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This paper deals with a class of quasilinear elliptic systems involving singular potentials and critical Sobolev exponents in R𝑁. By
using the symmetric criticality principle of Palais and variational methods, we prove several existence and multiplicity results of
G-symmetric solutions under certain appropriate hypotheses on the potentials and parameters.

1. Introduction

In this work, we investigate the existence and multiplicity
of nontrivial solutions for the following quasilinear elliptic
system:

L
𝑝,𝜇

𝑢 = 𝑄 (𝑥) (|𝑢|
𝑝
∗

−2
𝑢 +

𝜍𝛼

𝑝∗
|𝑢|

𝛼−2
𝑢 |V|𝛽)

+ 𝜆ℎ
1 (𝑥) |𝑢|

𝑞−2
𝑢, in R

𝑁
,

L
𝑝,𝜇

V = 𝑄 (𝑥) (|V|𝑝
∗

−2 V +
𝜍𝛽

𝑝∗
|𝑢|

𝛼
|V|𝛽−2 V)

+ 𝜆ℎ
2 (𝑥) |V|

𝑞−2 V, in R
𝑁
,

𝑢 (𝑥) , V (𝑥) 󳨀→ 0, as |𝑥| 󳨀→ +∞,

(1)

whereL
𝑝,𝜇

≜ − div(|∇⋅|𝑝−2∇⋅)−𝜇(|⋅|𝑝−2 ⋅/|𝑥|𝑝) is a quasilinear
elliptic operator, 1 < 𝑞 < 𝑝 < 𝑁, 0 < 𝜍 < +∞, 0 ≤ 𝜇 < 𝜇

with 𝜇 = ((𝑁−𝑝)/𝑝)
𝑝, 𝜆 ≥ 0, and 𝛼, 𝛽 > 1 satisfy 𝛼+𝛽 = 𝑝

∗,
𝑝
∗
≜ (𝑁𝑝/(𝑁 − 𝑝)) denotes the critical Sobolev exponent,

and 𝑄 ∈ C(R𝑁
) ∩ 𝐿

∞
(R𝑁

) and ℎ
𝑖
∈ 𝐿

𝜃
(R𝑁

) (𝑖 = 1, 2) with
𝜃 = 𝑁𝑝/(𝑁𝑝 − 𝑞(𝑁 − 𝑝)) are 𝐺-symmetric functions (see
Section 2 for details) with respect to a closed subgroup 𝐺 of
𝑂(N).

In recent years, considerable attention has been paid to
the scalar singular elliptic problem:

L
𝑝,𝜇

𝑢 = 𝑄 (𝑥) |𝑢|
𝑝
∗

−2
𝑢 + 𝜆ℎ (𝑥) |𝑢|

𝑞−2
𝑢, in Ω,

𝑢 = 0, on 𝜕Ω,

(2)

whereΩ ⊂ R𝑁 is a smooth domain (bounded or unbounded)
containing the origin. The study of this type of equation is
motivated by its definite physics background and various
applications, including celestial mechanics, fluid mechanics,
and flow through porous media (see [1]). The mathematical
interest lies in the fact that these problems like (2) are doubly
critical due to the presence of the Sobolev embedding and
the singularities. For this reason, many existence, nonexis-
tence, and multiplicity results of nontrivial solutions for the
single equations like (2) have been established with different
assumptions on the potentials𝑄(𝑥), ℎ(𝑥) and the parameters
𝜇, 𝜆, and 𝑞; we refer to [2–8] and the references therein.

In a recent paper, Deng and Jin [9] considered the
following single semilinear elliptic problem:

−Δ𝑢 − 𝜇
𝑢

|𝑥|
2
=
𝑘 (𝑥)

|𝑥|
𝑠
𝑢
2
∗

(𝑠)−1
, 𝑢 > 0 in R

𝑁
, (3)
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where 𝑁 > 2, 0 ≤ 𝜇 < ((𝑁 − 2)/2)
2, 0 ≤ 𝑠 < 2,

2
∗
(𝑠) = 2(𝑁 − 𝑠)/(𝑁 − 2), and 𝑘 satisfies some symmetry

conditions with respect to 𝐺 ⊂ 𝑂(N). By using analytic
techniques and variational arguments, the authors proved
the existence and multiplicity of 𝐺-symmetric solutions to
(3) under certain hypotheses on 𝑘. Subsequently, Waliullah
[10] improved the results in [9] by using the minimiz-
ing sequence and the concentration-compactness principle.
Recently, Deng and Huang [11] extended the results in [9, 10]
to the scalar weighted elliptic problems in a bounded 𝐺-
symmetric domain. Besides these, when 𝜇 = 𝑠 = 0 and the
right-hand side term |𝑥|

−𝑠
𝑢
2
∗

(𝑠)−1 is replaced by a term𝑓(𝑢) of
the pure power, such as 𝑓(𝑢) = 𝑢

𝑟−1 with 1 < 𝑟 < 2𝑁/(𝑁−2)

or 𝑟 = 2𝑁/(𝑁 − 2), there are many interesting results on the
existence and multiplicity of 𝐺-symmetric solutions of (3),
which can be found in [12–14] and the references therein.

On the other hand, there have been many papers con-
cerned with the existence and multiplicity of nontrivial
solutions for elliptic systems. In [15], Wu considered the
following semilinear elliptic system:

−Δ𝑢 =
2𝛼

𝛼 + 𝛽
𝑄 (𝑥) |𝑢|

𝛼−2
𝑢 |V|𝛽 + 𝜆𝑓 (𝑥) |𝑢|

𝑞−2
𝑢, in Ω,

−ΔV =
2𝛽

𝛼 + 𝛽
𝑄 (𝑥) |𝑢|

𝛼
|V|𝛽−2 V + 𝛿ℎ (𝑥) |V|𝑞−2 V, in Ω,

𝑢 = V = 0, on 𝜕Ω,

(4)

where Ω ⊂ R𝑁
(𝑁 ≥ 3) is a smooth bounded domain,

1 < 𝑞 < 2, 𝛼, 𝛽 > 1, 𝛼 + 𝛽 < 2
∗, and the weight functions

𝑄, 𝑓, ℎ fulfill certain suitable conditions. Via the analytic
techniques of Nehari manifold and variational methods, the
author proved that the system (4) admits at least two non-
trivial nonnegative solutions if the pair of parameters (𝜆, 𝛿)
belongs to a certain subset of R2. Very recently, Nyamoradi
[16], Lü and Xiao [17], and Li and Gao [18] generalized
the corresponding results of [15] to the nonlinear singular
elliptic systems involving critical Hardy-Sobolev exponents.
Other results about existence and multiplicity of nontrivial
solutions, also for related elliptic systems, can be seen in [19–
23] and the references therein.

However, as far as we know, the existence andmultiplicity
of 𝐺-symmetric solutions for singular elliptic systems were
seldom studied; we can only find some 𝐺-symmetric results
for singular elliptic systems in [24] and, when 𝐺 = 𝑂(N),
some radial and nonradial results for nonsingular elliptic
systems in [25]. Inspired by [9, 12, 25], in this paper we are
concerned with the existence and multiplicity of positive 𝐺-
symmetric solutions for system (1). The main difficulties lie
in the fact that there are not only the nonlinear perturbations
𝜆ℎ

1
(𝑥)|𝑢|

𝑞−2
𝑢, 𝜆ℎ

2
(𝑥)|V|𝑞−2V and the Hardy singular terms

|𝑢|
𝑝−2

𝑢/|𝑥|
𝑝, |V|𝑝−2V/|𝑥|𝑝 in (1), but also four nonlinear

terms with the critical Sobolev exponents in R𝑁. Compared
with (3) and (4), the singular quasilinear elliptic system
(1) becomes more complicated to deal with. Moreover, the
approach involving the Nehari manifold requires that the
corresponding nonlinearity is second order derivative about

𝑢 and V. Hence, in order to obtain the multiple 𝐺-symmetric
solutions of system (1), the Nehari manifold techniques in the
literature mentioned above are invalid and we need to look
for other methods. To our knowledge, even in the particular
case 𝜆 = 0 and 𝑝 = 2, there are no results on the existence
and multiplicity of 𝐺-symmetric solutions for system (1). It is
therefore meaningful for us to investigate system (1) deeply.
Let 𝑄 > 0 be a constant. Note that, here, we will try to treat
both the cases of 𝜆 = 0, 𝑄(𝑥) �≡𝑄 and 𝜆 > 0, 𝑄(𝑥) ≡ 𝑄.

This paper is schemed as follows. In Section 2, we estab-
lish the appropriate Sobolev space which is applicable to the
study of the elliptic system (1) and state themain results of this
paper. In Section 3, we detail the proofs of several existence
and multiplicity results for the case 𝜆 = 0 and 𝑄(𝑥) �≡𝑄 in
(1). In Section 4, we will present the proofs of multiplicity
results for the case 𝜆 > 0 and 𝑄(𝑥) �≡𝑄 in (1). Our methods
in this paper are mainly based upon the symmetric criticality
principle of Palais (see [26]) and variational arguments.

2. Preliminaries and Main Results

Let 𝑂(N) be the group of orthogonal linear transformations
in R𝑁 and let 𝐺 ⊂ 𝑂(N) be a closed subgroup. For 𝑥 ̸= 0

we denote the cardinality of 𝐺
𝑥
= {𝑔𝑥; 𝑔 ∈ 𝐺} by |𝐺

𝑥
| and

set |𝐺| = inf
0 ̸=𝑥∈R𝑁 |𝐺𝑥

|. Note that, here, |𝐺|may be +∞. We
say that 𝑓 : R𝑁

→ R is 𝐺-symmetric (or 𝐺-invariant) if
𝑓(𝑔𝑥) = 𝑓(𝑥) for every 𝑔 ∈ 𝐺 and 𝑥 ∈ R𝑁 and in the context
of Sobolev spaces this equality is understood a.e. on R𝑁. In
particular, if 𝑓 is radially symmetric, then the corresponding
group 𝐺 is 𝑂(N) and |𝐺| = +∞. We call Ω a 𝐺-symmetric
subset of R𝑁; if 𝑥 ∈ Ω, then 𝑔𝑥 ∈ Ω for all 𝑔 ∈ 𝐺.

Let D1,𝑝
(R𝑁

) denote the closure of C∞

0
(R𝑁

) functions
with respect to the norm (∫

R𝑁
|∇𝑢|

𝑝
𝑑𝑥)

1/𝑝. We recall that the
well-known Hardy inequality (see [2, 3]) holds:

∫
R𝑁

|𝑢|
𝑝

|𝑥|
𝑝
𝑑𝑥 ≤

1

𝜇
∫
R𝑁

|∇𝑢|
𝑝
𝑑𝑥, ∀𝑢 ∈ D

1,𝑝
(R

𝑁
) , (5)

where 𝜇 = ((𝑁 − 𝑝)/𝑝)
𝑝. For 𝜇 ∈ [0, 𝜇), we employ the

following norm inD1,𝑝
(R𝑁

):

‖𝑢‖𝜇 = [∫
R𝑁

(|∇𝑢|
𝑝
− 𝜇

|𝑢|
𝑝

|𝑥|
𝑝
)𝑑𝑥]

1/𝑝

. (6)

By inequality (5), we see that the above norm is equivalent to
the usual norm (∫

R𝑁
|∇𝑢|

𝑝
𝑑𝑥)

1/𝑝.The elliptic operatorL
𝑝,𝜇

=

− div(|∇ ⋅ |
𝑝−2

∇⋅) − 𝜇(| ⋅ |
𝑝−2

⋅ /|𝑥|
𝑝
) is positive inD1,𝑝

(R𝑁
) if

𝜇 ∈ [0, 𝜇). Moreover, we define the product spaceD1,𝑝
(R𝑁

)×

D1,𝑝
(R𝑁

) endowed with the norm

‖(𝑢, V)‖𝜇 = (‖𝑢‖
𝑝

𝜇
+ ‖V‖𝑝

𝜇
)
1/𝑝

,

∀ (𝑢, V) ∈ D
1,𝑝

(R
𝑁
) ×D

1,𝑝
(R

𝑁
) .

(7)

The natural functional space to study system (1) is the
Banach space D1,𝑝

𝐺
(R𝑁

) × D
1,𝑝

𝐺
(R𝑁

), which is the subspace
of D1,𝑝

(R𝑁
) × D1,𝑝

(R𝑁
) consisting of all 𝐺-symmetric
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functions. Now in this paper, we are concerned with the
following elliptic problems:

(P
𝑄

𝜆
)

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

L
𝑝,𝜇

𝑢=𝑄 (𝑥)(|𝑢|
𝑝
∗

−2
𝑢+

𝜍𝛼

𝑝∗
|𝑢|

𝛼−2
𝑢 |V|𝛽)

+ 𝜆ℎ
1 (𝑥) |𝑢|

𝑞−2
𝑢, in R𝑁

,

L
𝑝,𝜇

V =𝑄 (𝑥)(|V|𝑝
∗

−2 V+
𝜍𝛽

𝑝∗
|𝑢|

𝛼
|V|𝛽−2 V)

+ 𝜆ℎ
2 (𝑥) |V|

𝑞−2V, in R𝑁
,

(𝑢, V) ∈ D
1,𝑝

𝐺
(R𝑁

) ×D
1,𝑝

𝐺
(R𝑁

) , 𝑢 > 0,

V > 0,

in R𝑁
.

(8)

To mention our main results, we need to introduce two
notationsA

𝜇
and 𝑦

𝜖
(𝑥), which are, respectively, defined by

A
𝜇
≜ inf

𝑢∈D1,𝑝(R
𝑁

)\{0}

∫
R𝑁

(|∇𝑢|
𝑝
− 𝜇 (|𝑢|

𝑝
/ |𝑥|

𝑝
)) 𝑑𝑥

(∫
R𝑁

|𝑢|
𝑝
∗

𝑑𝑥)
𝑝/𝑝
∗

, (9)

𝑦
𝜖 (𝑥) ≜ 𝐶𝜖

−𝜗
𝑈
𝜇
(
|𝑥|

𝜖
) , (10)

where 𝜖 > 0, 𝜗 ≜ (𝑁 − 𝑝)/𝑝, and the constant 𝐶 =

𝐶(𝑁, 𝑝, 𝜇) > 0, depending only on 𝑁, 𝑝, and 𝜇. From Kang
[4], we see that 𝑦

𝜖
(𝑥) satisfies the equations

󵄩󵄩󵄩󵄩𝑦𝜖
󵄩󵄩󵄩󵄩

𝑝

𝜇
= ∫

R𝑁
(
󵄨󵄨󵄨󵄨∇𝑦𝜖

󵄨󵄨󵄨󵄨

𝑝
− 𝜇

󵄨󵄨󵄨󵄨𝑦𝜖
󵄨󵄨󵄨󵄨

𝑝

|𝑥|
𝑝
)𝑑𝑥 = 1, (11)

∫
R𝑁

𝑦
𝑝
∗

𝜖
𝑑𝑥 = ∫

R𝑁
𝑦
𝛼+𝛽

𝜖
𝑑𝑥 = A

−(𝛼+𝛽)/𝑝

𝜇
. (12)

The function 𝑈
𝜇
> 0 in (10) is radially symmetric. Moreover,

the following asymptotic properties at the origin and infinity
for 𝑈

𝜇
(𝑟) and 𝑈

󸀠

𝜇
(𝑟) hold [4]:

lim
𝑟→0

𝑟
𝑙
1𝑈

𝜇 (𝑟) = 𝐶
1
> 0, lim

𝑟→0

𝑟
𝑙
1
+1 󵄨󵄨󵄨󵄨󵄨

𝑈
󸀠

𝜇
(𝑟)

󵄨󵄨󵄨󵄨󵄨
= 𝐶

1
𝑙
1
> 0,

(13)

lim
𝑟→+∞

𝑟
𝑙
2𝑈

𝜇 (𝑟) = 𝐶
2
> 0, lim

𝑟→+∞
𝑟
𝑙
2
+1 󵄨󵄨󵄨󵄨󵄨

𝑈
󸀠

𝜇
(𝑟)

󵄨󵄨󵄨󵄨󵄨
= 𝐶

2
𝑙
2
> 0,

(14)

where 𝐶
1
, 𝐶

2
are positive constants and 𝑙

1
= 𝑙

1
(𝑁, 𝑝, 𝜇) and

𝑙
2
= 𝑙

2
(𝑁, 𝑝, 𝜇) are the zeroes of the function

L (𝑡) = (𝑝 − 1) 𝑡
𝑝
− (𝑁 − 𝑝) 𝑡

𝑝−1
+ 𝜇, 𝑡 ≥ 0, 0 ≤ 𝜇 < 𝜇,

(15)

satisfying

0 ≤ 𝑙
1
< 𝜗 < 𝑙

2
≤
𝑁 − 𝑝

𝑝 − 1
, 𝜗 =

𝑁 − 𝑝

𝑝
. (16)

We suppose that the functions 𝑄, ℎ
1
, and ℎ

2
verify the

following hypotheses.

(q.1) 𝑄 ∈ C(R𝑁
) ∩ 𝐿

∞
(R𝑁

), and 𝑄 is 𝐺-symmetric.
(q.2) 𝑄

+ �≡ 0, where 𝑄
+
= max{0, 𝑄}.

(h.1) ℎ
1
and ℎ

2
are 𝐺-symmetric.

(h.2) ℎ
𝑖
(𝑥) ≥ 0, ℎ

𝑖
(𝑥) �≡ 0, and ℎ

𝑖
(𝑥) ∈ 𝐿

𝜃
(R𝑁

) with 𝜃 =

𝑁𝑝/(𝑁𝑝 − 𝑞(𝑁 − 𝑝)), where 𝑖 = 1, 2.
The main results of this paper are summarized in the

following.

Theorem 1. Suppose that (q.1) and (q.2) hold. If

∫
R𝑁

𝑄 (𝑥) 𝑦
𝛼+𝛽

𝜖
𝑑𝑥

≥ max{
𝑄

+ (0)

A
(𝛼+𝛽)/𝑝

𝜇

,
𝑄

+ (∞)

A
(𝛼+𝛽)/𝑝,

𝜇

,

󵄩󵄩󵄩󵄩𝑄+

󵄩󵄩󵄩󵄩∞

|𝐺|
(𝛼+𝛽−𝑝)/𝑝 A

(𝛼+𝛽)/𝑝

0

} > 0,

(17)

for some 𝜖 > 0, where 𝑄
+
(∞) = lim sup

|𝑥|→∞
𝑄

+
(𝑥), then

problem (P
𝑄

0
) has at least one positive solution inD1,𝑝

𝐺
(R𝑁

) ×

D
1,𝑝

𝐺
(R𝑁

).

Corollary 2. Suppose that (q.1) and (q.2) hold. Then we have
the following statements.

(1) Problem (P
𝑄

0
) has a positive solution if

𝑄 (0) > 0,

𝑄 (0)≥max{𝑄
+ (∞) , |𝐺|

(𝑝−(𝛼+𝛽))/𝑝
(
A

0

A
𝜇

)

−(𝛼+𝛽)/𝑝

󵄩󵄩󵄩󵄩𝑄+

󵄩󵄩󵄩󵄩∞
} ,

(18)

and either (i) 𝑄(𝑥) ≥ 𝑄(0) + Λ
0
|𝑥|

(𝛼+𝛽)(𝑙
2
−𝜗) for some

Λ
0
> 0 and |𝑥| small or (ii) |𝑄(𝑥) − 𝑄(0)| ≤ Λ

1
|𝑥|

𝜅

for some constant Λ
1
> 0, 𝜅 > (𝛼 + 𝛽)(𝑙

2
− 𝜗) and |𝑥|

small and

∫
R𝑁

(𝑄 (𝑥) − 𝑄 (0)) |𝑥|
−𝑁−(𝛼+𝛽)(𝑙

2
−𝜗)

𝑑𝑥 > 0. (19)

(2) Problem (P
𝑄

0
) admits at least one positive solution

if lim
|𝑥|→∞

𝑄(𝑥) = 𝑄(∞) exists and is positive,

𝑄 (∞)≥max{𝑄
+ (0) , |𝐺|

(𝑝−(𝛼+𝛽))/𝑝
(
A

0

A
𝜇

)

−(𝛼+𝛽)/𝑝

󵄩󵄩󵄩󵄩𝑄+

󵄩󵄩󵄩󵄩∞
} ,

(20)

and either (i)𝑄(𝑥) ≥ 𝑄(∞)+Λ
2
|𝑥|

−(𝛼+𝛽)(𝜗−𝑙
1
) for some

Λ
2
> 0 and large |𝑥| or (ii) |𝑄(𝑥) − 𝑄(∞)| ≤ Λ

3
|𝑥|

−𝜄

for some constantsΛ
3
> 0, 𝜄 > (𝛼+𝛽)(𝜗− 𝑙

1
) and large

|𝑥| and

∫
R𝑁

(𝑄 (𝑥) − 𝑄 (∞)) |𝑥|
−𝑁+(𝛼+𝛽)(𝜗−𝑙

1
)
𝑑𝑥 > 0. (21)

(3) If 𝑄(𝑥) ≥ 𝑄(∞) = 𝑄(0) > 0 on R𝑁 and

𝑄 (∞) = 𝑄 (0) ≥ |𝐺|
(𝑝−(𝛼+𝛽))/𝑝

(
A

0

A
𝜇

)

−(𝛼+𝛽)/𝑝

󵄩󵄩󵄩󵄩𝑄+

󵄩󵄩󵄩󵄩∞
,

(22)

then problem (P
𝑄

0
) has at least one positive solution.



4 Abstract and Applied Analysis

Theorem 3. Suppose that 𝑄
+
(0) = 𝑄

+
(∞) = 0 and |𝐺| =

+∞. Then problem (P
𝑄

0
) has infinitely many 𝐺-symmetric

solutions.

Corollary 4. If 𝑄 is a radially symmetric function such that
𝑄

+
(0) = 𝑄

+
(∞) = 0, then problem (P

𝑄

0
) has infinitely many

solutions which are radially symmetric.

Theorem 5. Let 𝑄 > 0 be a constant. Suppose that 𝑄(𝑥) ≡ 𝑄

and (h.1), (h.2) hold. Then there exists 𝜆∗ > 0 such that, for
any 𝜆 ∈ (0, 𝜆

∗
), problem (P

𝑄̃

𝜆
) possesses at least two positive

solutions inD
1,𝑝

𝐺
(R𝑁

) ×D
1,𝑝

𝐺
(R𝑁

).

Remark 6. The main results of this paper generalize, extend,
and complement some results of the aforementioned papers
[9–12, 24, 25].

In the sequel, we denote by D
1,𝑝

𝐺
(R𝑁

) × D
1,𝑝

𝐺
(R𝑁

) the
subspace of D1,𝑝

(R𝑁
) × D1,𝑝

(R𝑁
) consisting of all 𝐺-

symmetric functions.The dual space ofD1,𝑝

𝐺
(R𝑁

)×D
1,𝑝

𝐺
(R𝑁

)

(D1,𝑝
(R𝑁

) × D1,𝑝
(R𝑁

), resp.) is denoted by D
−1,𝑝
󸀠

𝐺
(R𝑁

) ×

D
−1,𝑝
󸀠

𝐺
(R𝑁

) (D−1,𝑝
󸀠

(R𝑁
) × D−1,𝑝

󸀠

(R𝑁
), resp.), where 1/𝑝 +

1/𝑝
󸀠

= 1. The ball of center 𝑥 and radius 𝑟 is denoted by
𝐵
𝑟
(𝑥). We employ 𝐶, 𝐶

1
, 𝐶

2
, . . . to denote (possibly different)

positive constants and denote by “→ ” convergence in norm
in a given Banach space 𝑋 and by “⇀” weak convergence.
Hereafter, 𝑜

𝑛
(1) denotes a datum which tends to 0 as 𝑛 →

∞. 𝐿𝑞(R𝑁
, ℎ(𝑥)) denotes the weighted 𝐿

𝑞
(R𝑁

) space with
the norm (∫

R𝑁
ℎ(𝑥)|𝑢|

𝑞
𝑑𝑥)

1/𝑞. A functional 𝐽 ∈ C1
(𝑋,R) is

said to satisfy the (𝑃𝑆)
𝑐
condition if each sequence {𝑢

𝑛
} in 𝑋

satisfying 𝐽(𝑢
𝑛
) → 𝑐, 𝐽󸀠(𝑢

𝑛
) → 0 in 𝑋

∗ has a subsequence
which strongly converges to some element in𝑋.

3. Existence and Multiplicity Results for
Problem (P

𝑄

0
)

The corresponding energy functional of problem (P
𝑄

0
) is

defined inD
1,𝑝

𝐺
(R𝑁

) ×D
1,𝑝

𝐺
(R𝑁

) by

E (𝑢, V) =
1

𝑝
‖(𝑢, V)‖𝑝

𝜇

−
1

𝑝∗
∫
R𝑁

𝑄 (𝑥) (|𝑢|
𝑝
∗

+ |V|𝑝
∗

+ 𝜍 |𝑢|
𝛼
|V|𝛽) 𝑑𝑥.

(23)

Note that (q.1) and (5) imply that E ∈ C1
(D

1,𝑝

𝐺
(R𝑁

) ×

D
1,𝑝

𝐺
(R𝑁

),R). It is well known that there exists a one-to-
one correspondence between the weak solutions of problem
(P

𝑄

0
) and the critical points of E. More precisely, any

weak solution of (P𝑄

0
) is exactly the critical point of E by

the following symmetric principle (see Lemma 7); namely,

(𝑢, V) ∈ D
1,𝑝

𝐺
(R𝑁

) × D
1,𝑝

𝐺
(R𝑁

) satisfies (P𝑄

0
) if and only if

for all (𝜑
1
, 𝜑

2
) ∈ D1,𝑝

(R𝑁
) ×D1,𝑝

(R𝑁
), there holds

0 = ∫
R𝑁

(|∇𝑢|
𝑝−2

∇𝑢∇𝜑
1
+ |∇V|𝑝−2∇V∇𝜑

2

−𝜇
|𝑢|

𝑝−2
𝑢𝜑

1
+ |V|𝑝−2V𝜑

2

|𝑥|
𝑝

)𝑑𝑥

− ∫
R𝑁

𝑄 (𝑥) {(|𝑢|
𝑝
∗

−2
𝑢 +

𝜍𝛼

𝑝∗
|𝑢|

𝛼−2
𝑢 |V|𝛽)𝜑

1

+(|V|𝑝
∗

−2 V +
𝜍𝛽

𝑝∗
|𝑢|

𝛼
|V|𝛽−2 V)𝜑

2
}𝑑𝑥.

(24)

Lemma 7. E󸀠
(𝑢, V) = 0 in D

−1,𝑝
󸀠

𝐺
(R𝑁

) × D
−1,𝑝
󸀠

𝐺
(R𝑁

) implies
E󸀠

(𝑢, V) = 0 inD−1,𝑝
󸀠

(R𝑁
) ×D−1,𝑝

󸀠

(R𝑁
).

Proof. See the proof of [12, Lemma 1] (see also [25, Proposi-
tion 2.8]).

Now, for any 0 ≤ 𝜇 < 𝜇, 0 < 𝜍 < +∞, 𝛼, 𝛽 > 1, and
𝛼 + 𝛽 = 𝑝

∗, we define

A
(𝛼,𝛽)

𝜇,𝜍

≜ inf
𝑢,V∈D1,𝑝(R𝑁)\{0}

∫
R𝑁

(|∇𝑢|
𝑝
+|∇V|𝑝−𝜇 ((|𝑢|𝑝+|V|𝑝)/ |𝑥|𝑝)) 𝑑𝑥

[∫
R𝑁

(|𝑢|
𝑝
∗

+|V|𝑝
∗

+𝜍 |𝑢|
𝛼
|V|𝛽) 𝑑𝑥]

𝑝/(𝛼+𝛽)
,

(25)

𝐾 (𝜏) ≜
1 + 𝜏

𝑝

(1 + 𝜍𝜏𝛽 + 𝜏𝛼+𝛽)
𝑝/(𝛼+𝛽)

, 𝜏 ≥ 0, (26)

𝐾(𝜏min) ≜ min
𝜏≥0

𝐾 (𝜏) > 0, (27)

where 𝜏min > 0 is a minimal point of 𝐾(𝜏) and therefore a
root of the equation

(𝛼 + 𝛽) 𝜏
𝛼+𝛽−𝑝

+ 𝜍𝛽𝜏
𝛽−𝑝

− 𝜍𝛼𝜏
𝛽
− (𝛼 + 𝛽) = 0, 𝜏 ≥ 0.

(28)

Lemma 8. Suppose that 1 < 𝑝 < 𝑁, 0 < 𝜍 < +∞, and
0 ≤ 𝜇 < 𝜇. Then A(𝛼,𝛽)

𝜇,𝜍
= 𝐾(𝜏min)A𝜇

, and A(𝛼,𝛽)

𝜇,𝜍
has

the minimizer (𝑦
𝜖
(𝑥), 𝜏min𝑦𝜖(𝑥)), ∀𝜖 > 0, where 𝑦

𝜖
(𝑥) is the

extremal function ofA
𝜇
defined as in (10).

Proof. The proof is similar to the proof in Nyamoradi [16,
Theorem 2].

Lemma 9. Let {(𝑢
𝑛
, V

𝑛
)} be a weakly convergent sequence to

(𝑢, V) in D
1,𝑝

𝐺
(R𝑁

) × D
1,𝑝

𝐺
(R𝑁

) such that |∇𝑢
𝑛
|
𝑝

⇀ 𝜂
(1),

|∇V
𝑛
|
𝑝
⇀ 𝜂

(2), |𝑢
𝑛
|
𝑝
∗

⇀ 𝜎
(1), |V

𝑛
|
𝑝
∗

⇀ 𝜎
(2), |𝑢

𝑛
|
𝛼
|V

𝑛
|
𝛽
⇀ ],

|𝑥|
−𝑝
|𝑢

𝑛
|
𝑝

⇀ 𝛾
(1), and |𝑥|

−𝑝
|V

𝑛
|
𝑝

⇀ 𝛾
(2) in the sense of

measures. Then there exists some at most countable set J,
{𝜂

(1)

𝑗
≥ 0}

𝑗∈J∪{0}
, {𝜂(2)

𝑗
≥ 0}

𝑗∈J∪{0}
, {𝜎(1)

𝑗
≥ 0}

𝑗∈J∪{0}
, {𝜎(2)

𝑗
≥

0}
𝑗∈J∪{0}

, {]
𝑗
≥ 0}

𝑗∈J∪{0}
, 𝛾(1)

0
≥ 0, 𝛾(2)

0
≥ 0, and {𝑥

𝑗
}
𝑗∈J ⊂

R𝑁
\ {0} such that
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(a) 𝜂(1) ≥ |∇𝑢|
𝑝
+ ∑

𝑗∈J 𝜂
(1)

𝑗
𝛿
𝑥
𝑗

+ 𝜂
(1)

0
𝛿
0
, 𝜂(2) ≥ |∇V|𝑝 +

∑
𝑗∈J 𝜂

(2)

𝑗
𝛿
𝑥
𝑗

+ 𝜂
(2)

0
𝛿
0
,

(b) 𝜎(1)
= |𝑢|

𝑝
∗

+ ∑
𝑗∈J 𝜎

(1)

𝑗
𝛿
𝑥
𝑗

+ 𝜎
(1)

0
𝛿
0
, 𝜎(2)

= |V|𝑝
∗

+

∑
𝑗∈J 𝜎

(2)

𝑗
𝛿
𝑥
𝑗

+ 𝜎
(2)

0
𝛿
0
,

(c) ] = |𝑢|
𝛼
|V|𝛽 + ∑

𝑗∈J ]
𝑗
𝛿
𝑥
𝑗

+ ]
0
𝛿
0
, 𝛾(1) = (|𝑢|

𝑝
/|𝑥|

𝑝
) +

𝛾
(1)

0
𝛿
0
, 𝛾(2) = (|V|𝑝/|𝑥|𝑝) + 𝛾

(2)

0
𝛿
0
,

(d) A(𝛼,𝛽)

0,𝜍
(𝜎

(1)

𝑗
+ 𝜎

(2)

𝑗
+ 𝜍]

𝑗
)
𝑝/(𝛼+𝛽)

≤ 𝜂
(1)

𝑗
+ 𝜂

(2)

𝑗
,

A
0
(𝜎

(1)

𝑗
)
𝑝/𝑝
∗

≤ 𝜂
(1)

𝑗
,A

0
(𝜎

(2)

𝑗
)
𝑝/𝑝
∗

≤ 𝜂
(2)

𝑗
,

(e) A(𝛼,𝛽)

𝜇,𝜍
(𝜎

(1)

0
+𝜎

(2)

0
+𝜍]

0
)
𝑝/(𝛼+𝛽)

≤ 𝜂
(1)

0
+𝜂

(2)

0
−𝜇(𝛾

(1)

0
+𝛾

(2)

0
),

A
𝜇
(𝜎

(1)

0
)
𝑝/𝑝
∗

≤ 𝜂
(1)

0
−𝜇𝛾

(1)

0
,A

𝜇
(𝜎

(2)

0
)
𝑝/𝑝
∗

≤ 𝜂
(2)

0
−𝜇𝛾

(2)

0
,

where 𝛿
𝑥
𝑗

, 𝑗 ∈ J ∪ {0}, is the Dirac-mass of 1 concentrated at
𝑥
𝑗
∈ R𝑁.

Proof. The proof is similar to that of the concentration
compactness principle in [27, 28] (see also [20, Lemma 2.2])
and is omitted here.

In order to find critical points ofE, we need the following
local (𝑃𝑆)

𝑐
condition.

Lemma 10. Suppose that (q.1) and (q.2) hold. Then the (𝑃𝑆)
𝑐

condition inD
1,𝑝

𝐺
(R𝑁

) ×D
1,𝑝

𝐺
(R𝑁

) holds for E if

𝑐 < 𝑐
∗

0
≜

1

𝑁

×min
{

{

{

(A(𝛼,𝛽)

𝜇,𝜍
)
𝑁/𝑝

(𝑄
+ (0))

(𝑁−𝑝)/𝑝
,

(A(𝛼,𝛽)

𝜇,𝜍
)
𝑁/𝑝

(𝑄
+ (∞))

(𝑁−𝑝)/𝑝
,

|𝐺| (A
(𝛼,𝛽)

0,𝜍
)
𝑁/𝑝

󵄩󵄩󵄩󵄩𝑄+

󵄩󵄩󵄩󵄩

(𝑁−𝑝)/𝑝

∞

}

}

}

.

(29)

Proof. The proof is similar to that in [12, Proposition 2].
We sketch the argument here for completeness. Suppose
{(𝑢

𝑛
, V

𝑛
)} ⊂ D

1,𝑝

𝐺
(R𝑁

) × D
1,𝑝

𝐺
(R𝑁

) satisfies E(𝑢
𝑛
, V

𝑛
) →

𝑐 and E󸀠
(𝑢

𝑛
, V

𝑛
) → 0 with 𝑐 < 𝑐

∗

0
. It is easy to show

that {(𝑢
𝑛
, V

𝑛
)} is bounded inD

1,𝑝

𝐺
(R𝑁

) ×D
1,𝑝

𝐺
(R𝑁

) and then
(𝑢

𝑛
, V

𝑛
) ⇀ (𝑢, V) up to a subsequence. Moreover, we know

from Lemma 9 that there exist measures 𝜂(1), 𝜂(2), 𝜎(1), 𝜎(2),
], 𝛾(1), and 𝛾(2) such that relations (a)–(e) of this lemma hold.
Let 𝑥

𝑗
̸= 0 be a singular point of measures 𝜂(1), 𝜂(2), and ]. As

in [20], we can choose two functions 𝜙
1
, 𝜙

2
∈ C1

(R𝑁
) such

that 0 ≤ 𝜙
1
, 𝜙

2
≤ 1, 𝜙

1
= 𝜙

2
= 1 for |𝑥−𝑥

𝑗
| ≤ 𝜖/2, 𝜙

1
= 𝜙

2
= 0

for |𝑥 − 𝑥
𝑗
| ≥ 𝜖 and |∇𝜙

1
| ≤ 4/𝜖, |∇𝜙

2
| ≤ 4/𝜖. By Lemma 7,

lim
𝑛→∞

⟨E󸀠
(𝑢

𝑛
, V

𝑛
), (𝑢

𝑛
𝜙
1
, V

𝑛
𝜙
2
)⟩ = 0, and, hence, using the

Sobolev inequality and the Hölder inequality, we have

∫
R𝑁

{ (𝜙
1
𝑑𝜂

(1)
+ 𝜙

2
𝑑𝜂

(2)
) − 𝑄 (𝑥)

× (𝜙
1
𝑑𝜎

(1)
+ 𝜙

2
𝑑𝜎

(2)
) −

𝜍𝑄 (𝑥)

𝑝∗
(𝛼𝜙

1
+ 𝛽𝜙

2
) 𝑑]}

− ∫
R𝑁

𝜇 (𝜙
1
𝑑𝛾

(1)
+ 𝜙

2
𝑑𝛾

(2)
)

≤ lim sup
𝑛→∞

∫
R𝑁

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑛

󵄨󵄨󵄨󵄨∇𝑢𝑛
󵄨󵄨󵄨󵄨

𝑝−1
∇𝜙

1
+ V

𝑛

󵄨󵄨󵄨󵄨∇V𝑛
󵄨󵄨󵄨󵄨

𝑝−1
∇𝜙

2

󵄨󵄨󵄨󵄨󵄨
𝑑𝑥

≤ sup
𝑛≥1

(∫
R𝑁

󵄨󵄨󵄨󵄨∇𝑢𝑛
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑥)

(𝑝−1)/𝑝

× lim sup
𝑛→∞

(∫
R𝑁

󵄨󵄨󵄨󵄨𝑢𝑛|
𝑝󵄨󵄨󵄨󵄨 ∇𝜙1|

𝑝
𝑑𝑥)

1/𝑝

+ sup
𝑛≥1

(∫
R𝑁

󵄨󵄨󵄨󵄨∇V𝑛
󵄨󵄨󵄨󵄨

𝑝
𝑑𝑥)

(𝑝−1)/𝑝

× lim sup
𝑛→∞

(∫
R𝑁

󵄨󵄨󵄨󵄨V𝑛|
𝑝󵄨󵄨󵄨󵄨 ∇𝜙2|

𝑝
𝑑𝑥)

1/𝑝

≤ 𝐶{(∫
R𝑁

󵄨󵄨󵄨󵄨𝑢|
𝑝󵄨󵄨󵄨󵄨 ∇𝜙1|

𝑝
𝑑𝑥)

1/𝑝

+ (∫
R𝑁

󵄨󵄨󵄨󵄨V|
𝑝󵄨󵄨󵄨󵄨 ∇𝜙2|

𝑝
𝑑𝑥)

1/𝑝

}

≤ 𝐶
{

{

{

(∫
𝐵
𝜖
(𝑥
𝑗
)

|𝑢|
𝑝
∗

𝑑𝑥)

1/𝑝
∗

(∫
R𝑁

󵄨󵄨󵄨󵄨∇𝜙1
󵄨󵄨󵄨󵄨

𝑁
)

1/𝑁

+ (∫
𝐵
𝜖
(𝑥
𝑗
)

|V|𝑝
∗

𝑑𝑥)

1/𝑝
∗

(∫
R𝑁

󵄨󵄨󵄨󵄨∇𝜙2
󵄨󵄨󵄨󵄨

𝑁
)

1/𝑁}

}

}

≤ 𝐶{(∫
𝐵
𝜖
(𝑥
𝑗
)

|∇𝑢|
𝑝
𝑑𝑥)

1/𝑝

+ (∫
𝐵
𝜖
(𝑥
𝑗
)

|∇V|𝑝 𝑑𝑥)
1/𝑝

} .

(30)

Taking limits as 𝜖 → 0 in (30), we obtain from Lemma 9 and
the fact that 𝛼 + 𝛽 = 𝑝

∗ that

𝑄(𝑥
𝑗
) (𝜎

(1)

𝑗
+ 𝜎

(2)

𝑗
+ 𝜍]

𝑗
) ≥ 𝜂

(1)

𝑗
+ 𝜂

(2)

𝑗
. (31)

The above inequality implies that the concentration of the
measures 𝜎

(1), 𝜎(2), and ] cannot occur at points where
𝑄(𝑥

𝑗
) ≤ 0; that is, if 𝑄(𝑥

𝑗
) ≤ 0 then 𝜎

(1)

𝑗
= 𝜎

(2)

𝑗
= ]

𝑗
=

𝜂
(1)

𝑗
= 𝜂

(2)

𝑗
= 0. Combining (31) and (d) of Lemma 9 we infer

that either (i) 𝜎(1)

𝑗
= 𝜎

(2)

𝑗
= ]

𝑗
= 0 or (ii) 𝜎(1)

𝑗
+ 𝜎

(2)

𝑗
+ 𝜍]

𝑗
≥

(A
(𝛼,𝛽)

0,𝜍
/‖𝑄

+
‖
∞
)
𝑁/𝑝. For the point 𝑥 = 0, similarly as in the

case 𝑥
𝑗

̸= 0, we get

𝜂
(1)

0
+ 𝜂

(2)

0
− 𝜇 (𝛾

(1)

0
+ 𝛾

(2)

0
) − 𝑄 (0) (𝜎

(1)

0
+ 𝜎

(2)

0
+ 𝜍]

0
) ≤ 0.

(32)

This, combined with (e) of Lemma 9, implies that either (iii)
𝜎
(1)

0
= 𝜎

(2)

0
= ]

0
= 0 or (iv)𝜎(1)

0
+𝜎

(2)

0
+𝜍]

0
≥ (A(𝛼,𝛽)

𝜇,𝜍
/𝑄

+
(0))

𝑁/𝑝.
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To study the concentration at infinity of the sequencewe need
to consider the following quantities:

(1) 𝜂(1)
∞

= lim
𝑅→∞

lim sup
𝑛→∞

∫
|𝑥|>𝑅

|∇𝑢
𝑛
|
𝑝
𝑑𝑥, 𝜂(2)

∞
=

lim
𝑅→∞

lim sup
𝑛→∞

∫
|𝑥|>𝑅

|∇V
𝑛
|
𝑝
𝑑𝑥,

(2) 𝜎(1)

∞
= lim

𝑅→∞
lim sup

𝑛→∞
∫
|𝑥|>𝑅

|𝑢
𝑛
|
𝑝
∗

𝑑𝑥, 𝜎(2)

∞
=

lim
𝑅→∞

lim sup
𝑛→∞

∫
|𝑥|>𝑅

|V
𝑛
|
𝑝
∗

𝑑𝑥,

(3) ]
∞

= lim
𝑅→∞

lim sup
𝑛→∞

∫
|𝑥|>𝑅

|𝑢
𝑛
|
𝛼
|V

𝑛
|
𝛽
𝑑𝑥,

(4) 𝛾(1)
∞

= lim
𝑅→∞

lim sup
𝑛→∞

∫
|𝑥|>𝑅

(|𝑢
𝑛
|
𝑝
/|𝑥|

𝑝
)𝑑𝑥,

𝛾
(2)

∞
= lim

𝑅→∞
lim sup

𝑛→∞
∫
|𝑥|>𝑅

(|V
𝑛
|
𝑝
/|𝑥|

𝑝
)𝑑𝑥.

Obviously, 𝜂(1)
∞
, 𝜂(2)

∞
, ]

∞
, 𝛾(1)

∞
, and 𝛾

(2)

∞
exist and are finite. For

𝑅 > 1, let 𝜓(1)

𝑅
and 𝜓

(2)

𝑅
be two regular functions such that

0 ≤ 𝜓
(1)

𝑅
, 𝜓(2)

𝑅
≤ 1, 𝜓(1)

𝑅
= 𝜓

(2)

𝑅
= 1 for |𝑥| > 𝑅 + 1, 𝜓(1)

𝑅
=

𝜓
(2)

𝑅
= 0 for |𝑥| < 𝑅 and |∇𝜓

(1)

𝑅
| ≤ 4/𝑅, |∇𝜓(2)

𝑅
| ≤ 4/𝑅. Since

the sequence {(𝑢
𝑛
𝜓
(1)

𝑅
, V

𝑛
𝜓
(2)

𝑅
)} is bounded in D1,𝑝

(R𝑁
) ×

D1,𝑝
(R𝑁

), we get from (23) that

0 = lim
𝑛→∞

⟨E
󸀠
(𝑢

𝑛
, V

𝑛
) , (𝑢

𝑛
𝜓
(1)

𝑅
, V

𝑛
𝜓
(2)

𝑅
)⟩

= lim
𝑛→∞

{∫
R𝑁

(|∇𝑢
𝑛
|
𝑝
𝜓
(1)

𝑅
+ |∇V

𝑛
|
𝑝

𝜓
(2)

𝑅

−𝜇

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝑝
𝜓
(1)

𝑅
+
󵄨󵄨󵄨󵄨V𝑛

󵄨󵄨󵄨󵄨

𝑝
𝜓
(2)

𝑅

|𝑥|
𝑝

)𝑑𝑥

+ ∫
R𝑁

(𝑢
𝑛

󵄨󵄨󵄨󵄨∇𝑢𝑛
󵄨󵄨󵄨󵄨

𝑝−2
∇𝑢

𝑛
∇𝜓

(1)

𝑅

+ V
𝑛

󵄨󵄨󵄨󵄨∇V𝑛
󵄨󵄨󵄨󵄨

𝑝−2
∇V

𝑛
∇𝜓

(2)

𝑅
) 𝑑𝑥

− ∫
R𝑁

𝑄 (𝑥) [|𝑢𝑛|
𝑝
∗

𝜓
(1)

𝑅
+ |V

𝑛
|
𝑝
∗

𝜓
(2)

𝑅

+
𝜍

𝑝∗

󵄨󵄨󵄨󵄨𝑢𝑛
󵄨󵄨󵄨󵄨

𝛼 󵄨󵄨󵄨󵄨V𝑛
󵄨󵄨󵄨󵄨

𝛽

× (𝛼𝜓
(1)

𝑅
+ 𝛽𝜓

(2)

𝑅
) ] 𝑑𝑥} .

(33)

We now observe that 𝑢
𝑛
→ 𝑢 in 𝐿

𝑝
(𝑅 < |𝑥| < 𝑅 + 1). There-

fore, using the Sobolev inequality and the Hölder inequal-
ity we can easily check that

lim
𝑅→∞

lim sup
𝑛→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
R𝑁

𝑢
𝑛

󵄨󵄨󵄨󵄨∇𝑢𝑛
󵄨󵄨󵄨󵄨

𝑝−2
∇𝑢

𝑛
∇𝜓

(1)

𝑅
𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 0,

lim
𝑅→∞

lim sup
𝑛→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
R𝑁

V
𝑛

󵄨󵄨󵄨󵄨∇V𝑛
󵄨󵄨󵄨󵄨

𝑝−2
∇V

𝑛
∇𝜓

(2)

𝑅
𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 0.

(34)

Consequently, taking into account the definitions (1)–(4) of
𝜂
(1)

∞
, 𝜂(2)

∞
, 𝜎(1)

∞
, 𝜎(2)

∞
, ]

∞
, 𝛾(1)

∞
, and 𝛾(2)

∞
, we deduce from (33) and

(34) that

𝑄 (∞) (𝜎
(1)

∞
+ 𝜎

(2)

∞
+ 𝜍]

∞
) ≥ 𝜂

(1)

∞
+ 𝜂

(2)

∞
− 𝜇 (𝛾

(1)

∞
+ 𝛾

(2)

∞
) .

(35)

On the other hand, by (5) and the definition (25) ofA(𝛼,𝛽)

𝜇,𝜍
we

easily see that 𝜇𝛾(1)
∞

≤ 𝜂
(1)

∞
, 𝜇𝛾(2)

∞
≤ 𝜂

(2)

∞
and

A
(𝛼,𝛽)

𝜇,𝜍
(𝜎

(1)

∞
+𝜎

(2)

∞
+𝜍]

∞
)
𝑝/(𝛼+𝛽)

≤ 𝜂
(1)

∞
+ 𝜂

(2)

∞
− 𝜇 (𝛾

(1)

∞
+ 𝛾

(2)

∞
) .

(36)

This, combined with (35), implies that either (v) 𝜎(1)

∞
= 𝜎

(2)

∞
=

]
∞

= 0 or (vi) 𝜎(1)

∞
+ 𝜎

(2)

∞
+ 𝜍]

∞
≥ (A(𝛼,𝛽)

𝜇,𝜍
/𝑄

+
(∞))

𝑁/𝑝. We
now rule out the cases (ii), (iv), and (vi). For every continuous
nonnegative function 𝜓 such that 0 ≤ 𝜓(𝑥) ≤ 1 on R𝑁, we
obtain from (23) and (24) that

𝑐 = lim
𝑛→∞

(E (𝑢
𝑛
, V

𝑛
) −

1

𝑝∗
⟨E

󸀠
(𝑢

𝑛
, V

𝑛
) , (𝑢

𝑛
, V

𝑛
)⟩)

=
1

𝑁
lim
𝑛→∞

∫
R𝑁

(|∇𝑢
𝑛
|
𝑝
+ |∇V

𝑛
|
𝑝
− 𝜇

|𝑢
𝑛
|
𝑝
+ |V

𝑛
|
𝑝

|𝑥|
𝑝

)𝑑𝑥

≥
1

𝑁
lim sup
𝑛→∞

∫
R𝑁

(|∇𝑢
𝑛
|
𝑝
+ |∇V

𝑛
|
𝑝

−𝜇
|𝑢

𝑛
|
𝑝
+ |V

𝑛
|
𝑝

|𝑥|
𝑝

)𝜓 (𝑥) 𝑑𝑥.

(37)

If (ii) occurs, then the set J must be finite because the
measures 𝜎

(1), 𝜎
(2), and ] are bounded. Since functions

(𝑢
𝑛
, V

𝑛
) are 𝐺-symmetric, the measures 𝜎(1), 𝜎(2), and ]must

be 𝐺-invariant. This means that if 𝑥
𝑗

̸= 0 is a singular point
of 𝜎(1), 𝜎(2), and ], so is 𝑔𝑥

𝑗
for each 𝑔 ∈ 𝐺, and the mass

of 𝜎(1), 𝜎(2), and ] concentrated at 𝑔𝑥
𝑗
is the same for each

𝑔 ∈ 𝐺. If we assume the existence of 𝑗 ∈ J with 𝑥
𝑗

̸= 0 such
that (ii) holds, thenwe choose𝜓with compact support so that
𝜓(𝑔𝑥

𝑗
) = 1 for each 𝑔 ∈ 𝐺 and we obtain

𝑐 ≥
1

𝑁
|𝐺| (𝜂

(1)

𝑗
+ 𝜂

(2)

𝑗
)

≥
1

𝑁
|𝐺|A

(𝛼,𝛽)

0,𝜍
(𝜎

(1)

𝑗
+ 𝜎

(2)

𝑗
+ 𝜍]

𝑗
)
𝑝/(𝛼+𝛽)

≥
1

𝑁
|𝐺| (A

(𝛼,𝛽)

0,𝜍
)
𝑁/𝑝 󵄩󵄩󵄩󵄩𝑄+

󵄩󵄩󵄩󵄩

−(𝑁−𝑝)/𝑝

∞
,

(38)

which contradicts (29). Similarly, if (iv) holds for 𝑥 = 0, we
choose𝜓with compact support, so that𝜓(0) = 1 andwe have

𝑐 ≥
1

𝑁
(𝜂

(1)

0
+ 𝜂

(2)

0
− 𝜇𝛾

(1)

0
− 𝜇𝛾

(2)

0
)

≥
1

𝑁
A

(𝛼,𝛽)

𝜇,𝜍
(𝜎

(1)

0
+ 𝜎

(2)

0
+ 𝜍]

0
)
𝑝/(𝛼+𝛽)

≥
1

𝑁
(A

(𝛼,𝛽)

𝜇,𝜍
)
𝑁/𝑝

(𝑄
+
(0))

−(𝑁−𝑝)/𝑝
,

(39)
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which is impossible. Finally, if (vi) occurs at∞, we take 𝜓 =

𝜓
(1)

𝑅
= 𝜓

(2)

𝑅
to get

𝑐 ≥
1

𝑁
(𝜂

(1)

∞
+ 𝜂

(2)

∞
− 𝜇𝛾

(1)

∞
− 𝜇𝛾

(2)

∞
)

≥
1

𝑁
A

(𝛼,𝛽)

𝜇,𝜍
(𝜎

(1)

∞
+ 𝜎

(2)

∞
+ 𝜍]

∞
)
𝑝/(𝛼+𝛽)

≥
1

𝑁
(A

(𝛼,𝛽)

𝜇,𝜍
)
𝑁/𝑝

(𝑄
+ (∞))

−(𝑁−𝑝)/𝑝

,

(40)

a contradiction with (29). Consequently, 𝜎(1)

𝑗
= 𝜎

(2)

𝑗
= ]

𝑗
= 0

for all 𝑗 ∈ J ∪ {0,∞} and this implies that

lim
𝑛→∞

∫
R𝑁

(|𝑢
𝑛
|
𝑝
∗

+ |V
𝑛
|
𝑝
∗

+ 𝜍|𝑢
𝑛
|
𝛼
|V

𝑛
|
𝛽
) 𝑑𝑥

= ∫
R𝑁

(|𝑢|
𝑝
∗

+ |V|𝑝
∗

+ 𝜍|𝑢|
𝛼
|V|𝛽) 𝑑𝑥.

(41)

Finally, observe that E󸀠
(𝑢, V) = 0 and, hence, by

lim
𝑛→∞

⟨E󸀠
(𝑢

𝑛
, V

𝑛
) −E󸀠

(𝑢, V), (𝑢
𝑛
−𝑢, V

𝑛
− V)⟩ = 0, we obtain

(𝑢
𝑛
, V

𝑛
) → (𝑢, V) as 𝑛 → ∞ in D1,𝑝

(R𝑁
) × D1,𝑝

(R𝑁
). The

assertion follows.

As an immediate consequence of Lemma 10we obtain the
following result.

Corollary 11. If 𝑄
+
(0) = 𝑄

+
(∞) = 0 and |𝐺| = +∞, then the

functional E satisfies the (𝑃𝑆)
𝑐
condition for every 𝑐 ∈ R.

Proof of Theorem 1. Firstly, we choose 𝜖 > 0 such that the
condition (17) holds, where 𝑦

𝜖
is the extremal function

satisfying (10), (11), and (12). By (q.1), (23), and (25), we have

E (𝑢, V) =
1

𝑝
‖(𝑢, V)‖𝑝

𝜇

−
1

𝑝∗
∫
R𝑁

𝑄 (𝑥) (|𝑢|
𝑝
∗

+ |V|𝑝
∗

+ 𝜍 |𝑢|
𝛼
|V|𝛽) 𝑑𝑥

≥
1

𝑝
‖(𝑢, V)‖𝑝

𝜇
−

1

𝑝∗
‖𝑄‖∞ (A

(𝛼,𝛽)

𝜇,𝜍
)
−(𝛼+𝛽)/𝑝

‖(𝑢, V)‖𝛼+𝛽
𝜇

.

(42)

Hence there exist constants𝛼
0
> 0 and𝜌 > 0 such thatE(𝑢, V)

≥ 𝛼
0
for all ‖(𝑢, V)‖

𝜇
= 𝜌. Furthermore, if we set 𝑢 = 𝑦

𝜖
,

V = 𝜏min𝑦𝜖 and

Φ (𝑡) = E (𝑡𝑢, 𝑡V) = E (𝑡𝑦
𝜖
, 𝑡𝜏min𝑦𝜖)

=
𝑡
𝑝

𝑝
∫
R𝑁

(1 + 𝜏
𝑝

min)(
󵄨󵄨󵄨󵄨∇𝑦𝜖

󵄨󵄨󵄨󵄨

𝑝
− 𝜇

󵄨󵄨󵄨󵄨𝑦𝜖
󵄨󵄨󵄨󵄨

𝑝

|𝑥|
𝑝
)𝑑𝑥

−
𝑡
𝑝
∗

𝑝∗
∫
R𝑁

(1 + 𝜍𝜏
𝛽

min + 𝜏
𝛼+𝛽

min )𝑄 (𝑥) 𝑦
𝛼+𝛽

𝜖
𝑑𝑥,

(43)

with 𝑡 ≥ 0, then we can check that Φ(𝑡) has a unique
maximum at some 𝑡 > 0. A simple computation gives us the
value

𝑡=
{

{

{

(1 + 𝜏
𝑝

min) ∫R𝑁 (
󵄨󵄨󵄨󵄨∇𝑦𝜖

󵄨󵄨󵄨󵄨

𝑝
−𝜇 (

󵄨󵄨󵄨󵄨𝑦𝜖
󵄨󵄨󵄨󵄨

𝑝
/ |𝑥|

𝑝
)) 𝑑𝑥

(1 + 𝜍𝜏
𝛽

min + 𝜏
𝛼+𝛽

min ) ∫R𝑁 𝑄(𝑥)𝑦
𝛼+𝛽

𝜖 𝑑𝑥

}

}

}

1/(𝛼+𝛽−𝑝)

.

(44)

Consequently, we obtain from (26) and (27) that

max
𝑡≥0

Φ (𝑡)

= E (𝑡𝑦
𝜖
, 𝑡𝜏min𝑦𝜖) =

1

𝑁

×
{

{

{

𝐾(𝜏min)∫R𝑁 (
󵄨󵄨󵄨󵄨∇𝑦𝜖

󵄨󵄨󵄨󵄨

𝑝
−𝜇 (

󵄨󵄨󵄨󵄨𝑦𝜖
󵄨󵄨󵄨󵄨

𝑝
/ |𝑥|

𝑝
)) 𝑑𝑥

(∫
R𝑁

𝑄 (𝑥) 𝑦
𝛼+𝛽

𝜖 𝑑𝑥)
𝑝/(𝛼+𝛽)

}

}

}

(𝛼+𝛽)/(𝛼+𝛽−𝑝)

.

(45)

Since Φ(𝑡) → −∞ as 𝑡 → ∞, we can choose 𝑡
0
> 0 such

that E(𝑡
0
𝑦
𝜖
, 𝑡

0
𝜏min𝑦𝜖) < 0 and ‖(𝑡

0
𝑦
𝜖
, 𝑡

0
𝜏min𝑦𝜖)‖𝜇 > 𝜌 and set

𝑐
0
= inf

𝛾∈Γ

max
𝑡∈[0,1]

E (𝛾 (𝑡)) , (46)

where

Γ = {𝛾 ∈ C ([0, 1] ,D
1,𝑝

𝐺
(R

𝑁
) ×D

1,𝑝

𝐺
(R

𝑁
)) ;

𝛾 (0) = (0, 0) , 𝛾 (1) = (𝑡
0
𝑦
𝜖
, 𝑡

0
𝜏min𝑦𝜖) } .

(47)

From (11), (17), (29), (45), (46), and Lemma 8, we obtain that

𝑐
0
≤ E (𝑡𝑦

𝜖
, 𝑡𝜏min𝑦𝜖)

=
1

𝑁

{

{

{

𝐾(𝜏min) ∫R𝑁 (
󵄨󵄨󵄨󵄨∇𝑦𝜖

󵄨󵄨󵄨󵄨

𝑝
− 𝜇 (

󵄨󵄨󵄨󵄨𝑦𝜖
󵄨󵄨󵄨󵄨

𝑝
/ |𝑥|

𝑝
)) 𝑑𝑥

(∫
R𝑁

𝑄 (𝑥) 𝑦
𝛼+𝛽

𝜖 𝑑𝑥)
𝑝/(𝛼+𝛽)

}

}

}

(𝛼+𝛽)/(𝛼+𝛽−𝑝)

≤
1

𝑁

{

{

{

𝐾(𝜏min) ∫R𝑁 (
󵄨󵄨󵄨󵄨∇𝑦𝜖

󵄨󵄨󵄨󵄨

𝑝
− 𝜇 (|𝑦

𝜖
|
𝑝
/|𝑥|

𝑝
)) 𝑑𝑥

(max {𝑄
+ (0) /A

(𝛼+𝛽)/𝑝

𝜇 , 𝑄
+ (∞) /A

(𝛼+𝛽)/𝑝

𝜇 , ‖𝑄
+
‖
∞
/|𝐺|(𝛼+𝛽−𝑝)/𝑝A

(𝛼+𝛽)/𝑝

0
})

𝑝/(𝛼+𝛽)

}

}

}

(𝛼+𝛽)/(𝛼+𝛽−𝑝)

=
1

𝑁
min

{

{

{

(A(𝛼,𝛽)

𝜇,𝜍
)
𝑁/𝑝

(𝑄
+ (0))

(𝑁−𝑝)/𝑝
,

(A(𝛼,𝛽)

𝜇,𝜍
)
𝑁/𝑝

(𝑄
+ (∞))

(𝑁−𝑝)/𝑝
,

|𝐺| (A
(𝛼,𝛽)

0,𝜍
)
𝑁/𝑝

‖𝑄
+
‖
(𝑁−𝑝)/𝑝

∞

}

}

}

= 𝑐
∗

0
. (48)
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If 𝑐
0
< 𝑐

∗

0
, then we conclude from Lemma 10 that the (𝑃𝑆)

𝑐

condition holds and the conclusion follows by the mountain
pass theorem in [29] (see also [30]). If 𝑐

0
= 𝑐

∗

0
, then 𝛾(𝑡) =

(𝑡𝑡
0
𝑦
𝜖
, 𝑡𝑡

0
𝜏min𝑦𝜖), with 0 ≤ 𝑡 ≤ 1, is a path in Γ such that

max
𝑡∈[0,1]

E(𝛾(𝑡)) = 𝑐
0
. Thus, either Φ󸀠

(𝑡) = E󸀠
(𝑡𝑦

𝜖
, 𝑡𝜏min𝑦𝜖)

= 0 and we are done, or 𝛾 can be deformed to a path 𝛾 ∈ Γ

with max
𝑡∈[0,1]

E(𝛾(𝑡)) < 𝑐
0
, which is impossible. Hence we

have a nontrivial solution (𝑢
0
, V

0
) ∈ D

1,𝑝

𝐺
(R𝑁

) ×D
1,𝑝

𝐺
(R𝑁

) to
problem (P

𝑄

0
). In the following, we have just to show that the

solution (𝑢
0
, V

0
) can be chosen to be positive onR𝑁. Consider

the Nehari manifold

M
𝜇
≜ {(𝑢, V) ∈ D

1,𝑝

𝐺
(R

𝑁
) ×D

1,𝑝

𝐺
(R

𝑁
) \ {(0, 0)} ;

⟨E
󸀠
(𝑢, V) , (𝑢, V)⟩ = 0} .

(49)

Writing an arbitrary element (𝑢, V) ∈ M
𝜇
as (𝑢, V) =

𝑡(𝑢̃, Ṽ) (𝑡 > 0), with ‖(𝑢̃, Ṽ))‖
𝜇
= 1, we deduce from (24), (25),

and the fact that⟨E󸀠
(𝑡𝑢̃, 𝑡Ṽ), (𝑡𝑢̃, 𝑡Ṽ)⟩ = 0 that

0 = 1 − 𝑡
𝑝
∗

−𝑝
∫
R𝑁

𝑄 (𝑥) (|𝑢̃|
𝑝
∗

+ |Ṽ|𝑝
∗

+ 𝜍 |𝑢̃|
𝛼
|Ṽ|𝛽) 𝑑𝑥

≥ 1 − (A
(𝛼,𝛽)

𝜇,𝜍
)
−(𝛼+𝛽)/𝑝

‖𝑄‖∞ ‖(𝑢̃, Ṽ)‖(𝛼+𝛽)/𝑝
𝜇

𝑡
𝑝
∗

−𝑝

≥ 1 − 𝐶𝑡
𝑝
∗

−𝑝
.

(50)

This implies that 𝑡 ≥ 𝜉
0
, with a constant 𝜉

0
> 0 independent

of (𝑢, V). Thus we conclude that the setM
𝜇
is bounded away

from 0 and inf
(𝑢,V)∈M

𝜇

E(𝑢, V) > 0. Set

G (𝑢, V) = ⟨E
󸀠
(𝑢, V) , (𝑢, V)⟩

= ‖(𝑢, V)‖𝑝
𝜇
−∫

R𝑁
𝑄 (𝑥) (|𝑢|

𝑝
∗

+|V|𝑝
∗

+ 𝜍 |𝑢|
𝛼
|V|𝛽) 𝑑𝑥.

(51)

Then ⟨G󸀠
(𝑢, V), (𝑢, V)⟩ = (𝑝 − 𝑝

∗
)‖(𝑢, V)‖𝑝

𝜇
̸= 0, and, hence,

M
𝜇
is aC1-manifold. Notice that (𝑢

0
, V

0
) ∈ M

𝜇
and set 𝑐

0
=

inf
(𝑢,V)∈M

𝜇

E(𝑢, V). We now claim 𝑐
0
= 𝑐

0
. Indeed, if 𝑐

0
< 𝑐

0
,

then we can find (𝑢
∗

0
, V∗

0
) ∈ M

𝜇
such that E(𝑢

∗

0
, V∗

0
) < 𝑐

0
.

Consequently, we deduce that

∫
R𝑁

𝑄 (𝑥) (
󵄨󵄨󵄨󵄨𝑢

∗

0

󵄨󵄨󵄨󵄨

𝑝
∗

+|V∗
0
|
𝑝
∗

+𝜍|𝑢
∗

0
|
𝛼
|V∗

0
|
𝛽
) 𝑑𝑥=

󵄩󵄩󵄩󵄩(𝑢
∗

0
, V∗

0
)
󵄩󵄩󵄩󵄩

𝑝

𝜇
> 0.

(52)

By a straightforward calculation, we get

sup
𝑡≥0

E (𝑡𝑢
∗

0
, 𝑡V∗

0
)

=E (𝑢
∗

0
, V∗

0
)

=
1

𝑁
∫
R𝑁

𝑄 (𝑥) (
󵄨󵄨󵄨󵄨𝑢

∗

0

󵄨󵄨󵄨󵄨

𝑝
∗

+
󵄨󵄨󵄨󵄨V

∗

0

󵄨󵄨󵄨󵄨

𝑝
∗

+𝜍
󵄨󵄨󵄨󵄨𝑢

∗

0

󵄨󵄨󵄨󵄨

𝛼 󵄨󵄨󵄨󵄨V
∗

0

󵄨󵄨󵄨󵄨

𝛽
) 𝑑𝑥 < 𝑐

0
.

(53)

Setting 𝛾(𝑡) = (𝑡𝑡
∗

0
𝑢
∗

0
, 𝑡𝑡

∗

0
V∗
0
) for 𝑡 ∈ [0, 1], with

𝑡
∗

0
such that ‖(𝑡

∗

0
𝑢
∗

0
, 𝑡

∗

0
V∗
0
)‖

𝜇
> 𝜌, we obtain that

E(𝛾(𝑡)) = E(𝑡𝑡
∗

0
𝑢
∗

0
, 𝑡𝑡

∗

0
V∗
0
) < 𝑐

0
on [0, 1], a contradiction with

the definition (46) of 𝑐
0
. Hence we have 𝑐

0
= 𝑐

0
. Finally, by

the strong maximum principle, we obtain 𝑢
0
> 0 and V

0
> 0

on R𝑁. This, combined with (24) and Lemma 7, implies that
(𝑢

0
, V

0
) is a positive 𝐺-symmetric solution of (P𝑄

0
).

Proof of Corollary 2. First of all, we observe that, due to the
identity (12), inequality (17) is equivalent to ∫

R𝑁
(𝑄(𝑥) −

𝑄)𝑦
𝛼+𝛽

𝜖
𝑑𝑥 ≥ 0 for some 𝜖 > 0, or equivalently

𝜖
−(𝛼+𝛽)𝜗

∫
R𝑁

(𝑄 (𝑥) − 𝑄) [𝑈
𝜇
(
|𝑥|

𝜖
)]

𝛼+𝛽

𝑑𝑥 ≥ 0, (54)

for some 𝜖 > 0, where 𝑄 = max{𝑄
+
(0), 𝑄

+
(∞),

|𝐺|
(𝑝−(𝛼+𝛽))/𝑝

(A
0
/A

𝜇
)
−(𝛼+𝛽)/𝑝

‖𝑄
+
‖
∞
} and 𝜗 = (𝑁−𝑝)/𝑝. Part

(1), case (i): according to (54), we need to show that

𝜖
−(𝛼+𝛽)𝑙

2 ∫
R𝑁

(𝑄 (𝑥) − 𝑄 (0)) [𝑈𝜇
(
|𝑥|

𝜖
)]

𝛼+𝛽

𝑑𝑥 ≥ 0, (55)

for some 𝜖 > 0. We choose 󰜚
0
> 0 so that 𝑄(𝑥) ≥ 𝑄(0) +

Λ
0
|𝑥|

(𝛼+𝛽)(𝑙
2
−𝜗) for |𝑥| ≤ 󰜚

0
.This, combined with (14) and (16)

and the fact that −(𝛼 + 𝛽)𝜗 = −𝑁, implies that

𝜖
−(𝛼+𝛽)𝑙

2 ∫
|𝑥|≤󰜚
0

(𝑄 (𝑥) − 𝑄 (0)) [𝑈𝜇
(
|𝑥|

𝜖
)]

𝛼+𝛽

𝑑𝑥

≥ Λ
0
∫
|𝑥|≤󰜚
0

|𝑥|
−(𝛼+𝛽)𝜗

[(
|𝑥|

𝜖
)

𝑙
2

𝑈
𝜇
(
|𝑥|

𝜖
)]

𝛼+𝛽

𝑑𝑥 󳨀→ +∞,

(56)

as 𝜖 → 0. On the other hand, for all 𝜖 > 0, we have

𝜖
−(𝛼+𝛽)𝑙

2 ∫
|𝑥|>󰜚
0

|𝑄 (𝑥) − 𝑄 (0)| [𝑈𝜇
(
|𝑥|

𝜖
)]

𝛼+𝛽

𝑑𝑥

≤ ∫
|𝑥|>󰜚
0

|𝑄 (𝑥) − 𝑄 (0)|

|𝑥|
(𝛼+𝛽)𝑙

2

[(
|𝑥|

𝜖
)

𝑙
2

𝑈
𝜇
(
|𝑥|

𝜖
)]

𝛼+𝛽

𝑑𝑥 ≤ 𝐶
1
,

(57)

for some constant 𝐶
1
> 0 independent of 𝜖. Combining (56)

and (57), we get (55) for 𝜖 sufficiently small.
Part (1), case (ii): we choose 󰜚

1
> 0 so that |𝑄(𝑥)−𝑄(0)| ≤

Λ
1
|𝑥|

𝜅 for |𝑥| ≤ 󰜚
1
. Since 𝜅 > (𝛼 + 𝛽)(𝑙

2
− 𝜗) > 0, we deduce

from (14) and the fact that (𝛼 +𝛽)𝑙
2
= 𝑁+ (𝛼+𝛽)(𝑙

2
−𝜗) that

𝜖
−(𝛼+𝛽)𝑙

2 ∫
R𝑁

|𝑄 (𝑥) − 𝑄 (0)| [𝑈𝜇
(
|𝑥|

𝜖
)]

𝛼+𝛽

𝑑𝑥

= ∫
R𝑁

|𝑄 (𝑥) − 𝑄 (0)|

|𝑥|
(𝛼+𝛽)𝑙

2

[(
|𝑥|

𝜖
)

𝑙
2

𝑈
𝜇
(
|𝑥|

𝜖
)]

𝛼+𝛽

𝑑𝑥

≤ 𝐶∫
R𝑁

|𝑄 (𝑥) − 𝑄 (0)|

|𝑥|
𝑁+(𝛼+𝛽)(𝑙

2
−𝜗)

𝑑𝑥
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≤ 𝐶{Λ
1
∫
|𝑥|≤󰜚
1

|𝑥|
𝜅−𝑁−(𝛼+𝛽)(𝑙

2
−𝜗)

𝑑𝑥

+∫
|𝑥|>󰜚
1

|𝑄 (𝑥) − 𝑄 (0)| |𝑥|
−𝑁−(𝛼+𝛽)(𝑙

2
−𝜗)

𝑑𝑥} ≤ 𝐶.

(58)

So by (14), (16), (19), and the Lebesgue dominated conver-
gence theorem we obtain that

lim
𝜖→0

𝜖
−(𝛼+𝛽)𝑙

2 ∫
R𝑁

(𝑄 (𝑥) − 𝑄 (0)) [𝑈𝜇
(
|𝑥|

𝜖
)]

𝛼+𝛽

𝑑𝑥

= 𝐶∫
R𝑁

(𝑄 (𝑥) − 𝑄 (0)) |𝑥|
−𝑁−(𝛼+𝛽)(𝑙

2
−𝜗)

𝑑𝑥 > 0.

(59)

Hence, (55) holds for 𝜖 sufficiently small.
Part (2), case (i): from (54) it is sufficient to show that

𝜖
−(𝛼+𝛽)𝑙

1 ∫
R𝑁

(𝑄 (𝑥) − 𝑄 (∞)) [𝑈𝜇
(
|𝑥|

𝜖
) 𝑑𝑥]

𝛼+𝛽

≥ 0, (60)

for some 𝜖 > 0. We choose 𝑅
1
> 0 such that 𝑄(𝑥) ≥ 𝑄(∞) +

Λ
2
|𝑥|

−(𝛼+𝛽)(𝜗−𝑙
1
) for all |𝑥| ≥ 𝑅

1
. Then

𝜖
−(𝛼+𝛽)𝑙

1 ∫
|𝑥|≥𝑅

1

(𝑄 (𝑥) − 𝑄 (∞)) [𝑈𝜇
(
|𝑥|

𝜖
)]

𝛼+𝛽

𝑑𝑥

= ∫
|𝑥|≥𝑅

1

𝑄 (𝑥) − 𝑄 (∞)

|𝑥|
(𝛼+𝛽)𝑙

1

[(
|𝑥|

𝜖
)

𝑙
1

𝑈
𝜇
(
|𝑥|

𝜖
)]

𝛼+𝛽

𝑑𝑥

≥ Λ
2
∫
|𝑥|≥𝑅

1

|𝑥|
−𝑁

[(
|𝑥|

𝜖
)

𝑙
1

𝑈
𝜇
(
|𝑥|

𝜖
)]

𝛼+𝛽

𝑑𝑥 󳨀→ +∞,

(61)

as 𝜖 → ∞. Moreover, in view of (𝛼+𝛽)𝑙
1
= 𝑁−(𝛼+𝛽)(𝜗−𝑙

1
)

and (𝛼 + 𝛽)(𝜗 − 𝑙
1
) > 0, we obtain

𝜖
−(𝛼+𝛽)𝑙

1 ∫
|𝑥|≤𝑅

1

(𝑄 (𝑥) − 𝑄 (∞)) [𝑈𝜇
(
|𝑥|

𝜖
)]

𝛼+𝛽

𝑑𝑥

= ∫
|𝑥|≤𝑅

1

𝑄 (𝑥) − 𝑄 (∞)

|𝑥|
(𝛼+𝛽)𝑙

1

[(
|𝑥|

𝜖
)

𝑙
1

𝑈
𝜇
(
|𝑥|

𝜖
)]

𝛼+𝛽

𝑑𝑥

≤ 𝐶∫
|𝑥|≤𝑅

1

|𝑄 (𝑥) − 𝑄 (∞)| |𝑥|
−𝑁+(𝛼+𝛽)(𝜗−𝑙

1
)
𝑑𝑥 ≤ 𝐶

2
,

(62)

for some constant 𝐶
2
> 0 independent of 𝜖 > 0. These two

estimates combined together give (60) for 𝜖 > 0 large.
Part (2), case (ii): we choose 𝑅

2
> 0 such that |𝑄(𝑥) −

𝑄(∞)| ≤ Λ
3
|𝑥|

−𝜄 for all |𝑥| ≥ 𝑅
2
. Since 𝜄 > (𝛼 + 𝛽)(𝜗 − 𝑙

1
) > 0

and (𝛼 + 𝛽)𝑙
1
= 𝑁 − (𝛼 + 𝛽)(𝜗 − 𝑙

1
), we get

∫
R𝑁

|𝑄 (𝑥) − 𝑄 (∞)| |𝑥|
−𝑁+(𝛼+𝛽)(𝜗−𝑙

1
)
𝑑𝑥

≤ Λ
3
∫
|𝑥|≥𝑅

2

|𝑥|
−𝑁−𝜄+(𝛼+𝛽)(𝜗−𝑙

1
)
𝑑𝑥

+ ∫
|𝑥|≤𝑅

2

|𝑄 (𝑥) − 𝑄 (∞)| |𝑥|
−𝑁+(𝛼+𝛽)(𝜗−𝑙

1
)
𝑑𝑥 < ∞.

(63)

Consequently, by (13), (16), (21), and the Lebesgue dominated
convergence theorem, we have

lim
𝜖→∞

𝜖
−(𝛼+𝛽)𝑙

1 ∫
R𝑁

(𝑄 (𝑥) − 𝑄 (∞)) [𝑈𝜇
(
|𝑥|

𝜖
)]

𝛼+𝛽

𝑑𝑥

= lim
𝜖→∞

∫
R𝑁

𝑄 (𝑥) − 𝑄 (∞)

|𝑥|
(𝛼+𝛽)𝑙

1

[(
|𝑥|

𝜖
)

𝑙
1

𝑈
𝜇
(
|𝑥|

𝜖
)]

𝛼+𝛽

𝑑𝑥

= 𝐶∫
R𝑁

(𝑄 (𝑥) − 𝑄 (∞)) |𝑥|
−𝑁+(𝛼+𝛽)(𝜗−𝑙

1
)
𝑑𝑥 > 0,

(64)

and (60) holds for 𝜖 > 0 large. Similarly as above, we know
part (3) holds.

To proveTheorem 3 we need the following version of the
symmetric mountain pass theorem (cf. [31, Theorem 9.12]).

Lemma 12. Let 𝑋 be an infinite dimensional Banach space
and let E ∈ C1

(𝑋,R) be an even functional satisfying (𝑃𝑆)
𝑐

condition for each 𝑐 and E(0) = 0. Furthermore, one supposes
that

(i) there exist constants 𝛼 > 0 and 𝜌 > 0 such thatE(𝑤) ≥

𝛼 for all ‖𝑤‖ = 𝜌;

(ii) there exists an increasing sequence of subspaces {𝑋
𝑚
}

of𝑋, with dim𝑋
𝑚
= 𝑚, such that for every𝑚 one can

find a constant 𝑅
𝑚

> 0 such that E(𝑤) ≤ 0 for all
𝑤 ∈ 𝑋

𝑚
with ‖𝑤‖ ≥ 𝑅

𝑚
.

Then E possesses a sequence of critical values {𝑐
𝑚
} tending to

∞ as𝑚 → ∞.

Proof of Theorem 3. We follow the arguments of [12]. Apply-
ing Lemma 12 with 𝑋 = D

1,𝑝

𝐺
(R𝑁

) × D
1,𝑝

𝐺
(R𝑁

) and (𝑢, V) =
𝑤 ∈ 𝑋, we see from (q.1), (23), and (25) that

E (𝑢, V)≥
1

𝑝
‖(𝑢, V)‖𝑝

𝜇
−

1

𝑝∗
‖𝑄‖∞ (A

(𝛼,𝛽)

𝜇,𝜍
)
−(𝛼+𝛽)/𝑝

‖(𝑢, V)‖𝛼+𝛽
𝜇

.

(65)

Since 𝛼 + 𝛽 = 𝑝
∗

> 𝑝, there exist constants 𝛼 > 0 and
𝜌 > 0 such that E(𝑢, V) ≥ 𝛼 for all (𝑢, V) with ‖(𝑢, V)‖

𝜇
= 𝜌.

To find a suitable sequence of finite dimensional subspaces
of D1,𝑝

𝐺
(R𝑁

) × D
1,𝑝

𝐺
(R𝑁

), we set Ω = {𝑥 ∈ R𝑁
; 𝑄(𝑥) >

0}. Obviously, the set Ω is 𝐺-symmetric and we can define
D

1,𝑝

𝐺
(Ω) × D

1,𝑝

𝐺
(Ω), which is the subspace of 𝐺-symmetric

functions ofD1,𝑝
(Ω)×D1,𝑝

(Ω) (see Section 2). By extending
functions inD1,𝑝

𝐺
(Ω)×D

1,𝑝

𝐺
(Ω) by 0 outsideΩwe can assume

that D1,𝑝

𝐺
(Ω) × D

1,𝑝

𝐺
(Ω) ⊂ D

1,𝑝

𝐺
(R𝑁

) × D
1,𝑝

𝐺
(R𝑁

). Let {𝑋
𝑚
}

be an increasing sequence of subspaces ofD1,𝑝

𝐺
(Ω)×D

1,𝑝

𝐺
(Ω)

with dim𝑋
𝑚

= 𝑚 for each 𝑚. Then we deduce that there
exists a constant 𝜎(𝑚) > 0 such that

∫
Ω

𝑄 (𝑥) (|𝑢̃|
𝑝
∗

+ |Ṽ|𝑝
∗

+ 𝜍𝑢̃|
𝛼
|Ṽ|𝛽) 𝑑𝑥 ≥ 𝜎 (𝑚) , (66)
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for all (𝑢̃, Ṽ) ∈ 𝑋
𝑚
, with ‖(𝑢̃, Ṽ)‖

𝜇
= 1. Consequently, if (𝑢, V) ∈

𝑋
𝑚
\ {(0, 0)} then we write (𝑢, V) = 𝑡(𝑢̃, Ṽ), with 𝑡 = ‖(𝑢, V)‖

𝜇

and ‖(𝑢̃, Ṽ)‖
𝜇
= 1. Hence we obtain

E (𝑢, V) =
1

𝑝
𝑡
𝑝
−

1

𝑝∗
𝑡
𝑝
∗

∫
Ω

𝑄 (𝑥) (|𝑢̃|
𝑝
∗

+|Ṽ|𝑝
∗

+𝜍|𝑢̃|
𝛼
|Ṽ|𝛽) 𝑑𝑥

≤
1

𝑝
𝑡
𝑝
−
𝜎 (𝑚)

𝑝∗
𝑡
𝑝
∗

≤ 0,

(67)

for 𝑡 large enough. Therefore we conclude from Lemma 12
and Corollary 11 that there exists a sequence of critical values
𝑐
𝑚

→ ∞ and the results follow.

Proof of Corollary 4. Since𝑄(𝑥) is radially symmetric, that is,
𝑄(𝑥) = 𝑄(|𝑥|), we easily see that the corresponding group
𝐺 = 𝑂(N) and |𝐺| = +∞. According to Corollary 11, E
satisfies the (𝑃𝑆)

𝑐
condition for every 𝑐 ∈ R. Hence, by

applying the proof of Theorem 3 the conclusion follows.

4. Multiplicity Results for Problem (P
𝑄̃

𝜆
)

Throughout this section we assume that 𝜆 > 0 and 𝑄(𝑥) ≡

𝑄 > 0 is a constant. Since we are interested in positive 𝐺-
symmetric solutions of problem (P

𝑄̃

𝜆
), we define a functional

F
𝜆
: D

1,𝑝

𝐺
(R𝑁

) ×D
1,𝑝

𝐺
(R𝑁

) → R given by

F
𝜆 (𝑢, V) =

1

𝑝
‖(𝑢, V)‖𝑝

𝜇

−
𝑄

𝑝∗
∫
R𝑁

(
󵄨󵄨󵄨󵄨𝑢

+󵄨󵄨󵄨󵄨

𝑝
∗

+
󵄨󵄨󵄨󵄨V

+󵄨󵄨󵄨󵄨

𝑝
∗

+ 𝜍
󵄨󵄨󵄨󵄨𝑢

+󵄨󵄨󵄨󵄨

𝛼 󵄨󵄨󵄨󵄨V
+󵄨󵄨󵄨󵄨

𝛽

) 𝑑𝑥

−
𝜆

𝑞
∫
R𝑁

(ℎ
1 (𝑥) |𝑢

+
|
𝑞

+ ℎ
2 (𝑥)) |V

+
|
𝑞

𝑑𝑥,

(68)

where 1 < 𝑞 < 𝑝 < 𝑁, 𝑢+ = max{0, 𝑢} and V+ = max{0, V}.
By (h.1), (h.2), and the Hölder inequality, we easily see that
F

𝜆
∈ C1

(D
1,𝑝

𝐺
(R𝑁

) × D
1,𝑝

𝐺
(R𝑁

),R) and there exists a one-
to-one correspondence between the weak solutions of (P𝑄̃

𝜆
)

and the critical points of F
𝜆
. Furthermore, an analogously

symmetric principle of Lemma 7 clearly holds; hence, the
weak solutions of problem (P

𝑄̃

𝜆
) are exactly the critical points

of the functionalF
𝜆
.

Lemma 13. Suppose that (h.1) and (h.2) hold.Then there exists
a positive constant 𝑀 depending on 𝑁, 𝑝, 𝑞, A

𝜇
, ‖ℎ

1
‖
𝜃
, and

‖ℎ
2
‖
𝜃
, such that any bounded sequence {(𝑢

𝑛
, V

𝑛
)} ⊂ D

1,𝑝

𝐺
(R𝑁

)×

D
1,𝑝

𝐺
(R𝑁

), satisfying

F
𝜆
(𝑢

𝑛
, VV) 󳨀→ 𝑐 <

1

𝑁
𝑄

(𝑝−𝑁)/𝑝
(A

(𝛼,𝛽)

𝜇,𝜍
)
𝑁/𝑝

−𝑀𝜆
𝑝/(𝑝−𝑞)

,

F
󸀠

𝜆
(𝑢

𝑛
, VV) 󳨀→ 0 (𝑛 󳨀→ ∞) ,

(69)

contains a convergent subsequence.

Proof. Since {(𝑢
𝑛
, V

𝑛
)} is bounded in D

1,𝑝

𝐺
(R𝑁

) × D
1,𝑝

𝐺
(R𝑁

),
we can obtain a subsequence, still denoted by {(𝑢

𝑛
, V

𝑛
)},

satisfying

𝑢
𝑛
⇀ 𝑢, V

𝑛
⇀ V, in D

1,𝑝

𝐺
(R

𝑁
) ,

𝑢
𝑛
󳨀→ 𝑢, V

𝑛
󳨀→ V, a.e. in R

𝑁
,

∇𝑢
𝑛
󳨀→ ∇𝑢, ∇V

𝑛
󳨀→ ∇V, a.e. in R

𝑁
.

(70)

Moreover, using (h.2) and the Hölder inequality and the
Lebesgue dominated theorem, we may also assume

∫
R𝑁

ℎ
1 (𝑥) |𝑢

+

𝑛
|
𝑞

𝑑𝑥 󳨀→ ∫
R𝑁

ℎ
1 (𝑥) |𝑢

+
|
𝑞

𝑑𝑥,

∫
R𝑁

ℎ
2 (𝑥)

󵄨󵄨󵄨󵄨V
+

𝑛

󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥 󳨀→ ∫
R𝑁

ℎ
2 (𝑥)

󵄨󵄨󵄨󵄨V
+󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥,

(71)

as 𝑛 → ∞. By (71) and the standard argument, we easily
show that (𝑢, V) is a critical point of F

𝜆
. Consequently, we

deduce from (68), (9), (h.2), the Hölder inequality, and the
fact that 1 < 𝑞 < 𝑝 < 𝑝

∗ that

F
𝜆 (𝑢, V) =

1

𝑁

󵄩󵄩󵄩󵄩(𝑢𝑛, V𝑛)
󵄩󵄩󵄩󵄩

𝑝

𝜇
− (

1

𝑞
−

1

𝑝∗
)𝜆

× ∫
R𝑁

(ℎ
1 (𝑥) |𝑢

+
|
𝑞

+ ℎ
2 (𝑥) |V

+
|
𝑞

) 𝑑𝑥

≥
1

𝑁
‖(𝑢, V)‖𝑝

𝜇
−
𝑝
∗
− 𝑞

𝑞𝑝∗
A

−𝑞/𝑝

𝜇
𝜆

× (
󵄩󵄩󵄩󵄩ℎ1

󵄩󵄩󵄩󵄩𝜃 ‖
𝑢‖

𝑞

𝜇
+
󵄩󵄩󵄩󵄩ℎ2

󵄩󵄩󵄩󵄩𝜃 ‖
V‖𝑞

𝜇
)

≥
1

𝑁
(‖𝑢‖

𝑝

𝜇
+ ‖V‖𝑝

𝜇
) −

𝑝
∗
− 𝑞

𝑞𝑝∗
A

−𝑞/𝑝

𝜇
𝜆

×max {󵄩󵄩󵄩󵄩ℎ1
󵄩󵄩󵄩󵄩𝜃
,
󵄩󵄩󵄩󵄩ℎ2

󵄩󵄩󵄩󵄩𝜃
} (‖𝑢‖

𝑞

𝜇
+ ‖V‖𝑞

𝜇
)

≥ −
2 (𝑝 − 𝑞)

𝑝
(
𝑞𝑁

𝑝
)

𝑞/(𝑝−𝑞)

×[
𝑝
∗
− 𝑞

𝑞𝑝∗
A

−𝑞/𝑝

𝜇
max {󵄩󵄩󵄩󵄩ℎ1

󵄩󵄩󵄩󵄩𝜃
,
󵄩󵄩󵄩󵄩ℎ2

󵄩󵄩󵄩󵄩𝜃
}]

𝑝/(𝑝−𝑞)

× 𝜆
𝑝/(𝑝−𝑞)

≜ −𝑀𝜆
𝑝/(𝑝−𝑞)

,

(72)

where 𝑀 = (2(𝑝 − 𝑞)/𝑝)(𝑞𝑁/𝑝)
𝑞/(𝑝−𝑞)

[((𝑝
∗

− 𝑞)/

𝑞𝑝
∗
)A−𝑞/𝑝

𝜇
max{‖ℎ

1
‖
𝜃
, ‖ℎ

2
‖
𝜃
}]
𝑝/(𝑝−𝑞)

) is a positive constant.



Abstract and Applied Analysis 11

Now we set 𝑢
𝑛
= 𝑢

𝑛
− 𝑢 and V

𝑛
= V

𝑛
− V. Then by the Brezis-

Lieb lemma [32] and arguing as in [33, Lemma 2.1] we get

󵄩󵄩󵄩󵄩(𝑢𝑛, V𝑛)
󵄩󵄩󵄩󵄩

𝑝

𝜇
=

󵄩󵄩󵄩󵄩(𝑢𝑛, V𝑛)
󵄩󵄩󵄩󵄩

𝑝

𝜇
− ‖(𝑢, V)‖𝑝

𝜇
+ 𝑜

𝑛 (1) ,

∫
R𝑁

|𝑢
+

𝑛
|
𝑝
∗

𝑑𝑥 = ∫
R𝑁

|𝑢
+

𝑛
|
𝑝
∗

𝑑𝑥 − ∫
R𝑁

|𝑢
+
|
𝑝
∗

𝑑𝑥 + 𝑜
𝑛 (1) ,

∫
R𝑁

|V+
𝑛
|
𝑝
∗

𝑑𝑥 = ∫
R𝑁

|V+
𝑛
|
𝑝
∗

𝑑𝑥 − ∫
R𝑁

|V+|𝑝
∗

𝑑𝑥 + 𝑜
𝑛 (1) ,

∫
R𝑁

󵄨󵄨󵄨󵄨𝑢
+

𝑛

󵄨󵄨󵄨󵄨

𝛼 󵄨󵄨󵄨󵄨V
+

𝑛

󵄨󵄨󵄨󵄨

𝛽

𝑑𝑥 = ∫
R𝑁

|𝑢
+

𝑛
|
𝛼

|V+
𝑛
|
𝛽

𝑑𝑥

− ∫
R𝑁

|𝑢
+
|
𝛼

|V+|𝛽𝑑𝑥 + 𝑜
𝑛 (1) .

(73)

Since F
𝜆
(𝑢

𝑛
, V

𝑛
) = 𝑐 + 𝑜

𝑛
(1) and F󸀠

𝜆
(𝑢

𝑛
, V

𝑛
) = 𝑜

𝑛
(1), we

obtain from (68), (71), and (73) that

1

𝑝

󵄩󵄩󵄩󵄩(𝑢𝑛, V𝑛)
󵄩󵄩󵄩󵄩

𝑝

𝜇
−

𝑄

𝑝∗
∫
R𝑁

(
󵄨󵄨󵄨󵄨𝑢

+

𝑛

󵄨󵄨󵄨󵄨

𝑝
∗

+
󵄨󵄨󵄨󵄨V

+

𝑛

󵄨󵄨󵄨󵄨

𝑝
∗

+ 𝜍
󵄨󵄨󵄨󵄨𝑢

+

𝑛

󵄨󵄨󵄨󵄨

𝛼 󵄨󵄨󵄨󵄨V
+

𝑛

󵄨󵄨󵄨󵄨

𝛽

) 𝑑𝑥

= 𝑐 −F
𝜆 (𝑢, V) + 𝑜

𝑛 (1) ,

󵄩󵄩󵄩󵄩(𝑢𝑛, V𝑛)
󵄩󵄩󵄩󵄩

𝑝

𝜇
− 𝑄∫

R𝑁
(
󵄨󵄨󵄨󵄨𝑢

+

𝑛

󵄨󵄨󵄨󵄨

𝑝
∗

+
󵄨󵄨󵄨󵄨V

+

𝑛

󵄨󵄨󵄨󵄨

𝑝
∗

+ 𝜍
󵄨󵄨󵄨󵄨𝑢

+

𝑛

󵄨󵄨󵄨󵄨

𝛼 󵄨󵄨󵄨󵄨V
+

𝑛

󵄨󵄨󵄨󵄨

𝛽

) 𝑑𝑥

= 𝑜
𝑛 (1) .

(74)

Hence, for a subsequence {(𝑢
𝑛
, V

𝑛
)}, we have

󵄩󵄩󵄩󵄩(𝑢𝑛, V𝑛)
󵄩󵄩󵄩󵄩

𝑝

𝜇
󳨀→ 𝑘 ≥ 0,

𝑄∫
R𝑁

(
󵄨󵄨󵄨󵄨𝑢

+

𝑛

󵄨󵄨󵄨󵄨

𝑝
∗

+
󵄨󵄨󵄨󵄨V

+

𝑛

󵄨󵄨󵄨󵄨

𝑝
∗

+ 𝜍
󵄨󵄨󵄨󵄨𝑢

+

𝑛
|
𝛼󵄨󵄨󵄨󵄨 V

+

𝑛
|
𝛽
) 𝑑𝑥 󳨀→ 𝑘,

(75)

as 𝑛 → ∞. From the definition (25) of A(𝛼,𝛽)

𝜇,𝜍
it follows

that A(𝛼,𝛽)

𝜇,𝜍
(𝑘/𝑄)

𝑝/(𝛼+𝛽)
≤ 𝑘, which implies either 𝑘 = 0

or 𝑘 ≥ 𝑄
(𝑝−𝑁)/𝑝

(A(𝛼,𝛽)

𝜇,𝜍
)
𝑁/𝑝. If 𝑘 ≥ 𝑄

(𝑝−𝑁)/𝑝
(A(𝛼,𝛽)

𝜇,𝜍
)
𝑁/𝑝, we

obtain from (72) and (74) that

𝑐 = F
𝜆 (𝑢, V) + (

1

𝑝
−

1

𝑝∗
)𝑘 ≥

1

𝑁
𝑄

(𝑝−𝑁)/𝑝
(A

(𝛼,𝛽)

𝜇,𝜍
)
𝑁/𝑝

−𝑀𝜆
𝑝/(𝑝−𝑞)

,

(76)

which contradicts (69). Consequently, we have ‖(𝑢
𝑛
, V

𝑛
)‖

𝑝

𝜇
→

0 as 𝑛 → ∞, and, thus, (𝑢
𝑛
, V

𝑛
) → (𝑢, V) in D

1,𝑝

𝐺
(R𝑁

) ×

D
1,𝑝

𝐺
(R𝑁

). The lemma is proved.

Lemma 14. Suppose that (h.1) and (h.2) hold.Then there exists
𝜆
∗

1
> 0 such that for any 𝜆 ∈ (0, 𝜆

∗

1
) the following geometric

conditions forF
𝜆
(𝑢, V) hold:

(i) F
𝜆
(0, 0) = 0; there exist 𝛼̃ > 0 and 𝜌 > 0 such that

F
𝜆
(𝑢, V) ≥ 𝛼̃ for all ‖(𝑢, V)‖

𝜇
= 𝜌;

(ii) there exists (𝑒
𝑢
, 𝑒V) ∈ D

1,𝑝

𝐺
(R𝑁

) ×D
1,𝑝

𝐺
(R𝑁

) such that
‖(𝑒

𝑢
, 𝑒V)‖𝜇 > 𝜌 andF

𝜆
(𝑒

𝑢
, 𝑒V) < 0.

Proof. According to (h.1) and (h.2), for all 0 < 𝜎 < 1/𝑝,
we deduce from (9), (25), (68), the Young inequality, and the
Hölder inequality that

F
𝜆 (𝑢, V) ≥

1

𝑝
‖(𝑢, V)‖𝑝

𝜇
−

1

𝑝∗
𝑄(A

(𝛼,𝛽)

𝜇,𝜍
)
−(𝛼+𝛽)/𝑝

‖(𝑢, V)‖𝛼+𝛽
𝜇

−
𝜆

𝑞
A

−𝑞/𝑝

𝜇
max {󵄩󵄩󵄩󵄩ℎ1

󵄩󵄩󵄩󵄩𝜃
,
󵄩󵄩󵄩󵄩ℎ2

󵄩󵄩󵄩󵄩𝜃
} (‖𝑢‖

𝑞

𝜇
+ ‖V‖𝑞

𝜇
)

≥
1

𝑝
‖(𝑢, V)‖𝑝

𝜇
−

1

𝑝∗
𝑄(A

(𝛼,𝛽)

𝜇,𝜍
)
−(𝛼+𝛽)/𝑝

× ‖(𝑢, V)‖𝛼+𝛽
𝜇

− 𝐶𝜆 ‖(𝑢, V)‖𝑞
𝜇

≥ (
1

𝑝
− 𝜎) ‖(𝑢, V)‖𝑝

𝜇
−

1

𝑝∗
𝑄(A

(𝛼,𝛽)

𝜇,𝜍
)
−(𝛼+𝛽)/𝑝

× ‖(𝑢, V)‖𝛼+𝛽
𝜇

− 𝐶 (𝜎) 𝜆
𝑝/(𝑝−𝑞)

,

(77)

where 𝐶(𝜎) > 0 is a constant depending on 𝜎 > 0. The last
inequality and the fact 𝛼 + 𝛽 = 𝑝

∗
> 𝑝 imply that, for small

𝜎, there exist constants 𝛼̃ > 0, 𝜌 > 0, and 𝜆
∗

1
> 0 such that

F
𝜆
(𝑢, V) ≥ 𝛼̃ > 0 for all ‖(𝑢, V)‖

𝜇
= 𝜌 and 0 < 𝜆 < 𝜆

∗

1
.

On the other hand, since ∫
R𝑁

(ℎ
1
(𝑥)|𝑢

+
|
𝑞
+ℎ

2
(𝑥)|V+|𝑞)𝑑𝑥 ≥ 0,

we conclude from (68) that there exists (𝑢̃, Ṽ) ∈ D
1,𝑝

𝐺
(R𝑁

) ×

D
1,𝑝

𝐺
(R𝑁

) \ {(0, 0)} such thatF
𝜆
(𝑡𝑢̃, 𝑡Ṽ) → −∞ as 𝑡 → +∞,

which completes this proof.

Lemma 15. Suppose that (h.1) and (h.2) hold.Then there exists
𝜆
∗

2
> 0 such that

sup
𝑡≥0

F
𝜆
(𝑡𝑦

𝜖
, 𝑡𝜏min𝑦𝜖) <

1

𝑁
𝑄

(𝑝−𝑁)/𝑝
(A

(𝛼,𝛽)

𝜇,𝜍
)
𝑁/𝑝

−𝑀𝜆
𝑝/(𝑝−𝑞)

(78)

for any 𝜆 ∈ (0, 𝜆
∗

2
) and small 𝜖 > 0, where 𝜏min > 0 satisfies

(26)–(28) and𝑀 > 0 is given in Lemma 13.

Proof. First, we define the functions

Ψ (𝑡) = F
𝜆
(𝑡𝑦

𝜖
, 𝑡𝜏min𝑦𝜖) =

𝑡
𝑝

𝑝
(1 + 𝜏

𝑝

min)

× ∫
R𝑁

(|∇𝑦
𝜖
|
𝑝
− 𝜇

|𝑦
𝜖
|
𝑝

|𝑥|
𝑝
)𝑑𝑥

−
𝑄𝑡

𝑝
∗

𝑝∗
(1 + 𝜍𝜏

𝛽

min + 𝜏
𝛼+𝛽

min )∫
R𝑁

|𝑦
𝜖
|
𝑝
∗

𝑑𝑥

−
𝜆𝑡

𝑞

𝑞
∫
R𝑁

(ℎ
1 (𝑥) + 𝜏

𝑞

minℎ2 (𝑥))
󵄨󵄨󵄨󵄨𝑦𝜖

󵄨󵄨󵄨󵄨

𝑞
𝑑𝑥,

(79)
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Ψ̃ (𝑡) =
𝑡
𝑝

𝑝
(1 + 𝜏

𝑝

min)∫
R𝑁

(
󵄨󵄨󵄨󵄨∇𝑦𝜖

󵄨󵄨󵄨󵄨

𝑝
− 𝜇

󵄨󵄨󵄨󵄨𝑦𝜖
󵄨󵄨󵄨󵄨

𝑝

|𝑥|
𝑝
)𝑑𝑥

−
𝑄𝑡

𝑝
∗

𝑝∗
(1 + 𝜍𝜏

𝛽

min + 𝜏
𝛼+𝛽

min ) ∫
R𝑁

󵄨󵄨󵄨󵄨𝑦𝜖
󵄨󵄨󵄨󵄨

𝑝
∗

𝑑𝑥,

(80)

with 𝑡 ≥ 0. Note that Ψ̃(0) = 0, Ψ̃(𝑡) > 0 for 𝑡 → 0
+, and

lim
𝑡→+∞

Ψ̃(𝑡) = −∞. Hence sup
𝑡≥0

Ψ̃(𝑡) can be achieved at
some finite 𝑡̃

𝜖
> 0 at which Ψ̃

󸀠
(𝑡) becomes zero. By direct

calculation, we obtain from (11), (12), (26), (27), (80), and
Lemma 8 that

sup
𝑡≥0

Ψ̃ (𝑡)

= Ψ̃ (𝑡̃
𝜖
) =

1

𝑁

×
{

{

{

(1+𝜏
𝑝

min) ∫R𝑁 (
󵄨󵄨󵄨󵄨∇𝑦𝜖

󵄨󵄨󵄨󵄨

𝑝
−𝜇 (|𝑦

𝜖
|
𝑝
/|𝑥|

𝑝
)) 𝑑𝑥

(𝑄(1+𝜍𝜏
𝛽

min+𝜏
𝛼+𝛽

min ) ∫R𝑁 |𝑦𝜖|
𝑝
∗

𝑑𝑥)
𝑝/𝑝
∗

}

}

}

𝑝
∗

/(𝑝
∗

−𝑝)

=
1

𝑁
𝑄

(𝑝−𝑁)/𝑝
(𝐾 (𝜏min)A𝜇

)
𝑁/𝑝

=
1

𝑁
𝑄

(𝑝−𝑁)/𝑝
(A

(𝛼,𝛽)

𝜇,𝜍
)
𝑁/𝑝

.

(81)

Let Λ > 0 be such that (1/𝑁)𝑄
(𝑝−𝑁)/𝑝

(A(𝛼,𝛽)

𝜇,𝜍
)
𝑁/𝑝

−

𝑀𝜆
𝑝/(𝑝−𝑞)

> 0, ∀𝜆 ∈ (0, Λ). Then from (h.1), (h.2), (11), and
(79), we have

Ψ (𝑡) = F
𝜆
(𝑡𝑦

𝜖
, 𝑡𝜏min𝑦𝜖) ≤

𝑡
𝑝

𝑝
(1 + 𝜏

𝑝

min) , ∀𝑡 ≥ 0, 𝜆 > 0,

(82)

and there exists 𝑇
0
∈ (0, 1) independent of 𝜖 such that

sup
0≤𝑡≤𝑇

0

Ψ (𝑡) ≤
𝑇
𝑝

0

𝑝
(1 + 𝜏

𝑝

min) <
1

𝑁
𝑄

(𝑝−𝑁)/𝑝
(A

(𝛼,𝛽)

𝜇,𝜍
)
𝑁/𝑝

−𝑀𝜆
𝑝/(𝑝−𝑞)

, ∀𝜆 ∈ (0, Λ) .

(83)

Moreover, we obtain from (79)–(81) that

sup
𝑡≥𝑇
0

Ψ (𝑡) ≤ sup
𝑡≥0

Ψ̃ (𝑡)

−
𝜆

𝑞
𝑇
𝑞

0
∫
R𝑁

(ℎ
1 (𝑥) + 𝜏

𝑞

minℎ2 (𝑥)) |𝑦𝜖|
𝑞
𝑑𝑥

=
1

𝑁
𝑄

(𝑝−𝑁)/𝑝
(A

(𝛼,𝛽)

𝜇,𝜍
)
𝑁/𝑝

−
𝜆

𝑞
𝑇
𝑞

0
∫
R𝑁

(ℎ
1 (𝑥) + 𝜏

𝑞

minℎ2 (𝑥)) |𝑦𝜖|
𝑞
𝑑𝑥.

(84)

Now, taking 𝜆 > 0 such that

−
𝜆

𝑞
𝑇
𝑞

0
∫
R𝑁

(ℎ
1 (𝑥) + 𝜏

𝑞

minℎ2 (𝑥)) |𝑦𝜖|
𝑞
𝑑𝑥 < −𝑀𝜆

𝑝/(𝑝−𝑞)
,

(85)

that is,

0 < 𝜆 < (
𝑇
𝑞

0

𝑞𝑀
∫
R𝑁

(ℎ
1 (𝑥) + 𝜏

𝑞

minℎ2 (𝑥))
󵄨󵄨󵄨󵄨𝑦𝜖

󵄨󵄨󵄨󵄨

𝑞
𝑑𝑥)

(𝑝−𝑞)/𝑝

≜Λ̃,

(86)

we have

sup
𝑡≥𝑇
0

Ψ (𝑡)<
1

𝑁
𝑄

(𝑝−𝑁)/𝑝
(A

(𝛼,𝛽)

𝜇,𝜍
)
𝑁/𝑝

−𝑀𝜆
𝑝/(𝑝−𝑞)

, ∀𝜆∈(0, Λ̃).

(87)

Choosing 𝜆∗
2
= min{Λ, Λ̃}, we deduce from (83) and (87) that

sup
𝑡≥0

Ψ (𝑡) <
1

𝑁
𝑄

(𝑝−𝑁)/𝑝
(A

(𝛼,𝛽)

𝜇,𝜍
)
𝑁/𝑝

−𝑀𝜆
𝑝/(𝑝−𝑞)

,

∀𝜆 ∈ (0, 𝜆
∗

2
) .

(88)

Therefore the result of this lemma follows.

Proof of Theorem 5. Taking 𝜌 > 0 and 𝜆
∗
= min{𝜆∗

1
, 𝜆

∗

2
}, for

0 < 𝜆 < 𝜆
∗, given in the proofs of Lemmas 14 and 15, we

define

𝑐
1
≜ inf

𝐵
𝜌
(0)

F
𝜆 (𝑢, V) , (89)

where 𝐵
𝜌
(0) = {(𝑢, V) ∈ D

1,𝑝

𝐺
(R𝑁

) × D
1,𝑝

𝐺
(R𝑁

); ‖(𝑢, V)‖
𝜇
≤

𝜌}. Since the metric space 𝐵
𝜌
(0) is complete, we deduce

from the Ekeland variational principle [34] that there exists
a sequence {(𝑢

𝑛
, V

𝑛
)} ⊂ 𝐵

𝜌
(0) such that F

𝜆
(𝑢

𝑛
, V

𝑛
) → 𝑐

1

and F󸀠

𝜆
(𝑢

𝑛
, V

𝑛
) → 0 as 𝑛 → ∞. Let 𝜑

0
, 𝜓

0
∈ C∞

0
(R𝑁

) be
the 𝐺-symmetric functions such that 𝜑

0
, 𝜓

0
> 0. By (h.1) and

(h.2), we have ∫
R𝑁

(ℎ
1
(𝑥)𝜑

𝑞

0
+ℎ

2
(𝑥)𝜓

𝑞

0
)𝑑𝑥 > 0.This, combined

with the fact that 1 < 𝑞 < 𝑝 < 𝑝
∗, implies that there exists

𝑡
0
= 𝑡

0
(𝜑

0
, 𝜓

0
) > 0 sufficiently small such that

F
𝜆
(𝑡

0
𝜑
0
, 𝑡

0
𝜓
0
) =

𝑡
𝑝

0

𝑝

󵄩󵄩󵄩󵄩(𝜑0, 𝜓0
)
󵄩󵄩󵄩󵄩

𝑝

𝜇

−
𝑄

𝑝∗
𝑡
𝑝
∗

0
∫
R𝑁

(𝜑
𝑝
∗

0
+ 𝜓

𝑝
∗

0
+ 𝜍𝜑

𝛼

0
𝜓
𝛽

0
) 𝑑𝑥

−
𝜆

𝑞
𝑡
𝑞

0
∫
R𝑁

(ℎ
1 (𝑥) 𝜑

𝑞

0
+ ℎ

2 (𝑥) 𝜓
𝑞

0
) 𝑑𝑥 < 0.

(90)

Therefore we obtain 𝑐
1
< 0 < (1/𝑁)𝑄

(𝑝−𝑁)/𝑝
(A(𝛼,𝛽)

𝜇,𝜍
)
𝑁/𝑝

−

𝑀𝜆
𝑝/(𝑝−𝑞) for any 𝜆 ∈ (0, 𝜆

∗
). By Lemma 13, F

𝜆
possesses

a critical point (𝑢
1
, V

1
) with F

𝜆
(𝑢

1
, V

1
) = 𝑐

1
< 0. Taking

(𝑢
−

1
, V−

1
) as a pair of test functions, where 𝑢

−

1
= min{0, 𝑢

1
}

and V−
1

= min{0, V
1
}, we deduce from (68) that 0 =

⟨F󸀠

𝜆
(𝑢

1
, V

1
), (𝑢

−

1
, V−

1
)⟩ = ‖(𝑢

−

1
, V−

1
)‖

𝑝

𝜇
, which implies 𝑢

1
≥ 0

and V
1
≥ 0 in R𝑁. Consequently, by the strong maximum

principle and the symmetric criticality principle, we conclude
that (𝑢

1
, V

1
) is a positive 𝐺-symmetric solution of problem

(P
𝑄̃

𝜆
).
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On the other hand, we define

𝑐
2
≜ inf

𝛾∈Γ

max
𝑡∈[0,1]

F
𝜆
(𝛾 (𝑡)) , (91)

where Γ = {𝛾 ∈ C([0, 1],D
1,𝑝

𝐺
(R𝑁

) × D
1,𝑝

𝐺
(R𝑁

)); 𝛾(0) =

(0, 0), 𝛾(1) = (𝑒
𝑢
, 𝑒V)}. It follows from Lemmas 14 and 15 that

0 < 𝛼̃ ≤ 𝑐
2
<

1

𝑁
𝑄

(𝑝−𝑁)/𝑝
(A

(𝛼,𝛽)

𝜇,𝜍
)
𝑁/𝑝

−𝑀𝜆
𝑝/(𝑝−𝑞)

,

∀𝜆 ∈ (0, 𝜆
∗
) .

(92)

Hence 𝑐
2
is a critical value of F

𝜆
by the mountain pass

theorem. Similar to the arguments above, problem (P
𝑄̃

𝜆
)

admits another positive 𝐺-symmetric solution (𝑢
2
, V

2
) with

F
𝜆
(𝑢

2
, V

2
) = 𝑐

2
> 0.
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