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We investigate a class of nonperiodic fourth order differential equations with general potentials. By using variational methods and
genus properties in critical point theory, we obtain that such equations possess infinitely homoclinic solutions.

1. Introduction

In this paper, we consider the following a class of fourth order
differential equations:

𝑢
(4)
+ 𝑤𝑢

+ 𝑎 (𝑥) 𝑢 = 𝑓 (𝑥, 𝑢) , 𝑥 ∈ R, (1)

where 𝑤 is a constant, 𝑓 ∈ 𝐶(R ×R,R), and 𝑎 ∈ 𝐶(R,R).
Recently, a lot of attention has been focused on the study

of homoclinic and heteroclinic solutions for this problem; see
[1–8]. This may be due to its concrete applications, such as
physics and mechanics; see [9, 10]. More precisely, Tersian
and Chaparova [5] studied periodic case.They obtained non-
trivial homoclinic solutions by usingmountain pass theorem.
For nonperiodic case, Li [7] studied the existence of nontrivial
homoclinic solutions for this class of equations. Sun and
Wu [8] studied multiple homoclinic solutions for the fol-
lowing nonperiodic fourth order equations with a perturba-
tion:

𝑢
(4)
+ 𝑤𝑢

+ 𝑎 (𝑥) 𝑢 = 𝑓 (𝑥, 𝑢) + 𝜆ℎ (𝑥) |𝑢|

𝑝−2
𝑢,

𝑥 ∈ R, 1 ≤ 𝑝 < 2.

(2)

By using the mountain pass theorem and Ekeland variational
principle, two homoclinic solutions for these equations are
obtained under the assumption that𝐴0 and𝑓 are superlinear
or asymptotically linear as |𝑢| → +∞, where (𝐴0) is the
following condition:

(𝐴0) there exists a positive constant 𝑎1 such that 0 < 𝑎1 ≤
𝑎(𝑥) → +∞ as |𝑥| → +∞ and 𝑤 ≤ 2√𝑎1.

The assumption (𝐴0) is too strict to be satisfied by many
general functions 𝑎(𝑥); for example, 𝑎(𝑥) = 1. In addition,
although there is perturbation, the right of (2) is superlinear
or asymptotically linear as |𝑢| → +∞. In the present paper
we study the infinitely many homoclinic solutions for (1)
undermore general assumption than𝐴0 and sublinear condi-
tion on 𝑓.

Before stating our results we introduce some notations.
Throughout this paper, we denote by ‖‖𝑟 the 𝐿

𝑟-norm, 2 ≤
𝑟 ≤ ∞. 𝐿∞(R) is the Banach space of essentially bounded
functions equipped with the norm

‖𝑢‖∞ = ess sup {|𝑢 (𝑥)| : 𝑥 ∈ R} . (3)

If we take a subsequence of a sequence {𝑢𝑛} we will denote it
again by {𝑢𝑛}.

Now we state our main result.

Theorem 1. Assume that the following conditions hold:

(𝐴) there exists a positive constant 𝑎1 such that 𝑎(𝑥) ≥
𝑎1 > 0 and 2√𝑎1 ≥ 𝑤;

(𝐹1) there exists a constant 1 < 𝛾 < 2 and positive
function 𝑏(𝑥) ∈ 𝐿2/(2−𝛾)(R,R+) such that





𝑓 (𝑥, 𝑢)





≤ 𝛾𝑏 (𝑥) |𝑢|

𝛾−1
, ∀ (𝑥, 𝑢) ∈ R ×R; (4)
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(𝐹2) there exist 𝑥0 ∈ R and ] ∈ (1, 2) such that

lim inf
(𝑥,𝑢)→ (𝑥0 ,0)

𝐹 (𝑥, 𝑢)

|𝑢|
] > 0, (5)

where 𝐹 is the primitive 𝐹(𝑥, 𝑢) = ∫𝑢
0
𝑓(𝑥, 𝑡)𝑑𝑡.

Then, problem (1) possesses at least one nontrivial homo-
clinic solution.

In addition, if 𝑓 is odd symmetry in 𝑢, that is,
(𝐹3) 𝑓(𝑥, 𝑢) = −𝑓(𝑥, −𝑢), ∀(𝑥, 𝑢) ∈ R ×R,

then one gets the existence of infinitely many nontrivial homo-
clinic solutions.

Theorem2. Under the assumptions of (𝐴), (𝐹1)–(𝐹3), problem
(1) possesses infinitely many nontrivial homoclinic solutions.

Example 3. If 𝑓(𝑥, 𝑢) = (4 cos𝑥/3𝑒|𝑥|)|𝑢|−2/3𝑢, clearly,





𝑓 (𝑥, 𝑢)





≤

4

3𝑒
|𝑥|
|𝑢|
1/3
𝑢, ∀ (𝑥, 𝑢) ∈ R ×R,

𝐹 (𝑥, 𝑢) =

cos𝑥
𝑒
|𝑥|
|𝑢|
4/3
≥

cos 1
𝑒

|𝑢|
4/3
, ∀ (𝑥, 𝑢) ∈ [0, 1] ×R.

(6)

Thus (𝐹1), (𝐹2), and (𝐹3) are satisfied with 𝑥0 = 0, ] = 4/3, 𝛾 =
4/3.

The paper is organized as follows. In Section 2, we present
some preliminaries. In Section 3, we give the proof of our
main results.

2. Preliminaries

In order to prove our main results, we first give some pro-
perties of space 𝑋 on which the variational setting for prob-
lem (1) is defined.

Lemma 4 (see [5]). Assume that (𝐴) hold. Then there exists a
constant 𝑐0 > 0 such that

∫

R

[𝑢

(𝑥)
2
− 𝑤𝑢

(𝑥)
2
+ 𝑎 (𝑥) 𝑢(𝑥)

2
] 𝑑𝑥 ≥ 𝑐0‖𝑢‖

2

𝐻2 ,

∀𝑢 ∈ 𝐻
2
(R) ,

(7)

where ‖𝑢‖2𝐻2 = (∫
R
[𝑢

(𝑥)
2
+ 𝑢

(𝑥)
2
+ 𝑢(𝑥)

2
]𝑑𝑥)

1/2 is the
norm of Sobolev space𝐻2(R).

Letting

𝑋 = {𝑢 ∈ 𝐻
2
(R) | ∫

R

[𝑢

(𝑥)
2
− 𝑤𝑢

(𝑥)
2

+ 𝑎 (𝑥) 𝑢(𝑥)
2
] 𝑑𝑥 < +∞} ,

(8)

then𝑋 is a Hilbert space with the inner product

(𝑢, V) = ∫
R

[𝑢

(𝑥) V (𝑥) − 𝑤𝑢 (𝑥) V (𝑥)

+𝑎 (𝑥) 𝑢 (𝑥) V (𝑥) ] 𝑑𝑥
(9)

and the corresponding norm ‖𝑢‖
2
= (𝑢, 𝑢). Note that

𝑋 ⊂ 𝐻
2
(R) ⊂ 𝐿

𝑟
(R) , (10)

for all 𝑟 ∈ [2, +∞], with the embedding being continuous.
Hence, for any 𝑟 ∈ [2, +∞], there is 𝐶𝑟 > 0 such that

‖𝑢‖𝑟 ≤ 𝐶𝑟 ‖𝑢‖ , ∀𝑢 ∈ 𝑋. (11)

Now we begin describing the variational formulation of
problem (1). Consider the functional 𝐽 : 𝑋 → R defined by

𝐽 (𝑢) =

1

2

‖𝑢‖
2
− ∫

R

𝐹 (𝑥, 𝑢) 𝑑𝑥. (12)

Lemma 5. Under the conditions of (𝐴), (𝐹1)–(𝐹2), 𝐽 ∈ 𝐶1(𝑋,
R) and its derivative is given by the following;

𝐽

(𝑢) V

= ∫

R

[𝑢

(𝑥) V (𝑥) − 𝑤𝑢 (𝑥) V (𝑥) + 𝑎 (𝑥) 𝑢 (𝑥) V (𝑥)] 𝑑𝑥

− ∫

R

𝑓 (𝑥, 𝑢 (𝑥)) V (𝑥) 𝑑𝑥,

(13)

for all 𝑢, V ∈ 𝑋. In addition, any critical point of 𝐽 on 𝑋 is a
classical solution of problem (1).

Proof. We firstly show that 𝐽 : 𝑋 → R. From (𝐹1), one has

|𝐹 (𝑥, 𝑢)| ≤ 𝑏 (𝑥) |𝑢|
𝛾
, ∀ (𝑥, 𝑢) ∈ R ×R. (14)

By the Hölder inequality and (14), we have

∫

R
|𝐹 (𝑥, 𝑢 (𝑥))| 𝑑𝑥 ≤ ∫

R

𝑏 (𝑥) |𝑢 (𝑥)|
𝛾
𝑑𝑥

≤ ‖𝑏‖2/(2−𝛾)(∫

R
|𝑢 (𝑥)|

2
𝑑𝑥)

𝛾/2

≤ 𝐶
𝛾

2‖𝑏‖2/(2−𝛾)‖𝑢‖
𝛾
,

(15)

where 𝐶2 is constant in (11). Hence, 𝐽 defined by (12) is well
defined on𝑋.

Next we prove that 𝐽 ∈ 𝐶1(𝑋,R). To this end, we rewrite
𝐽 as follows:

𝐴 (𝑢) =

1

2

‖𝑢‖
2
, 𝐵 (𝑢) = ∫

R

𝐹 (𝑥, 𝑢) 𝑑𝑥. (16)

It is easy to check that 𝐴 ∈ 𝐶
1
(𝑋,R), and we have 𝐴(𝑢)V =

∫
R
[𝑢

(𝑥)V(𝑥)−𝑤𝑢(𝑥)V(𝑥)+𝑎(𝑥)𝑢(𝑥)V(𝑥)]𝑑𝑥, for all 𝑢, V ∈

𝑋. On the other hand, we will show that 𝐵 ∈ 𝐶1(𝑋,R) and

𝐵

(𝑢) V = ∫

R

𝑓 (𝑥, 𝑢 (𝑥)) V (𝑥) 𝑑𝑥, (17)

for any given 𝑢, V ∈ 𝑋. For any given 𝑢 ∈ 𝑋, let us define

𝐾 (𝑢) V = ∫
R

𝑓 (𝑥, 𝑢 (𝑥)) V (𝑥) 𝑑𝑥, ∀V ∈ 𝑋. (18)
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It is obvious that 𝐾(𝑢) is linear. Now we show that 𝐾(𝑢) is
bounded. In fact, for any 𝑢 ∈ 𝑋, by the Hölder inequality and
(𝐹1), we can obtain that

|𝐾 (𝑢) V|

≤ ∫

R





𝑓 (𝑥, 𝑢 (𝑥)) V (𝑥)


𝑑𝑥

≤ 𝛾∫

R

𝑏 (𝑥) |𝑢 (𝑥)|
𝛾−1

|V (𝑥)| 𝑑𝑥

≤ 𝛾‖𝑏‖2/(2−𝛾)(∫

R
|𝑢 (𝑥)|

2
𝑑𝑥)

(𝛾−1)/2

(∫

R
|V (𝑥)|2𝑑𝑥)

1/2

≤ 𝛾𝐶
𝛾

2‖𝑏‖2/(2−𝛾)‖𝑢‖
𝛾−1

‖V‖ .
(19)

Moreover, for 𝑢, V ∈ 𝑋, using the Mean Value Theorem,
we get

∫

R

𝐹 (𝑥, 𝑢 (𝑥) + V (𝑥)) 𝑑𝑥 − ∫
R

𝐹 (𝑥, 𝑢) 𝑑𝑥

= ∫

R

𝑓 (𝑥, 𝑢 (𝑥) + 𝜃 (𝑥) V (𝑥)) V (𝑥) 𝑑𝑥,
(20)

for some 0 < 𝜃(𝑥) < 1. On the other hand, 𝑏(𝑥) ∈ 𝐿2/(2−𝛾)(R,
R+), for any 𝜀 > 0, there exists 𝑇 > 0 such that

(∫

|𝑥|>𝑇

𝑏
2/(2−𝛾)

(𝑥) 𝑑𝑥)

(2−𝛾)/2

< 𝜀. (21)

Therefore, on account of the Sobolev compact theorem
(𝑋|[−𝑇,𝑇] is compactly embedded in 𝐿

∞
([−𝑇, 𝑇],R)) and

Hölder inequality, we have

1

‖V‖
[∫

R





𝑓 (𝑥, 𝑢 (𝑥)+ 𝜃 (𝑥) V (𝑥)) V (𝑥)−𝑓 (𝑥, 𝑢 (𝑥)) V (𝑥)


𝑑𝑥]

≤

1

‖V‖
[∫

|𝑥|≤𝑇





𝑓 (𝑥, 𝑢 (𝑥) + 𝜃 (𝑥) V (𝑥)) V (𝑥)

−𝑓 (𝑥, 𝑢 (𝑥)) V (𝑥)

𝑑𝑥]

+

1

‖V‖
[∫

|𝑥|>𝑇





𝑓 (𝑥, 𝑢 (𝑥) + 𝜃 (𝑥) V (𝑥)) V (𝑥)

−𝑓 (𝑥, 𝑢 (𝑥)) V (𝑥)

𝑑𝑥]

≤

1

‖V‖
[∫

|𝑥|≤𝑇





𝑓 (𝑥, 𝑢 (𝑥) + 𝜃 (𝑥) V (𝑥))

−𝑓 (𝑥, 𝑢 (𝑥))





2
𝑑𝑥]

1/2

× [∫

|𝑥|≤𝑇

|V (𝑥)|2𝑑𝑥]
1/2

+

2

‖V‖
[∫

|𝑥|>𝑇

𝛾𝑏 (𝑥) [|𝑢 (𝑥)|
𝛾−1

+ |V (𝑥)|𝛾−1] |V (𝑥)| 𝑑𝑥]

≤

1

‖V‖
[∫

|𝑥|≤𝑇





𝑓 (𝑥, 𝑢 (𝑥) + 𝜃 (𝑥) V (𝑥))

−𝑓 (𝑥, 𝑢 (𝑥))





2
𝑑𝑥]

1/2

𝐶2 ‖V‖

+ 2𝛾(∫

|𝑥|>𝑇

|𝑏 (𝑥)|
2/(2−𝛾)

𝑑𝑥)

(2−𝛾)/2

× (∫

|𝑥|>𝑇

|𝑢 (𝑥)|
2
𝑑𝑥)

(𝛾−1)/2

(∫

|𝑥|>𝑇

|V (𝑥)|2𝑑𝑥)
1/2

+ 𝛾(∫

|𝑥|>𝑇

|𝑏 (𝑥)|
2/(2−𝛾)

𝑑𝑥)

(2−𝛾)/2

× (∫

|𝑥|>𝑇

|V (𝑥)|2𝑑𝑥)
𝛾/2

≤ 𝐶2[∫

|𝑥|≤𝑇





𝑓 (𝑥, 𝑢 (𝑥)+ 𝜃 (𝑥) V (𝑥))−𝑓 (𝑥, 𝑢 (𝑥))



2
𝑑𝑥]

1/2

+ 𝜀𝛾𝐶
𝛾

2 (‖𝑢‖
𝛾−1

+ ‖V‖𝛾−1) → 0, as V → 0,

(22)

which, together with (19), implies that (17) holds. It remains
to show that 𝐵 is continuous. Suppose that 𝑢 → 𝑢0 in 𝑋,
then we have

sup
‖V‖=1






𝐵

(𝑢) V − 𝐵 (𝑢0) V







= sup
‖V‖=1

[∫

R





𝑓 (𝑥, 𝑢 (𝑥)) V (𝑥) − 𝑓 (𝑥, 𝑢0 (𝑥)) V (𝑥)





𝑑𝑥]

≤ sup
‖V‖=1

[∫

|𝑥|≤𝑇





𝑓 (𝑥, 𝑢 (𝑥)) V (𝑥) − 𝑓 (𝑥, 𝑢0 (𝑥)) V (𝑥)





𝑑𝑥]

+ sup
‖V‖=1

[∫

|𝑥|>𝑇





𝑓 (𝑥, 𝑢 (𝑥)) V (𝑥)−𝑓 (𝑥, 𝑢0 (𝑥)) V (𝑥)





𝑑𝑥]

≤ sup
‖V‖=1

[∫

|𝑥|≤𝑇





𝑓 (𝑥, 𝑢 (𝑥)) − 𝑓 (𝑥, 𝑢0 (𝑥))






2
𝑑𝑥]

1/2

× [∫

|𝑥|≤𝑇

|V (𝑥)|2𝑑𝑥]
1/2

+ sup
‖V‖=1

[∫

|𝑥|>𝑇

𝛾𝑏 (𝑥) [|𝑢 (𝑥)|
𝛾−1
+




𝑢0 (𝑥)






𝛾−1
] |V (𝑥)| 𝑑𝑥]

≤ sup
‖V‖=1

[∫

|𝑥|≤𝑇





𝑓 (𝑥, 𝑢 (𝑥)) − 𝑓 (𝑥, 𝑢0 (𝑥))






2
𝑑𝑥]

1/2

𝐶2 ‖V‖

+ 𝛾 sup
‖V‖=1

(∫

|𝑥|>𝑇

|𝑏 (𝑥)|
2/(2−𝛾)

𝑑𝑥)

(2−𝛾)/2
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× (∫

|𝑥|>𝑇

|𝑢 (𝑥)|
2
𝑑𝑥)

(𝛾−1)/2

(∫

|𝑥|>𝑇

|V (𝑥)|2𝑑𝑥)
1/2

+ 𝛾 sup
‖V‖=1

(∫

|𝑥|>𝑇

|𝑏 (𝑥)|
2/(2−𝛾)

𝑑𝑥)

(2−𝛾)/2

× (∫

|𝑥|>𝑇





𝑢0 (𝑥)






2
𝑑𝑥)

(𝛾−1)/2

× (∫

|𝑥|>𝑇

|V (𝑥)|2𝑑𝑥)
1/2

≤ 𝐶2[∫

|𝑥|≤𝑇





𝑓 (𝑥, 𝑢 (𝑥)) − 𝑓 (𝑥, 𝑢0 (𝑥))






2
𝑑𝑥]

1/2

+ 𝜀𝛾𝐶
𝛾

2 (‖𝑢‖
𝛾−1

+




𝑢0





𝛾−1
) → 0, as 𝑢 → 𝑢0,

(23)

uniformly with respect to V, which implies that 𝐵 is contin-
uous. Therefore, we obtain 𝐽 ∈ 𝐶1(𝑋,R) and its derivative is
given by

𝐽

(𝑢) V = ∫

R

[𝑢

(𝑥) V (𝑥)

−𝑤𝑢

(𝑥) V (𝑥) + 𝑎 (𝑥) 𝑢 (𝑥) V (𝑥)] 𝑑𝑥

− ∫

R

𝑓 (𝑥, 𝑢 (𝑥)) V (𝑥) 𝑑𝑥,

(24)

for all 𝑢, V ∈ 𝑋. In addition, from [8], we can know that any
critical point of 𝐽 on 𝑋 is a classical solution of problem (1).

Next, we give some useful Lemmas which can be seen in
[11].

Definition 6. 𝐼 ∈ 𝐶1(𝐸,R) is said to satisfy the (PS) condition
if any sequence {𝑢𝑛} ⊂ 𝐸, 𝑛 ∈ N, for which {𝐼(𝑢𝑛)} is bounded
and 𝐼(𝑢𝑛)) → 0 as 𝑛 → +∞ and possesses a convergent
subsequence in 𝐸.

Lemma 7. Let 𝐸 be a real Banach space and let 𝐼 ∈ 𝐶1(𝐸,R)
satisfy the (PS) condition. If 𝐼 is bounded from below, then 𝑐 =
inf𝐸𝐼(𝑢) is a critical value of 𝐼.

To obtain the existence of infinitely many homo-
clinic solutions for problem (1) under the assumptions of
Theorem 2, we will employ the “genus” properties in critical
point theory; see [11].

Let 𝐸 be a Banach space, 𝐼 ∈ 𝐶1(𝐸,R), and 𝑐 ∈ R. We set

Σ = {𝐴 ⊂ 𝐸 − {0} :

𝐴 is closed in𝐸 and symmetric with respect to 0} ,

𝐾𝑐 = {𝑢 ∈ 𝐸 : 𝐼 (𝑢) = 𝑐, 𝐼

(𝑢) = 0} ,

𝐼
𝑐
= {𝑢 ∈ 𝐸 : 𝐼 (𝑢) ≤ 𝑐} .

(25)

Definition 8. For 𝐴 ∈ Σ, we say the genus of 𝐴 is 𝐽 (denoted
by 𝛾(𝐴) = 𝑗) if there is an odd map 𝜓 ∈ 𝐶((𝐴,R)𝑗 \ {0}) and
𝑗 is the smallest integer with this property.

Lemma 9. Let 𝐼 be an even 𝐶1 functional on 𝐸 and satisfy the
(PS) condition. For any 𝑗 ∈ N, set

Σ𝑗 = {𝐴 ∈ Σ : 𝛾 (𝐴) ≥ 𝑗} , 𝑐𝑗 = inf
𝐴∈Σ𝑗

sup
𝑢∈𝐴

𝐼 (𝑢) . (26)

(i) If Σ𝑗 ̸= 0 and 𝑐𝑗 ∈ R, then 𝑐𝑗 is a critical value of 𝐼;
(ii) if there exists 𝑟 ∈ N such that

𝑐𝑗 = 𝑐𝑗+1 = ⋅ ⋅ ⋅ = 𝑐𝑗+𝑟 = 𝑐 ∈ R, (27)

and 𝑐 ̸= 𝐼(0), then 𝛾(𝐾𝑐) ≥ 𝑟 + 1.

Remark 10. From Remark 7.3 in [11], we know that if 𝐾𝑐 ∈
Σ and 𝛾(𝐾𝑐) > 1, then 𝐼 has infinitely many distinct critical
points in 𝐸.

3. Proof of the Main Results

To prove our main results, we first give the following Lemma.

Lemma 11. If (𝐴) and (𝐹2) hold, then 𝐽 defined by (12) satisfies
(PS) condition.

Proof. By (12) and (14) and Hölder inequality, one has

𝐽 (𝑢) =

1

2

‖𝑢‖
2
− ∫

R

𝐹 (𝑥, 𝑢) 𝑑𝑥

≥

1

2

‖𝑢‖
2
− ∫

R

𝑏 (𝑥) |𝑢 (𝑥)|
𝛾
𝑑𝑥

≥

1

2

‖𝑢‖
2
− ‖𝑏‖2/(2−𝛾)(∫

R
|𝑢 (𝑥)|

2
𝑑𝑥)

𝛾/2

≥

1

2

‖𝑢‖
2
− 𝐶
𝛾

2‖𝑏‖2/(2−𝛾)‖𝑢‖
𝛾
.

(28)

Since 1 < 𝛾 < 2, (28) implies that 𝐽(𝑢) → +∞ as ‖𝑢‖ →

+∞. Consequently, 𝐽 is bounded from below.
Now, we show that 𝐽 satisfies the (PS) condition. Assume

that {𝑢𝑘}𝑘∈N ⊂ 𝑋 is a sequence such that {𝐽(𝑢𝑘)}𝑘∈N is
bounded and 𝐽(𝑢𝑘) → 0 as 𝑘 → +∞. Then by (28), there
exists a constant 𝐶 > 0 such that





𝑢𝑘



2
≤ 𝐶2





𝑢𝑘




≤ 𝐶, 𝑘 ∈ N. (29)

So passing to a subsequence if necessary, it can be assumed
that 𝑢𝑘 ⇀ 𝑢0 in𝑋. Since 𝑏(𝑥) ∈ 𝐿

2/(2−𝛾)
(R,R+), for any 𝜀 > 0,

there exists 𝑇 > 0 such that

(∫

|𝑥|>𝑇

𝑏
2/(2−𝛾)

(𝑥) 𝑑𝑥)

(2−𝛾)/2

< 𝜀. (30)

Since the embedding of 𝑋 → 𝐿
2
loc(R) is compact, 𝑢𝑘 ⇀ 𝑢0

in𝑋 implies

lim
𝑘→∞

∫

|𝑥|≤𝑇





𝑢𝑘 (𝑥) − 𝑢0 (𝑥)






2
𝑑𝑥 = 0. (31)
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Then we have

∫

R





𝑓 (𝑥, 𝑢𝑘 (𝑥)) − 𝑓 (𝑥, 𝑢0 (𝑥))










𝑢𝑘 (𝑥) − 𝑢0 (𝑥)





𝑑𝑥

≤ [∫

|𝑥|≤𝑇





𝑓 (𝑥, 𝑢𝑘 (𝑥))−𝑓 (𝑥, 𝑢0 (𝑥))










𝑢𝑘 (𝑥)−𝑢0 (𝑥)





𝑑𝑥]

+ [∫

|𝑥|>𝑇





𝑓 (𝑥, 𝑢𝑘 (𝑥)) − 𝑓 (𝑥, 𝑢0 (𝑥))






×




𝑢𝑘 (𝑥) − 𝑢0 (𝑥)





𝑑𝑥]

≤ [∫

|𝑥|≤𝑇





𝑓 (𝑥, 𝑢𝑘 (𝑥)) − 𝑓 (𝑥, 𝑢0 (𝑥))






2
𝑑𝑥]

1/2

× [∫

|𝑥|≤𝑇





𝑢𝑘 (𝑥) − 𝑢0 (𝑥)






2
𝑑𝑥]

1/2

+ ∫

|𝑥|>𝑇

𝛾𝑏 (𝑥) [




𝑢𝑘 (𝑥)






𝛾−1
+




𝑢0 (𝑥)






𝛾−1
]

× [




𝑢𝑘 (𝑥)





+




𝑢0 (𝑥)





] 𝑑𝑥

≤ [∫

|𝑥|≤𝑇





𝑓 (𝑥, 𝑢𝑘 (𝑥)) − 𝑓 (𝑥, 𝑢0 (𝑥))






2
𝑑𝑥]

1/2

× [∫

|𝑥|≤𝑇





𝑢𝑘 (𝑥) − 𝑢0 (𝑥)






2
𝑑𝑥]

1/2

+ 2𝛾∫

|𝑥|>𝑇

𝑏 (𝑥) [




𝑢𝑘 (𝑥)






𝛾
+




𝑢0 (𝑥)






𝛾
] 𝑑𝑥

≤ [∫

|𝑥|≤𝑇





𝑓 (𝑥, 𝑢𝑘 (𝑥)) − 𝑓 (𝑥, 𝑢0 (𝑥))






2
𝑑𝑥]

1/2

× [∫

|𝑥|≤𝑇





𝑢𝑘 (𝑥) − 𝑢0 (𝑥)






2
𝑑𝑥]

1/2

+ 2𝛾[∫

|𝑥|>𝑇

|𝑏 (𝑥)|
2/(2−𝛾)

]

(2−𝛾)/2

[




𝑢𝑘





𝛾

2
+




𝑢0





𝛾

2
]

≤ [∫

|𝑥|≤𝑇





𝑓 (𝑥, 𝑢𝑘 (𝑥)) − 𝑓 (𝑥, 𝑢0 (𝑥))






2
𝑑𝑥]

1/2

× [∫

|𝑥|≤𝑇





𝑢𝑘 (𝑥) − 𝑢0 (𝑥)






2
𝑑𝑥]

1/2

+ 2𝛾[∫

|𝑥|>𝑇

|𝑏 (𝑥)|
2/(2−𝛾)

]

(2−𝛾)/2

[𝐶
𝛾
+




𝑢0





𝛾

2
] .

(32)

Hence, by (30), (31), and the fact that 𝜀 is arbitrary, one can
get

∫

R





𝑓 (𝑥, 𝑢𝑘 (𝑥)) − 𝑓 (𝑥, 𝑢0 (𝑥))










𝑢𝑘 (𝑥) − 𝑢0 (𝑥)





𝑑𝑥 → 0

(33)

as 𝑘 → ∞. It follows from (13) that

⟨𝐽

(𝑢𝑘) − 𝐽


(𝑢0) , 𝑢𝑘 − 𝑢0⟩

=




𝑢𝑘 − 𝑢0






2

− ∫

R





𝑓 (𝑥, 𝑢𝑘 (𝑥)) − 𝑓 (𝑥, 𝑢0 (𝑥))










𝑢𝑘 (𝑥) − 𝑢0 (𝑥)





𝑑𝑥.

(34)

In view of the definition of weak convergence, we have

⟨𝐽

(𝑢𝑘) − 𝐽


(𝑢0) , 𝑢𝑘 − 𝑢0⟩ → 0. (35)

Therefore, we can obtain that𝑢𝑘 → 𝑢0 in𝑋. Hence, 𝐽 satisfies
(PS) condition.

Now we are in the position to complete the proof of
Theorems 1 and 2.

Proof of Theorem 1. It is obvious that 𝐽(0) = 0, and by
Lemmas 5 and 11 we know that 𝐽 is a 𝐶1 functional on 𝑋
satisfying the (PS) condition. In view of (28), we have 𝐽 is
bounded below on 𝑋. Hence, by Lemma 7, 𝑐 = inf𝐸𝐽(𝑢) is a
critical value of 𝐽; that is, there exists a critical point 𝑢∗ ∈ 𝑋
such that 𝐽(𝑢∗) = 𝑐.

In addition, by (𝐹2), there exists an open set 𝐷 ⊂ R with
𝑥0 ∈ 𝐷, 𝜎 > 0, 𝜂 > 0 such that

𝐹 (𝑥, 𝑢) ≥ 𝜂|𝑢|
]
, ∀ (𝑥, 𝑢) ∈ 𝐷 ×R, |𝑢| ≤ 𝜎. (36)

Let 𝑢0 ∈ 𝑊
2,2
0 (𝐷) ∩ 𝑋 \ {0} and ‖𝑢0‖∞ ≤ 𝜎; then we have

𝐽 (𝑠𝑢0) =
1

2

𝑠
2



𝑢0





2
− ∫

R

𝐹 (𝑥, 𝑠𝑢0) 𝑑𝑥

=

1

2

𝑠
2



𝑢0





2
− ∫

𝐷

𝐹 (𝑥, 𝑠𝑢0) 𝑑𝑥

≤

1

2

𝑠
2



𝑢0





2
− 𝜂𝑠

]
∫

𝐷





𝑢0





]
𝑑𝑥,

(37)

where 0 < 𝑠 < 1. Since 1 < ] < 2, one has 𝐽(𝑠𝑢0) < 0, for
𝑠 > 0 small enough. Hence, 𝑢∗ ̸= 0, 𝐽(𝑢∗) < 0; therefore 𝑢∗ is
a nontrivial homoclinic solution for problem (1).

Proof of Theorem 2. Now, by (𝐹3), we have 𝐽 is even and 𝐽(0) =
0. In order to apply Lemma 9, we prove that there exists 𝜀 > 0
such that

𝛾 (𝐽
−𝜀
) ≥ 𝑗, (38)

for any 𝑗 ∈ N. For any 𝑗 ∈ N, we take 𝑗 disjoint open sets 𝐷𝑖
such that ∪𝑗

𝑖=1
𝐷𝑖 ⊂ 𝐷. For 𝑖 = 1, 2, . . . , 𝑗, let 𝑢𝑖 ∈ 𝑊

2,2
0 (𝐷𝑖) ∩

𝑋 \ {0} with ‖𝑢𝑖‖ = 1, and

𝐸𝑗 = span {𝑢1, 𝑢2, . . . , 𝑢𝑗} ,

𝑆𝑗 = {𝑢 ∈ 𝐸𝑗 : ‖𝑢‖ = 1} .

(39)
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Then, for any 𝑢 ∈ 𝐸𝑗, there exist 𝜆𝑖 ∈ R, 𝑖 = 1, 2, . . . , 𝑗 such
that

𝑢 (𝑥) =

𝑗

∑

𝑖=1

𝜆𝑖𝑢𝑖 (𝑥) . (40)

Then,

‖𝑢‖] = (∫
R
|𝑢 (𝑥)|

]
𝑑𝑥)

1/]
= (

𝑗

∑

𝑖=1

𝜆
]
𝑖 ∫

𝐷𝑖

|𝑢 (𝑥)|
]
𝑑𝑥)

1/]

,

(41)

‖𝑢‖
2
= ∫

R

[𝑢

(𝑥)
2
− 𝑤𝑢

(𝑥)
2
+ 𝑎 (𝑥) 𝑢(𝑥)

2
] 𝑑𝑥

=

𝑗

∑

𝑖=1

𝜆
2

𝑖 ∫

𝐷𝑖

[𝑢


𝑖 (𝑥)
2
− 𝑤𝑢


𝑖 (𝑥)
2
+ 𝑎 (𝑥) 𝑢𝑖(𝑥)

2
] 𝑑𝑥

=

𝑗

∑

𝑖=1

𝜆
2

𝑖 ∫

R

[𝑢


𝑖 (𝑥)
2
− 𝑤𝑢


𝑖 (𝑥)
2
+ 𝑎 (𝑥) 𝑢𝑖(𝑥)

2
] 𝑑𝑥

=

𝑗

∑

𝑖=1

𝜆
2

𝑖





𝑢𝑖





2
=

𝑗

∑

𝑖=1

𝜆
2

𝑖 .

(42)

Since all norms of a finite dimensional norm space are equi-
valent, so there exists a constant 𝑑 > 0 such that

𝑑 ‖𝑢‖ ≤ ‖𝑢‖], ∀𝑢 ∈ 𝐸𝑗. (43)

For all 𝑢 ∈ 𝑆𝑗 and sufficient small 𝑠 > 0, we have

𝐽 (𝑠𝑢) =

1

2

𝑠
2
‖𝑢‖
2
− ∫

R

𝐹 (𝑥, 𝑠𝑢) 𝑑𝑥

=

1

2

𝑠
2
‖𝑢‖
2
−

𝑗

∑

𝑖=1

∫

𝐷𝑖

𝐹 (𝑥, 𝑠𝜆𝑖𝑢𝑖 (𝑥)) 𝑑𝑥

≤

1

2

𝑠
2
‖𝑢‖
2
− 𝜂𝑠

]
𝑗

∑

𝑖=1





𝜆𝑖





]
∫

𝐷𝑖





𝑢𝑖





]
𝑑𝑥

≤

1

2

𝑠
2
‖𝑢‖
2
− 𝜂𝑠

]
‖𝑢‖

]
]

≤

1

2

𝑠
2
‖𝑢‖
2
− 𝜂(𝑑𝑠)

]
‖𝑢‖

]
≤

1

2

𝑠
2
− 𝜂(𝑑𝑠)

]
.

(44)

In this case (36) is applicable, since 𝑢 is continuous on𝐷 and
so |𝑠𝜆𝑖𝑢𝑖(𝑥)| ≤ 𝜎, ∀𝑥 ∈ 𝐷, 𝑖 = 1, 2, . . . , 𝑗 can be true for
sufficiently small 𝑠. Therefore, it follows from (44) that there
exist 𝜀 > 0 and 𝛿 > 0 such that

𝐽 (𝛿𝑢) < −𝜀 for 𝑢 ∈ 𝑆𝑗. (45)

Let

𝑆
𝛿

𝑗 = {𝛿𝑢 : 𝑢 ∈ 𝑆𝑗} ,

Ω = {(𝜆1, 𝜆2, . . . , 𝜆𝑗) ∈ R
𝑗
:

𝑗

∑

𝑖=1

𝜆
2

𝑖 < 𝛿
2
} .

(46)

Then, it follows from (45) that

𝐽 (𝑢) < −𝜀, ∀𝑢 ∈ 𝑆
𝛿

𝑗 , (47)

which together with the fact that 𝐽 is even 𝐶1 functional on
𝑋, yields that

𝑆
𝛿

𝑗 ⊂ 𝐽
−𝜀
∈ Σ, (48)

where 𝐽−𝜀 and Σ have been previously introduced in Section
2. On the other hand, it follows from (40) and (42) that there
exists an odd homeomorphism 𝜓 ∈ 𝐶(𝑆

𝛿
𝑗 , 𝜕Ω). By some

properties of the genus (see 3∘ of Propositions 7.5 and 7.7 in
[11]), we infer

𝛾 (𝐽
−𝜀
) ≥ 𝛾 (𝑆

𝛿

𝑗) = 𝑗, (49)

so the proof of (38) follows. Set

𝑐𝑗 = inf
𝐴∈Σ𝑗

sup
𝑢∈𝐴

𝐽 (𝑢) , (50)

where Σ𝑗 is defined in Lemma 9. It follows from (50) and
the fact that 𝐽 is bounded from below in 𝑋 that we have
−∞ < 𝑐𝑗 ≤ −𝜀 < 0, which implies that, for any 𝑗 ∈ N, 𝑐𝑗
is a real negative number. By Lemma 9 and Remark 10, 𝐽 has
infinitely many nontrivial critical points, and consequently,
problem (1) possesses infinitely many nontrivial homoclinic
solutions.
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