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We have studied the periodicity of solutions of some nonlinear time-varying differential models by using the theory of reflecting
functions. We have established a new relationship between the linear differential system and the Riccati equations and applied the
obtained results to discuss the behavior of periodic solutions of the Riccati equations.

1. Introduction

From the book [1] we know that a lot of biological models can
be expressed by the following differential system:

𝑥
󸀠
= 𝑃 (𝑡, 𝑥) ,

𝑦
󸀠
= 𝑞
0
(𝑡, 𝑥) + 𝑞

1
(𝑡, 𝑥) 𝑦 + 𝑞

2
(𝑡, 𝑥) 𝑦

2
= 𝑄 (𝑡, 𝑥, 𝑦)

(1)

which has a continuous differentiable right-hand side, and
have an unique solution for their initial value problem.

Because of this nonlinear and time-varying differential
system, to discuss its qualitative behavior is very difficult.
Now, we use the method of reflecting function [2, 3] to study
the property of solutions of (1) and got some good results.

In the present section, we introduce the concept of the
reflecting function, which will be used throughout the rest of
this paper.

Consider differential system

𝑥
󸀠
= 𝑋 (𝑡, 𝑥) , 𝑡 ∈ 𝑅, 𝑥 ∈ 𝑅

𝑛
, (2)

which has a continuous differentiable right-hand side, with
a general solution 𝜑(𝑡; 𝑡

0
, 𝑥
0
). For each such system, the

reflecting function [2, 3] is defined as 𝐹(𝑡, 𝑥) := 𝜑(−𝑡, 𝑡, 𝑥).
Therefore, for any solution 𝑥(𝑡) of (2), we have 𝐹(𝑡, 𝑥(𝑡)) =

𝑥(−𝑡).
If system (2) is 2𝜔-periodic with respect to 𝑡, then

𝑇(𝑥) := 𝐹(−𝜔, 𝑥) = 𝜑(𝜔; −𝜔, 𝑥) is the Poincaré mapping

of (2) over the period [−𝜔, 𝜔]. Thus, the solution 𝑥 =

𝜑(𝑡; −𝜔, 𝑥
0
) of (2) defined on [−𝜔, 𝜔] is 2𝜔-periodic if and

only if 𝑥
0
is a fixed point of 𝑇(𝑥). The stability of this

periodic solution is equivalent to the stability of the fixed
point 𝑥

0
.

A differentiable function 𝐹(𝑡, 𝑥) is a reflecting function
of system (2) if and only if it is a solution of the Cauchy
problem

𝐹
󸀠

𝑡
+ 𝐹
󸀠

𝑥
𝑋(𝑡, 𝑥) + 𝑋 (−𝑡, 𝐹) = 0, 𝐹 (0, 𝑥) = 𝑥. (3)

If the reflecting function of (2) has the form of 𝐹(𝑡, 𝑥) =
𝐹(𝑡)𝑥, then the matrix 𝐹(𝑡) is called reflecting matrix. Thus,
this matrix is a reflecting matrix of linear system 𝑥

󸀠
= 𝐴(𝑡)𝑥,

if and only if

𝐹
󸀠

(𝑡) + 𝐹 (𝑡) 𝐴 (𝑡) + 𝐴 (−𝑡) 𝐹 (𝑡) = 0, 𝐹 (0) = 𝐸. (4)

There are many papers which are devoted to investi-
gations of qualitative behavior of solutions of differential
systems by help of reflecting functions. V. I. Mironenko and
V. V. Mironenko [2–6] combined the theory of reflecting
function with the integral manifold to discuss the symmetry
and other geometric properties of solutions of (2), and
obtained a lot of excellent new conclusions. Alisevich [7]
has discussed when a linear system has triangular reflecting
function. Musafirov [8] has studied when a linear system
has reflecting function which can be expressed as a product
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of three-exponential matrix. Veresovich [9] has researched
when the nonautonomous two-dimensional quadric systems
are equivalent to a linear system.Maı̆orovskaya [10] has estab-
lished the sufficient conditions under which the quadratic
systems have linear reflecting function. Zhou [11–13] has
discussed the structure of reflecting function of quadratic
systems and applied the obtained conclusions to study the
qualitative behavior of solutions of such differential systems.

In this paper we will discuss when the system (1) has the
reflecting function in the form of

𝐹 (𝑡, 𝑥, 𝑦) = (𝐹
1
, 𝐹
2
)
𝑇

= (𝑥,

𝛽(𝑡, 𝑥) + 𝜍(𝑡, 𝑥)𝑦

𝛾(𝑡, 𝑥) + 𝛼(𝑡, 𝑥)𝑦

)

𝑇

, (5)

where 𝛼(𝑡, 𝑥), 𝛽(𝑡, 𝑥), 𝛾(𝑡, 𝑥), and 𝜍(𝑡, 𝑥) are continuously
differentiable functions in 𝑅

2. We will give the sufficient
conditions for system (1) which has reflecting function of the
form (5). We establish the relationship between the Riccati
equation

𝑑𝑦

𝑑𝑡

= 𝑎
0
(𝑡) + 𝑎

1
(𝑡) 𝑦 + 𝑎

2
(𝑡) 𝑦
2 (6)

and linear system

𝑑𝑧

𝑑𝑡

= (

−

1

2

𝑎
1
(𝑡) −𝑎

2
(𝑡)

𝑎
0
(𝑡)

1

2

𝑎
1
(𝑡)

)𝑧. (7)

We apply the obtained conclusions to study the behavior of
solutions of system (1) and the above Riccati equations.

In the following, we will denote 𝑎 = 𝑎(𝑡, 𝑥), 𝑎 = 𝑎(−𝑡, 𝑥),
𝐹 = 𝐹(𝑡, 𝑥, 𝑦), and so forth.

2. Main Results

Lemma 1. If the function (5) is the reflecting function of any
system, then for small |𝑡|, it can be written in the form 𝐹

2
=

(
̂
𝛽 + 𝛾𝑒

𝛿
𝑦)/(𝛾𝑒

−𝛿
+ 𝛼̂𝑦), in which

𝛼̂ + 𝛼̂ = 0,
̂
𝛽 +

̂
𝛽 = 0, 𝛿 + 𝛿 = 0. (8)

Proof. As the function (5) is a reflecting function, so
𝐹
2
(−𝑡, 𝐹
1
, 𝐹
2
) = 𝑦, 𝐹

2
(0, 𝑥, 𝑦) = 𝑦; that is,

𝑦 (𝛾𝛾 + 𝛼𝛽 + (𝛼𝛾 + 𝛼𝜍) 𝑦) = 𝛾𝛽 + 𝛽𝜍 + (𝛼𝛽 + 𝜍𝜍) 𝑦. (9)

Equating the coefficients of the same power of 𝑦, we get

𝛽𝛾 + 𝛽𝜍 = 0; (10)

𝛾𝛾 + 𝛼𝛽 = 𝛼𝛽 + 𝜍𝜍; (11)

𝛼𝛾 + 𝛼𝜍 = 0, (12)

𝛼 (0, 𝑥) = 𝛽 (0, 𝑥) = 0, 𝛾 (0, 𝑥) = 𝜍 (0, 𝑥) = 1. (13)

The relation (11) implies that

𝛾𝛾 = 𝜍𝜍, 𝛼𝛽 = 𝛽𝛼. (14)

Thus,

𝛾 = 𝜍𝑒
2𝛿
, 𝛿 + 𝛿 = 0. (15)

Substituting it into (10) and (12), we get

𝛽 =
̂
𝛽𝑒
𝛿
, 𝛼 = 𝛼̂𝑒

𝛿
,

̂
𝛽 +

̂
𝛽 = 0, 𝛼̂ + 𝛼̂ = 0.

(16)

So

𝐹
2
=

̂
𝛽𝑒
𝛿
+ 𝛾𝑒
2𝛿
𝑦

𝛾 + 𝛼̂𝑒
𝛿
𝑦

=

̂
𝛽 + 𝛾𝑒

𝛿
𝑦

𝛾𝑒
−𝛿

+ 𝛼̂𝑦

. (17)

The proof is finished.

By Lemma 1, in the following, we all suppose 𝐹
2
= (𝛽 +

𝛾𝑦)/(𝛾 + 𝛼𝑦), in which 𝛼 + 𝛼 = 𝛽 + 𝛽 = 0.

Theorem 2. Suppose that 𝑚, 𝑛, 𝛼, and 𝛽 are the solutions of
the Cauchy problem

𝑚
󸀠

𝑡
+ 𝑃𝑚
󸀠

𝑥
= 𝑞
1𝑒
𝑛 + 𝑞
2𝑒
𝛽 − 𝑞
0𝑒
𝛼, 𝑚 (0, 𝑥) = 1;

𝑛
󸀠

𝑡
+ 𝑃𝑛
󸀠

𝑥
= −𝑞
0𝑜
𝛼 + 𝑞
1𝑒
𝑚 − 𝑞

2𝑜
𝛽, 𝑛 (0, 𝑥) = 0;

𝛼
󸀠

𝑡
+ 𝑃𝛼
󸀠

𝑥
= −𝑞
1𝑜
𝛼 + 2𝑞

2𝑒
𝑚 + 2𝑞

2𝑜
𝑛, 𝛼 (0, 𝑥) = 0;

𝛽
󸀠

𝑡
+ 𝑃𝛼
󸀠

𝑥
= 2𝑞
0𝑜
𝑛 + 𝛽𝑞

1𝑜
− 2𝑞
0𝑒
𝑚, 𝛽 (0, 𝑥) = 0,

(18)

where 𝑃 + 𝑃 = 0 and 𝑞
𝑖𝑒

= (𝑞
𝑖
+ 𝑞
𝑖
)/2, 𝑞

𝑖𝑜
= (𝑞
𝑖
− 𝑞
𝑖
)/2,

𝑖 = 0, 1, 2.
Then

𝑚 = 𝑚, 𝑛 + 𝑛 = 𝛼 + 𝛼 = 𝛽 + 𝛽 = 0,

𝑚
2
− 𝑛
2
− 𝛼𝛽 = 1

(19)

𝐹 = (𝑥,

𝛽 + 𝛾𝑦

𝛾 + 𝛼𝑦

)

𝑇

(20)

is the reflecting function of system (1). Therefore, nearby 𝑡 = 0,
𝛾 + 𝛼𝑦 > 0, where 𝛾 = 𝑚 + 𝑛.

Proof. Putting

𝑦
1
= 𝑚 − 𝑚; 𝑦

2
= 𝑛 + 𝑛, 𝑦

3
= 𝛼 + 𝛼,

𝑦
4
= 𝛽 + 𝛽,

(21)

then by (18), we have

𝑦
󸀠

1𝑡
+ 𝑦
󸀠

1𝑥
𝑃 = 𝑞

1𝑒
𝑦
2
+ 𝑞
2𝑒
𝑦
4
− 𝑞
0𝑒
𝑦
3
, 𝑦

1
(0, 𝑥) = 0;

𝑦
󸀠

2𝑡
+ 𝑦
󸀠

2𝑥
𝑃 = −𝑞

0𝑜
𝑦
3
+ 𝑞
1𝑒
𝑦
1
− 𝑞
2𝑜
𝑦
4
, 𝑦

2
(0, 𝑥) = 0;

𝑦
󸀠

3𝑡
+ 𝑦
󸀠

3𝑥
𝑃 = −𝑞

1𝑜
𝑦
3
+ 2𝑞
2𝑒
𝑦
1
+ 2𝑞
2𝑜
𝑦
2
, 𝑦

3
(0, 𝑥) = 0;

𝑦
󸀠

4𝑡
+ 𝑦
󸀠

4𝑥
𝑃 = 2𝑞

0𝑜
𝑦
2
+ 𝑞
1𝑜
𝑦
4
− 2𝑞
0𝑒
𝑦
1
, 𝑦

4
(0, 𝑥) = 0.

(22)
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By the uniqueness of the solution of linear partial differ-
ential equations, we get

𝑦
1
= 𝑦
2
= 𝑦
3
= 𝑦
4
≡ 0; (23)

that is,

𝑚 = 𝑚, 𝑛 + 𝑛 = 𝛼 + 𝛼 = 𝛽 + 𝛽 = 0. (24)

Obviously, 𝛾𝛾−𝛼𝛽 = 𝐶 is the first integral of system (18);
by the initial conditions, we have 𝛾𝛾 − 𝛼𝛽 ≡ 1. Thus, the
functions 𝛾 and 𝛼 have not the common zeros. As 𝛾(0, 𝑥) +
𝛼(0, 𝑥)𝑦 = 1 > 0, so in the nearby area of 𝑡 = 0, 𝛾 + 𝛼𝑦 > 0.

Using the conditions of the present theorem, it is not
difficult to check that function (20) satisfies the relation (3)
with respect to 𝑋 = (𝑃,𝑄)

𝑇
. So, the function (20) is the

reflecting function of (1). The proof is completed.

Corollary 3. If all the conditions of Theorem 2 are satisfied,
and the system (1) is 2𝜔-periodic with respect to 𝑡, then its
Poincaré mapping can be expressed by

𝑇 (𝑥, 𝑦) = (𝑥,

−𝛽(𝜔, 𝑥) + 𝛾(𝜔, 𝑥)𝑦

𝛾(−𝜔, 𝑥) − 𝛼(𝜔, 𝑥)𝑦

)

𝑇

. (25)

So, the solution (𝑥(𝑡), 𝑦(𝑡)) of (1) defined on [−𝜔, 𝜔] is 2𝜔-
periodic, if and only if (𝑥(−𝜔), 𝑦(−𝜔)) is the solution of equa-
tions

𝛼 (𝜔, 𝑥) 𝑦
2
+ 2𝛾
𝑜
(𝜔, 𝑥) 𝑦 − 𝛽 (𝜔, 𝑥) = 0, 𝑥 (−𝜔) = 𝑥 (𝜔) .

(26)

Corollary 4. Suppose that

𝑞
0
+ 𝑞
0
= 0, 𝑃 + 𝑃 = 0, lim

𝑡→0

𝑞
1𝑒

𝑞
0

= 0, (27)

and 𝛼 = 𝑞
1𝑒
/𝑞
0
is continuously differentiable and satisfies

𝛼
󸀠

𝑡
+ 𝛼
󸀠

𝑥
𝑃 = −𝑞

1𝑜
𝛼 + 2𝑞

2𝑒
. (28)

Then 𝐹 = (𝑥, 𝑦/(1 + 𝛼𝑦))
𝑇 is the reflecting function of

system (1). In addition, if the system (1) is a 2𝜔-periodic
system with respect to 𝑡, then all the solutions of (1) defined
on [−𝜔, 𝜔] are 2𝜔-periodic.

Proof. It is not difficult to check that, under the conditions
of above corollary, the function 𝐹 = (𝑥, 𝑦/(1 + 𝛼𝑦))

𝑇 is
the solution of the Cauchy problem (3), so it is a reflecting
function of (1). In view of 𝛼 = 𝑞

1𝑒
/𝑞
0
, so 𝛼(−𝜔, 𝑥) ≡

0 and 𝐹(−𝜔, 𝑥, 𝑦) ≡ (𝑥, 𝑦)
𝑇. Thus, the conclusion of above

corollary is true.

Example 5. Differential system

𝑥
󸀠
= 𝜙 (𝑡, 𝑥) sin 𝑡 cos𝑥,

𝑦
󸀠
= sin 𝑡 (1 + cos2𝑥)

+𝑦 (𝜙 (𝑡, 𝑥) sin 𝑡 sin𝑥 + sin2𝑡 (1 + cos2𝑥) cos𝑥)

+ 𝑦
2
(

1

2

cos 𝑡 cos𝑥 + 𝜓 (𝑡, 𝑥))

(29)

has reflecting function 𝐹 = (𝑥, 𝑦/(1 + 𝑦 sin 𝑡 cos𝑥))𝑇. Where
𝜙(𝑡, 𝑥) = 𝜙(−𝑡, 𝑥),𝜓(𝑡, 𝑥)+𝜓(−𝑡, 𝑥) = 0. When 𝜙(𝑡+2𝜋, 𝑥) =
𝜙(𝑡, 𝑥),𝜓(𝑡+2𝜋, 𝑥) = 𝜓(𝑡, 𝑥), all the solutions of above system
defined on [−𝜋, 𝜋] are 2𝜋-periodic.

Example 6. Differential system

𝑥
󸀠
= 𝜆 (𝑡, 𝑥) cos𝑥,

𝑦
󸀠
= 𝜇 (𝑡, 𝑥) sin 𝑡 cos𝑥 + 𝑦 (𝜇 sin 𝑡 cos2𝑥 + 𝜆 (𝑡, 𝑥) sin𝑥)

+ 𝑦
2
(

1

2

cos 𝑡 cos𝑥 + 𝜅 (𝑡, 𝑥)) ,

(30)

has reflecting function 𝐹 = (𝑥, 𝑦/(1 + 𝑦 sin 𝑡 cos𝑥))𝑇. Where
𝜆(𝑡, 𝑥)+𝜆(−𝑡, 𝑥) = 0, 𝜇(𝑡, 𝑥) = 𝜇(−𝑡, 𝑥), 𝜅(𝑡, 𝑥)+𝜅(−𝑡, 𝑥) = 0.

If the functions 𝜆(𝑡, 𝑥), 𝜇(𝑡, 𝑥), 𝜅(𝑡, 𝑥) are 2𝜋-periodic
with respect to 𝑡, then all the solutions of above system
defined on [−𝜋, 𝜋] are 2𝜋-periodic.

Similar to Corollary 4, we get the following.

Corollary 7. If

𝑃 + 𝑃 = 0, 𝑞
2
+ 𝑞
2
= 0, lim

𝑡→0

𝑞
1𝑒

𝑞
2𝑜

= 0, (31)

𝛽 = 𝑞
1𝑒
/𝑞
2𝑜
is continuously differentiable and satisfies

𝛽
󸀠

𝑡
+ 𝛽
󸀠

𝑥
𝑃 = 𝛽𝑞

1𝑜
− 2𝑞
0𝑒
. (32)

Then 𝐹 = (𝑥, 𝛽 + 𝑦)
𝑇 is the reflecting function of system (1). In

addition, if the system (1) is a 2𝜔-periodic system, then all the
solutions of (1) defined on [−𝜔, 𝜔] are 2𝜔-periodic.

Example 8. Differential system

𝑥
󸀠
= 𝜌 (𝑡, 𝑥) cos𝑥,

𝑦
󸀠
= 𝜉 (𝑡, 𝑥) −

1

2

cos 𝑡 cos𝑥

+ (−𝜌 (𝑡, 𝑥) sin𝑥 + 𝜂 (𝑡, 𝑥) sin2𝑡 cos𝑥) 𝑦

+ 𝜂 (𝑡, 𝑥) sin 𝑡𝑦2

(33)

has reflecting function 𝐹 = (𝑥, sin 𝑡 cos𝑥 + 𝑦)
𝑇.

Where 𝜌(𝑡, 𝑥) + 𝜌(−𝑡, 𝑥) = 0, 𝜉(𝑡, 𝑥) + 𝜉(−𝑡, 𝑥) = 0,
𝜂(𝑡, 𝑥) = 𝜂(−𝑡, 𝑥). Besides, if functions 𝜌(𝑡, 𝑥), 𝜉(𝑡, 𝑥), 𝜂(𝑡, 𝑥)
are 2𝜋-periodic with respect to 𝑡, then all the solutions of
above system defined on [−𝜋, 𝜋] are 2𝜋-periodic.

Corollary 9. Suppose that 𝑃 + 𝑃 = 0,

𝛿
󸀠

𝑡
+ 𝛿
󸀠

𝑥
𝑃 = 𝑞

2𝑒
+ 𝑞
0𝑒
, 𝛿 (0, 𝑥) = 0,

(𝑞
0𝑒
− 𝑞
2𝑒
) cos 𝛿 + 𝑞

1𝑜
sin 𝛿 = 0;

𝑞
1𝑒
cos 𝛿 + (𝑞

2𝑜
− 𝑞
0𝑜
) sin 𝛿 = 0.

(34)

and then 𝐹 = (𝑥, (− sin 𝛿 + 𝑦 cos 𝛿)/(cos 𝛿 + 𝑦 sin 𝛿))𝑇 is the
reflecting function of (1). In addition, if the system (1) is a 2𝜔-
periodic system, then the solution (𝑥(𝑡), 𝑦(𝑡)) of (1) defined on
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[−𝜔, 𝜔] is 2𝜔-periodic, and if and only if 𝛿(𝜔, 𝑥(−𝜔)) = 𝑘𝜋, 𝑘
is a natural number.

Proof. In Theorem 2 taking 𝑛 = 0, 𝛽 = −𝛼 = − sin 𝛿,
𝑚 = cos 𝛿, under the above hypothesis, the function
𝐹 = (𝑥, (− sin 𝛿 + 𝑦 cos 𝛿)/(cos 𝛿 + 𝑦 sin 𝛿))𝑇 is the reflecting
function of (1). Thus, when the system (1) is 2𝜔-periodic, its
Poincaré mapping can be expressed by 𝑇(𝑥, 𝑦) = 𝐹(−𝜔, 𝑥, 𝑦),
its solution (𝑥(𝑡), 𝑦(𝑡)) defined on [−𝜔, 𝜔] is 2𝜔-periodic,
and if and only if (𝑦(−𝜔)2 + 1) sin 𝛿(𝜔, 𝑥(−𝜔)) = 0, it implies
the conclusion of the present corollary.

Example 10. Differential system

𝑥
󸀠
= 𝑃 (𝑡, 𝑥) ,

𝑦
󸀠
= 𝑞 (𝑡, 𝑥) +

1 + sin2𝑡
2

+ (sin2𝑡 − sin 𝑡 cos 𝑡) 𝑦

+ (𝑞 (𝑡, 𝑥) − sin 𝑡 cos 𝑡 + 1 − sin2𝑡
2

)𝑦
2

(35)

has reflecting function

𝐹 = (𝑥,

− sin 𝑡 + 𝑦 cos 𝑡
cos 𝑡 + 𝑦 sin 𝑡

)

𝑇

(36)

and all the solutions of above system defined
on [−𝜋, 𝜋] are 2𝜋-periodic, where functions 𝑃(𝑡, 𝑥) and
𝑞(𝑡, 𝑥) are arbitrary continuously differentiable odd and 2𝜋-
periodic with respect to 𝑡.

Theorem 11. Let the reflecting function of linear system

𝑑𝑧

𝑑𝑡

= 𝐴 (𝑡) 𝑧, 𝐴 (𝑡) = (

−

1

2

𝑎
1
(𝑡) −𝑎

2
(𝑡)

𝑎
0
(𝑡)

1

2

𝑎
1
(𝑡)

) , (37)

have the form

𝐺 (𝑡, 𝑧) = (

𝑔
1
(𝑡) 𝑔

2
(𝑡)

𝑔
3
(𝑡) 𝑔
1
(−𝑡)

) 𝑧. (38)

Then the function

𝐹 =

𝑔
3
(𝑡) + 𝑔

1
(−𝑡) 𝑦

𝑔
1
(𝑡) + 𝑔

2
(𝑡) 𝑦

(39)

is the reflecting function of the Riccati equation

𝑑𝑦

𝑑𝑡

= 𝑎
0
(𝑡) + 𝑎

1
(𝑡) 𝑦 + 𝑎

2
(𝑡) 𝑦
2
. (40)

Proof. As 𝐺(𝑡) is the reflecting matrix of the linear system
(37), thus,

𝐺
󸀠

(𝑡) + 𝐺 (𝑡) 𝐴 (𝑡) + 𝐴 (−𝑡) 𝐺 (𝑡) = 0,

𝐺 (0) = 𝐸, |𝐺 (𝑡)| ≡ 1,

(41)

and it implies

𝑔
󸀠

1𝑒
= 𝑎
1𝑒
𝑔
1𝑜
+ 𝑎
2𝑒
𝑔
3
− 𝑎
0𝑒
𝑔
2
, 𝑔

1𝑒
(0) = 1;

𝑔
󸀠

1𝑜
= −𝑎
0𝑜
𝑔
2
+ 𝑎
1𝑒
𝑔
1𝑒
− 𝑎
2𝑜
𝑔
3
, 𝑔

1𝑜
(0) = 0;

𝑔
󸀠

2
= −𝑎
1𝑜
𝑔
2
+ 2𝑎
2𝑒
𝑔
1𝑒
+ 2𝑎
2𝑜
𝑔
1𝑜
, 𝑔

2
(0) = 0;

𝑔
󸀠

3
= 2𝑎
0𝑜
𝑔
1𝑜
+ 𝑔
3
𝑎
1𝑜
− 2𝑎
0𝑒
𝑔
1𝑒
, 𝑔

3
(0) = 0,

(42)

where 𝑎
𝑖𝑒
= (𝑎(𝑡)+𝑎(−𝑡))/2, 𝑎

𝑖𝑜
= (𝑎(𝑡)−𝑎(−𝑡))/2 (𝑖 = 0, 1, 2),

𝑔
1𝑒
= (𝑔
1
(𝑡)+𝑔

1
(−𝑡))/2, and 𝑔

1𝑜
= (𝑔
1
(𝑡)−𝑔

1
(−𝑡))/2. Similar

to Theorem 2, we get function (39) is the reflecting function
of the Riccati equation (40).

Corollary 12. If 𝑎
𝑖
(𝑡 + 2𝜔) = 𝑎

𝑖
(𝑡) (𝑖 = 0, 1, 2) and the

conditions of Theorem 11 are satisfied, then

(1) if 𝑔
2
(𝜔) ̸= 0 and |𝑔

1𝑒
(𝜔)| > 1, then the Riccati (40)

has two 2𝜔-periodic solutions. If 𝑔
2
(𝜔) ̸= 0 and

|𝑔
1𝑒
(𝜔)| < 1, (40) has no one 2𝜔-periodic solution.

If 𝑔
2
(𝜔) ̸= 0 and |𝑔

1𝑒
(𝜔)| = 1, (40) has a unique 2𝜔-

periodic solution;

(2) if 𝑔
2
(𝜔) = 0 and 𝑔

1𝑜
(𝜔) ̸= 0, then (40) has a unique

2𝜔-periodic solution. If 𝑔
2
(𝜔) = 0 and 𝑔

1𝑜
(𝜔) = 0,

𝑔
3
(𝜔) = 0, all the solutions of (40) defined on [−𝜔, 𝜔]

are 2𝜔-periodic; If 𝑔
2
(𝜔) = 0 and 𝑔

1𝑜
(𝜔) = 0,

𝑔
3
(𝜔) ̸= 0, (40) has no one 2𝜔-periodic solution.

Proof. As (39) is the reflecting function of (40) and
𝑔
1
(𝑡)𝑔
1
(−𝑡) −𝑔

2
(𝑡)𝑔
3
(𝑡) ≡ 1. Thus, the Poincaré mapping can

be expressed by 𝑇(𝑦) = 𝐹(−𝜔, 𝑦), and the solutions 𝑦(𝑡) of
(40) defined on [−𝜔, 𝜔] are 2𝜔-periodic, if and only if 𝑦(−𝜔)
is a solution of equation: 𝐹(−𝜔, 𝑦) = 𝑦; that is,

𝑔
2
(𝜔) 𝑦
2
+ 2𝑔
1𝑜
(𝜔) 𝑦 − 𝑔

3
(𝜔) = 0, (43)

and from this relation and 𝑔
2

1𝑒
(𝑡) − 1 = 𝑔

2

1𝑜
(𝑡) + 𝑔

2
(𝑡)𝑔
3
(𝑡), it

is easy to deduce the present conclusion.

Theorem 13. Suppose that

(1) 𝜆
1
= (𝑎
0𝑒
+𝑎
2𝑒
)/𝑎
1𝑜
, 𝜆
0
= (𝑎
2𝑜
−𝑎
0𝑜
)/𝑎
1𝑜
are continuous

and lim
𝑡→0

𝜆
1
= 0;

(2) 𝜇
1
/𝜇
0
is continuously differentiable and

lim
𝑡→0

(𝜇
1
/𝜇
0
) = 0 and satisfies

(

𝜇
1

𝜇
0

)

󸀠

= (𝑎
1𝑒
+ (𝑎
2𝑒
− 𝑎
0𝑒
) 𝜆
0
) (

𝜇
1

𝜇
0

)

2

+ ((𝑎
0𝑒
− 𝑎
2𝑒
) 𝜆
1
− (𝑎
0𝑜
+ 𝑎
2𝑜
) 𝜆
0
)

𝜇
1

𝜇
0

+ (𝑎
0𝑜
+ 𝑎
2𝑜
) 𝜆
1
− 𝑎
1𝑒
.

(44)

Then the function (39) is the reflecting function of the Riccati
equation (40). In addition, if 𝑎

𝑖
(𝑡 + 2𝜔) = 𝑎

𝑖
(𝑡) (𝑖 = 0, 1, 2),
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then all the solutions of (40) defined on [−𝜔, 𝜔] are 2𝜔-
periodic, where

𝑔
1𝑒
= exp∫

𝑡

0

((𝑎
2𝑒
− 𝑎
0𝑒
) 𝜆
1
−

𝜇
1

𝜇
0

(𝑎
1𝑒
+ 𝜆
0
𝑎
2𝑒
− 𝜆
0
𝑎
0𝑒
)) 𝑑𝑡,

𝑔
1𝑜
= −

𝜇
1

𝜇
0

𝑔
1𝑒
, 𝑔

2
= 𝑔
3
= 𝜆
1
𝑔
1𝑒
+ 𝜆
0
𝑔
1𝑜
;

𝜇
0
= 𝜆
󸀠

0
+ 𝑎
1𝑒
𝜆
1
+ 𝑎
1𝑜
𝜆
0
− 2𝑎
2𝑜

+ (𝑎
2𝑒
− 𝑎
0𝑒
) 𝜆
1
𝜆
0
− (𝑎
0𝑜
+ 𝑎
2𝑜
) 𝜆
2

0
;

𝜇
1
= 𝜆
󸀠

1
+ 𝜆
2

1
(𝑎
2𝑒
− 𝑎
0𝑒
) − 𝜆
1
𝜆
0
(𝑎
0𝑜
+ 𝑎
2𝑜
)

− 𝜆
0
𝑎
1𝑒
+ 𝜆
1
𝑎
1𝑜
− 2𝑎
2𝑒
.

(45)

Proof. It is not difficult to check that under the hypothesis of
Theorem 13 the functions𝑔

1𝑒
,𝑔
1𝑜
,𝑔
2
= 𝑔
3
= 𝜆
1
𝑔
1𝑒
+𝜆
0
𝑔
1𝑜
are

the solution of the Cauchy problem (42), so, the function (39)
is 2𝜔-periodic reflecting function of (40); by [1] it implies the
result of the present theorem.

From a similar discussionwe can get the following results.

Theorem 14. Suppose that

(1) 𝑘
1

= 𝑎
1𝑒
/𝑎
0𝑜
, 𝑘
3

= −𝑎
2𝑜
/𝑎
0𝑜

are continuous and
lim
𝑡→0

𝑘
1
= 0;

(2) 𝜌
1
/𝜌
3
is continuously differentiable and lim

𝑡→0
(𝜌
1
/

𝜌
3
) = 0 and satisfies

(

𝜌
1

𝜌
3

)

󸀠

= (𝑎
2𝑒
− 𝑎
0𝑒
𝑘
3
) (

𝜌
1

𝜌
3

)

2

+ (𝑎
1𝑜
+ 𝑎
0𝑒
𝑘
1
)

𝜌
1

𝜌
3

+ 2𝑎
0𝑒
.

(46)

Then the function (39) is the reflecting function of the Riccati
equation (40). In addition, if 𝑎

𝑖
(𝑡 + 2𝜔) = 𝑎

𝑖
(𝑡) (𝑖 = 0, 1, 2),

then all the solutions of (40) defined on [−𝜔, 𝜔] are 2𝜔-
periodic, where

𝑔
1
= exp∫

𝑡

0

((𝑎
0𝑒
𝑘
3
− 𝑎
2𝑒
)

𝜌
1

𝜌
3

− 𝑎
0𝑒
𝑘
1
)𝑑𝑡;

𝑔
3
= −

𝜌
1

𝜌
3

𝑔
1
, 𝑔

2
= 𝑘
1
𝑔
1
+ 𝑘
3
𝑔
3
;

𝜌
1
= 𝑘
󸀠

1
− 𝑎
0𝑒
𝑘
2

1
− 2𝑎
0𝑒
𝑘
3
+ 𝑎
1𝑜
𝑘
1
− 𝑎
2𝑒
;

𝜌
3
= 𝑘
󸀠

3
+ 𝑎
2𝑒
𝑘
1
− 𝑎
0𝑒
𝑘
1
𝑘
3
+ 2𝑎
1𝑜
𝑘
3
.

(47)

Theorem 15. If there is a continuously differentiable even
function ℎ(𝑡) and

(1) 𝜂
1

= (𝑎
0𝑒
ℎ(𝑡) + 𝑎

2𝑒
)/(ℎ(𝑡)𝑎

0𝑜
− 𝑎
2𝑜
) and 𝜂

3
=

(ℎ
󸀠
(𝑡)+2𝑎

1𝑜
ℎ(𝑡))/(2𝑎

2𝑜
−2ℎ(𝑡)𝑎

0𝑜
) are continuous and

lim
𝑡→0

𝜂
1
= 0;

(2) 𝜁
1
/𝜁
3
is continuously differentiable and lim

𝑡→0
(𝜁
1
/

𝜁
3
) = 0 and satisfies

(

𝜁
1

𝜁
3

)

󸀠

= (𝑎
2𝑒
− 𝑎
0𝑒
ℎ (𝑡) + 𝑎

1𝑒
𝜂
3
) (

𝜁
1

𝜁
3

)

2

+ (𝑎
1𝑜
+ +2𝑎

0𝑜
𝜂
3
− 𝑎
1𝑒
𝜂
1
)

𝜁
1

𝜁
3

+ 2𝑎
0𝑒
− 2𝑎
0𝑜
𝜂
1
.

(48)

Then the function (39) is the reflecting function of the Riccati
equation (40). In addition, if 𝑎

𝑖
(𝑡 + 2𝜔) = 𝑎

𝑖
(𝑡) (𝑖 = 0, 1, 2),

ℎ(𝑡 + 2𝜔) = ℎ(𝑡), then all the solutions of (40) defined
on [−𝜔, 𝜔] are 2𝜔-periodic, where

𝑔
1𝑒
= exp∫

𝑡

0

(𝑎
1𝑒
𝜂
1
−

𝜁
1

𝜁
3

(𝜂
3
𝑎
1𝑒
+ 𝑎
2𝑒
− 𝑎
0𝑒
ℎ (𝑡))) 𝑑𝑡;

𝑔
1𝑜
= (𝜂
1
−

𝜁
1

𝜁
3

𝜂
3
)𝑔
1𝑒
, 𝑔

3
= −

𝜁
1

𝜁
3

𝑔
1𝑒
,

𝑔
2
= ℎ (𝑡) 𝑔

3
;

𝜁
1
= 𝜂
󸀠

1
+ 2𝑎
0𝑜
𝜂
2

1
− 2𝑎
0𝑒
𝜂
1
+ 𝑎
1𝑒
𝜂
1
𝜂
3
− 𝑎
1𝑒
;

𝜁
3
= 𝜂
󸀠

3
+ (𝑎
1𝑜
+ 2𝑎
0𝑜
𝜂
3
) 𝜂
1
+ 𝑎
1𝑒
𝜂
2

3

+ (𝑎
2𝑒
− 𝑎
0𝑒
ℎ (𝑡)) 𝜂

3
+ 𝑎
2𝑜
+ 𝑎
0𝑜
ℎ (𝑡) .

(49)

Example 16. The Riccati equation

𝑦
󸀠
=

1

2

cos 𝑡 (sin4𝑡 + sin2𝑡 + 2) − 2 sin 𝑡

+ (2sin2𝑡 − sin3𝑡 cos 𝑡) 𝑦 + (

1

2

cos3𝑡 + 2 sin 𝑡) 𝑦2
(50)

has reflecting function

𝐹 =

sin 𝑡 (2 + sin2𝑡) + (1 + sin2𝑡) 𝑦
1 + sin2𝑡 + 𝑦 sin 𝑡

. (51)

So, all the solutions of the equation above defined
on [−𝜋, 𝜋] are 2𝜋-periodic.

Example 17. The Riccati equation

𝑦
󸀠
= −

1

2

𝐶𝑒
𝑆
(2 − 2𝑆 + 𝑆

2
− 3𝑆
3
+ 𝑆
4
− 𝑆
5
)

+ 𝐶 (1 + 2𝑆 − 𝑆
3
+ 𝑆
4
) 𝑦

+

1

2

𝐶𝑒
−𝑆
(1 + 𝑆

2
− 3𝑆
3
+ 𝑆
4
− 𝑆
5
) 𝑦
2

(52)

has reflecting function

𝐹 =

𝑆 (2 + 𝑆
2
) + (1 + 𝑆

2
) 𝑒
−𝑆
𝑦

(1 + 𝑆
2
) 𝑒
𝑆
+ 𝑦𝑆

, (53)

where 𝑆 := sin 𝑡 and 𝐶 = cos 𝑡. And all the solutions of the
equation above defined on [−𝜋, 𝜋] are 2𝜋-periodic.
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