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This paper deals with a class of quasilinear elliptic systems involving singular potentials and critical Sobolev exponents in RY. By
using the symmetric criticality principle of Palais and variational methods, we prove several existence and multiplicity results of
G-symmetric solutions under certain appropriate hypotheses on the potentials and parameters.

1. Introduction

In this work, we investigate the existence and multiplicity
of nontrivial solutions for the following quasilinear elliptic
system:

it = Q) (Jul? u+ L )

+ Ak (%) [ulTu, in RY,

Zpuv =Q (%) <|V|p*_2 v+ ;—[j ul® |v|P2 v> (1)

+ Ah, (x) V72v, in RY,

u(x),v(x) — 0, as|x|] — +oo,

where Z, , £ — div(|V-|PV-)—u(|-|P2-/|x|P) is a quasilinear
elliptic operator, 1 < g < p < N,0<¢< +00,0 <<
with = (N-p)/p)f, A > 0,and a, B > 1satisfya+f = p*,
p* 2 (Np/(N - p)) denotes the critical Sobolev exponent,
and Q € ERYN) N L®(RY) and h; € LYRY) (i = 1,2) with
0 = Np/(Np — q(N — p)) are G-symmetric functions (see
Section 2 for details) with respect to a closed subgroup G of
O(N).

In recent years, considerable attention has been paid to
the scalar singular elliptic problem:

&Lt = Q (%) lul? 2u+ M (x) [ul? %y, in Q,

’ 2)

u=0, on 0Q,

where O ¢ RY is a smooth domain (bounded or unbounded)
containing the origin. The study of this type of equation is
motivated by its definite physics background and various
applications, including celestial mechanics, fluid mechanics,
and flow through porous media (see [1]). The mathematical
interest lies in the fact that these problems like (2) are doubly
critical due to the presence of the Sobolev embedding and
the singularities. For this reason, many existence, nonexis-
tence, and multiplicity results of nontrivial solutions for the
single equations like (2) have been established with different
assumptions on the potentials Q(x), h(x) and the parameters
U, A, and g; we refer to [2-8] and the references therein.

In a recent paper, Deng and Jin [9] considered the
following single semilinear elliptic problem:
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where N > 2,0 < u < (N =2)/2%0 < s < 2
2%(s) = 2(N = s)/(N - 2), and k satisfies some symmetry
conditions with respect to G ¢ O(N). By using analytic
techniques and variational arguments, the authors proved
the existence and multiplicity of G-symmetric solutions to
(3) under certain hypotheses on k. Subsequently, Waliullah
[10] improved the results in [9] by using the minimiz-
ing sequence and the concentration-compactness principle.
Recently, Deng and Huang [11] extended the results in [9, 10]
to the scalar weighted elliptic problems in a bounded G-
symmetric domain. Besides these, when ¢ = s = 0 and the
right-hand side term lefsuz* ©)-1ig replaced by aterm f(u) of
the pure power, such as f(u) = u T with1 <r < 2N/(N=2)
orr = 2N/(N — 2), there are many interesting results on the
existence and multiplicity of G-symmetric solutions of (3),
which can be found in [12-14] and the references therein.

On the other hand, there have been many papers con-
cerned with the existence and multiplicity of nontrivial
solutions for elliptic systems. In [15], Wu considered the
following semilinear elliptic system:

A= 2 Q) P u P Af () [l in O,
a+f
_ 2[)) o p-2 q-2 .
“Av=—"Qx)|ul" V" v+ dh(x)|v|T v, in Q,
a+pf
u=v=0, on 0Q,
(4)

where O ¢ RN (N > 3) is a smooth bounded domain,
1<g<2afB>1a+p <2 and the weight functions
Q, f, h fulfill certain suitable conditions. Via the analytic
techniques of Nehari manifold and variational methods, the
author proved that the system (4) admits at least two non-
trivial nonnegative solutions if the pair of parameters (A, §)
belongs to a certain subset of R?. Very recently, Nyamoradi
[16], Li and Xiao [17], and Li and Gao [18] generalized
the corresponding results of [15] to the nonlinear singular
elliptic systems involving critical Hardy-Sobolev exponents.
Other results about existence and multiplicity of nontrivial
solutions, also for related elliptic systems, can be seen in [19-
23] and the references therein.

However, as far as we know, the existence and multiplicity
of G-symmetric solutions for singular elliptic systems were
seldom studied; we can only find some G-symmetric results
for singular elliptic systems in [24] and, when G = O(N),
some radial and nonradial results for nonsingular elliptic
systems in [25]. Inspired by [9, 12, 25], in this paper we are
concerned with the existence and multiplicity of positive G-
symmetric solutions for system (1). The main difficulties lie
in the fact that there are not only the nonlinear perturbations
Ay (50)|ul?u, Ahy(x)|v|7%v and the Hardy singular terms
[ul?2u/|x|?, |v[P*v/|x|P in (1), but also four nonlinear
terms with the critical Sobolev exponents in RY. Compared
with (3) and (4), the singular quasilinear elliptic system
(1) becomes more complicated to deal with. Moreover, the
approach involving the Nehari manifold requires that the
corresponding nonlinearity is second order derivative about
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u and v. Hence, in order to obtain the multiple G-symmetric
solutions of system (1), the Nehari manifold techniques in the
literature mentioned above are invalid and we need to look
for other methods. To our knowledge, even in the particular
case A = 0 and p = 2, there are no results on the existence
and multiplicity of G-symmetric solutions for system (1). It is
therefore meaningful for us to investigate system (1) deeply.
Let Q > 0 be a constant. Note that, here, we will try to treat
both the cases of A = 0, Q(x) ZQ and A > 0, Q(x) = Q.

This paper is schemed as follows. In Section 2, we estab-
lish the appropriate Sobolev space which is applicable to the
study of the elliptic system (1) and state the main results of this
paper. In Section 3, we detail the proofs of several existence
and multiplicity results for the case A = 0 and Q(x) # Q in
(1). In Section 4, we will present the proofs of multiplicity
results for the case A > 0 and Q(x) # Q in (1). Our methods
in this paper are mainly based upon the symmetric criticality
principle of Palais (see [26]) and variational arguments.

2. Preliminaries and Main Results

Let O(N) be the group of orthogonal linear transformations
in RN and let G ¢ O(N) be a closed subgroup. For x # 0
we denote the cardinality of G, = {gx;g € G} by |G, | and
set |G| = infy,,pv|G,|. Note that, here, |G| may be +co. We
say that f : RN — R is G-symmetric (or G-invariant) if
f(gx) = f(x)for every g € Gand x € RY and in the context
of Sobolev spaces this equality is understood a.e. on R™. In
particular, if f is radially symmetric, then the corresponding
group G is O(N) and |G| = +0o. We call Q a G-symmetric
subset of RY; if x € Q, then gx e Qforallg eG.

Let 2"P(RY) denote the closure of %SO(IRN ) functions
with respect to the norm (fRN |Vul? dx)l/ P We recall that the
well-known Hardy inequality (see [2, 3]) holds:

P

| g < L | lvalrdx, vueo' (&Y), @)
RN |x|? ¢ Jry

where 1 = ((N - p)/p)f. For u € [0,p), we employ the

following norm in Z"F (RM):

P 1/p
bty = || (1w =i )| @

By inequality (5), we see that the above norm is equivalent to
the usual norm (IRN |Vul? dx)l/ P The elliptic operator & oy =
—div(|V - [P72V2) = u(] - [P72 - /|x|P) is positive in DVP(RYN) if
u € [0, 7). Moreover, we define the product space 2"#(RN) x
P"P(RN) endowed with the norm

Il = Clallf + )™, .
V(u,v) e 2" (RY) x 2" (RY).

The natural functional space to study system (1) is the
Banach space Qép (RN) x Qép (RM), which is the subspace
of Z"P(RN) x PVP(RYN) consisting of all G-symmetric
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functions. Now in this paper, we are concerned with the
following elliptic problems:

= Q) 2 S5 ol
+ Ahy (%) [ul1% u, in RN,
(g,g) ] Zpuv =Q (x)<|"|p _2V+;—/f Jul* |v]F~ V>
+ Ahy (x) [V]1 7%, in RY,
(wv) € 2 (RN) x pf (RV), u>0,
v >0,
in RV,
(8)

To mention our main results, we need to introduce two
notations &/, and y,(x), which are, respectively, defined by

[ (90l = e (jul? / 1x17)) dx

o = inf - 9)
“ ueh N * plp
e? (RN)\{0} (.[RN ul? dx)
Ve (x) £ Ce_sU# (%) , (10)

a

where ¢ > 0,9 = (N - p)/p, and the constant C =
C(N, p,u) > 0, depending only on N, p, and p. From Kang
[4], we see that y,(x) satisfies the equations

p
P _ P |}’E| _ 1
el jRN <|Vy€| W )dx 1, )
Jo 7t = | et

The function U, > 0 in (10) is radially symmetric. Moreover,

the following asymptotic properties at the origin and infinity
for Uﬂ(r) and U#(r) hold [4]:

A _ N S| _
rlgr})r U,(r)=C, >0, ranq()r * |U;‘ (r)| =C,, >0,

(13)
. L _ . L _
lim U, (N =C, >0, lim 2 U, (1| =Gyl >0,

(14)

where C,, C, are positive constants and I, = [;(N, p, u) and
I, = L,(N, p, u) are the zeroes of the function

ZO=(p-)tF —=(N=-p)tP "+, t>0,0<u<pn

(15)

satisfying

N —
Osll<9<lzsp , 9= —- (16)

We suppose that the functions Q, h,, and h, verify the
following hypotheses.

(@) Qe BRM) N LP°RY), and Q is G-symmetric.
(q:2) Q, #£0, where Q, = max{0, Q}.
(h.1) h, and h, are G-symmetric.

(h.2) hi(x) > 0, h(x)£0, and h(x) € LO(RY) with 6 =
Np/(Np — q(N — p)), wherei = 1,2.
The main results of this paper are summarized in the
following.

Theorem 1. Suppose that (q.1) and (q.2) hold. If

J Q(x) ygﬂg dx
RN

0 00 Q
= max Q(;+(ﬁ)3 ’ Q&Eﬁ)/)’ ( ” )7"00(a+ﬁ)/ >0,
'Q{M p ‘Qf‘u ps |G| a+p-p)/p ‘Qio p

(17)
for some € > 0, where Q,(c0) = lim supMHOOQJr(x), then

problem (Q’OQ) has at least one positive solution in QZE;’P (RN x
DEPRY).

Corollary 2. Suppose that (q.1) and (q.2) hold. Then we have
the following statements.

(1) Problem (9’5;2) has a positive solution if
Q(0) >0,

—(a+p)/p
s o
Q(O)zmaX{CL (co), [G|P PP (j) ||Q+||oo} :
“

(18)

and either (i) Q(x) = Q(0) + A0|x|(“+ﬁ)(lz’9) for some
Ay > 0and |x| small or (ii) |Q(x) — Q(0)] < A |x|*
for some constant A, > 0, k > (a + B)(I, = 9) and |x]|
small and

| @@-QEn Va0 )
RN

(2) Problem (.9’(?) admits at least one positive solution
if lim, _, ,,Q(x) = Q(00) exists and is positive,

o —(at+p)/p
atzmarfa. 0 16 (8 ) |,
u

(20)
and either (i) Q(x) > Q(oo)+A2|x|‘("‘+ﬂ)(9—’1)forsome
A, > 0 and large |x| or (i) |Q(x) — Q(oo)| < As|x|™
for some constants A 5 > 0,1 > (a+ )(9—1,) and large
|x| and

J (Q(x) — Q(00)) x| NT@ PO gy 5 0. (21)
RN
(3) If Q(x) = Q(00) = Q(0) > 0 on RY and

o —(a+p)/p
Q(c0) = Q(0) 2 [G| TP (j) 12l
“

(22)

then problem (@3) has at least one positive solution.



Theorem 3. Suppose that Q,.(0) = Q,(co) = 0 and |G| =
+00. Then problem (9’0Q) has infinitely many G-symmetric
solutions.

Corollary 4. If Q is a radially symmetric function such that
Q.(0) = Q,(c0) = 0, then problem (9’9) has infinitely many
solutions which are radially symmetric.

Theorem 5. Let Q > 0 be a constant. Suppose that Q(x) = Q
and (h.1), (h.2) hold. Then there exists A" > 0 such that, for
any A € (0,1%), problem (9’)?) possesses at least two positive
solutions in Qép(RN) X QZéP(RN).

Remark 6. The main results of this paper generalize, extend,
and complement some results of the aforementioned papers
[9-12, 24, 25].

In the sequel, we denote by Qép (RN x QZéP (RYN) the
subspace of P (RYN) x @VP(RN) consisting of all G-
symmetric functions. The dual space of 2 ép (RN)x 92‘7 (RM)
(@"P(RN) x BP(RN), resp.) is denoted by D5 (RY) x
2 ®RN) (@7 (RN) x D7 (RN), resp.), where 1/p +
1/p" = 1. The ball of center x and radius  is denoted by

B.(x). We employ C, C,, C,, ... to denote (possibly different)
positive constants and denote by “ — ” convergence in norm

« »

in a given Banach space X and by “—” weak convergence.
Hereafter, 0,(1) denotes a datum which tends to 0 as n —
00. LYRN, h(x)) denotes the weighted LY(R") space with
the norm (JRN h(x)lulqu)l/q. A functional J € €4(X,R) is
said to satisty the (PS), condition if each sequence {u,} in X
satisfying J(u,) — ¢, J'(4,) — 0in X* has a subsequence
which strongly converges to some element in X.

3. Existence and Multiplicity Results for
Problem (#9)

The corresponding energy functional of problem (@OQ) is
defined in D7 (RY) x 23F (RYN) by

& (u,7) = % s I

1 * * o
- | Qe (1l )
RN

p*
(23)

Note that (q.1) and (5) imply that & € €2 (RY) x
.E/Zép (RM),R). It is well known that there exists a one-to-
one correspondence between the weak solutions of problem
(23) and the critical points of &. More precisely, any
weak solution of (gpo) is exactly the critical point of & by
the following symmetric principle (see Lemma 7); namely,
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w,v) € DPRN) x DP(RY) satisfies (2Y) if and only if
for all (¢, ¢,) € D P(RN) x ZVP(RN), there holds

0= J <|Vu|p_2VuV(p1 + VP2 Vv,
RN

—2 —2
[ulPugp, + v[F v, I
|x[?

- j Q) {(|u|1’*‘2u + 2y |v|‘;) o
RN p

+ (|v|p*_2 v+ ;—é [ul® |v|P2 v> (pz} dx.
(24)
Lemma7. &€ (u,v) = 0in 9&1’p,(RN) X Qél’p’(RN) implies
&' (u,v) = 0in DV (RN) x 2 (RN).

Proof. See the proof of [12, Lemma 1] (see also [25, Proposi-
tion 2.8]). L]

Now, forany 0 < py < %, 0 < ¢ < +00, , f > 1, and
a+ f=p", wedefine

(o)
Ay

. Jos (VP 419997~ (1l +1v17)/ 1x17)) dix

RN [ (1l el ) ]

(25)
1+7?
K(r) = , 120, 26
(1+¢rP+ T“+ﬁ)P/(“+ﬁ) (26)
K (Tmin) 2 I?zlglK (T) >0, (27)
where 7., > 0 is a minimal point of K(7) and therefore a

root of the equation

(a+B) PP 4 prP P —car’ —(a+p) =0, T20.
(28)

Lemma 8. Suppose that1 < p < N, 0 < ¢ < 400, and
0 < p < u Then d!(zc’ﬁ) = K(Tyn) 9, and ﬂ;‘j‘c’ﬁ) has
the minimizer (y,(x), TminVe(X)), Ye > 0, where y.(x) is the
extremal function of o, defined as in (10).

Proof. The proof is similar to the proof in Nyamoradi [16,
Theorem 2]. O

Lemma 9. Let {(u,,v,)} be a weakly convergent sequence to
(u,v) in @éP(RN) X QJZEP(IRN) such that |Vu,|? — 5,
Vv, = 7P, fu, P = o P = 0@, P, P =,
x| Pl P — YV, and |x[Plv, | — 2 in the sense of
m((zngsures. Then ther(’e) exists some at (n;ost countable se(t)f,
1 2 1 2
{’Ij = O}je]u{o}’ {le = O}jeju{o}’ {Uj = O}jeju{0}> {0]' =
(1) (2)
O}jeju{o}’ {vj > O}jeju{o}) Yo = 0,9, =0, and {xj}jej C
RN\ {0} such that
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@wﬂ>>me+Lgn?®;Hﬁ®w¢”z|WV+
s M50, + 115 S0,

(b) o = |u|P* + Yies 08, + 08, 6@ = WP +

(2)
Zle] E 8 +0y78,

© v =W+ 3, ViO, + %0, Y = (ul?/1x17) +
Y80 ¥ = (WP /1x1P) + P8,

1 * 1 2 * 2
WO(UE ))p/p < ,1; ), do(a§ ))p/p < ,75 )’

(d) ,Qi(“ﬁ(o(l) + 05,2) + gl < rél) + 175.2),

() AP (00 10D+ < D) +,15)2)_#(),(()1) ),
(W\p/ (1) (1) ()\p/p" (2)
(0, )PP <ny —pyy > Aylog )PP S’?o —HUy

where 6xj, j € F U {0}, is the Dirac-mass of 1 concentrated at
x; € RY,

Proof. The proof is similar to that of the concentration
compactness principle in [27, 28] (see also [20, Lemma 2.2])
and is omitted here. O

In order to find critical points of &, we need the following
local (PS), condition.

Lemma 10. Suppose that (q.1) and (q.2) hold. Then the (PS),
condition in gép(RN) X gép(RN) holds for & if

1

N

* A

c< CO
()" ()

X min NPT S (29

(Q, (0)) (Q, (0)) (29)

G (arg?)™ }

~N-p)/
[oN it

Proof. The proof is similar to that in [12, Proposition 2].
We sketch the argument here for completeness. Suppose
{(,,v,)} € DFRY) x DEP(RY) satisfies E(u,,v,) —
c and &'(u,,v,) — 0 withc < ¢.Itis easy to show
that {(u,, v,,)} is bounded in D (RN) x Z;P(RV) and then
(u,,v,) — (u,v) up to a subsequence. Moreover, we know
from Lemma 9 that there exist measures 7, %, ¢V, ¢®?,

7, y(l), and y ) such that relations (a)-(e) of this lemma hold.
Let x; # 0 be a singular point of measures 7, 7%, and ». As
in [20], we can choose two functions ¢, ¢, € € (R") such
that0 < ¢y, ¢, < 1,¢, = ¢, = 1for[x—x;| <e€/2,¢; =, =0
for |x — le > eand [V¢,| < 4/e, |V,| < 4/e. By Lemma 7,

lim,, _, (&' (4, v,,), (U, 1, v,$,)) = 0, and, hence, using the
Sobolev inequality and the Holder inequality, we have

J { (¢1d71(1) + ¢2d11(2)) -Q(x)
RN
X ((pldo(l) + ¢2d0(2)) _ & pix) (g, + Bp,) dv}

- JRN u(gray™ + g,dy®)

< lim supj N |un Vi, |P 7 Ve, + v, [V, [P V¢2| dx
R

n— 00

(p-D/p
< sup <J. ; |Vus, |” dx)
R

n>1

1/p
x lim sup <J N |un|P| V¢>1|de>
R

n— 00

(p-1/p
+ sup (J |V, dx)
RN

n>1

1/p
x lim sup <J . [v,l?] V¢2|de)
R

n—00

1/p 1/p
sc{(J |u|P|v¢1|de> +<J |v|P|v¢2|de) }
RN RN
N 1/p* N 1/N
<C <J l? dx> (j vel")
Be(x;) RN
. 1/p /N
+<j % dx) (] ,1venl")
Be(xj) RN
1/p 1/p
<C <I(J [Vu|? dx) + (J [Vv|P dx) } .
Be(xj) Be(xj)

(30)

Taking limitsase — 0in (30), we obtain from Lemma 9 and
the fact that « + § = p”* that

Q) (60 +0® + o) =n® +4P. (D

The above inequality implies that the concentration of the
measures 0(1) (2), and v cannot occur at points where
Qx;) < 0; that is, if Q(x;) <0 then 05.1) = 0](.2) = =

D= 11§2) = 0. Combining (31) and (d) of Lemma 9 we infer
that either (i) 0(1) = 0;2) =7, =0o0r (ii) 05.1) + 0;2) +6v; >
(d(“ﬁ NQ4 s )N/P. For the point x = 0, similarly as in the

case x; # 0, we get

(1) (2) (2)

)+ — (v +957) - Q0) (o + ) + %) < 0.

(32)
This, combined with (e) of Lemma 9, implies that either (iii)
03" = 03 = vy = Oor (iv) o +0y” +vy = (P Q, (0)N/P.



To study the concentration at infinity of the sequence we need
to consider the following quantities:

(2)

(1) ;18)) = limg_, lim sup, _, J‘|x|>R [Vu, |Pdx, e

limg_, lim sup, _, J|x|>R |Vv,|Pdx,

(2) 02)) = limg_, lim sup, f|x|>R |u,|P dx, ag))

limg_, lim sup, _, J|x|>R lv,|” dx,

(3) Voo = limy _, Jlim sup, _, IIxI>R |un|a|vn|3dx,

@y = limp_olim sup, o [ (1u,l?/1x1P)dlx,
@) _

Y2 = limp_ lim sup, o, f. (v, [?/1xIP)dx.

(2)

Obviously, 11 ), Moo Yoos Voo » ), and Yoo
R > 1, let 1//1(21) and 1//(2) be two regular functions such that
1//(1) 1//(2) 1//1(21) 1//R = 1for x| > R+ 1, 1//(1)
1//;” = 0 for |x| < Rand [Vy{| < 4/R, [Vy'?| < 4/R. Since
the sequence {(u, 1(21),1/” 1(22))} is bounded in ZVP(RY) x

DP(RYN), we get from (23) that

0= lim <% (> V) 5 ( U Y ’Vn‘/’l(ZZ))>

= lim “ <|Vu Py + vy, Py @
n—00 R

lv |P (2)
P )dx

+ J (un Vi, | P~ Vi, Ty
RN

@) exist and are finite. For

|“nlp ‘/’R

+v, |Vv |P ZVV VI//(Z)>
_j Q(x) [|u |P (1) + v, |P (2)
RN

1
= |”n|a lvrt'[;

(oa//g) + ﬁl//l(f)) ] dx]» .
(33)

We now observe that u,, — uin L?(R < |x| < R + 1). There-
fore, using the Sobolev inequality and the Holder inequal-
ity we can easily check that

lim lim sup |J. u, |Vun|p_2 VunV%g)de =

R—00 n—-co

(34)
|V, |72 W,,vw}f’dx‘ _

— 0 n—oo

hm lim sup ” v,
RN

Consequently, taking into account the definitions (1)-(4) of
17&) 17((3)), ((xlj), 0(2), Voo y ), and y(z) we deduce from (33) and
(34) that

Q(00) (o) + 0% +¢ve) 2 oy + e — (v + ).
(35)
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On the other hand, by (5) and the definition (25) of esziff"c’ﬁ ) we

easily see that ‘Ey((;)) < ;12)) Ty @ < ,1&) and

/(a+p3)
<+ 02 —u (vl +42).

(36)

8 2 P
AP (oD 10 +er,y)

This, combined w1th (35), implies that either (v) cr (2) =
Voo = 0 or (vi) croo + aéo) + QU 2 (dﬂ‘j‘f)/QJr(oo))N/P. We
now rule out the cases (ii), (iv), and (vi). For every continuous
nonnegative function y such that 0 < y(x) < 1 on RY, we

obtain from (23) and (24) that
)

c=n1ergo<%(un,vn)—1%<g’( V) > (1

1 [, [P+ v,

= — 1 P p_ n n

= Nnh_pgo JRN (qunl + Vv, |f —p N dx
1

> —limsu Vu, |? +|Vv,|f
N naoopJ‘[RN<| nl | nl

|y |? + 1, |?

- ”T) v (x) dx.
(37)

If (ii) occurs, then the set # must be finite because the
measures o', ¢, and » are bounded. Since functions
(u,,v,) are G-symmetric, the measures o', ¢, and » must
be G-invariant. This means that if x; # 0 is a singular point
1 @

@

of 0*”, 0°”, and 7, so is gx; for each g € G, and the mass

of 6, 6®, and » concentrated at gx j is the same for each
g € G. If we assume the existence of j € .7 with x; # 0 such
that (ii) holds, then we choose y with compact support so that
y(gx;) = 1 for each g € G and we obtain

1 O, @
cz Gl (" +17)
1 o
> = (Gl AEP 0V +0® +ov)” P 39)
N G
o, (N-p)
K, Gl (2P R TN Rl

which contradicts (29). Similarly, if (iv) holds for x = 0, we
choose y with compact support, so that y(0) = 1 and we have

1 @ m @
> (" +m5” = ur” = un”)
1 pl(a+p)
> Nd("‘f)( +a( )+ ¢ ) “ (39)

I\

1 wB\N/P —~(N-
ﬁ (d[gcﬁ)) (Q,(0)) (N-p)/p
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which is impossible. Finally, if (vi) occurs at 0o, we take v =

¥R =i to get
1
¢ 2+ (1 1) — v — )
B ) pl(atp)
> Nd"a‘ (cr + 05 + Vo ) (40)
1 ~(N-p)/p
> (o “‘”) (Q, (00)) ,

a contradiction with (29). Consequently, 051)
for all j € 7 U {0, oo} and this implies that

_ -2 _ . _
=0; —vj—O

lim J (17" + 1P+ Gl %1, ) e

n— 00

(41)
:j (1" + 1" + clul®IvIF ) dix.
RN

Finally, observe that &'(u,v) = 0 and, hence, by
lim, (%’(un, v,)— &' (u,v), (u,,—u, v, —v)) = 0, we obtain
(u,,v,) — (u,v)asn — ooin D P(RN) x D"P(RN). The
assertion follows. O

As an immediate consequence of Lemma 10 we obtain the
following result.

Corollary 11. IfQ,(0) = Q,(00) = 0 and |G| = +00, then the
functional & satisfies the (PS), condition for every ¢ € R.

Proof of Theorem 1. Firstly, we choose ¢ > 0 such that the
condition (17) holds, where y, is the extremal function
satistying (10), (11), and (12). By (q.1), (23), and (25), we have

1
@ v) = — I )I?
1 . . o
- [ Q@ (1l 7l 1) ax
P Jry
1 «.B)\~(@+B)/p o
;Il(u,V)IIP——IIQII oo (Y w7
(42)
CO < (g(zye’z‘[minys)

1 | K(
N

<

(Jo Q0 2 Paix)

K (tuin) Jgon (199l = 0 (el /1617) ) dx

Hence there exist constants ¢, > 0 and p > 0 such that &(u, v)
> o for all [|(u, v)| u = p Furthermore, if we set u = y,,
V= TminYe and

D(t) = & (tu,tv) = E (Yo tTminVe)

_ tp P |ye|
- ;JRN (1+Tmm)(lvye| _Ml |p dx (43)

£ o
- JRN (14 6Thin + 7o) Q (%) yi P,

with ¢ > 0, then we can check that ®(t) has a unique
maximum at some ¢t > 0. A simple computation gives us the
value

{ (1 " Tmm) JRN (|Vye|P (Iye|P/ |x|P)) dx } Vet |

=
(1 + c‘l-rlrgun min ) IRN Q(x)yg+ﬁdx

(44)
Consequently, we obtain from (26) and (27) that

max® (t)
t>0

= %(Eye’z‘[minye) =N
X{K (Tmin)jRN (Ivye|p_

(Jan Q) y&*Fdx

(lyelp/ |X|p))dx (a+p)/(e+p-p)
)P/ a+p) .

(45)

Since ®(t) — —ooast — 00, we can choose t, > 0 such
that &(foye, toTiminye) < 0 and [[(fgye> toTmin Ye)ll, > p and set

¢ =infmax & (y (1)), (46)

yel'te[0,1]
where
r=1{ye% (01,25 (RY)x 25 (RY));
Y (0) = 0,0,y (1) = (o Yer toTmin ) } -

From (11), (17), (29), (45), (46), and Lemma 8, we obtain that

(47)

Trmin) J'RN (|Vy€|p —u (l)’e|p / |x|P)) dx}(oc+ﬁ)/(<x+ﬁ_p)

(eP) (P

1
N { (max {Q+ (0) /.Q{[(f“'ﬁ)/P) Q, (c0) /d[(:erﬁ)/P) ”Q+||OO/|G|(o¢+ﬁ—p)/pdgx+ﬁ)/17})

(e+p)/(e+B~p)
pl(a+p) }

ap)\N/P
=y min ~N-p)/p’ N=p)] ’|G|( (Nﬁ)z/ =q- (48)
N (Q, (0) PP (Q, (00) ™ PP QNI PP



If ¢, < ¢, then we conclude from Lemma 10 that the (PS),
condition holds and the conclusion follows by the mountain
pass theorem in [29] (see also [30]). If ¢, = ¢, then y(t) =
(ttoYer ttoTminYe)> With 0 < ¢t < 1, is a path in I such that
max,c(; E(y(t) = ¢. Thus, either ®'(t) = &' (ty, tTine)
= 0 and we are done, or y can be deformed to a pathy € T
with max,¢1;&(¥(t)) < ¢, which is impossible. Hence we
have a nontrivial solution (1, v,) € 92;’17 (RN x @ép (RM) to
problem (9’8). In the following, we have just to show that the
solution (1, v,) can be chosen to be positive on R™. Consider
the Nehari manifold

M, 2w v) € 2 (RY) x 25 (RN)\ {(0,0)};
(49)
(&' w,v),wv)) =0},

Writing an arbitrary element (u,v) € J#, as (u,v) =
t(i1,v) (t > 0), with || (&, 7))||H = 1, we deduce from (24), (25),

and the fact that(&’ (tii, t9), (1, t7)) = 0 that

0=1-t""" JRN Q%) (|a|P + P+l |v|ﬁ) dx

B\ ~(tB)/p _ . 50
> 1= (a@P) P Q) M@ e e B0
>1-Cth P,

This implies that t > &;, with a constant &, > 0 independent
of (u, v). Thus we conclude that the set .Z,, is bounded away
from 0 and inf(w)e/%[‘ &(u,v) > 0. Set

G (u,v) = (& (u,v), (u,v))

= I, v)uﬁ—jRNQ(x) (1l #1912+  Jul* 1917 ) .
(51)

Then (' (,v), ,v)) = (p = P, v)I% # 0, and, hence,
M, s a %" -manifold. Notice that (1, v,) € . and setc, =
inf(, e “, &(u,v). We now claim ¢, = ¢ Indeed, if ¢, < ¢,
then we can find (uy,v;) € M, such that E(ug,vy) < g
Consequently, we deduce that

[, Q0 (I #1551 el 13 ) =g I >
(52)
By a straightforward calculation, we get

sup® (tug, tvy )
£20

=& (1> V)
1 . o
N JRNQ(x)(|u0|P +|V0|P +C|u0|a|vo|ﬁ>dx <G
(53)
Setting y(t) = (ttyug,ttgvy) for t € [0,1], with

t, such that ||(t;ug,tgvg)||“ > p, we obtain that
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E(y(t)) = E(ttyuy, ttyvy) < ¢ on [0, 1], a contradiction with
the definition (46) of ¢,. Hence we have ¢, = . Finally, by
the strong maximum principle, we obtain u, > 0 and v, > 0
on R™. This, combined with (24) and Lemma 7, implies that
(g V) is a positive G-symmetric solution of (@g). O]

Proof of Corollary 2. First of all, we observe that, due to the
identity (12), inequality (17) is equivalent to fRN(Q(x) -
Q) yé”ﬁ dx > 0 for some € > 0, or equivalently

e e jRN (@w-Q)|u, ('Z‘J)]ﬁ dx>0, (4

for some € > 0, where Q = max{Q, (0), Q, (c0),
|GIP~ PP (et [t ) PIPIQ, |l oo} and § = (N—p)/p. Part
(1), case (i): according to (54), we need to show that

e Qw-eo ]y, (M) dxz0. 69

for some € > 0. We choose g, > 0 so that Q(x) > Q(0) +
A olx]|@PE9) for x| < g,. This, combined with (14) and (16)
and the fact that —(« + )9 = —N, implies that

P, J

[xl<0o

lz a+ﬁ
ZAOJ le—(ac+ﬁ)9|:<m> Uﬂ(M)] dx_>+00’
|x|<go € €

Q-0 [y, (@)]ﬁ dx

(56)
ase¢ — 0. On the other hand, for all € > 0, we have
706 x a+f
s [ ew-qwily, (EN] ax
X| >go
_ lz (X+ﬁ
<[ Q=-Q0l [<M) U, <M)] dx<C,
x>0 le(a+ﬁ) 2 € €
(57)

for some constant C, > 0 independent of e. Combining (56)
and (57), we get (55) for € sufficiently small.

Part (1), case (ii): we choose g; > 0 so that [Q(x) —Q(0)| <
A |x|* for |x| < g,. Since x > (a + B)(I, — 9) > 0, we deduce
from (14) and the fact that (« + $)I, = N + (a« + )(I, — 9) that

ot [ iaco-am[u, (4] o
) a+p
[ e[y, ()]

QW -,

<
< JRN | [N erBI9)
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<C {Al [ e gy
[xl<o,

+ j 1Q (x) — Q0)] x| NP dx} <c
[x|>0;
(58)

So by (14), (16), (19), and the Lebesgue dominated conver-
gence theorem we obtain that

e—0

lime ™ [ @w)-Qon v, ()] ax
(59)

e j (Q(x) = QO)) |x| N @BE9g 5 o
RN

Hence, (55) holds for € sufficiently small.
Part (2), case (i): from (54) it is sufficient to show that

! E AV e
@Bl J (Q(x) - Q(c0)) [UM (-) dx] >0, (60)
RN €
for some € > 0. We choose R; > 0 such that Q(x) > Q(c0) +
A, |x|7@ PO for all |x| > R,. Then

- 1 atp
B LxIZRl % [(% | U"(%)] dx

)
> A, Jlxlle |x|*N [(%)h U, <u>]“+ﬁ dx — +00,
(61)

ase — 00.Moreover, in view of (a+ )], = N—(a+f)(9-1,)
and (a + B)(9 —1;) > 0, we obtain

e[ @w-Qe) ]y, ()] ax

~ I a+
o S 0 ()] o

< CJ 1Q () = Q (00)] [ VRO gy < T
|x|<R,
(62)

for some constant C, > 0 independent of € > 0. These two
estimates combined together give (60) for € > 0 large.

Part (2), case (ii): we choose R, > 0 such that |Q(x) —
Q(00)| < Aslx|™ forall |x| > R,. Sincer > (a+ B)(O-1;) >0
and (« + B); = N — (a + )V - 1)), we get

J 1Q (x) = Q (00)| || NHEHAE) gy
[RN

<A, J' || NHEHAIOD) g
[x|>R,

+ J 1Q (x) = Q (00)] x| N PO) gy < 0.
|x|<R,

(63)

Consequently, by (13), (16), (21), and the Lebesgue dominated
convergence theorem, we have

tim e [ (@)-Qeon v, (B)] ax

€— 00

1 atp
- i f,, 2O (), (H)]

- CJ (Q(x) — Q(00)) |x[ VPO g 5 g,
RN
(64)

and (60) holds for € > 0 large. Similarly as above, we know
part (3) holds. ]

To prove Theorem 3 we need the following version of the
symmetric mountain pass theorem (cf. [31, Theorem 9.12]).

Lemma 12. Let X be an infinite dimensional Banach space
and let & € €' (X,R) be an even functional satisfying (PS),
condition for each c and &(0) = 0. Furthermore, one supposes
that

(i) there exist constants & > 0 and p > 0 such that &(w) >
o for all |w|| = p;

(ii) there exists an increasing sequence of subspaces {X,,}
of X, with dim X,,, = m, such that for every m one can
find a constant R,, > 0 such that E(w) < 0 for all
w € X, with |w| = R,

Then & possesses a sequence of critical values {c,,} tending to
0o asm — 0.

Proof of Theorem 3. We follow the arguments of [12]. Apply-
ing Lemma 12 with X = QgP(RN) X QZé‘D(IRN) and (u,v) =
w € X, we see from (q.1), (23), and (25) that

1 1 a.B)\—(@tp)/ o
%(u,v)z;uw,v)n,f:—FMQMOO(&%;,;@) R 1O
(65)

*

Since « + f = p* > p, there exist constants & > 0 and
p > 0 such that &(u,v) > « for all (u, v) with ||(u, v)||H = p.
To find a suitable sequence of finite dimensional subspaces
of ZP(RN) x DP(RN), we set @ = {x € RY;Q(x) >
0}. Obviously, the set Q is G-symmetric and we can define
92" (Q) x SZép (Q), which is the subspace of G-symmetric
functions of 2P (Q) x 2"P(Q) (see Section 2). By extending
functions in 92‘” Q)x2 ép (Q) by 0 outside Q) we can assume
that 2.7(Q) x DP(Q) ¢ DL RY) x DF(RY). Let {X,,}
be an increasing sequence of subspaces of .EJZEP Q)x<D ép Q)
with dim X,, = m for each m. Then we deduce that there
exists a constant g(m) > 0 such that

| Q@ (i@ 4317 sl i) dx > o m). (66)
Q
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forall (i, V) € X,,, with ||(#, V)II# = 1. Consequently, if (v, v) €
X, \ {(0,0)} then we write (u, v) = (&I, ), with t = ||(w, v,
and ||(@, V)| u = 1. Hence we obtain

& @) = 20— | Qo) (1l + 7 ol 31 ) dx
p P Q
ltP _ LG)tp* <0,
P r

(67)

for t large enough. Therefore we conclude from Lemma 12
and Corollary 11 that there exists a sequence of critical values
¢,, — 00 and the results follow. O

Proof of Corollary 4. Since Q(x) is radially symmetric, that is,
Q(x) = Q(|x]), we easily see that the corresponding group
G = O(N) and |G| = +00. According to Corollary1l, &
satisfies the (PS). condition for every ¢ € R. Hence, by
applying the proof of Theorem 3 the conclusion follows. [

4. Multiplicity Results for Problem (9’?)

Throughout this section we assume that A > 0 and Q(x) =
Q > 0 is a constant. Since we are interested in positive G-
symmetric solutions of problem (9?), we define a functional
Fy QZEP([RN) X QéP(RN) — R given by

1
Fr(u,v) = » G, w1

B 1% jRN (bt + 1+l o)) da

_A J (y () | + By () v,
q JrY
(68)
where 1 < g < p < N, u" = max{0,u} and v" = max{0, v}.
By (h.1), (h.2), and the Hoélder inequality, we easily see that
Fy € ‘gl(géP(RN) X @gP(IRN), R) and there exists a one-

to-one correspondence between the weak solutions of (95?)
and the critical points of &,. Furthermore, an analogously
symmetric principle of Lemma 7 clearly holds; hence, the

weak solutions of problem (9’?) are exactly the critical points
of the functional & .

Lemma13. Suppose that (h.1) and (h.2) hold. Then there exists
a positive constant M depending on N, p, q, A, |hyllg, and

A, g, such that any bounded sequence {(u,,, v,,)} C Qép(RN)x
QZép([R{N), satisfying

1~y N/ i
F (tyvy) — ¢ < EQ(P N/p (ﬂﬁc’ﬁ)) P el

F (U v,) — 0 (n — 00),
(69)

contains a convergent subsequence.
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Proof. Since {(u,,v,)} is bounded in QEP(RN) X QZéP(RN),
we can obtain a subsequence, still denoted by {(u,,v,)},
satisfying

. Lp (N
u, —u, v,—v in QZG ([R{ ),
u, —u, v, —v, ae inRY (70)
n > n > L. >
. N
Vu, — Vu, Vv, — Vv, ae inR".

Moreover, using (h.2) and the Holder inequality and the
Lebesgue dominated theorem, we may also assume

J hy (0 lu? fdx — j By () Ju* 1,
RN RN
(71)
J h, (x) |v::|q dx — J h, (x) |v+|q dx,
RN RN

asn — 00. By (71) and the standard argument, we easily
show that (1, v) is a critical point of & ,. Consequently, we
deduce from (68), (9), (h.2), the Holder inequality, and the
factthat1 < g < p < p* that

1 1 1
ot -(1- )

Fy(w,v) = >

x J (hy ) [u* 1"+ hy () ') dxc
RN

> el - ELarain

X (g Naall, + ol 112

P - qﬂ*q/PA
* T

> L (Julls + Ivi2) -
- N

xmax [yl [aflg} (Il + V1)

. 2(p—q)<qN>q/(pq)
B & p

pl(p-q)
P -q .y
X A, VP max {||h |, , | ]
| ety (. o
x \P/(P=2) 2 _pryplp-a)

(72)

where M = Q(p - @/p)@N/p)""V(p" - g/
qp*),szf;q/‘” max{||F, [lg, [, ]lg}]7 ") is a positive constant.
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Now we set u1,, = u,, — u and v, = v,, — v. Then by the Brezis-
Lieb lemma [32] and arguing as in [33, Lemma 2.1] we get

1@ I = 1t vl = N IE +0, (1),

J ll dx = j ) dx—J
R R

=
. lu"|” dx +o,(1),

J w1 dx = J Wi dx—J W dx + 0, (1),
RN RN RN
@ —+ B a B
|l dx = | e
R R

_ J (%t Pdx + o, (1)
RN
(73)

Since &,(u,,v,) = ¢ + o0,(1) and 9;(14,,, v,) = 0,(1), we
obtain from (68), (71), and (73) that

A s I (A A R A A

=c—-F,(m,v)+o0,(1),
G 7 -G (17l + 7l + el 7)) ds
RN

=0,(1).
(74)

Hence, for a subsequence {(#,,,v,,)}, we have

||(ﬁn>1_’n)"£ - k Z 0’
(75)

Q jRN (G + 7217+ cla |7 ) dx — k,
asn — 00. From the definition (25) of Eszfl(ff ) it follows
that Ml(ﬁ’ﬁ )(k/QP/“*P) <k, which implies either k = 0

ork > Q‘(P—N)/P(ﬂﬁﬁ))N/P. Ifk > Q‘(P—N)/P(d!(zéﬁ))N/P’ we
obtain from (72) and (74) that

_ 1.1 L 50-N)lp (gl \N/P
c_%(u,vn(;—F)kzﬁQ (P
_ M/\P/(p*q))
(76)

which contradicts (69). Consequently, we have ||(z,,, v,,) IIﬁ —
0Oasn — oo, and, thus, (4,,v,) — (u,v)in QZéP([RN) X
QZéP (RM). The lemma is proved. ]

Lemma14. Suppose that (h.1) and (h.2) hold. Then there exists
A1 > 0 such that for any A € (0,A]) the following geometric
conditions for F  (u, v) hold:

(i) #,(0,0) = O; there exist & > 0 and p > 0 such that
Faw,v) = & for all |(w, v)ll,, = p;

1

(ii) there exists (e, e,) € QZéP(RN) X QéP(RN) such that
e e, > p and F, (e, e,) < 0.

Proof. According to (h.1) and (h.2), for all 0 < o < 1/p,
we deduce from (9), (25), (68), the Young inequality, and the
Holder inequality that

—(a+p)/p

1 1 ~ o a+
Fa ) 2 16l - FQ(%L,P) I, )15

A
- adyq/P max {[|fy g » | oo} (llu"Z + ”""z)

>

*

1 <~ —(a+p)/p
I, )12 - 2 (a5P)

<

x N )lsH = CA @, v
1 1 ~/ (p\—@Bp
> <E o )l - ()

x|, VIEF - C (o) AP1F7,
(77)

where C(0) > 0 is a constant depending on o > 0. The last
inequality and the facta + 8 = p* > p imply that, for small
0, there exist constants & > 0, p > 0, and A} > 0 such that
Fi(u,v) = a > 0 for all ||(u, v)IIH =pand 0 < A < AL
On the other hand, since IRN (hy () |u™ T+ by (x) v |T)dx > 0,
we conclude from (68) that there exists (&Z, V) € QZéP (RN) x

2P (RM)\{(0,0)} such that &, (t74, 17) — —coast — +00,
which completes this proof. O

Lemmal5. Suppose that (h.1) and (h.2) hold. Then there exists
A5 > 0 such that

1 ~(p-N N/p _
stuopf%7 2 (Ve tTminye) < NQ(P P Qggﬁﬁ)) _ MR/
>

(78)

forany A € (0,1}) and small € > 0, where T,
(26)-(28) and M > 0 is given in Lemma 13.

> 0 satisfies

n

Proof. First, we define the functions

tP
Y (t) = 9/\ (tye’tTminye) = E (1 + Tr‘lr)lin)

p
xJ <|Vyelp—‘u£>dx
RN |x|?

ét‘o* B a+f j p*
- — (L1 + 6Ty + Toin ly " dx
o ) ]

(79)

q
-S| O G+ el () el
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7] t p Iyelp)
Y (t) = 1 \Y% -—u=—=ld
(t) p ( + Tmm) jRN <| ys| U |x|p X

(80)

1+ qTr[r;lln T:qm) J |y€|P dx’

with ¢ > 0. Note that ¥(0) = 0, @(tl >0fort — 0%, and
lim, , ,,¥(tf) = —o0o. Hence sup,.,'¥(t) can be achieved at

some finite £, > 0 at which ¥'(t) becomes zero. By direct
calculation, we obtain from (11), (12), (26), (27), (80), and
Lemma 8 that

sup‘PI7 (t)
20

“T(E) = o

) { (147i0) fo (193l = Iyl 11219)) dix

(QUUAGTE, +TE) [ Lyl dx)P?’

}p*/(p*—p)
B 1

=(p-N)/p Nip _ 1 =(p-N)/p ( s \N/P
EQP (K (Tmin)”d#) ‘EQ (‘Q{#O,‘c )
(81)

Let A > 0 be such that (l/N)G(P_N)/P(eQYﬁ:’ﬁ))N/P -

MAP/P=D 5 0, WA € (0,A). Then from (h.1), (h.2), (11), and
(79), we have

v (t) = ‘C/TA (tye’ tTminys) < (1 + Tmm) vt > 0’ A> 0’

S

(82)
and there exists T, € (0, 1) independent of € such that

P

T 1 ~(p- « N/p
sup ¥ (¢) < ? (1 + Tmm) —qt N)/p(dl(l’;ﬁ))

0<t<T, (83)
- MAPD v e (0,A).

Moreover, we obtain from (79)-(81) that

supV¥ (t) < supV¥ (t)

t>T, >0
- &qu (hy () + 72 Ry (%)) |y %dx
q
) (84)
_ 1 350-Nip sap NP
Qe
- Ang (hy () + 711y () |y,
q RN
Now, taking A > 0 such that
A q q p/(p- q
-=T; (h (x) + 11 hy (%)) |y|%dx < —-MA
q
(85)
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that is,

Tq . (p-a)lp _
0<A< (qMJ (hy () + 78Iy (0) || dx) 2%,
(86)

we have

1 ~(p- N _ —~
supt (1) < Q7P (ar,57) P_mare0, yie(o,R),

=T,

(87)

Choosing A; = min{A, A}, we deduce from (83) and (87) that

sup¥ (t) < lé(P‘N)/P (d(“;ﬁ))N/P — MAP/PD),
>0 N s (88)
VA €(0,13).
Therefore the result of this lemma follows. O

Proof of Theorem 5. Taking p > 0 and A* = min{A], A5}, for
0 < A < A7, given in the proofs of Lemmas 14 and 15, we
define

¢ = inf F, (u,v),
1 5,0) A (89)

where B,(0) = {(,v) € D"RY) x D (RY); |(w, v, <
p}. Since the metric space EP(O) is complete, we deduce
from the Ekeland variational principle [34] that there exists
a sequence {(u,,v,)} C EP(O) such that #,(u,,v,) — ¢
and F}(u,,v,) — Oasn — oo.Let gy, v, € G (RY) be
the G-symmetric functions such that ¢y, y, > 0. By (h.1) and
(h.2), we have jRN(h (x)goo+h (x)l// )dx > 0. This, combined
with the fact that 1 < g < p < p*, implies that there exists
to = to(®g, W) > 0 sufficiently small such that

F ) (to9o> toWo) = "(%’ 1//o)"

g, o
-5t jRN (05 +v8" +coivs ) dx

A
_ Etg ,[RN (hy (x) @1 + hy (x) yl) dx < 0.
(90)

Therefore we obtain ¢; < 0 < (l/N)é(p_N)/P(ﬂﬁc’ﬁ))N/p -

MAPI®P=9 for any A € (0,1"). By Lemma 13, %, possesses
a critical point (uy,v;) with F,(u;,v;) = ¢ < 0. Taking
(u,v]) as a pair of test functions, where u; = min{0,u,}
and v; = min{0,v,}, we deduce from (68) that 0 =
(9;(u1,v1),(uf,v;)) = |(uy,v))IIE, which implies u; > 0
and v, > 0 in RY. Consequently, by the strong maximum
principle and the symmetric criticality principle, we conclude
that (u,,v;) is a positive G-symmetric solution of problem

(D).
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On the other hand, we define

G = ;Elf:trerha)l’)l(]d‘/\ ()/ (t)) > (91)

where T = {y € %([0,1], 25 (RY) x D (RN));9(0) =
(0,0), y(1) = (e, e,)}. It follows from Lemmas 14 and 15 that

1 —_ N, _
0<@ze < QP () e,

N (92)
VA € (0,17).

Hence ¢, is a critical value of &, by the mountain pass

theorem. Similar to the arguments above, problem (9’?)
admits another positive G-symmetric solution (u,, v,) with
F(uy,v,) =¢, > 0. O
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