
Research Article
Stochastic Maximum Principle for Partial Information
Optimal Control Problem of Forward-Backward Systems
Involving Classical and Impulse Controls

Yan Wang,1 Aimin Song,1 and Enmin Feng2

1 School of Science, Dalian Jiaotong University, Dalian 116028, China
2 School of Mathematical Sciences, Dalian University of Technology, Dalian 116023, China

Correspondence should be addressed to Yan Wang; wymath@163.com

Received 1 January 2014; Revised 28 March 2014; Accepted 29 March 2014; Published 15 April 2014

Academic Editor: Xiaojie Su

Copyright © 2014 Yan Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study the partial information classical and impulse controls problem of forward-backward systems driven by Lévy processes,
where the control variable consists of two components: the classical stochastic control and the impulse control; the information
available to the controller is possibly less than the full information, that is, partial information. We derive a maximum principle to
give the sufficient and necessary optimality conditions for the local critical points of the classical and impulse controls problem. As
an application, we apply the maximum principle to a portfolio optimization problem with piecewise consumption processes and
give its explicit solutions.

1. Introduction

The classical and impulse controls problems have received
considerable attention in recent years due to their wide
applicability in different areas, such as optimal control of
the exchange rate between different currencies (see, e.g., [1–
3]), optimal financing and dividend control problem of an
insurance company facing fixed and proportional transaction
costs (see, e.g., [4, 5]), stochastic differential game (see, e.g.,
[6]), and dynamic output feedback controller design problem
(see, e.g., [7] and the references therein).

In the existing literatures, the dynamic programming pri-
nciple and the maximum principle are two main approaches
in solving these problems.

In dynamic programming principle, the classical and
impulse controls can be solved by a verification theorem and
the value function is a solution to some quasi-variational
inequalities. However, the dynamic programming approach
relies on the assumption that the controlled system is Marko-
vian; see, for example, [8–10].

There have been some pioneering works on deriving
maximum principles for the classical and impulse controls

problems. For example, Wu and Zhang [11] established max-
imum principle for stochastic recursive optimal control
problems involving impulse controls; Wu and Zhang [12]
gave maximum principle for classical and impulse controls
of forward-backward systems. In their control problems, the
information available to the controller is full information.

In many practical systems, the controller only gets partial
information, instead of full information, such as delayed
information (see, e.g., [13–16]). The partial information
stochastic control problem is not of a Markovian type and
hence cannot be solved by dynamic programming. As a
result,maximumprinciples are established to solve the partial
information stochastic control problem. There is already a
rich literature and versions of correspondingmaximumprin-
ciples for partial information control problems. For example,
Baghery and Øksendal [17] derived the maximum principle
for partial information stochastic control problem, where the
stochastic system is described by stochastic differential equa-
tions (SDE hereafter). An andØksendal [18] gave amaximum
principle for the stochastic differential game under partial
information. Øksendal and Sulèm [19] established maximum
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principles for stochastic control of forward-backward systems
driven by Lévy processes. In their control problems, the
control variable is just the classical stochastic control process
𝑢(⋅). To the best of our knowledge, there is no literature
on studying the maximum principle for partial information
classical and impulse controls problems, whichmotivates our
work.

In this paper, we study classical and impulse controls
problems of forward-backward systems, where the stochastic
systems are represented by forward-backward SDEs driven
by Lévy processes, the control variable consists of two com-
ponents: the stochastic control 𝑢(⋅) and the impulse control
𝜉(⋅), and the information available to the controller is possibly
partial information, rather than full information. Because
of the non-Markovian nature of the partial information, we
cannot use dynamic programming principle to solve the
problems. Instead, we derive a maximum principle which
allows us to handle the partial information case.

The similarmaximumprinciple is also studied byWu and
Zhang [11] in the complete information case and with the
Brownian motion setting. There are three main differences
between our paper and [11]. Firstly, we study the more
general cases: the forward-backward system is driven by Lévy
processes and the information available to the controller is
partial information. Secondly, their proof differs from ours.
They used convex perturbation technique to establish the
maximum principle. Thirdly, they assumed the concavity
conditions of Hamiltonian and utility functional to make
the necessary optimality conditions turn out to be sufficient.
However, the concavity conditions may not hold in many
applications. Consequently, in our maximum principle for-
mulation, we give the sufficient and necessary optimality
conditions for the local critical points, instead of global
optimums, without the assumption of concavity condition.

The paper is organized as follows: in the next section
we formulate the partial information classical and impulse
controls of the forward-backward system driven by Lévy
processes. In Section 3 we derive the stochastic maximum
principle for the considered classical and impulse controls
problem. In Section 4 we apply the general results obtained
in Section 3 to give the solutions of the example. Finally we
conclude this paper in Section 5.

2. Problem Formulation

Let (Ω,F, {F
𝑡
}
𝑡≥0
, 𝑃) be a filtered probability space and let

𝜂(⋅) be a Lévy process defined on it. Let 𝐵(𝑡) be an F
𝑡
-

Brownian motion and let 𝑁̃(𝑑𝑡, 𝑑𝑧) = 𝑁(𝑑𝑡, 𝑑𝑧) − ](𝑑𝑧)𝑑𝑡
be compensated Poisson random measures independent of
𝐵(𝑡), where ] is the Lévy measure of Lévy process 𝜂(𝑡) with
jump measure𝑁 such that 𝐸[𝜂2

𝑖
(𝑡)] < ∞ for all 𝑡, 𝑡 ∈ [0,∞).

{F
𝑡
}
𝑡≥0

is the filtration generated by 𝐵(𝑡) and 𝑁̃(𝑑𝑡, 𝑑𝑧) (as
usual augmented with all the 𝑃-null sets). We refer to [8] for
more information about Lévy processes.

Suppose that we are given a subfiltration G
𝑡

⊆ F
𝑡

representing the information available to the controller at
time 𝑡, 𝑡 ∈ [0, 𝑇]. It is remarked that the partial information
of classical and impulse controls is different from the classical

and impulse controls of delay systems, where the state
function is described by the solution of stochastic differential
delay equation (see, e.g., [20]).

Let {𝜏
𝑖
, 𝑖 ≥ 1} be a given sequence of increasing G

𝑡
-sto-

pping times such that 𝜏
𝑖
↑ +∞. At 𝜏

𝑖
we are free to intervene

and give the system an impulse 𝜉
𝑖
∈ R, where 𝜉

𝑖
is G
𝜏𝑖
-mea-

surable random variable. We define impulse process 𝜉(𝑡) by

𝜉 (𝑡) = ∑

𝑖≥1

𝜉
𝑖
1
[𝜏𝑖 ,𝑇]

(𝑡) , 𝑡 ≤ 𝑇. (1)

It is worth noting that the assumption 𝜏
𝑖
↑ +∞ implies that

at most finitely many impulses may occur on [0, 𝑇].
Now we consider the forward-backward systems involv-

ing classical and impulse controls. Given 𝑎 ∈ R and 𝜇 ∈ R
0
,

let 𝑏 : [0, 𝑇] × R × 𝑈 → R, 𝜎 : [0, 𝑇] × R × 𝑈 → R,
𝛾 : [0, 𝑇] × R × 𝑈 × R

0
→ R, 𝑔 : [0, 𝑇] × R × R ×

R × 𝑈 → R, 𝐶 : [0, 𝑇] → R, and 𝐷 : [0, 𝑇] → R be
measurable mappings.𝑈 is a nonempty convex set ofR.Then
the forward-backward systems are described by forward-
backward SDEs in the unknown processes 𝐴(𝑡), 𝑋(𝑡), 𝑌(𝑡),
and𝐾(𝑡) as follows:

𝑑𝐴 (𝑡) = 𝑏 (𝑡, 𝐴 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡 + 𝜎 (𝑡, 𝐴 (𝑡) , 𝑢 (𝑡)) 𝑑𝐵 (𝑡)

+ ∫

R0

𝛾 (𝑡, 𝐴 (𝑡) , 𝑢 (𝑡) , 𝑧) 𝑁̃ (𝑑𝑡, 𝑑𝑧) + 𝐶 (𝑡) 𝑑𝜉 (𝑡) ,

𝑑𝑋 (𝑡) = −𝑔 (𝑡, 𝐴 (𝑡) , 𝑋 (𝑡) , 𝑌 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡

+ 𝑌 (𝑡) 𝑑𝐵 (𝑡) + ∫

R0

𝐾 (𝑡, 𝑧) 𝑁̃ (𝑑𝑡, 𝑑𝑧)

− 𝐷 (𝑡) 𝑑𝜉 (𝑡) ,

𝑋 (𝑇) = 𝜇𝐴 (𝑇) , 𝐴 (0) = 𝑎.

(2)

The result of giving the impulse 𝜉
𝑖
is that the state jumps from

(𝐴(𝜏
𝑖
−),𝑋(𝜏

𝑖
−)) to (𝐴(𝜏

𝑖
), 𝑋(𝜏

𝑖
)) = (𝐴(𝜏

𝑖
−)+𝐶(𝜏

𝑖
)𝜉
𝑖
, 𝑋(𝜏
𝑖
−)−

𝐷(𝜏
𝑖
)𝜉
𝑖
). We call (𝑢, 𝜉) classical and impulse controls.

There are two different jumps in the system (2). One jump
is the jump of (𝐴(𝜏), 𝑋(𝜏)) stemming from the randommea-
sure𝑁, denoted by (Δ

𝑁
𝐴(𝜏), Δ

𝑁
𝑋(𝜏)).The other jump is the

jump caused by the impulse 𝜉, given by (Δ
𝜉
𝐴(𝜏
𝑖
), Δ
𝜉
𝑋(𝜏
𝑖
)) =

(𝐶(𝜏
𝑖
)𝜉
𝑖
, 𝑉(𝜏
𝑖
)𝜉
𝑖
). Let

M = {(Δ
𝑁
𝐴 (𝜏) , Δ

𝑁
𝑋 (𝜏)) ; 0 ≤ 𝜏 ≤ 𝑇} ,

N = {(Δ
𝜉
𝐴 (𝜏
𝑖
) , Δ
𝜉
𝑋(𝜏
𝑖
)) ; 0 ≤ 𝜏

𝑖
≤ 𝑇} .

(3)

Assumption 1. A jump (Δ𝐴(𝑡), Δ𝑋(𝑡)) at time 𝑡, 0 ≤ 𝑡 ≤ 𝑇,
satisfies

(Δ𝐴 (𝑡) , Δ𝑋 (𝑡)) ∈ M ∪N,

(Δ𝐴 (𝑡) , Δ𝑋 (𝑡)) ∉ M ∩N.

(4)

Let UG denote a given family of controls, contained in
the set of G

𝑡
-predictable controls 𝑢(⋅) such that the system

(2) has a unique strong solution. We denote by I the class
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of processes 𝜉(⋅) = ∑
𝑖≥1

𝜉
𝑖
𝜒
[𝜏𝑖 ,𝑇]

(⋅) such that each 𝜉
𝑖
is an R-

valuedG
𝜏𝑖
-measurable random variable. LetKG be the class

of impulse process 𝜉 ∈ I such that𝐸(∑
𝑖≥1

|𝜉
𝑖
|)
2
< ∞.We call

AG = UG ×KG the admissible control set.
Suppose we are given a performance functional of the

form

J (𝑢, 𝜉) = 𝐸[∫

𝑇

0

𝑓 (𝑡, 𝐴 (𝑡) , 𝑋 (𝑡) , 𝑌 (𝑡) , 𝐾 (𝑡, ⋅) , 𝑢 (𝑡)) 𝑑𝑡

+ℎ
1
(𝑋 (0)) + ℎ

2
(𝐴 (𝑇)) +∑

𝑖≥1

𝑙 (𝜏
𝑖
, 𝜉
𝑖
)] ,

(5)

where 𝐸 denotes expectation with respect to 𝑃 and 𝑓, ℎ
1
, and

ℎ
2
are given functions such that

𝐸[∫

𝑇

0

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝐴 (𝑡) , 𝑋 (𝑡) , 𝑌 (𝑡) , 𝐾 (𝑡, ⋅) , 𝑢 (𝑡))

󵄨
󵄨
󵄨
󵄨
𝑑𝑡

+
󵄨
󵄨
󵄨
󵄨
ℎ
1
(𝑋 (0))

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
ℎ
2
(𝐴 (𝑇))

󵄨
󵄨
󵄨
󵄨
+ ∑

𝑖≥1

󵄨
󵄨
󵄨
󵄨
𝑙 (𝜏
𝑖
, 𝜉
𝑖
)
󵄨
󵄨
󵄨
󵄨
] < ∞.

(6)

Then the classical and impulse controls problem is to find the
value function ΦG(𝑎) ∈ R and optimal classical and impulse
controls (𝑢∗, 𝜉∗) ∈ AG such that

ΦG (𝑎) = sup
(𝑢,𝜉)∈AG

J (𝑢, 𝜉) = J (𝑢
∗
, 𝜉
∗
) . (7)

3. Maximum Principle for Partial Information
Classical and Impulse Controls Problems

In this section, we derive a maximum principle for the
optimal control problems (7). We will give the necessary and
sufficient conditions for the local critical points (𝑢∗, 𝜉∗).

Firstly, we make the following assumptions.

Assumption 2. (1) For all 𝑠 ∈ [0, 𝑇) and bounded G
𝑠
-

measurable random variables 𝜃(𝜔), the control 𝛽
𝑠
defined by

𝛽
𝑠
(𝑡) = 𝜃 (𝜔) 𝜒

(𝑠,𝑇]
; 𝑠 ∈ [0, 𝑇] (8)

belongs toUG.
(2) For all (𝑢, 𝜉), (𝛽, 𝜍) ∈ AG where (𝛽, 𝜍) is bounded,

there exists 𝛿 > 0 such that the control

(𝑢 (𝑡) + 𝑦𝛽 (𝑡) , 𝜉 (𝑡) + 𝑦𝜍 (𝑡)) ∈ AG,

∀𝑦 ∈ (−𝛿, 𝛿) , 𝑡 ∈ [0, 𝑇] .

(9)

Next we give the definition of the Hamiltonian process.

Definition 3 (see [19]). We define a Hamiltonian process

𝐻 : [0, 𝑇] ×R ×R ×R × 𝐿
2
(]) × 𝑈 ×R 󳨀→ R (10)

as follows:
𝐻(𝑡, 𝑎, 𝑥, 𝑦, 𝑘, 𝑢, 𝜆)

= 𝑓 (𝑡, 𝑎, 𝑥, 𝑦, 𝑘, 𝑢) + 𝜆 (𝑡) 𝑔 (𝑡, 𝑎, 𝑥, 𝑦, 𝑢)

+ 𝑏 (𝑡, 𝑎, 𝑢) 𝑝 (𝑡) + 𝜎 (𝑡, 𝑎, 𝑢) 𝑞 (𝑡)

+ ∫

R0

𝛾 (𝑡, 𝑎, 𝑢, 𝑧) 𝑟 (𝑡, 𝑧) ] (𝑑𝑧) ,

(11)

where 𝐻 is Fréchet differentiable in the variables 𝑎, 𝑥, 𝑦, 𝑘;
∇
𝑘
𝐻 denotes the Fréchet derivative in 𝑘 of 𝐻; the adjoint

processes 𝑝(𝑡), 𝑞(𝑡), 𝑟(𝑡, 𝑧), and 𝜆(𝑡) are given by a pair of
forward-backward SDEs as follows.

(i) Forward system in the unknown process 𝜆(𝑡)

𝑑𝜆 (𝑡)

=

𝜕𝐻

𝜕𝑥

(𝑡, 𝐴 (𝑡) , 𝑋 (𝑡) , 𝑌 (𝑡) , 𝐾 (𝑡, ⋅) ,

𝑢 (𝑡) , 𝜆 (𝑡) , 𝑝 (𝑡) , 𝑞 (𝑡) , 𝑟 (𝑡, 𝑧)) 𝑑𝑡

+

𝜕𝐻

𝜕𝑦

(𝑡, 𝐴 (𝑡) , 𝑋 (𝑡) , 𝑌 (𝑡) , 𝐾 (𝑡, ⋅) , 𝑢 (𝑡) ,

𝜆 (𝑡) , 𝑝 (𝑡) , 𝑞 (𝑡) , 𝑟 (𝑡, 𝑧)) 𝑑𝐵 (𝑡)

+ ∫

R0

∇
𝑘
𝐻(𝑡, 𝐴 (𝑡) , 𝑋 (𝑡) , 𝑌 (𝑡) , 𝐾 (𝑡, ⋅) , 𝑢 (𝑡) ,

𝜆 (𝑡) , 𝑝 (𝑡) , 𝑞 (𝑡) , 𝑟 (𝑡, 𝑧)) 𝑁̃ (𝑑𝑡, 𝑑𝑧)

𝜆 (0) = ℎ
󸀠

1
(𝑋 (0)) .

(12)

(ii) Backward system in the unknown processes𝑝(𝑡), 𝑞(𝑡),
and 𝑟(𝑡, ⋅),

𝑑𝑝 (𝑡)

= −

𝜕𝐻

𝜕𝑎

(𝑡, 𝐴 (𝑡) , 𝑋 (𝑡) , 𝑌 (𝑡) , 𝐾 (𝑡, ⋅) , 𝑢 (𝑡) , 𝜆 (𝑡) ,

𝑝 (𝑡) , 𝑞 (𝑡) , 𝑟 (𝑡, 𝑧)) 𝑑𝑡

+ 𝑞 (𝑡) 𝑑𝐵 (𝑡) + ∫

R0

𝑟 (𝑡, 𝑧) 𝑁̃ (𝑑𝑡, 𝑑𝑧)

𝑝 (𝑇) = 𝜇𝜆 (𝑇) + ℎ
󸀠

2
(𝐴 (𝑇)) .

(13)

For the sake of simplicity, we use the short hand notation
in the following:

𝜕𝑏

𝜕𝑎

(𝑡, 𝐴 (𝑡) , 𝑢 (𝑡) , 𝜔) =

𝜕𝑏

𝜕𝑎

(𝑡) ,

𝜕𝑏

𝜕𝑢

(𝑡, 𝐴 (𝑡) , 𝑢 (𝑡) , 𝜔) =

𝜕𝑏

𝜕𝑢

(𝑡) ,

(14)

and similarly for (𝜕𝜎/𝜕𝑎)(𝑡), (𝜕𝜎/𝜕𝑢)(𝑡), (𝜕𝛾/𝜕𝑎)(𝑡), (𝜕𝛾/𝜕𝑢)
(𝑡), (𝜕𝑓/𝜕𝑎)(𝑡), (𝜕𝑓/𝜕𝑥)(𝑡), (𝜕𝑓/𝜕𝑦)(𝑡), (𝜕𝑓/𝜕𝑢)(𝑡), ∇

𝑘
𝑓(𝑡, 𝑧),

(𝜕𝑔/𝜕𝑎)(𝑡), (𝜕𝑔/𝜕𝑥)(𝑡), (𝜕𝑔/𝜕𝑦)(𝑡), and (𝜕𝑔/𝜕𝑢)(𝑡).
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Theorem 4 (maximum principle). Let (𝑢, 𝜉) ∈ AG with
corresponding solutions 𝐴(𝑡), 𝑋(𝑡), 𝑌(𝑡), 𝐾(𝑡, 𝑧), and 𝜆(𝑡) of
(2), (12), and (13). Assume that for all (𝑢, 𝜉) ∈ AG the following
growth conditions hold:

𝐸[∫

𝑇

0

𝑋
2
(𝑡) ((

𝜕𝐻

𝜕𝑦

(𝑡))

2

+ ∫

R0

󵄩
󵄩
󵄩
󵄩
∇
𝑘
𝐻(𝑡, 𝑧)

󵄩
󵄩
󵄩
󵄩

2] (𝑑𝑧)) 𝑑𝑡]< ∞,

𝐸 [∫

𝑇

0

𝜆
2
(𝑡) (𝑌

2
(𝑡) + ∫

R0

𝐾
2
(𝑡, 𝑧) ] (𝑑𝑧)) 𝑑𝑡] < ∞,

𝐸 [∫

𝑇

0

𝐴
2
(𝑡) (𝑞

2
(𝑡) + ∫

R0

𝑟
2
(𝑡, 𝑧) ] (𝑑𝑧)) 𝑑𝑡] < ∞,

𝐸 [∫

𝑇

0

𝑝
2
(𝑡) ((𝜎

2
(𝑡))

2

+ ∫

R0

𝛾
2
(𝑡, 𝑧) ] (𝑑𝑧)) 𝑑𝑡] < ∞.

(15)

Then the following are equivalent.
(1) (𝑢, 𝜉) is a critical point forJ(𝑢, 𝜉), in the sense that

𝑑

𝑑𝑦

J (𝑢 + 𝑦𝛽, 𝜉 + 𝑦𝜍) |
𝑦=0

= 0

∀𝑏𝑜𝑢𝑛𝑑𝑒𝑑(𝛽, 𝜍) ∈ AG.

(16)

(2) Consider

𝐸[

𝜕

𝜕𝑢

𝐻(𝑡, 𝐴 (𝑡) , 𝑋 (𝑡) , 𝑌 (𝑡) , 𝐾 (𝑡, ⋅) , 𝑢, 𝜆 (𝑡))
𝑢=𝑢(𝑡)

|G
𝑡
] = 0

(17)

for a.a. (𝑡, 𝜔) ∈ [0, 𝑇] × Ω and

∑

𝜏𝑖≤𝑇

𝐸[{𝑝 (𝜏
𝑖
) 𝐶 (𝜏
𝑖
) +

𝜕𝑙

𝜕𝜉

(𝜏
𝑖
) − 𝜆 (𝜏

𝑖
)𝐷 (𝜏

𝑖
)} | G

𝜏𝑖
] = 0.

(18)

Proof. Define

𝐴̆ (𝑡, 𝛽, 𝜍) =

𝑑

𝑑𝑦

𝐴 (𝑡, 𝑢 + 𝑦𝛽, 𝜉 + 𝑦𝜍) |
𝑦=0

,

𝑋̆ (𝑡, 𝛽, 𝜍) =

𝑑

𝑑𝑦

𝑋 (𝑡, 𝑢 + 𝑦𝛽, 𝜉 + 𝑦𝜍) |
𝑦=0

,

𝑌̆ (𝑡, 𝛽, 𝜍) =

𝑑

𝑑𝑦

𝑌 (𝑡, 𝑢 + 𝑦𝛽, 𝜉 + 𝑦𝜍) |
𝑦=0

,

𝐾̆ (𝑡, 𝑧, 𝛽, 𝜍) =

𝑑

𝑑𝑦

𝐾 (𝑡, 𝑧, 𝑢 + 𝑦𝛽, 𝜉 + 𝑦𝜍) |
𝑦=0

.

(19)

Then we have

𝐴̆ (0, 𝛽, 𝜍) =

𝑑

𝑑𝑦

𝐴 (0, 𝑢 + 𝑦𝛽, 𝜉 + 𝑦𝜍) |
𝑦=0

= 0;

𝐴̆ (𝑇, 𝛽, 𝜍) =

𝑑

𝑑𝑦

𝐴 (𝑇, 𝑢 + 𝑦𝛽, 𝜉 + 𝑦𝜍) |
𝑦=0

=

1

𝜇

𝑋̆ (𝑇, 𝛽, 𝜍) ;

𝑑𝐴̆ (𝑡, 𝛽, 𝜍) = [

𝜕𝑏

𝜕𝑎

(𝑡) 𝐴̆ (𝑡, 𝛽, 𝜍) +

𝜕𝑏

𝜕𝑢

(𝑡) 𝛽 (𝑡)] 𝑑𝑡

+ ∫

𝑡

0

[

𝜕𝜎

𝜕𝑎

(𝑠) 𝐴̆ (𝑡, 𝛽, 𝜍) +

𝜕𝜎

𝜕𝑢

(𝑠) 𝛽 (𝑠)] 𝑑𝐵 (𝑠)

+ ∫

R0

[

𝜕𝛾

𝜕𝑎

(𝑡) 𝐴̆ (𝑡, 𝛽, 𝜍)+

𝜕𝛾

𝜕𝑢

(𝑡) 𝛽 (𝑡)]𝑁̃(𝑑𝑡, 𝑑𝑧)

+ 𝐶 (𝑡) 𝑑𝜍 (𝑡) ,

𝑑𝑋̆(𝑡, 𝛽, 𝜍) = − [

𝜕𝑔

𝜕𝑎

(𝑡) 𝐴̆ (𝑡, 𝛽, 𝜍) +

𝜕𝑔

𝜕𝑥

(𝑡) 𝑋̆ (𝑡, 𝛽, 𝜍)

+

𝜕𝑔

𝜕𝑦

(𝑡) 𝑌̆ (𝑡, 𝛽, 𝜍) +

𝜕𝑔

𝜕𝑢

(𝑡) 𝛽 (𝑡)] 𝑑𝑡

+ 𝑌̆ (𝑡, 𝛽, 𝜍) 𝑑𝐵 (𝑡)

+ ∫

R0

𝐾̆ (𝑡, 𝑧, 𝛽, 𝜍) 𝑁̃ (𝑑𝑡, 𝑑𝑧) + 𝐷 (𝑡) 𝑑𝜍 (𝑡) .

(20)

Firstly, we prove (1) ⇒ (2). Assume that (1) holds. Then
we have

0 =

𝑑

𝑑𝑦

J (𝑢 + 𝑦𝛽, 𝜉 + 𝑦𝜍) |
𝑦=0

= 𝐸
[

[

∫

𝑇

0

{

𝜕𝑓

𝜕𝑎

(𝑡) 𝐴̆ (𝑡, 𝛽, 𝜍) +

𝜕𝑓

𝜕𝑥

(𝑡) 𝑋̆ (𝑡, 𝛽, 𝜍)

+

𝜕𝑓

𝜕𝑦

(𝑡) 𝑌̆ (𝑡, 𝛽, 𝜍)

+ ∫

R0

∇
𝑘
𝑓 (𝑡, 𝑧) 𝐾̆ (𝑡, 𝑧, 𝛽, 𝜍) ] (𝑑𝑧)

+

𝜕𝑓

𝜕𝑢

(𝑡) 𝛽 (𝑡) } 𝑑𝑡 + ℎ
󸀠

1
(𝑋 (0)) 𝑋̆ (0, 𝛽, 𝜍)

+ ℎ
󸀠

2
(𝐴 (𝑇)) 𝐴̆ (𝑇, 𝛽, 𝜍) + ∑

𝜏𝑖≤𝑇

𝜕𝑙

𝜕𝜂

(𝜏
𝑖
) 𝜍
𝑖
]

]

.

(21)

By Itô formula, we get

𝐸 [ℎ
󸀠

1
(𝑋 (0)) 𝑋̆ (0, 𝛽, 𝜍)]

= 𝐸 [𝜆 (0) 𝑋̆ (0, 𝛽, 𝜍)]
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= 𝐸[𝜆 (𝑇) 𝑋̆ (𝑇, 𝛽, 𝜍) − ∫

𝑇

0

𝑋̆ (𝑡, 𝛽, 𝜍)

𝜕𝐻

𝜕𝑥

(𝑡) 𝑑𝑡

− ∫

𝑇

0

𝜕𝐻

𝜕𝑦

(𝑡) 𝑌̆ (𝑡, 𝛽, 𝜍) 𝑑𝑡

+ ∫

𝑇

0

𝜆 (𝑡) (

𝜕𝑔

𝜕𝑎

(𝑡) 𝐴̆ (𝑡, 𝛽, 𝜍)

+

𝜕𝑔

𝜕𝑥

(𝑡) 𝑋̆ (𝑡, 𝛽, 𝜍) +

𝜕𝑔

𝜕𝑦

(𝑡) 𝑌̆ (𝑡, 𝛽, 𝜍)

+

𝜕𝑔

𝜕𝑦

(𝑡) 𝛽 (𝑡)) 𝑑𝑡

− ∫

𝑇

0

∫

R0

∇
𝑘
𝐻(𝑡, 𝑧) 𝐾̆ (𝑡, 𝑧, 𝛽, 𝜍) ] (𝑑𝑧) 𝑑𝑡

−∑

𝑖≥1

𝜆 (𝜏
𝑖
)𝐷 (𝜏

𝑖
) 𝜍
𝑖
] ,

(22)

where 0 ≤ 𝜏
𝑖
≤ 𝑇. Now we consider

𝐸 [ℎ
󸀠

2
(𝐴 (𝑇)) 𝐴̆ (𝑇, 𝛽, 𝜍)]

= 𝐸 [(𝑝 (𝑇) − 𝜇𝜆 (𝑇)) 𝐴̆ (𝑇, 𝛽, 𝜍)]

= 𝐸 [𝑝 (𝑇) 𝐴̆ (𝑇, 𝛽, 𝜍)] − 𝐸 [𝜆 (𝑇) 𝑋̆ (𝑇, 𝛽, 𝜍)] .

(23)

Applying Itô formula to 𝐸[𝑝(𝑇)𝐴̆(𝑇, 𝛽, 𝜍)], we get

𝐸 [𝑝 (𝑇) 𝐴̆ (𝑇, 𝛽, 𝜍)]

= 𝐸 [𝑝 (0) 𝐴̆ (0, 𝛽, 𝜍)

+ ∫

𝑇

0

𝑝 (𝑡) (

𝜕𝑏

𝜕𝑎

(𝑡) 𝐴̆ (𝑡, 𝛽, 𝜍) +

𝜕𝑏

𝜕𝑢

(𝑡) 𝛽 (𝑡)) 𝑑𝑡

+∑

𝑖≥1

𝑝 (𝜏
𝑖
) 𝐶 (𝜏
𝑖
) 𝜍
𝑖
− ∫

𝑇

0

𝜕𝐻

𝜕𝑎

(𝑡) 𝐴̆ (𝑡, 𝛽, 𝜍) 𝑑𝑡

+ ∫

𝑇

0

(

𝜕𝜎

𝜕𝑎

(𝑡) 𝐴̆ (𝑡, 𝛽, 𝜍) +

𝜕𝜎

𝜕𝑢

(𝑡) 𝛽 (𝑡)) 𝑞 (𝑡) 𝑑𝑡

+ ∫

𝑇

0

∫

R0

𝑟 (𝑡, 𝑧) (

𝜕𝛾

𝜕𝑎

(𝑡, 𝑧) 𝐴̆ (𝑡, 𝛽, 𝜍)

+

𝜕𝛾

𝜕𝑢

(𝑡, 𝑧) 𝛽 (𝑡)) ] (𝑑𝑧) 𝑑𝑡] ,

(24)

where 0 ≤ 𝜏
𝑖
≤ 𝑇. By substituting (22), (23), and (24) into

(21), we obtain

0 = 𝐸[∑

𝑖≥1

(𝑝 (𝜏
𝑖
) 𝐶 (𝜏
𝑖
) +

𝜕𝑙

𝜕𝜂

(𝜏
𝑖
) − 𝜆 (𝜏

𝑖
)𝐷 (𝜏

𝑖
)) 𝜍
𝑖
]

+ 𝐸[∫

𝑇

0

{(

𝜕𝑓

𝜕𝑎

(𝑡) + 𝜆 (𝑡)

𝜕𝑔

𝜕𝑎

(𝑡) + 𝑝 (𝑡)

𝜕𝑏

𝜕𝑎

(𝑡)

+ 𝑞 (𝑡)

𝜕𝜎

𝜕𝑎

(𝑡) + ∫

R0

𝜕𝛾

𝜕𝑎

(𝑡, 𝑧) 𝑟 (𝑡, 𝑧) ] (𝑑𝑧)

−

𝜕𝐻

𝜕𝑎

(𝑡)) 𝐴̆ (𝑡, 𝛽, 𝜍)

+ (

𝜕𝑓

𝜕𝑥

(𝑡) + 𝜆 (𝑡)

𝜕𝑔

𝜕𝑥

(𝑡) −

𝜕𝐻

𝜕𝑥

(𝑡)) 𝑋̆ (𝑡, 𝛽, 𝜍)

+ (

𝜕𝑓

𝜕𝑦

(𝑡) + 𝜆 (𝑡)

𝜕𝑔

𝜕𝑦

(𝑡) −

𝜕𝐻

𝜕𝑦

(𝑡)) 𝑌̆ (𝑡, 𝛽, 𝜍)

+ ∫

R0

(∇
𝑘
𝑓 (𝑡, 𝑧) − ∇

𝑘
𝐻(𝑡, 𝑧)) 𝐾̆ (𝑡, 𝑧, 𝛽, 𝜍) ] (𝑑𝑧)

+ (

𝜕𝑓

𝜕𝑢

(𝑡) + 𝜆 (𝑡)

𝜕𝑔

𝜕𝑢

(𝑡) + 𝑝 (𝑡)

𝜕𝑏

𝜕𝑢

(𝑡)

+ 𝑞 (𝑡)

𝜕𝜎

𝜕𝑢

(𝑡)

+∫

R0

𝑟 (𝑡, 𝑧)

𝜕𝛾

𝜕𝑢

(𝑡, 𝑧) ] (𝑑𝑧)) 𝛽 (𝑡) } 𝑑𝑡] .

(25)

Depending on the definition of Hamiltonian𝐻, we get

𝜕𝐻

𝜕𝑥

(𝑡) =

𝜕𝑓

𝜕𝑥

(𝑡) +

𝜕𝑔

𝜕𝑥

(𝑡) 𝜆 (𝑡) ;

𝜕𝐻

𝜕𝑦

(𝑡) =

𝜕𝑓

𝜕𝑦

(𝑡) +

𝜕𝑔

𝜕𝑦

(𝑡) 𝜆 (𝑡) ;

∇
𝑘
𝐻(𝑡, 𝑧) = ∇

𝑘
𝑓 (𝑡, 𝑧) ;

𝜕𝐻

𝜕𝑎

(𝑡) =

𝜕𝑓

𝜕𝑎

(𝑡) + 𝜆 (𝑡)

𝜕𝑔

𝜕𝑎

(𝑡) + 𝑝 (𝑡)

𝜕𝑏

𝜕𝑎

(𝑡)

+ 𝑞 (𝑡)

𝜕𝜎

𝜕𝑎

(𝑡) + ∫

R0

𝜕𝛾

𝜕𝑎

(𝑡, 𝑧) 𝑟 (𝑡, 𝑧) ] (𝑑𝑧) ;

𝜕𝐻

𝜕𝑢

(𝑡) =

𝜕𝑓

𝜕𝑢

(𝑡) + 𝜆 (𝑡)

𝜕𝑔

𝜕𝑢

(𝑡) + 𝑝 (𝑡)

𝜕𝑏

𝜕𝑢

(𝑡)

+ 𝑞 (𝑡)

𝜕𝜎

𝜕𝑢

(𝑡) + ∫

R0

𝑟 (𝑡, 𝑧)

𝜕𝛾

𝜕𝑢

(𝑡, 𝑧) ] (𝑑𝑧) .

(26)
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Hence (25) simplifies to

0 = 𝐸[∑

𝑖≥1

(𝑝 (𝜏
𝑖
) 𝐶 (𝜏
𝑖
) +

𝜕𝑙

𝜕𝜂

(𝜏
𝑖
) − 𝜆 (𝜏

𝑖
)𝐷 (𝜏

𝑖
)) 𝜍
𝑖
]

+ 𝐸[∫

𝑇

0

𝜕𝐻

𝜕𝑢

(𝑡) 𝛽 (𝑡) 𝑑𝑡] ,

(27)

for all bounded (𝛽, 𝜍) ∈ AG. It is obvious that 𝛽(𝑡) is
independent of 𝜍(𝑡), 0 ≤ 𝑡 ≤ 𝑇. So we obtain from (27) that

𝐸[∫

𝑇

0

𝜕𝐻

𝜕𝑢

(𝑡) 𝛽 (𝑡) 𝑑𝑡] = 0, (28)

𝐸[∑

𝑖≥1

(𝑝 (𝜏
𝑖
) 𝐶 (𝜏
𝑖
) +

𝜕𝑙

𝜕𝜂

(𝜏
𝑖
) − 𝜆 (𝜏

𝑖
)𝐷 (𝜏

𝑖
)) 𝜍
𝑖
] = 0,

(29)

holds for all bounded 𝛽 ∈ UG and 𝜍 ∈ IG.
Now we prove that (17) holds for all 𝛽(𝑡) ∈ UG. We know

that (28) holds for all bounded 𝛽 ∈ UG. So (28) holds for all
bounded 𝛽 ∈ UG of the form

𝛽 (𝑡) = 𝛽
𝑠
(𝑡, 𝜔) = 𝜃 (𝜔) 𝜒

[𝑠,𝑇]
(𝑡) , 𝑡 ∈ [0, 𝑇] , (30)

for a fixed 𝑠 ∈ [0, 𝑇), where 𝜃(𝜔) is a boundedG
𝑠
-measurable

random variable. Then we have

𝐸[

𝜕𝐻

𝜕𝑢

(𝑠) 𝜃] = 0 (31)

which holds for all boundedG
𝑠
-measurable random variable

𝜃. As a result, we conclude that

𝐸[

𝜕𝐻

𝜕𝑢

(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

G
𝑠
] = 0. (32)

Moreover, since (29) holds for all bounded G
𝜏𝑖
-measurable

random variable 𝜍
𝑖
, we conclude that (18) holds. Therefore,

we conclude that (1) ⇒ (2).
(2) ⇒ (1) Each bounded 𝛽 ∈ U

𝐺
can be approximated by

linear combinations of controls 𝛽
𝑠
of the form.Thenwe prove

that (2) ⇒ (1) by reversing the above argument.

Remark 5. Let 𝑥 → ℎ
1
(𝑥), 𝑎 → ℎ

2
(𝑎), 𝜉 → 𝑙(𝑡, 𝜉), and

(𝑡, 𝑎, 𝑥, 𝑘, 𝑢) → 𝐻(𝑡, 𝑎, 𝑥, 𝑦, 𝑘, 𝑢, 𝜆) be concave, for all 𝑡 ∈

[0, 𝑇].Then the local critical point (𝑢, 𝜉), which is obtained by
Theorem 4, is also a global optimum for the control problem
(7).

Remark 6. Let G
𝑡
= F
𝑡
, 𝐾(𝑡, 𝑧) = 0, and 𝛾(𝑡, 𝑎, 𝑢, 𝑧) = 0.

Then ourmaximumprinciple (Theorem 4) coincideswith the
maximum principle (Theorem 3.1) in [11].

4. Application

Example 7 (portfolio optimization problem). In a financial
market, we are given a subfiltration

G
𝑡
⊆ F
𝑡

∀𝑡 ∈ [0, 𝑇] , (33)

representing the information available to the trader at time 𝑡.
Let 𝜉(𝑡) = ∑

𝑖≥1
𝜉
𝑖
1
[𝜏𝑖 ,𝑇]

(𝑡), 𝑡 ≤ 𝑇, be a piecewise
consumption process (see, e.g., [11]), where {𝜏

𝑖
} is a fixed

sequence of increasing G
𝑡
-stopping times and each 𝜉

𝑖
is an

G
𝜏𝑖
-measurable random variable. Then the wealth process

𝐴(𝑡) = 𝐴
𝑢,𝜂
(𝑡) corresponding to the portfolio 𝑢(𝑡) is given

by

𝑑𝐴 (𝑡) = 𝑢 (𝑡) [𝜁 (𝑡) 𝑑𝑡 + 𝜋 (𝑡) 𝑑𝐵 (𝑡)

+∫

R0

󰜚 (𝑡, 𝑧) 𝑁̃ (𝑑𝑡, 𝑑𝑧)] − 𝜛𝑑𝜉 (𝑡) ,

𝐴 (0) = 𝑎 > 0,

(34)

where 𝜛 ≥ 0, R
0
= R \ {0}, and 𝜋(𝑡) and 󰜚(𝑡, 𝑧) are F

𝑡
-

predictable processes such that 󰜚(𝑡, 𝑧) ≥ −1+𝜖 for some 𝜖 > 0

and

∫

𝑇

0

{
󵄨
󵄨
󵄨
󵄨
𝜁 (𝑡)

󵄨
󵄨
󵄨
󵄨
+ 𝜋
2
(𝑡) + ∫

R0

󰜚
2
(𝑡, 𝑧) ] (𝑑𝑧)} 𝑑𝑡 < ∞ a.s.

(35)

Endowed with initial wealth 𝑎 > 0, an investor wants
to find a portfolio strategy 𝑢(⋅) and a consumption strategy
𝜉(⋅) minimizing an expected functional which composes of
three parts: the first part is the total utility of the consumption
−∫

𝑇

0
(𝑢
2
(𝑡)/2)𝑑𝑡; the second part represents the risk of the

terminal wealth 𝜌(𝐴(𝑇)) = 𝑋
−𝐴𝑢(𝑇)

𝑔
(0), where 𝑋−𝐴𝑢(𝑇)

𝑔
(0)

is the value at 𝑡 = 0 of the solution 𝑋(𝑡) of the following
backward stochastic differential equation ([19]):

𝑑𝑋 (𝑡) = −𝑔 (𝑡, 𝑋 (𝑡)) 𝑑𝑡 + 𝑌 (𝑡) 𝑑𝐵 (𝑡)

+ ∫

R0

𝐾 (𝑡, 𝑧) 𝑁̃ (𝑑𝑡, 𝑑𝑧) − 𝜗𝑑𝜉 (𝑡)

𝑋 (𝑇) = −𝐴 (𝑇) ;

(36)

and the third part is the utility derived from the consump-
tion process 𝜉(⋅). More precisely, for any admissible control
(𝑢(⋅), 𝜉(⋅)), the utility functional is defined by

𝐽 (𝑢 (⋅) , 𝜉 (⋅)) = 𝐸
[

[

−∫

𝑇

0

𝑢
2
(𝑡)

2

𝑑𝑡 + 𝜌 (𝐴 (𝑇)) +

𝑆

2

∑

𝜏𝑖≤𝑇

𝜉
2

𝑖
]

]

,

(37)

where𝐸 denotes the expectation with respect to the probabil-
ity measure 𝑃, and 𝑆 > 0. Therefore, the control problem is to
find Φ(𝑎) and (𝑢∗(⋅), 𝜉∗(⋅)) such that

Φ (𝑎) = inf
(𝑢,𝜉)∈AG

𝐸
[

[

−∫

𝑇

0

𝑢
2
(𝑡)

2

𝑑𝑡 + 𝜌 (𝐴 (𝑇)) +

𝑆

2

∑

𝜏𝑖≤𝑇

𝜉
2

𝑖
]

]

= 𝐸
[

[

−∫

𝑇

0

𝑢
∗2
(𝑡)

2

𝑑𝑡 + 𝑋
−𝐴
𝑢
∗ (𝑇)

𝑔
(0) +

𝑆

2

∑

𝜏𝑖≤𝑇

𝜉
∗2

𝑖
]

]

.

(38)
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The control problem (38) is a classical and impulse
controls problem of forward-backward systems driven by
Lévy processes under partial information G

𝑡
. Next we solve

the control problem (38) byTheorem 4. With the notation of
the previous section we see that in Example 7 we have

𝑓 (𝑡, 𝑎, 𝑥, 𝑦, 𝑘, 𝑢, 𝜔) = −

𝑢
2

2

; ℎ
1
(𝑥) = 𝑥; ℎ

2
(𝑠, 𝜔) = 0;

𝑏 (𝑡, 𝑎, 𝑢, 𝜔) = 𝑢𝜁 (𝑡) ; 𝜎 (𝑡, 𝑎, 𝑢, 𝜔) = 𝑢𝜋 (𝑡) ;

𝛾 (𝑡, 𝑎, 𝑢, 𝑧, 𝜔) = 𝑢󰜚 (𝑡, 𝑧) ; 𝑙 (𝜏
𝑖
, 𝜉
𝑖
) =

𝑆

2

𝜉
2

𝑖
;

𝐶 (𝑡) = 𝜛; 𝐷 (𝑡) = 𝜗; 𝜇 = −1.

(39)

Then by (11) the Hamiltonian is

𝐻(𝑡, 𝑎, 𝑥, 𝑦, 𝑘, 𝑢, 𝜆, 𝜔) = −

𝑢
2

2

+ 𝜆 (𝑡) 𝑔 (𝑡, 𝑥)

+ 𝑢 (𝑡) 𝜁 (𝑡) 𝑝 (𝑡) + 𝑢 (𝑡) 𝜋 (𝑡) 𝑞 (𝑡)

+ ∫

R0

𝑢 (𝑡) 󰜚 (𝑡, 𝑧) 𝑟 (𝑡, 𝑧) ] (𝑑𝑧) ,

(40)

where

𝑑𝑝 (𝑡) = 𝑞 (𝑡) 𝑑𝐵 (𝑡) + ∫

R0

𝑟 (𝑡, 𝑧) 𝑁̃ (𝑑𝑡, 𝑑𝑧)

𝑝 (𝑇) = − 𝜆 (𝑇) ,

(41)

and 𝜆(𝑡) is given by (12); that is,

𝑑𝜆 (𝑡) = 𝜆 (𝑡) 𝑔
𝑥
(𝑡, 𝑋 (𝑡)) 𝑑𝑡,

𝜆 (0) = 1,

(42)

where 𝑔
𝑥
(𝑡, 𝑥) = (𝜕/𝜕𝑥)𝑔(𝑡, 𝑥). We can easily obtain the

solution of (42) as follows:

𝜆 (𝑡) = exp{∫
𝑡

0

𝑔
𝑥
(𝑠, 𝑋 (𝑠)) 𝑑𝑠} ; 0 ≤ 𝑡 ≤ 𝑇. (43)

If (𝑢∗(𝑡), 𝜉∗(𝑡)) is a local critical point with corresponding
𝑋
∗
(𝑡) = 𝑋

(𝑢
∗
)
(𝑡), then, by the sufficient and necessary

optimality condition (17) in Theorem 4, we get

𝐸 [𝑢
∗
(𝑡) | G

𝑡
] = 𝐸 [𝜁 (𝑡) 𝑝 (𝑡) + 𝜋 (𝑡) 𝑞 (𝑡)

+∫

R0

󰜚 (𝑡, 𝑧) 𝑟 (𝑡, 𝑧) ] (𝑑𝑧) | G
𝑡
] .

(44)

Since 𝑢∗(𝑡) isG
𝑡
-adapted, we have

𝑢
∗
(𝑡) = 𝐸 [𝜁 (𝑡) 𝑝 (𝑡) + 𝜋 (𝑡) 𝑞 (𝑡)

+∫

R0

󰜚 (𝑡, 𝑧) 𝑟 (𝑡, 𝑧) ] (𝑑𝑧) | G
𝑡
] ,

(45)

where 𝑝(𝑡), 𝑞(𝑡), and 𝑟(𝑡, 𝑧) are given by (41).

On the other hand, by the sufficient and necessary opti-
mality condition (17) in Theorem 4, we obtain

∑

𝜏𝑖<𝑇

𝐸 [𝑆𝜉
∗

𝑖
+ 𝜛𝑝 (𝜏

𝑖
) − 𝜗𝜆 (𝜏

𝑖
) | G
𝜏𝑖
] = 0. (46)

That is, for each 𝜏
𝑖
< 𝑇, we have

𝐸 [𝜉
∗

𝑖
| G
𝜏𝑖
] =

1

𝑆

𝐸 [𝜗𝜆 (𝜏
𝑖
) − 𝜛𝑝 (𝜏

𝑖
) | G
𝜏𝑖
] . (47)

Since 𝜉
𝑖
is anG

𝜏𝑖
-measurable random variable, we have

𝜉
∗

𝑖
=

1

𝑆

𝐸 [𝜗𝜆 (𝜏
𝑖
) − 𝜛𝑝 (𝜏

𝑖
) | G
𝜏𝑖
] , (48)

where 𝜆(𝑡) is given by (43) and 𝑝(𝑡) is given by (41). Con-
sequently, we summarize the above results in the following
theorem.

Theorem 8. Let 𝑝(𝑡), 𝑞(𝑡), and 𝑟(𝑡, 𝑧) be the solutions of (41)
and let 𝜆(𝑡) be the solution of (43). Then the pair (𝑢∗(𝑡), 𝜉∗(𝑡))
is given by

𝑢
∗
(𝑡) = 𝐸 [𝜁 (𝑡) 𝑝 (𝑡) + 𝜋 (𝑡) 𝑞 (𝑡)

+∫

R0

󰜚 (𝑡, 𝑧) 𝑟 (𝑡, 𝑧) ] (𝑑𝑧) | G
𝑡
] ,

𝜉
∗
(𝑡) = ∑

𝑖≥1

𝜉
∗

𝑖
1
[𝜏𝑖 ,𝑇]

(𝑡) , 𝑡 ≤ 𝑇,

(49)

where 𝜉∗
𝑖
given by (48) is the local critical point of the classical

and impulse controls problem (38).

5. Conclusion

We consider the partial information classical and impulse
controls problem of forward-backward systems driven by
Lévy processes. The control variable consists of two com-
ponents: the classical stochastic control and the impulse
control. Because of the non-Markovian nature of the par-
tial information, dynamic programming principle cannot
be used to solve partial information control problems. As
a result, we derive a maximum principle for this partial
information problem. Because the concavity conditions of the
utility functions and the Hamiltonian process may not hold
in many applications, we give the sufficient and necessary
optimality conditions for the local critical points of the
control problem. To illustrate the theoretical results, we use
the maximum principle to solve a portfolio optimization
problem with piecewise consumption processes and give its
explicit solutions.

In this paper, we assume that the two different jumps in
our system do not occur at the same time (Assumption 1).
This assumption makes the problem easier to analyze. How-
ever, it may fail in many applications. Without this assump-
tion, it requiresmore attention to distinguish between the two
different jumps.Thiswill be explored in our subsequentwork.
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