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Some iterative methods are introduced and demonstrated for finding the matrix sign function. It is analytically shown that the new
schemes are asymptotically stable. Convergence analysis along with the error bounds of the main proposed method is established.
Different numerical experiments are employed to compare the behavior of the new schemes with the existing matrix iterations of

the same type.

1. Introduction

Recently, the theory of matrix functions becomes an active
topic of research in the field of advanced numerical linear
algebra (see, e.g., [1-4]). In fact, the most common matrix
function is the matrix inverse or the Moore-Penrose gener-
alized inverse, routinely used in the scientific problems [5].
General matrix functions as well as the specific cases have
been extensively discussed and developed in [6].

This paper is concerned with a special case known as
matrix sign function, which is of clear importance in the
theory of matrix functions [7]. Let us, as Higham considered
in the fifth Chapter of [6], assume throughout this paper that
the matrix A € C™" has no eigenvalues on the imaginary
axis. This assumption implies that the matrix sign function,

S = sign (A), ¢))

can be uniquely defined, whereas A is a nonsingular square
matrix. In order to define S, we remember the matrix sector
function, for any positive integer p, can be defined by

sect,, (A) = A(Ap)fl/P. (2)

Choosing p = 2 in the matrix sector function will yield

-1/2
in the matrix sign function as S = A(A?) " This also clearly
puts on show the importance and the relevance of this matrix

function to the other important matrix functions such as
matrix square root.

Bini et al. in [8] proved that the principal pth root of the
matrix A is a multiple of the (2,1)-block of the matrix sign
function, sign(C), for the following block companion matrix

01
0 I
C= e CPmPn, 3)
o
A 0

The matrix S has the following properties.

(1) §*=1(Sis involutory).

(2) S is diagonalizable with eigenvalues +1.
(3) SA = AS.

(4) If A is real, then S is real.

(5) (I+S)/2and (I-S)/2 are projectors onto the invariant
subspaces associated with the eigenvalues in the right
half-plane and left half-plane, respectively.

Although S has eigenvalues of +1, its norm can be
arbitrarily large. Note that, for diagonalizable A, eigenvectors
of A are eigenvectors of S, with eigenvalues of —1 and 1,
respectively. For more, see [9].
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There are some other definitions for S in the literature
based on the Jordan canonical form and the integral represen-
tation. As indicated in [6], one of the most useful and widely
applicable methods for computing S is the matrix iteration of
Newton given by

Xpyp = % (X +X1). (4)

In 1991, a fundamental family of matrix iterations for
finding the matrix sign function S was introduced in [10]
using Padé approximants to f(§) = (1 —f)_l/ % and the
following characterization:

sign(z) =s = c__ ad
)" 1-9" ©)

where & = 1 - z°. Let the (m, n)-Padé approximant to f(&) be
P, .(8)/Q,,,(§), and m + n > 1. The iteration

ZkPpn (1-27)
Z+1 = m = Pom+1,2n

(6)

has been proved to be convergent to 1 and —1 with order of
convergence m+n+1 formm > n—1. We remark that iterative
methods of the type z; P, ,(1-2;)/Q,,, ,(1~z}) are fixed-point
type iterations, and if z;P,, (1 — 2)/Q,,,(1 — z;) does not
converge then its reciprocal; that s, Q,,, (1 —zﬁ) [z P, (1 —zi)
converges to the sign matrix (e.g., forthcoming iterations
(7) and (8)). Generally speaking, the iterations of Kenney
and Laub (6), generated by the [h/h] and [(h — 1)/h]
Padé approximants, are globally convergent and their orders
depend on h. A discussion about such iterations was given in
[11-13].

A lot of known methods could be extracted from the
Padé family (6). For example, the well-known Halley’s matrix
iteration of order three can be deduced as follows:

X = [1+37] [X, (31 + X)) ?)
Another fourth-order method could be attained as follows:
X = [T+6X2+ X [ax, (1+ XD ®)

Note that, for lower order methods such as (4), the
convergence is slow; that is, initially convergence can be slow
if |x;| > 1. Hence, a scaling approach (a.k.a. norm scaling)
to accelerate the beginning of this phase is necessary and can
be done in what follows [6]:

X, = A,

[ )
I

Xir1 = % (.”ka + V}ZIXI;I)-

Such an approach could be done to refine the initial
matrix and to provide a much more robust initial matrix to
arrive at the convergence phase rapidly.
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The rest of this paper has been organized as follows.
Section 2 gives the basic idea of obtaining other higher
order solvers for computing S, while a fourth-order family
of methods has been introduced. Section 3 is devoted to
find the best method of this family in terms of the lowest
computational cost. An analysis will be given to show that
the new matrix iteration is asymptotically stable with local
quartic convergence. To find a method with fourth order
and global convergence, we also give another matrix iteration
therein. Convergence analysis along with the error bounds of
the proposed method is established. Numerical studies will
be included in Section 4 to compare the efliciency and the
stability of the schemes for finding S using different tests.
Finally, a short conclusion of the study will be drawn in
Section 5.

2. Basic Idea

The connection between the matrix iteration of Newton and
Newton’s root-finding method may not be clear at the first
sight. Generally speaking, in the theory of matrix functions,
many of the matrix functions could effectively be calculated
by the existing iterative methods for finding the solution of
nonlinear equations [14].

To illustrate further, apply Newtons method on the
following matrix equation:

X2 =1, (10)

in which I is the identity matrix of the appropriate size; it
would yield in the matrix Newton’s iteration (4). Note that
S is one solution of (10). Note that, in the last decade, many
efficient higher-order iterative methods have been developed
for solving nonlinear equations [15], and some of them
have been extended to solve nonlinear matrix equation; see,
for example, [16, 17]. But our work is the first to discuss
the application of high order root solvers for matrix sign
function.

Let us consider the following fourth-order family of
iterative methods [18]:

Yie = Xk = fl(xk)_lf (k)
Xier1 = Vi — [f,(xk)_lf(yk)]

L2700 F (00 + () ).
1)

wherein f is a free parameter in R. Applying the uniparamet-
ric family (11) on matrix equation (10) results in the following
novel family of matrix iterations:

X

Xy = [128X7]
x [-B(-T+X})" +8(X} - 5X} + 15X + 5XF)] .

(12)

The free parameter 8 plays an important role in the next
section to derive the best possible matrix iteration out of (12).
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3. Main Results

In order to reduce the computational complexity of (12), the
parameter 3 must be chosen as if the number of matrix-
matrix products gets down along the number of matrix
inversions.

Choosing f = 0 will simplify the whole family into
the following method with reasonable computational cost in
contrast to its convergence order:

X = [16X3] 7 [T-5x2 + 15X +5x¢]. (13)

We now rewrite obtained iteration (13) as efficiently as
possible to reduce the number of matrix-matrix multiplica-
tions in what follows:

1
Xiw = 7 [V - 577 +15Y, +5X, ], (14)

where Y, = X;' and X, = A.

Definition 1 (stability [6]). Consider an iteration X;,, =
g(X;) with a fixed point X. Assume that g is Fréchet
differentiable at X. The iteration is stable in a neighborhood
of X if the Fréchet derivative L g(X ) has bounded powers; that

is, there exists a constant ¢ such that IILig(X )| € cforalli > 0.

Now, we first investigate the stability of (14) for the matrix
sign function in a neighborhood of the solution of (10). In
fact, we analyze how a small perturbation at the kth iterate is
amplified or damped along the iterates. Note that a general
way for assessing the stability of some matrix iterations has
been studied by Iannazzo in [19]. The forthcoming approach
follows these results of [19].

Lemma 2. The sequence {X k}],zzo generated by (14) is asymp-
totically stable.

Proof. Stability concerns behavior close to convergence and
so is an asymptotic property. Let AX; be the numerical
perturbation introduced at the kth iterate of (14). Next, one
has

Xk = Xk + AXk (15)

Here, we perform a first-order error analysis; that is, we
formally neglect quadratic terms such as (AX,)>. This formal
manipulation is meaningful if AX, is sufficiently small. We
have

S o
Xk+1—1—6[Yk—5Yk+15Yk+5Xk]

l 55 o3 Sl o
E[Xk — 55X + 15X + 5%

1 - -3
= [(Xi + AX,) ™ = 5(X + AX,)

+15(X; + AX) " +5(Xg + AX,)]

% [(x,;1 - XAX, - XY

0

—5 (X - X AKX

+15 (X' = X AKX, - X ) +5(X + AXy)]
(16)

where the following identity has been used (for any nonsin-
gular matrix B and the matrix C):

(B+C)'~B'-B'CB . 17)

Note that the commutativity between X, and AX is not
used throughout this paper because it does not hold. Further
simplifying yields to

_ 1 1
K1 = S+ JAX = - SAX;S, (18)

where §* = I, S' = S, and for large enough k we have
X = sign(A) = S, and (AXk)i, i > 2 1is close to zero (matrix)
and can be neglected by choosing (AX;)" ~ 0. After some
algebraic manipulation and using AX,; = Xi,; — Xjpp> We
conclude that

1 1
AXk-H = EAXk - ESAXkS (19)

Applying (19) recursively, and after some algebraic manipula-
tions, we have
1
IAX e < St IAX, - SAX,S| - (20)
From (20), we can conclude that the perturbation at the
iterate kK + 1 is bounded. Therefore, the sequence {X;}
generated by (14) is asymptotically stable. O

Remark 3. If X is a function of A, then the iterates from (14)
or (23) are all functions of A and hence commute with A.

The proposed matrix iteration requires one matrix inverse
per iteration along four matrix-matrix products to achieve the
convergence order four, while Halley’s method requires one
matrix inversion and three matrix-matrix products to reach
order three.

The basins of attraction for the two iterative methods of
(4) and (14) to solve x>~ 1 = 0 in the complex plane have been
drawn in Figure 1. It shows that the new scheme has larger
basins due to its higher convergence order. Note that the roots
have been identified with two white points.

Tannazzo in [20] discussed that the matrix convergence
is governed by scalar convergence. That is to say, the fourth-
order convergence of new method (14) might not be global
unlike Newton’s iteration (4). To illustrate further, if one
chooses a matrix A (in Figure 1(b)) with one eigenvalue
with negative real part, but in a yellow petal, then the
matrix iteration will not converge to S. Therefore, it could
be mentioned that scheme (14) converges with local fourth
order. This restriction has encouraged us to propose another
fourth-order method with global convergence in what follows
and leave behind the previous iteration with interest in terms
of theoretical analysis only.
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FIGURE 1: The basins of attraction for (4) (a) and fourth-order method (14) (b) for the polynomial x? =1 = 0 (shaded by the number of

iterations to obtain the solution).

Let us apply the following fourth-order nonlinear solver
[16] on matrix equation (10):

ye=x - 27 (o) f (%)
ze=x— f () f (%) (21)
S = 2= (2= 20 (F @) = F O] F (=)

which reads the error equation

3
o o
ek+1=(52—?3>ei+0(ei), (22)

wherein ¢; = FPw)/j f'(«) and e, = x; — «, and then to
obtain its corresponding matrix iteration, as follows

Xir = (I +18Y, +13Z,) [X, (71 +Y,) (I +3Y)] 7', (23)

where Y, = X; X, Z, = Y,Y}, and X, = A. Figure 2 shows
the basins of attraction for new method (23) and scheme (7),
while both reveal global convergence. The higher order of
convergence for (23) made its basins larger and lighter.

Remark 4. In this paper, we restrict the analyses to asymptot-
ically small perturbations; that is, we use the differential error
analysis.

Lemma 5. The sequence {X k}ﬁzo generated by (23) is asymp-
totically stable.

Proof. Using the same assumptions as in the Proof of
Lemma 2 (perturbations are restricted to a neighborhood of
the solution), we can write the following:

Ry = (14187, +13Z,) [X, (71 + 7) (1+37,)]
= (I+18X} +13X})

X [(I + 3Xk)_1(71 + Xk)_l)?,zl]
(24)
=~ (I+18(S+AX,8)* +13(S+AX,S)")

x [(I+3(S+AX,S)) (71 + (S+AX,S))

x (S+AX,9)7'].

Further simplifying and by considering the terminology of
Lemma 2, we attain

11 15 15
AXk+1 = (I + ESAXk> (S - ESAXkS - _AXk>
(25)
= —lAX - lSAX S
D

It shows that the main proposed iterative scheme (23) is
asymptotically stable, since recursively one has [|AX; [ <
(1/251)|AX, + SAX,S||. The proof is complete. O

Remark 6. The analysis done does not take into account
the influence of the rounding errors on the convergence.
Sometimes these errors may lead to slower convergence or
even to the failure of the method. We remark concerning
this potential danger for problems solving in single precision
arithmetic or in lower precision.

Theorem 7. Let A € C™" have no pure imaginary eigenval-
ues. Then, for the proposed iterates {Xk}tgo in (23), (X (71 +
Y,)(I +3Y,))"" is defined per stage.
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FIGURE 2: The basins of attraction for (7) (a) and method (23) (b) for the polynomial x? =1 = 0 (shaded by the number of iterations to obtain

the solution).

Proof. We must show that X, (7] + Y;)(I + 3Y;) which is
obtained at each iteration is nonsingular, since the inverse
of the matrix X (7] + Y, )(I + 3Y;) must be computed per
computing step. Toward this goal, it is enough to show that
the eigenvalues of the computed matrix at the end of each
iteration are in the open half-plane.

Using the initial matrix X, = A and based on the fact that
A has no eigenvalues on the imaginary axis, the eigenvalues
of the initial matrix are in the open half-plane. Let A be the
eigenvalue of the matrix X, in the kth iterate. We have A =
r exp i, where i = /~1. Hence,

A+t = (r + r_l) cos(0) +i (r - r_l) sin (0),
(A (7+23) (14323))
(cos (8) — i sin (0))’
r(22r2 + (7 + 3r*) cos (20) +i (=7 + 3r*) sin (26))

1
7ei0r + 223073 4 35055’

(26)

and consequently

(1+1802 + 131%) (A1 (7+2%) (1 +302))
= ((cos (6) —isin (6))
x (187 + (1+13r*) cos (20) +i (-1 + 13r*) sin (26) ) )
x (r((7+7%) cos (6) +i (=7 +1*) sin (6))

-1

X ((1 + 3r2) cos(0) +1i (—1 + 3r2) sin (9)))
(27)

Therefore, the eigenvalues of X, (71 + Y, )(I + 3Y}) remain
in their open half-plane under mapping (23). And X, (71 +
Y, )(I + 3Y}) is defined and is nonsingular for all k. O

Theorem 8. Let A € C™" has no pure imaginary eigenvalues.

Then, the proposed iterates {X k}’,ﬁigo of (23) converge to the sign
matrix S.

Proof. For our analysis, we assume that A is diagonalizable;
that is, there exists a nonsingular matrix V such that
VAV = A = diag (A, Aps.. .5 A,) (28)

where 1, 1,,..
know that [10]

., A,, are the eigenvalues of A. Note that we

sign (A) = sign (VﬁlAV) =V 'sign(A)V,  (29)

for any nonsingular matrix V. On the other hand, if we define
D, = V"' X, V, then we have from (23) that

Dyy = (1+18DF +13D}) [Dy (71 + DF) (1+3D2)] .
(30)

Notice that if D, is a diagonal matrix, then all successive D,
are diagonal too. From (30), it is enough to prove that {D,}
converges to the sign of A and then ensure the convergence
of the sequence generated by (23) to sign(A).

Therefore, we can write (30) as n uncoupled scalar
iterations to solve g(x) = 0, with g(x) = x* - 1, given by

1+18d. +13d."
di (71+d”)(1+3d%)

i p—
k+1 —

(31)

where di = (Dy);; and 1 < i < n. On the other hand,
sign(D;) = sign(A), for all k > 0. From (30) and (31), it is
enough to study the convergence of {dj} to the sign of A;, for
alll1 <i<n.



From (31) and since the eigenvalues of A are not pure
imaginary, we have that sign(A;) = s; = +1. Thus, we attain

di, ~1  —6+18d, -22d," +13d} - 3d.’

i - . .2 -3 .4 (32)
dia +1 8+18d +22di° +13d +3dL
Since Idf,l = |A;| > 0, we obtain
d. -1
lim [ —]=1, (33)
k= oo dk+1 +1
and limkﬂm|d§<| = 1 = |[sign(A;)]. This shows that

{d,} is convergent. Now, it could be easy to conclude that
limy _, ., Dy = sign(A). Recalling D, = V™' X, V, we have

lim X, = V <klim Dk> V= Vsign(M)V, (34)

k— oo

and subsequently the convergence is established. The proof is
complete. O

Remark 9. Tt is clear that convergence will be slow if either
p(A) > 1 or A has eigenvalues close to the imaginary axis.
Hence, it is better to first construct a robust seed by scaled
method (9).

Theorem 10. Let A € C™" have no pure imaginary eigenval-
ues. Then, new method (23) has fourth order to find the sign
matrix S.

Proof. Clearly, the X, are rational functions of A and hence,
like A, commute with S. On the other hand, we know that

§* =1,8" =8,8 = I,and $¥*' = S, j > 1. Choosing
B, = X (7I+Y;)(I+3Y}) (for the sake of simplicity), we have

Xipr =S = (1+18Y, +13Z,) B,' - S

= [I+18X} + 13X, - SB,| B,

= [I+18X} + 13X - 7X,S - 22X;S - 3X;S| B!

= [(X, - 9)" - 3X38° + 12X8* - 18X;S
+12X;8° - XS’ B!

= [(Xe-9)"-3X,8
x (X' - 4X}S + 6X;S* - 4X,S* +1)] B!

= (X - 8)" - 3X,S(X, - 9)'] B!

= (X - S)" [I-3X,S] B .
(35)

Now, using a matrix operator norm from both sides of (35),
we attain

1% =1 < (I8 |17 =3x8 i =S (36)

This reveals the fourth order of convergence for new method
(23). The proof is ended. O
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4. Numerical Results

This section addresses issues related to the numerical pre-
cision of the computation of matrix sign function using
Mathematica 8 built-in precision [21, 22]. The value of
machine precision that produced the results included here is
15.96 digits, which corresponds to a 53-digit binary double
precision number with a mantissa [23].

For numerical comparisons in this section, we have used
methods (4) denoted by “Newton,” (7) denoted by “Halley,”
(8) denoted by “M4,” (14) denoted by “PM1,” and (23) denoted
by “PM2”

It must be noted that the Newton-Schulz iteration, which
replaces the inverse of the matrix X, in each iteration of (4)
by the Schulz inverse-finder [6] and can be written as

Xiy = %Xk (31-X3), (37)

will not be considered in the numerical comparisons. Because
due to the use of Schulz iteration instead of the matrix
inversion, though the quadratic convergence of (4) will
remain unchanged, it fully demands a good initial matrix and
might be more risky to diverge in contrast to scheme (4). In
fact, its convergence is guaranteed only if ||I — A?| < 1; see
Figure 3(a).

We report the running time using the command
AbsoluteTiming[] for the elapsed CPU time (in seconds) in
the experiments. The computer specifications are Microsoft
Windows XP Intel(R), Pentium(R) 4, and CPU 3.20 GHz,
with 4 GB of RAM.

Example 1. The aim of this example is to compare different
methods for finding the matrix sign function of a randomly
generated dense 600 x 600 matrix as follows:

n = 600; SeedRandom[22];
A[1] = RandomReal[{-100, 100}, {n, n}].

In this test example, the prescribed tolerance is ||X,2( 1|l <
10~% and the maximum number of iterations is set to 100.

The results of comparisons in terms of the number of
iterations and the computational time have been reported in
Table 1, for various matrix iterations in finding the matrix
sign function numerically. Note that whatever the eigenvalues
of a matrix are closer to the imaginary axis, the speed of
convergence for the different methods becomes slower and
more risky to face with singular matrices X;, whose inverse
could not be computed; see Figure 3(b).

Note that method (13) is not competitive in terms of
computational cost and local convergence and hence we will
remove it from further consideration. Unlike it, new method
(23) has global convergence with asymptotical stability and
could be considered as an alternative over the existing
iterative methods for finding S.

Example 2. In this example, 15 random dense 120 x 120
matrices are considered to compare the behavior of different
methods in what follows:
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FIGURE 3: The basins of attraction for (37) and (a) for the complex polynomial x* =1 = 0 (shaded by the number of iterations to obtain the

solution) and the distribution of the eigenvalues of A[1] for Example 1.

TABLE 1: Results of comparisons for Example 1.

Methods Newton Halley PM1 PM2
Number of iterations 21 14 18 9
Time 6.68 7.53 14.12 7.02
TABLE 2: Results of comparisons for Example 3.
Methods Newton  Halley M4 PM2
Number of iterations 12 8 7 6
COC 1.99999 2.99561  4.04145  4.03896
n = 120; number = 15; SeedRandom[l];

Table[A[1] = RandomReal[{-5, 5},
{n, n}l;, {1, number}].

For this test, the prescribed tolerance is [| X,; — Xll, < 107"

and the maximum number of iterations is set to 100.

The results of comparisons are reported in Figure 4. New
method (23) beats its competitors in terms of the number of
iterations, while both (23) and (8) are the best iterations in
terms of the computational time. Note that, in the last two
examples, we have used double precision arithmetic in our
calculations.

Although this example showed the robustness of new
method (23), there is an approach to observe the order of
convergence of different iteration methods numerically. To
be more precise, the computational order of convergence for
matrix iterations in finding the matrix sign function can be
estimated by

_ log (Xt - 1) /]xk - 1)
log (|2 - 111/ |x2_, - 1])

wherein X;_;, X, X, are the last three approximations for
finding S in the convergence phase.

cocC (38)

Example 3 (an academical test). Let us find the compu-
tational order of convergence for different methods when
finding the matrix sign for the well-known Wilson matrix as
follows:

—

0

A\

7
5
A= 5 (39)

g N U1
—
o

7
8
7

\O
—

0

In order to find the COC, we herein apply 64-digit fixed point
arithmetic in our calculations.

The convergence history along the COCs (in the infinity
norm) using formula (38) for different methods is illustrated
in Figure 5 and Table 2, applying the stopping termination
||X,f =1, < 107'%. Results show that new method (23)
is quite fast and its computational order of convergence for
academical tests in high precision computing environment is
around 4.

4.1. Scaling. Main proposed iteration (23) is quite fast and
reliable due to the discussions in Sections 3 and 4. However,
a way is open for speeding up its initial phase of convergence.

An effective way to enhance the initial speed of conver-
gence is to scale the iterates prior to each iteration; that is, X,
is replaced by ;. X .. Such an approach can simply be done in
what follows:

X, = A,

=]
1% (40)
Xior = (I+18Y, + 134 Z;)
x [we X (71 + 27, (1 +327,)]

where lim; _, .y = 1 and lim; _, . X} = S.



8
T T T T T T T
15 F 5
W
5 N
% /l\ ./ AN //'.\
§ 7 NP LR 3 P NP N
= 10} . r e Sn” . _e A
o r N POV SEEN RN = N
) o— o7 TNk ke et YT e
)
E i Iy
=
Z 5| ]
0 L 1 1 PR PR | PR PR PR | 11 1 PR n-
2 4 6 8 10 12 14
Matrices
—eo— Newton - M4
-u- Halley & PM2

(a)

Journal of Applied Mathematics

v =~
g
E
g 010t .
=
=
o
=
Q
O 005} B
0.00 ¢ P T R R T S T B
2 4 6 8 10 12 14
Matrices
—e— Newton - M4
-=- Halley & PM2

(b)

FIGURE 4: The comparisons of different matrix iterations in terms of the number of iterations and the computational time for 15 different test

matrices in Example 2.
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—=— Halley —— PM2

FIGURE 5: Convergence history based on the logarithm of the
residuals ||Xi —1I||, in Example 3.

5. Discussion

A function of a matrix can be defined and computed in several
ways, such as Cauchy integral, polynomial interpolation, and
Jordan canonical form. However, another approach is to
use iteration methods for such computations. Several matrix
functions can be computed by iteration X;,;, = g(Xy),
with an appropriate initial matrix X, where, for reasons of
computational cost, g is usually a polynomial or a rational
function.

Under this motivation, in this paper we have introduced
and demonstrated some fourth-order matrix methods for
finding the matrix sign function. The proposed methods
consist of one matrix inversion per cycle and are asymptoti-
cally stable. The consistency and efficiency of the contributed

methods have also been tested numerically for finding the
matrix sign functions to support the theoretical parts.
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