), and taking

expectation, we have

𝐸
󵄨󵄨󵄨󵄨𝐼11

󵄨󵄨󵄨󵄨
2
= 4𝜀
4𝐻
𝐸
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

[𝑏 (𝑠, 𝑋𝜀 (𝑠)) − 𝑏 (𝑠, 𝑍𝜀 (𝑠))] 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ 4𝜀
4𝐻
𝑡𝐸∫
𝑡

0

[𝑏 (𝑠, 𝑋𝜀 (𝑠)) − 𝑏 (𝑠, 𝑍𝜀 (𝑠))]
2
𝑑𝑠

≤ 8𝜀
4𝐻
𝑡𝐸∫
𝑡

0

[
󵄨󵄨󵄨󵄨𝑏 (𝑠, 𝑋𝜀 (𝑠))

󵄨󵄨󵄨󵄨
2
+
󵄨󵄨󵄨󵄨𝑏 (𝑠, 𝑍𝜀 (𝑠))

󵄨󵄨󵄨󵄨
2
] 𝑑𝑠
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≤ 8𝜀
4𝐻
𝑢𝐸∫
𝑢

0

{[𝐿0 sup
−𝜏≤𝑠
1
≤𝑠

󵄨󵄨󵄨󵄨𝑋𝜀 (𝑠1)
󵄨󵄨󵄨󵄨 + 𝑏0 (𝑠)]

2

+[𝐿0 sup
−𝜏≤𝑠
1
≤𝑠

󵄨󵄨󵄨󵄨𝑍𝜀 (𝑠1)
󵄨󵄨󵄨󵄨 + 𝑏0 (𝑠)]

2

}𝑑𝑠

≤ 8𝜀
4𝐻
𝑢𝐾11,

(28)

where𝐾11 denotes constant.
Then, for |𝐼12|

2, using condition (C6), 𝜑1(𝑇1) is a positive
bounded function and taking expectation to yield

𝐸
󵄨󵄨󵄨󵄨𝐼12

󵄨󵄨󵄨󵄨
2
≤ 4𝜀
4𝐻
𝑡
2
𝐸[

1

𝑡
∫
𝑡

0

󵄨󵄨󵄨󵄨󵄨
𝑏 (𝑠, 𝑍𝜀 (𝑠)) − 𝑏 (𝑍𝜀 (𝑠))

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠]

2

≤ 4𝜀
4𝐻
𝑢
2
( sup
0≤𝑡≤𝑢

𝜑
2

1
(𝑡))(1 + 𝐸( sup

0≤𝑡≤𝑢

󵄨󵄨󵄨󵄨𝑍𝜀 (𝑡)
󵄨󵄨󵄨󵄨
2
))

≤ 4𝜀
4𝐻
𝑢
2
𝐾12,

(29)

where𝐾12 denotes constant.
Putting |𝐼11|

2 and |𝐼12|
2 together, we reach

𝐸
󵄨󵄨󵄨󵄨𝐼1
󵄨󵄨󵄨󵄨
2
= 𝐸

󵄨󵄨󵄨󵄨𝐼11
󵄨󵄨󵄨󵄨
2
+ 𝐸

󵄨󵄨󵄨󵄨𝐼12
󵄨󵄨󵄨󵄨
2
≤ 8𝜀
4𝐻
𝑢𝐾11 + 4𝜀

4𝐻
𝑢
2
𝐾12. (30)

Now, taking expectation on 𝐼2
2
we obtain

𝐸
󵄨󵄨󵄨󵄨𝐼2
󵄨󵄨󵄨󵄨
2

= 2𝜀
2𝐻
𝐸
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

[𝜎 (𝑠, 𝑋𝜀 (𝑠 − 𝜏)) − 𝜎 (𝑍𝜀 (𝑠 − 𝜏))] 𝑑
−
𝐵
𝐻
(𝑠)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ 4𝜀
2𝐻
𝐸
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

[𝜎 (𝑠, 𝑋𝜀 (𝑠 − 𝜏))

−𝜎 (𝑠, 𝑍𝜀 (𝑠 − 𝜏))] 𝑑
−
𝐵
𝐻
(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+ 4𝜀
2𝐻
𝐸
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

[𝜎 (𝑠, 𝑍𝜀 (𝑠 − 𝜏))

−𝜎 (𝑍𝜀 (𝑠 − 𝜏))] 𝑑
−
𝐵
𝐻
(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

= 𝐼
2

21
+ 𝐼
2

22
,

(31)

where

𝐼
2

21
= 4𝜀
2𝐻

×𝐸
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

[𝜎 (𝑠, 𝑋𝜀 (𝑠 − 𝜏)) − 𝜎 (𝑠, 𝑍𝜀 (𝑠 − 𝜏))] 𝑑
−
𝐵
𝐻
(𝑠)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

,

𝐼
2

22
=4𝜀
2𝐻
𝐸
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

[𝜎 (𝑠, 𝑍𝜀 (𝑠 − 𝜏)) − 𝜎 (𝑍𝜀 (𝑠 − 𝜏))] 𝑑
−
𝐵
𝐻
(𝑠)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

.

(32)

By Remark 7, Lemma 6, and (C1), we obtain

𝐼
2

21
= 4𝜀
2𝐻
𝐸
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

[𝜎 (𝑠, 𝑋𝜀 (𝑠 − 𝜏)) − 𝜎 (𝑠, 𝑍𝜀 (𝑠 − 𝜏))]

× 𝑑
−
𝐵
𝐻
(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ 4𝜀
2𝐻
{2𝐻𝑡

2𝐻−1
𝐸∫
𝑡

0

[𝜎 (𝑠, 𝑋𝜀 (𝑠 − 𝜏))

−𝜎 (𝑠, 𝑍𝜀 (𝑠 − 𝜏))]
2
𝑑𝑠 + 4𝐶𝑢

2
}

≤ 4𝜀
2𝐻
𝑀
2

0

× (2𝐻𝑡
2𝐻−1

𝐸[∫
𝑡

0

󵄨󵄨󵄨󵄨𝑋𝜀 (𝑠 − 𝜏) − 𝑍𝜀 (𝑠 − 𝜏)
󵄨󵄨󵄨󵄨
2
𝑑𝑠]

+ 4𝐶𝑢
2
)

≤ 8𝜀
2𝐻
𝑢
2𝐻−1

𝐾211

× (𝐸∫
𝑢

0

󵄨󵄨󵄨󵄨𝑋𝜀 (𝑠) − 𝑍𝜀 (𝑠)
󵄨󵄨󵄨󵄨
2
𝑑𝑠

+𝐸∫
0

−𝜏

󵄨󵄨󵄨󵄨𝑋𝜀 (𝑠) − 𝑍𝜀 (𝑠)
󵄨󵄨󵄨󵄨
2
𝑑𝑠)

+ 16𝜀
2𝐻
𝐾212

≤ 8𝜀
2𝐻
𝑢
2𝐻−1

𝐾211 ∫
𝑢

0

𝐸
󵄨󵄨󵄨󵄨𝑋𝜀 (𝑠) − 𝑍𝜀 (𝑠)

󵄨󵄨󵄨󵄨
2
𝑑𝑠

+ 8𝜀
2𝐻
𝑢
2𝐻−1

𝐾211𝐸∫
0

−𝜏

󵄨󵄨󵄨󵄨𝑋𝜀 (𝑠) − 𝑍𝜀 (𝑠)
󵄨󵄨󵄨󵄨
2
𝑑𝑠

+ 16𝜀
2𝐻
𝐾212,

(33)

where𝐾211, 𝐾212 denote constants.
Due to condition (C7), we have

𝐼
2

22
= 4𝜀
2𝐻
𝐸
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

[𝜎 (𝑠, 𝑍𝜀 (𝑠 − 𝜏)) − 𝜎 (𝑍𝜀 (𝑠 − 𝜏))] 𝑑
−
𝐵
𝐻
(𝑠)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ 4𝜀
2𝐻
{

{

{

2𝐻𝑢
2𝐻−1

𝐸[∫
𝑡

0

󵄨󵄨󵄨󵄨𝜎 (𝑠, 𝑍𝜀 (𝑠 − 𝜏))

−𝜎 (𝑍𝜀 (𝑠 − 𝜏))
󵄨󵄨󵄨󵄨
2
𝑑𝑠]+4𝐶𝑢

2
}

}

}

≤ 8𝜀
2𝐻
𝐻𝑢
2𝐻−1

𝑡

× 𝐸{
1

𝑡
∫
𝑡

0

󵄨󵄨󵄨󵄨𝜎 (𝑠, 𝑍𝜀 (𝑠 − 𝜏)) − 𝜎 (𝑍𝜀 (𝑠 − 𝜏))
󵄨󵄨󵄨󵄨
2
𝑑𝑠}

+ 16𝜀
2𝐻
𝑢
2
𝐾222
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≤ 8𝜀
2𝐻
𝐻𝑢
2𝐻
( sup
0≤𝑡≤𝑢

𝜑2 (𝑡))

× [1 + 𝐸( sup
−𝜏≤𝑡≤0

󵄨󵄨󵄨󵄨𝑍𝜀 (𝑡)
󵄨󵄨󵄨󵄨
2
) + 𝐸( sup

0≤𝑡≤𝑢

󵄨󵄨󵄨󵄨𝑍𝜀 (𝑡)
󵄨󵄨󵄨󵄨
2
)]

+ 16𝜀
2𝐻
𝑢
2
𝐾222

≤ 8𝜀
2𝐻
𝐻𝑢
2𝐻
𝐾221 + 16𝜀

2𝐻
𝑢
2
𝐾222.

(34)

Then

𝐸
󵄨󵄨󵄨󵄨𝐼2
󵄨󵄨󵄨󵄨
2
≤ 8𝜀
2𝐻
𝑢
2𝐻−1

𝐾211 ∫
𝑢

0

𝐸
󵄨󵄨󵄨󵄨𝑋𝜀 (𝑠) − 𝑍𝜀 (𝑠)

󵄨󵄨󵄨󵄨
2
𝑑𝑠

+ 8𝜀
2𝐻
(𝑢
2𝐻−1

𝐾211 + 𝐾212 + 𝐻𝑢
2𝐻
𝐾221 + 𝑢

2
𝐾222) .

(35)

Therefore, from the above discussions (30) and (35), we
get

𝐸
󵄨󵄨󵄨󵄨𝑋𝜀 (𝑡) − 𝑍𝜀 (𝑡)

󵄨󵄨󵄨󵄨
2

≤ 8𝜀
2𝐻
𝑢
2𝐻−1

𝐾211 ∫
𝑢

0

𝐸
󵄨󵄨󵄨󵄨𝑋𝜀 (𝑠) − 𝑍𝜀 (𝑠)

󵄨󵄨󵄨󵄨
2
𝑑𝑠 + 8𝜀

4𝐻
𝑢𝐾11

+ 4𝜀
4𝐻
𝑢
2
𝐾12 + 8𝜀

2𝐻
(𝑢
2𝐻−1

𝐾211 + 𝐾212

+𝐻𝑢
2𝐻
𝐾221 + 𝑢

2
𝐾222) .

(36)

Now by the Gronwall-Bellman inequality, we obtain

𝐸
󵄨󵄨󵄨󵄨𝑋𝜀 (𝑡) − 𝑍𝜀 (𝑡)

󵄨󵄨󵄨󵄨
2

≤ 4𝜀
2𝐻
[𝜀
2
(2𝑢𝐾11 + 𝑢

2
𝐾12) + 𝑢

2𝐻−1
𝐾211 + 𝐾212

+𝐻𝑢
2𝐻
𝐾221 + 𝑢

2
𝐾222] exp (8𝜀

2𝐻
𝑢
2𝐻
𝐾211) .

(37)

Select 𝛽 ∈ (0, 1), 𝐿 > 0, such that, for all 𝑡 ∈ (0, 𝐿𝜀−𝐻𝛽) ⊆
[0, 𝑇], we have

𝐸
󵄨󵄨󵄨󵄨𝑋𝜀 (𝑡) − 𝑍𝜀 (𝑡)

󵄨󵄨󵄨󵄨
2
≤ 𝐾3𝜀

1−𝐻𝛽
, (38)

where

𝐾3 = [8𝐿𝜀
2𝐻+1

𝐾11 + 4𝐿
2
𝜀
2𝐻+1−𝐻𝛽

𝐾12

+ 4𝐿
2𝐻−1

𝜀
2𝐻−1+2𝐻𝛽−2𝐻

2
𝛽
𝐾211 + 4𝜀

2𝐻−1+𝐻𝛽
𝐾212

+ 4𝐻𝐿
2𝐻
𝜀
2𝐻−1+𝐻𝛽−2𝐻

2
𝛽
𝐾221 + 4𝐿

2
𝜀
2𝐻−1−𝐻𝛽

𝐾222]

× exp (8𝜀2𝐻−2𝐻
2
𝛽
𝐿
2𝐻
𝐾211)

(39)

is a constant.

Consequently, given any number 𝛿1 > 0, we can select
𝜀1 ∈ (0, 𝜀0], such that, for every 𝜀 ∈ (0, 𝜀1] and for 𝑡 ∈

(0, 𝐿𝜀−𝐻𝛽) ⊆ [0, 𝑇],

𝐸 (
󵄨󵄨󵄨󵄨𝑋𝜀 (𝑡) − 𝑍𝜀 (𝑡)

󵄨󵄨󵄨󵄨
2
) ≤ 𝛿1. (40)

This completes the proof.

Theorem 9. Assume that the original SDDE (19) and the
averaged SDDE (20) both satisfy the assumptions (H1), (H2)
and (C6), (C7). Then for any number 𝛿2 > 0, there exist 𝐿 > 0
and 𝛽 ∈ (0, 1), such that

lim
𝜀→0

𝑃 (
󵄨󵄨󵄨󵄨𝑋𝜀 (𝑡) − 𝑍𝜀 (𝑡)

󵄨󵄨󵄨󵄨
2
> 𝛿2) = 0. (41)

Proof. On the basis ofTheorem 8 and theChebyshev-Markov
inequality, for any given number 𝛿2 > 0, one can have

𝑃 (
󵄨󵄨󵄨󵄨𝑋𝜀 (𝑡) − 𝑍𝜀 (𝑡)

󵄨󵄨󵄨󵄨
2
> 𝛿2) ≤

1

𝛿2
2

𝐸
󵄨󵄨󵄨󵄨𝑋𝜀 (𝑡) − 𝑍𝜀 (𝑡)

󵄨󵄨󵄨󵄨
2

≤
𝐾3𝜀
1−𝐻𝛽

𝛿2
2

.

(42)

Let 𝜀 → 0 and the required result follows.
This completes the proof.

Then we also can study the symmetric integral and
backward integral of SDDEs with fBm. On the basis of (19)
and (20), we can get the original SDDEs and the averaged
SDDEs

𝑋𝜀 (𝑡) = 𝑋 (0) + 𝜀
2𝐻
∫
𝑡

0

𝑏 (𝑠, 𝑋𝜀 (𝑠)) 𝑑𝑠

+ 𝜀
𝐻
∫
𝑡

0

𝜎 (𝑠, 𝑋𝜀 (𝑠 − 𝜏)) 𝑑 ∘ 𝐵
𝐻
(𝑠) ,

(43a)

𝑍𝜀 (𝑡) = 𝑋 (0) + 𝜀
2𝐻
∫
𝑡

0

𝑏 (𝑍𝜀 (𝑠)) 𝑑𝑠

+ 𝜀
𝐻
∫
𝑡

0

𝜎 (𝑍𝜀 (𝑠 − 𝜏)) 𝑑 ∘ 𝐵
𝐻
(𝑠) ,

(43b)

𝑋𝜀 (𝑡) = 𝑋 (0) + 𝜀
2𝐻
∫
𝑡

0

𝑏 (𝑠, 𝑋𝜀 (𝑠)) 𝑑𝑠

+ 𝜀
𝐻
∫
𝑡

0

𝜎 (𝑠, 𝑋𝜀 (𝑠 − 𝜏)) 𝑑
+
𝐵
𝐻
(𝑠) ,

(44a)

𝑍𝜀 (𝑡) = 𝑋 (0) + 𝜀
2𝐻
∫
𝑡

0

𝑏 (𝑍𝜀 (𝑠)) 𝑑𝑠

+ 𝜀
𝐻
∫
𝑡

0

𝜎 (𝑍𝜀 (𝑠 − 𝜏)) 𝑑
+
𝐵
𝐻
(𝑠) ,

(44b)

where𝑋(0) = 𝜂(0) is the initial condition, and the coefficients
satisfy the (C1)–(C5).

Theorem10. Assume that the original SDDEs (43a), (44a) and
the averaged SDDEs (43b), (44b) both satisfy the assumptions
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(H1), (H2) and (C6), (C7). For a given arbitrarily small number
𝛿3 > 0, there exist 𝜀2 ∈ (0, 𝜀0] and 𝜀 ∈ (0, 𝜀2]:

𝐸 (
󵄨󵄨󵄨󵄨𝑋𝜀 (𝑡) − 𝑍𝜀 (𝑡)

󵄨󵄨󵄨󵄨
2
) ≤ 𝛿3. (45)

And then for any number 𝛿4 > 0, we can get

lim
𝜀→0

𝑃 (
󵄨󵄨󵄨󵄨𝑋𝜀 (𝑡) − 𝑍𝜀 (𝑡)

󵄨󵄨󵄨󵄨
2
> 𝛿4) = 0. (46)

Proof. The proof is similar to Theorems 8 and 9.

Remark 11. ByTheorems 8, 9, and 10, that is to say, we get the
same results for three types of pathwise integrals of SDDEs.

4. Examples

Now we present two examples to demonstrate the procedure
of the averaging principle. Define error = 𝑋𝜀(𝑡) − 𝑌𝜀(𝑡) in
Figures 1 and 2.

Example 12. Consider the following SDDE driven by fBm:

𝑑𝑋𝜀 (𝑡) = 2𝑎𝜀
2𝐻sin2𝑡𝑋𝜀 (𝑡) 𝑑𝑡

+ 𝑐𝜀
𝐻
𝑋𝜀 (𝑡 − 1) 𝑑

−
𝐵
𝐻
(𝑡) , 𝑡 ≥ 0,

(47)

with an initial condition𝑋𝜀(𝑡) = 𝑡 + 1, 𝑡 ∈ [−1, 0], where 𝑎, 𝑐
are constants and 𝐵𝐻(𝑡) is a fBm. Obviously,

𝑏 (𝑡, 𝑋𝜀 (𝑡)) = 2𝑎 sin
2
𝑡𝑋𝜀 (𝑡) ,

𝜎 (𝑡, 𝑋𝜀 (𝑡 − 1)) = 𝑐𝑋𝜀 (𝑡 − 1) .
(48)

Let

𝑏 (𝑋𝜀 (𝑡)) =
1

𝜋
∫
𝜋

0

2𝑎 sin2𝑡𝑋𝜀 (𝑡) 𝑑𝑡 = 𝑎𝑋𝜀 (𝑡) ,

𝜎 (𝑋𝜀 (𝑡)) =
1

𝜋
∫
𝜋

0

𝑐𝑋𝜀 (𝑡 − 1) 𝑑𝑡 = 𝑐𝑋𝜀 (𝑡 − 1) .

(49)

And define an averaged SDDE as

𝑑𝑍𝜀 (𝑡) = 𝜀
2𝐻
𝑎𝑍𝜀 (𝑡) 𝑑𝑡 + 𝜀

𝐻
𝑐𝑍𝜀 (𝑡 − 1) 𝑑

−
𝐵
𝐻
(𝑡) . (50)

On 𝑡 ∈ [0, 1], the linear SDDE driven by fBm becomes linear
SDE

𝑑𝑍𝜀 (𝑡) = 𝜀
2𝐻
𝑎𝑍𝜀 (𝑡) 𝑑𝑡 + 𝜀

𝐻
𝑐𝑡𝑑
−
𝐵
𝐻
(𝑡) . (51)

The explicit solution of this SDE is

𝑍𝜀 (𝑡) = 𝜀
2𝐻
Φ (𝑡)𝑋 (0) + 𝜀

𝐻
𝑐Φ (𝑡) ∫

𝑡

0

𝑠Φ
−1
(𝑠) 𝑑𝐵

𝐻
(𝑠) ,

(52)

where Φ−1(𝑡) = exp(−𝑎𝑡).
Repeating this procedure over the intervals [1, 2], [2, 3],

and so forth, we can obtain the explicit solution.

Because all the conditions (C1)–(C7) are satisfied for
function 𝑏, 𝜎, 𝑏, 𝜎 in SDDEs (19), (20),Theorems 8 and 9 hold.
That is,

𝐸 (
󵄨󵄨󵄨󵄨𝑋𝜀 (𝑡) − 𝑍𝜀 (𝑡)

󵄨󵄨󵄨󵄨
2
) ≤ 𝛿1, (53)

and as 𝜀 → 0

𝑋𝜀 (𝑡) 󳨀→ 𝑍𝜀 (𝑡) in probability. (54)

Now we carry out the numerical simulation to get the
solutions of (47) and (50) under the conditions of

(a) 𝑋(0) = 1, 𝑎 = 0.2, 𝑐 = 0.1, 𝜀 = 0.045,𝐻 = 0.55,

(b) 𝑋(0) = 1, 𝑎 = 0.2, 𝑐 = 0.1, 𝜀 = 0.045,𝐻 = 0.65,

(c) 𝑋(0) = 1, 𝑎 = 0.2, 𝑐 = 0.1, 𝜀 = 0.045,𝐻 = 0.75,

(d) 𝑋(0) = 1, 𝑎 = 0.2, 𝑐 = 0.1, 𝜀 = 0.045, 𝐻 = 0.85,
respectively.

Example 13. Consider the following SDDE driven by fBm:

𝑑𝑋𝜀 (𝑡) = 𝑎𝜀
2𝐻
𝑋𝜀 (𝑡) 𝑑𝑡

+ 𝑐𝜀
𝐻cos2 (𝑡 + 𝑋𝜀 (𝑡 − 1))𝑋𝜀 (𝑡 − 1) 𝑑

−
𝐵
𝐻
(𝑡) ,

𝑡 ≥ 0,

(55)

with an initial condition𝑋𝜀(𝑡) = 𝑡 + 1, 𝑡 ∈ [−1, 0], where 𝑎, 𝑐
are constants and 𝐵𝐻(𝑡) is a fBm. Obviously,

𝑏 (𝑡, 𝑋𝜀 (𝑡)) = 𝑎𝜀
2𝐻
𝑋𝜀 (𝑡) ,

𝜎 (𝑡, 𝑋𝜀 (𝑡 − 1)) = 𝑐𝜀
𝐻cos2 (𝑡 + 𝑋𝜀 (𝑡 − 1))𝑋𝜀 (𝑡 − 1) .

(56)

Let

𝑏 (𝑋𝜀 (𝑡)) =
1

𝜋
∫
𝜋

0

𝑎𝜀
2𝐻
𝑋𝜀 (𝑡) 𝑑𝑡 = 𝑎𝑋𝜀 (𝑡) ,

𝜎 (𝑋𝜀 (𝑡)) =
1

𝜋
∫
𝜋

0

𝑐 cos2 (𝑡 + 𝑋𝜀 (𝑡 − 1))𝑋𝜀 (𝑡 − 1) 𝑑𝑡

=
𝑐

2
𝑋𝜀 (𝑡 − 1) .

(57)

And define a new averaged equation as:

𝑑𝑍𝜀 (𝑡) = 𝜀
2𝐻
𝑎𝑍𝜀 (𝑡) 𝑑𝑡 + 𝜀

𝐻 𝑐

2
𝑍𝜀 (𝑡 − 1) 𝑑

−
𝐵
𝐻
(𝑡) . (58)

On 𝑡 ∈ [0, 1], the SDDEs driven by fBm become a linear SDE

𝑑𝑍𝜀 (𝑡) = 𝜀
2𝐻
𝑎𝑍𝜀 (𝑡) 𝑑𝑡 + 𝜀

𝐻 𝑐

2
𝑡𝑑
−
𝐵
𝐻
(𝑡) . (59)
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(c) H = 0.75
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Figure 1: Comparison of the exact solution𝑋𝜀(𝑡)with the averaged solution𝑍𝜀(𝑡) for (47) and (50) with𝑋(0) = 1, 𝑎 = 0.2, 𝑐 = 0.1, 𝜀 = 0.045,
and different𝐻.

The explicit solution of this SDE is

𝑍𝜀 (𝑡) = 𝜀
2𝐻
Φ (𝑡)𝑋 (0) + 𝜀

𝐻 𝑐

2
Φ (𝑡) ∫

𝑡

0

𝑠Φ
−1
(𝑠) 𝑑
−
𝐵
𝐻
(𝑠) ,

(60)

where Φ−1(𝑡) = exp(−𝑎𝑡).

Repeating this procedure over the intervals [1, 2], [2, 3],
and so forth, we can obtain the explicit solution.

Because all the conditions (C1)–(C7) are satisfied for
function 𝑏, 𝜎, 𝑏, 𝜎 in SDDEs (19) and (20), Theorems 8 and
9 hold. That is,

𝐸 (
󵄨󵄨󵄨󵄨𝑋𝜀 (𝑡) − 𝑍𝜀 (𝑡)

󵄨󵄨󵄨󵄨
2
) ≤ 𝛿1, (61)
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(c) H = 0.70
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Figure 2: Comparison of the exact solution 𝑋𝜀(𝑡) with the averaged solution 𝑍𝜀(𝑡) for (55) and (58) with 𝑋(0) = 1, 𝑎 = 0.2, 𝑐 = 0.01,
𝜀 = 0.045, and different𝐻.

and as 𝜀 → 0

𝑋𝜀 (𝑡) 󳨀→ 𝑍𝜀 (𝑡) in probability. (62)

Now we carry out the numerical simulation to get the
solutions of (55) and (58) under the conditions of

(a) 𝑋(0) = 1, 𝑎 = 0.2, 𝑐 = 0.01, 𝜀 = 0.045,𝐻 = 0.55,
(b) 𝑋(0) = 1, 𝑎 = 0.2, 𝑐 = 0.01, 𝜀 = 0.045,𝐻 = 0.65,
(c) 𝑋(0) = 1, 𝑎 = 0.2, 𝑐 = 0.01, 𝜀 = 0.045,𝐻 = 0.70,
(d) 𝑋(0) = 1, 𝑎 = 0.2, 𝑐 = 0.01, 𝜀 = 0.045, 𝐻 = 0.80,

respectively.
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