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We introduce some generalized quadrature rules to approximate two-dimensional, Henstock integral of fuzzy-number-valued
functions. We also give error bounds for mappings of bounded variation in terms of uniform modulus of continuity. Moreover,
we propose an iterative procedure based on quadrature formula to solve two-dimensional linear fuzzy Fredholm integral equations
of the second kind (2DFFLIE2), and we present the error estimation of the proposed method. Finally, some numerical experiments
confirm the theoretical results and illustrate the accuracy of the method.

1. Introduction

The concept of fuzzy numbers and arithmetic operations
with these numbers were first introduced and investigated
by Zadeh and others. The topic of fuzzy integrations is
discussed in [1]. The Henstock and Riemann integral for
fuzzy-number-valued functions was introduced and studied
in [2, 3]. Their numerical computation was also proposed;
see, for example, [3-6]. In [6], the authors obtained the
upper estimates of error of some fuzzy quadrature rules
for mappings of bounded variation and of Lipschitz type
and gave some applications. In [7], the authors studied the
Gaussian quadrature rules for fuzzy integrals. Also, in [8], Wu
presented some optimal fuzzy quadrature formula for classes
of fuzzy-number-valued functions of Lipschitz type. To study
other works, see [9-12].

Since many real-valued problems in engineering and
mechanics can be brought in the form of two-dimensional
fuzzy integral equations, it is important that we develop
quadrature rules and numerical methods for such integral
equations. In this paper, we introduce two-dimensional fuzzy
integrals and propose some generalized quadrature rules
and their dependent theorems for mappings of bounded
variation. Also, we present the conditions for existence of
unique solution for 2DFFLIE2. Finally, we introduce an

iterative method for solving 2DFFLIE2. The rest of the
paper is organized as follows. In Section 2, we give basic
information about the fuzzy set theory and develop them
to two-dimensional space. Also, we define two-dimensional
fuzzy integral equation and some other properties of it in
this section. In Section 3, we derive the proposed method to
obtain numerical solutions of 2DFFLIE2 based on an iterative
procedure. The error estimation of the introduced method
is presented in Section 4 in terms of uniform modulus of
continuity to prove the convergence of the method. Some
numerical experiments are presented in Section 5.

2. Preliminaries

In this section, we review some necessary basic definitions on
fuzzy numbers, fuzzy-number-valued functions, and fuzzy
integrals.

Definition 1 (see [13, 14]). A fuzzy number is a function u :
R — [0, 1] having the following properties:

(i) u is normal; that is, 3x, € R, such that u(x,) = 1;

(ii) u is fuzzy convex set (i.e., u(Ax + (1 — A)y) =
minf{u(x), u(y)}, forall x, y € R, A € [0, 1]);

(iii) u is upper semicontinuous on R;


http://dx.doi.org/10.1155/2014/413570

(iv) the support {x € R : u(x) > 0} is a compact set, where
A denotes the closure of A.

The set of all fuzzy numbers is denoted by R,. According
to [2], any real number « € R can be interpreted as a fuzzy
number & = Yy, and therefore R ¢ R,. Also, the neutral

element with respect to @ in R is denoted by 0 = y;o;.

Definition 2 (see [2,15]). Forany0 < r < 1, anarbitrary fuzzy
number is represented in parametric form, by an ordered
pair of functions (u(r),u(r)), which satisfies the following
properties:

(i) u(r) is bounded left continuous nondecreasing func-
tion over [0, 1];

(ii) u(r) is bounded left continuous nonincreasing func-
tion over [0, 1];

(iii) u(r) < u(r).

Moreover, the addition and scalar multiplication of fuzzy
numbers in R, are defined as follows:

(@)
wov)(r)=(u@) +v),ur) +v(), @)
(ii)

(Au(r),Mu(r)) A=0,

(Au(r),Au(r)) A<o0. @

(A@v)(r):{

Also, according to [2, 16], the following algebraic proper-
ties for any u, v,w € R . hold:

Huoe(vew)=(uev)ow
(iueld=00u=u

(iii) with respect to 0, none of u € (RF — R), u#0 has

opposite in (RF, +);

(iv) (ae®b)ou=aouedbou,foralla,b € Rwithab >0
orab < 0;

Maouev)=aoudaov,foralla € R;
(vi)ao (bou) = (ab)ou,foralla e Rand 10 u = u.

Definition 3 (see [2, 17]). For arbitrary fuzzy numbers u =
(u(r),u(r)), v.. = (u(r),v(r)), the quantity D(u,v) =
Sup,¢jo,1y maxflu(r) — v(r)l, [u(r) — v(r)l} is the distance
between u and v. Also, the following properties hold [6]:
(i) (R - D) is a complete metric space;
(ii) D(u ® w,v ® w) = D(u,v) for all u,v,w € R
(iii) D(kou, kov) = |k|D(u, v) for all u,v € R, for all k €
R;
(iv) D(usv, wee) < D(u, w)+D(v, e) forallu, v, w, e € Ry

(v) D(k; © u,k, © u) = |k; — k,|D(u,0) for all k, k, € R
with k;k, > 0 and forallu € R,.

Throughout this paper, we denote that || - IIF = D(-,0).
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Theorem 4 (see [14]). (i) (RF, D) is a complete metric space.
(ii) The pair (R,, D) is a commutative semigroup with 0 =
Xo zero elements but cannot be a group for pure fuzzy numbers.
(m) Il - || has the properties of a usual norm on R_; that
is, |-, = 0ifand only ifu = 0, [Ao ull |)L|||u|| and
e qu < full, + 11,
(i) llul, - 11,1 DG, v) and D(w,) <l + v, for
anyu,v € R.

In [2], the authors introduced the concept of the Henstock
integral for a fuzzy-number-valued function. We present a
generalized definition of this concept for two-dimensional
Henstock integrability for bivariate fuzzy-number-valued
functions.

Definition 5. Suppose that f : [a,b] x [c,d] — R, isa
bounded mapping, and then the functlon Ol pixiea(fso)
R, U0 — R, defined by

Wiapix(ed) () = sup {D (f (e 9), f (1))

x,s€abl;y,telcdl; (3)

\/(x—s)z+(y—l‘)2 §6}

is called the modulus of oscillation of f on [a,b] x [¢,d].

Also, if f € CF([a, bl x [c,d]) (ie., f:[a,b] x[c,d] —
R, is continuous on [a, b] x [c,d]), then wi, (e (f6) is
called uniform modulus of continuity of f. The following
properties will be very useful in what follows. The proofs
of these properties in one-dimensional case are presented in
[14] and those in two-dimensional case will be obtained in a
similar way.

Theorem 6. The following properties hold:
(i) D(f (x, ), f (s, 1))

Wpapixied (> \/(X—S) +(y —t)%) for any x,s € [a, b]

and y,t € [c,d];
(i) Wi pixe,a) (f>0) is a nondecreasing mapping in &;
(111) w[a,h]x[c,d] (f, 0) = 0,

(V) W pixiea) (01 + 63) < Wapixea)(f61) +
Wiapixied) (> 685) for any 6,6, > 0;

(V) w[a,b]x[c,d] (f, 7’16) < nw[a’blx[c’d] (f, 8) fOr any 1) >0 and

n € N;
(Vl) w[a,h]x[c,d](f’ /\5) < (A, + l)w[a)b]x[c’d] (_f, 8) fOr any
5,1 >0.
Deﬁmtzon 7. Let f: [a,b] x [c,d] — R, for A7 :a=x, <
xp <o <x,=band A’ 1c=yy <y <<y, =d,be

two partitions of the intervals [a, b] and [c, d], respectively.
Let one consider the intermediate points §; € [x;_;, x;] and
n; € [)’j—p)’j]>i =1...,mj=1...,nand 0 : [a,b] —
R,and o : [c,d] — R,.The divisions P, = ([x;_1, x;];&;),
i=1,...,mand P, = ([y,_,y;lin;), j = 1,...,n, denoted
shortly by P, = (A",§) and P, = (A", 7)) are said to be J-fine
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and o-fine, respectively, if [x;_;, x;] € (& - 8(§;),& + (&)
and [y;_y, y;] € (17; — o(;), 17; + o(7)).

The function f is said to be two-dimensional Henstock
integrable to I € R, if for every ¢ > 0 there are functions
6 : [abl - R,ando : [c,d] — R, such that for
any d-fine and o-fine divisions we have D(¥L, ¥_o(x; —
x,-,l)(yj - yj,l) o f(&; qj),I) < €, where ) denotes the fuzzy
summation. Then, I is called the two-dimensional Henstock
integral of f and is denoted by I(f) = (FH) [* [ f(s,)ds dt.

If the above § and ¢ are constant functions, then one
recaptures the concept of Riemann integral. In this case, I €
R, will be called two-dimensional integral of f on [a,b] x

[c. d) and will be denoted by (FR) [* [ f(s, t)ds dt.
Corollary 8. In [13], the authors proved that if f € C.la, b],
its definite integral exists, also (FR) f: f(t;r)dt = f: i (t,r)dt,

and (FR) I: ftr)dt = J;b 7(t, r)dt. In a similar way, we can
prove that if f € C.([a,b] x [c,d]), its definite integral exists,
and one has

(FR) Jd Jb f(s,t;r)dsdt = Jd jbi(s, t,r)dsdt,

[ a c a

(4)

(FR) Jd r f(st;r)dsdt = jd jbf(s, t,r)dsdt.

c a c a

Theorem 9. If f and g are Henstock integrable mappings on
[a,b] x [c,d] and if D(f(s,t), g(s,t)) is Lebesgue integrable,
then

d b d b
D((FH)J J f(s,t)dsdt,(FH)J j g(s,t)dsdt)
c a c a (5)
d b
< (L)J J D(f(s,t),g(s,t))dsdt.

c a

demonstrated  that
@pl — R,
we have D((FH) [£ h(x)dx, (FH) [* r(x)dx) <

(L) ff D(h(x), r(x))dx, and, clearly, we obtain

Proof. In [2, 17], the authors
for any integrable functions h,r

D ((FH) Jd rf (s,t)dsdt, (FH) Jd Jb g(s,t)ds dt>

c a c a

b

d b
s(L)J D((FH)J f(s,t)ds,(FH)J g(s,t)ds) dt

c a

d b
S(L)J J D(f(st),g(s,t))dsdt,

c a

(6)

which completes the proof. O

Theorem 10. If f : [a,b] x [c,d] — R, is an integrable
bounded mapping, then for any fixed u € [a,b] and v € [c, d]
the function ¢, : [a,b] x [c,d] — R,, defined by ¢, (s,t) =
D(f(u,v), f(s,1)), is Lebesgue integrable on [a, b] x [c, d].

Proof. Regarding [6], Lemma 1, part (ii), it is easy to see that
if f is two-dimensional Henstock integrable and bounded
on [a,b] x [¢,d], then f'(s,t) and f](s,t) as real functions
of (s,t) € [a,b] x [c,d] are two-dimensional integrable and
uniformly bounded with respect to r € [0, 1]; that is, f'(s,t)
and f7(s,t) are Lebesgue measurable (as functions of (s, t))
and uniformly bounded with respect to r € [0, 1] by

Puy (5:8) = D(f W), f (5,1))
= sup max{|f’ (u,v) - 7 (s,1)|,

ref0,1]
Iffwv) - fisoll @)
= sup max{|f™ (w,v) - f" (s,1)|,

7,€[0,1]

| £ (wv) = £ (s, 1)}

where r,,n € N, represent all the rational numbers in [0, 1].
By Lebesgue’s theorem of dominated convergence, it follows
that ¢,,, (s, t) is Lebesgue integrable on [a, b] x [c, d], and this
ends the proof. O

Definition 11. A function f : [a,b] x [c,d] — R, is said to be
bounded if there exists M such that || f (x, )|l i M for any
(x, y) € [a,b] x [c,d].

Definition 12. A function f : [a,b] x [¢,d] — R is said to
be of bounded variation if

sup Van < 00,
(y)elablxled] 7 (8)

where

n—-1n-1

VA"W = Z ZD(f (xi+1>yj+1)’f(xi’yj)) )

i=0 j=0

is the variation of f related to partitions A", A”. The total
variation of f is defined to be, in this case, the number

\/ (f) = sup Vy €R. (10)

(y)elablxled] 7

It is known also that a function of bounded variation is
Riemann integrable (see [18]), so it is Henstock integrable too.

Theorem 13. (i) If [a,b] x [c,d] < e, f]1 x [g,hl], then
w[u,b]x[c,d] (f, 8) < w[e,f]x[g,h](f’ 5)f0r all 8 > 0.

(ii) If f is of bounded variation, then w, py(ca(f,0) <
\(f) forall & > 0.



Proof. (i) It is easy to see that

sup{D(f(x,y),f(s,t)) | x,s € [a,b], y,t € [c,d],

\/(x—s)2+(y—t)2 S(S}

<sup {D (£ (67), f (50) | x5 € [ f. € [g.h],

\/(x—5)2+(y—t)2S5},
(11)
and, therefore, we obtain the required inequality.

(ii) Let x,s € [a,b] and y,t € [c,d]; assume that a <
x<s<bc<y<t<dVy=a=xy<x =x¢<
X, =s<bandVy, =c=y <y =y<y=t<d
Taking supremum for any x,s € [a,b] and y,t € [c,d] with

\(x =s)>+(y —t)* < 8, we obtain the required inequality.
It is obvious now that under this condition f is bounded;
therefore, we obtain

|Gy, = D(f (x.%).0)
<D(f(xy).f @) +d(f(@0),0) 12
<\ (N +lf@oal,,

which completes the proof. O

Definition 14. A function f : [a,b] x [¢,d] — R is said to
be L-Lipschitz, if

D(f (% y).f(58) < I(x =)+ (y—t),  (13)
for any x,s € [a,b] and y,t € [c,d].

Definition 15. A function f : [a,b] x [¢c,d] — R, is said to
be M-Condition, if

D(f(xy),f(st)) sM®-a)(d-c),  (14)
for any x,s € [a,b] and y,t € [¢,d].

Remark 16. We see that if f is M-Condition function, then f
is of bounded variation and

\V(f)sMp-a)yd-o. (15)

Indeed, we have

VA';W = Z Z D(f (xi+1>yj+1)’f(xi’yj))
i=0 j=0
n—1n-1 (16)
= (M (%41 = ;) ()’j+1 - J’j))
i=0 j=0

=M((b-a)(d-o),

Abstract and Applied Analysis

and since

\/(f)=( sup

VAn >
xy)elablxled] 7 (17)

we obtain the required result.

3. Quadrature Rules for Two-Dimensional
(2D) Henstock Integrals

In this section, we present some quadrature rules for 2D
Henstock integral. The following theorem gives a unified
approach to quadrature rules in 2D Henstock integrals.

Theorem 17. Let f : [c,d] x [¢c,d] — R, be Henstock
integrable, bounded mappings. Then, for any divisionsa = x, <
X, < <x,=bandc=y,<y <<y, =dandany
points§; € [x;_y,x;] andn; € [y;_y, y;], one has

c a

d b
D<(FH)J (FH)J F(s,0)dsdt,

M=
.M=

I
—

(% = x;1) (;Vj —)’j—l) Of(fi’”j)>

1i

! (18)

IN
.M=
.M:

-
I

—
]

—

(xi - xifl) (yJ - yj’l) w[xi—l’xilx[}’j—b}’j]

' (f’ \/(x,» —x) + () _yjl)2>‘

Proof. 1t is known that the Henstock integrals are additive
related to interval. This leads us to

d b
D((FH)J (FH)I F(s,0)dsdt,

c a

M=

(% = x;1) (J’j - J’j—l) Of(fi’”j)>

n
j=1i=1

d n x;
=D<(FH)J (Z(FH)J f(s,t)ds)dt,
¢ i=1 Xi

Z Z (% = x;1) (J’j - yj—l) Qf(fzw’?j))
=D<(FH)irj ( > (FH) [ ren ds) dt,

j=1"Yj-1

f Z (FH) Jyj (FH) J:

1i=1 Yi-1

f(&om;)ds dt) ,
(19)

J
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and, by Definition 3 part (iv) and Theorem 9, we have

D<i(FH)J (Z(FH)J f(st)ds)dt
j=1 Yi-1 \i=1 Xi-

X:

) [

Xi1

M=
™M=

(FH) j

1i=1 Yi-1

f (5ia Uj) ds dt)

J

< iD((FH)J Z(FH)J £ (s, Dy dsdt,

V-1 i=1

-
—_

Z (FH) j (FH) j £ (& n;)ds dt)

Yi-1 i

< iiD ((FH) jyj (FH) ri F(s,t)dsdt,

Yj-1 Xi-1

e [ e [ () ds dt)

}’] 1 Xi-1

sZi(L)L 1(L)J ) (f(Sat),f(fi,nj))dsdt.

j=1i=1 i

(20)

From part (i) of Theorem 6, we conclude that

ii(m Ly w L ) D(f(s,), f (&n;))dsdt

j=1i=1 i

n n
s Z Z (xi Xi- 1) (y y} 1) w[xi—l»xi]x[}’j—p)’j] (21)
im1i=1

< \/(x Xi1) — V- 1)2>’

which completes the proof. O

From the above inequality, we infer some generalization
of well-known trapezoidal-type, midpoint-type, and three-
point-type inequalities with error estimations.

Corollary 18. Assume that f : [a,b] x [¢,d] — R,
is a Henstock integrable, bounded mapping. Then, with the
notation

Wsgxzt = Olx,y]x(z1] <ﬁ \/()’ - x)z +(t - 2)2), (22)

one has

(i)
d b
D((FH)I (FH)J Fs,t)dsd,

(b—a)(d—C)Gf(x,)’)>

S(x_a)(y C) axxcy+(b_x)(y_
+ (.X a) (d y) axxyd

+(0-2)(d - y) wgpom

forany (x, y) € [a,b] x [¢,d];

(ii)

d b
D((FH)J (FH)J f(s,t)dsdt,

[(x-a)(y-c)
o f )@ (x-a)(d-y)
of(up)eb-x)(d-y)
of(cB)eb-x(d-y) (24)

of (s

< (x- a) (J/ C) Wazxcy +(b-x) (y - C) wﬁx@
+ (x a) (d y) waxxyd

+(b-x)(d-y)wgge

forany x € [a,b], y € [c,d], u € [a,x], v € [x,b], @ € [c, y],
and f € [y,d];

(iif)

d b
D((FH)J (FH)J f(s,t)dsdt,

[(@=a)@-c)o f (ur)

®(a-a)(y-0)o f(up)
o(-a)(d-y)o f(uz)
®(B-a)@-c)o f(vr)
o(B-a)(y-0)o f(v.p)



®(B-a)(d-y)o fw2)
o(b-p)O-c)o f(wr)
®((b-p)(y-0)o f(wp)

e(b—ﬂ)(d—y)of(w,zn)

< (=) (0~ ) Wegp + (=) (y = 0) w5
+(a—a)(d-y) Wgig
+(B-a) (0~ g+ (B~ ) (v~ 0) wszy
+(B-a)(d-y)wggga+ (b-P) O -0 g
+ (b= B) (y - 0) wgpgy + (0= B) (d =) wppa
(25)
foranyu, v, w,« B, 1, p, 0, y,and z witha < u < a < v <
B<w<bandc<r<O<p<y<z<d
Proof. (i) Taking in the previous theorem that n = 2, x; =

& =& =x,and y; =, = 1, = y, we obtain the required
inequality. Indeed,

d b
D< o [ o [ s,

2

ZZZZ (xi = x:1) (}’j -

j=li=1

yj—l) Of(Ei’ﬂj))
d b
_ D< o [ e [ s,

i [(x —a) ()’j _yj—l) of(xy)

=

eB(b—x)(y]-—

os(sn)] )
d b
:D<(FH)J (FH)J F(s,t)dsdt,

Z(x a)(y-c)o f(x,y)

e(b-x)(y-c)of(xy)

e(x-a)(d-y)of(xy)

ea(b—x)(d—y)Of(x,y)]>
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d b
:D<(FH)J (FH)J f(s,t)dsdt,

i [(b—a)(d—C)Of(x))’)]>

n n
< 2 2 (= x0) (9= 754) WOl )X j1,9;)
j=1li=1

: (ﬁ \/(xi —x0) + (75— yj—1)2>

=(x-a)(y-

€) Wazgy + (= x) (y = ¢) Wby

+(x_a)(d_y)wﬁxﬁ+ (b_x)(d_y)%xﬁ
(26)
(ii) Taking thatn = 2, x; = x, &, = u, &, = v, y; = y,

1, = «, and , = 8 in Theorem 17, we obtain the required
inequality. Indeed,

d b
D((FH)J (FH)J f(s,t)dsdt,

ii(xi - Xiy) ()’j _)’j—1) Qf(fv’?j))

b

d
SD((FH)J (FH)J F(s,t)dsd,

U

[e=a) (3~ yj1) @ f (wr;)

1

J

EB(b—x)(yj—

)0 f (un) )

d b
=D((FH)I (FH)J F(s,t)dsd,

[(x-a)(y-c)o f (u«a)
®(x-a)(d-y)of(up)
ab-x)(y-c)o fa)

ea(b—x)(d—y)Gf(v)ﬁ)])

;V]_)’j—1)

Xi—1>XiXYj-1,)j

= (x =) (¥ =€) Wiy + (0= %) (y - ) w5

+(x—a)(d - y) W gg + (b—x) (d - y) 0z,
(27)
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(iii) Considering n = 4 and performing the similar way in
part (ii), it is obvious that the inequality in previous theorem
becomes the inequality stated above. 0

Corollary 19. Let f : [a,b] X [c,d] — R, be a two-
dimensional Henstock integrable, bounded mapping. Then, the
following inequalities hold:

d b
(i) D((FH)J (FH)J f(s,t)dsdt,

c a

w-axd-oef(“;ﬁcgd))

(b—a)(d—6)>,

< (b - a) (d - C) w[a’b]x[c)d] <f, 2

d b
(ii) D((FH)J- (FH)J F(s,0)dsdt,

c a

W@[f(a,c)eaf(%d)

of (bo)e f (b,d)] )

(b—a)(d—6)>

< (b-a)(d - ) Wpixiea) <fa 2

b
(iif) D((FH)I f(s,t)dsdt,

a

%@ [f (a,0)® f (a,d)

@4@f<acgd>

a+b a+c>
27 2

®4®f<a;%d>

$4®f<hczd>

@16@f<

of (bo)e f (b,d)] )
< (b-a)(d - ) Wpixiea <f’ %) .

(28)

Proof. (i) If we take x = (a + b)/2 and y = (c + d)/2
in the assertion (i) of Corollary 18, we obtain the required
inequality. In other words, we have

d b
D((FH)J (FH)J f (s, t)dsdt,

c a

a+b c+d
b-a)(d- g
b-a)( C)®f< 2 2 ))
<a+b ><c+d
< —-a
2 2
+(b_a+b><c+d
2 2
a+b d c+d
e T ) Ca@b)2x(crdd  (29)

a+b c+d)
T\ 2 d- > ) Y@b2bx(crd)/2)d

_(b-a)d-o)
- 4

-c ) Wo(@rb)2)xc((crd)/2)

-¢ > W@arp)2)bxe((crd)/2)

x [('Ua((a+b)/2)><c((c+d)/2) T WGty 2)bxe((c+d)/2)

T O G x(crdyd T w((a+b)/2)b><((c+d)/2)d]

bo0-0)

< (b-a)(d - ©) Wigp)xjea) (f’ 4

(ii) Taking x = (a+b)/2, y = (c+d)/2,u =a,v=b,a =,

and 8 = d in the assertion (ii) of the previous corollary, we
obtain

d b
D((FH)J (FH)J F(s,t) dsdt,

c a

GG
@(a;b—a>(d—czd>®f(a,d)

o b_a+b c+d_c o f(b.o)
(s-57) (57 <)o

2
(30)
ea<b—a;b><d— C;d>®f(a,d)>
_(b-a)(d-o)
N 4

x [wa((a+b)/2)xc((c+d)/2) T WG Dbxe(crd)2)

+ wa((a+h)/2)><((c+d)/2)d + ('U((a+l7)/2)b><((c+d)/2)d]

(b—a)(d—6)>.

< (b-a)(d-c)Wupixica (f’ 4

(iii) It is easy to see that the inequality follows from
the corresponding assertion (iii) of the previous corollary by



takingn = 4, « = (5a + b)/6, § = (a + 5b)/6, u = a,
v=(a+b)/2,w=0b,0=(5c+d)/6,y = (c+5d)/6, 1 =c,
= (c+d)/2,and z = d. Indeed, we have

d b
D<(FH)J (FH)J F(s.t)dsdt,

ol f@oe @ etor(a?)
sor(220.) G
o160 (452 45 asor(52a)
010 f<b;d)ef(bc)ef bd)])

< (b-a)(d =) Wpixtea) (ﬁ %) '

O

The next corollaries present simpler error estimation for
the inequality stated in Theorem 17.

Corollary 20. Let f : [a,b] x [c,d] — R, be a two-
dimensional Henstock integrable, bounded mapping. Then, for

any divisions A", : a = xy < x; < -+ < x, = band
ANyic=y <y <<y, =d§ €x,x]and
M€ jpyli=1....mj=1,...,n onehas
d b
D (FH)J (FH)J F(s,t)dsdt,
(32)

M:

Z X xil)(yj_yj1>®f(fi’r]j)>
j=li
< (b-a)(d - ¢) Wpxedl (f> v (Axy)) >

where v(A ) = max; ;- {(x; —x;_1)(y; = y;j_1)} is the norm
of the divisions A", and A",

I
—

Proof. Considering Theorem 17 and parts (i), (i) of
Theorem 13 and by regarding the definition of \/(f),
we infer that

c

d b
D( e [ onn [ s,

-

1

(%; = x; 1)( - Y- 1)®f(£t>’71)>

J

™M= IDVs

11
—

IA
M=

(x; = x;1) (J’j -

yjfl) w[xi—l’xi]x[J/j—l’yj]

-
11
—_

1

: (f’ \j(xi ~xi1) + (95— yj—l)z)

Abstract and Applied Analysis

zz< D0,

i=1

~ Y- )w[a,blx[c,cﬂ (f>"(Axy))

=(b-a)(c—d)wpxica (f’V(Axy))'
(33)

O

Corollary 21. Let f : [a,b] x [c,d] — R_ be a two-
dimensional Henstock integrable, bounded mapping. Then, for

any divisions A", : a = xy < x; < -+ < x, = band
Ny ie=y <y <<y, =4d§& € lx,x]and
M € Wj-pyli=1....m j=1,...,n onehas
d b
D (FH)J (FH)J F(s,t)dsdt,
ZZ(%“’%‘A)(J’;‘—J’j—l)ef(fi’ﬂj)>
j=li=1 (34)

n n
<v(Ay) Z Z Wlablx[c.d)

Proof. Since v(A ) is the least upper bound of partitions A",
and Ay we conclude that (x; — x;_)(y; = yj-1) < v(Ay,) for

anyi, j = 1,n. Hence, the required inequality holds. O

Remark 22. It f : [a,b] x [c,d] — R, is a two-dimensional
Riemann integrable function, it is also Henstock integrable
function. Therefore, the above quadrature rules hold for
Riemann integrable function too.

Theorem 23. Let f : [a,b] X [c,d] — R, be a mapping of

bounded variation. Then, for any divisions A", : a = x, <
xl<---<xn=bandA”y:c='y0<y1 <. - <y, =4d,
§ €lxipxlandn; € [y, y;li=1...,mj=1,...,n one

has

d b
D<(FR)J (FR)J F(st)dsdt,

(35)

™=

]_le (x; = x4) (¥ y11)®f(5,>f1,)>

< V(Axy)‘\/(f)‘
Proof. If we define Puy - [a,b] x [c,d] — R, such that

Pry(s:1) = D(f(s,1), f (x, y)) for any (x, y) € [a,b] X [c,d],
we see that ¢ is of bounded variation and we have

Vo 0 <\ (f),

I
—_

(x,y) € [a,b] ® [c,d]; (36)
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in other words,

Var, (D(f (s:), f (x.7)))

n—1 n-1

=Y YD (f (terrsSmar) - f (%, 9))

k=0 m=0
(37)

=D (f (te5)» f ()]

n—-1 n-1

s kZ, Zo (D (f (tir> Smin) > f (%, 7)) = Var, (f).

Considering Theorem 13, Theorem 17, Corollary 21, and [18]
and since any real valued function of bounded variation is
Lebesgue integrable, we observe that

n o n
j=1 1=1

.(f,\/(xi x; ) +( - Y- 1)2)

<v(8y)Y

- Xi1) (;Vj -

)/j71) w[xi—hxi])([}’j—l))/j]

™M=

Oy x]x[yj-1.9;]
j=li=1 (38)
(f’ \/(x,- Xi- 1) "‘( ~ Y- 1)2)

n n iyl
—r(89) 22 V)

j=li=1 [x;_,x;
=V(Axy)'\/(f)'

O

Theorem 24. If f : [a,b] x [c,d] — R, is L-Lipschitz

mapping, then, for any divisions A", : a = xy < x; < --- <
X, =band A, 1 c=yy <y <+ <y, =d, & € [x;_, %]
andn; € [y, y;li=1,....m j=1,...,n one has

d b
D<(FR)J (FR)J- F(s,0)dsdt,

35

j=li=1

(x; = x;1) (J’j - )’j—l) °f (Ei’”j)> (39)

XH)Z(J’J‘ - Yj71)2)~

Proof. Analogous to the proof of Theorem 17 and by defini-
tion of L-Lipschitz mapping, we infer that

d b
D((FR)J (FR)J f(s,t)dsdt,

ii(xi - X;) (}Vj - yj—l) @f(gi”’lj)>
Yyw|

"W in D(f(s:t), f (& n;))dsdt
=1i=1 x

-1 i-1

of

<L Z Z (L) L

\/(s —&) + (t - nj)zds dt

(40)

1/2
+(yj - yj_l)z) dsdt

Lii( x; Yj—l)z)-

j=

XH)Z + (;Vj -

—_
I\
—_

4. 2D Fuzzy Fredholm Integral Equations

Here, we consider the two-dimensional fuzzy Fredholm
integral equations as follows:

d b
F(s,t)=f(s,t)€BA®J J K(s,t,x,y)© F(x, y)dxdy,
c Ja (1)

where A > 0, K(s,t,x, y) is an arbitrary positive kernel on
[a,b] x [c,d] x [a,b] x [c,d] and f : [a,b] X [c,d] — R..
We assume that K is continuous, and therefore it is uniformly
continuous with respect to (s, ). This property implies that
there exists M > 0 such that

M = K )
max K (s,6,%,y)|. 42)
c<t,y<d

Now, we will prove the existence and uniqueness of the
solution of (41) by the method of successive approximations.
Let X = {f : [a,b] x [c,d] — Ry; f is continuous} be the
space of two-dimensional fuzzy continuous functions with
the metric

D*(f.g) = :iED(f (s,1),g(s,1)) 3)

c<t<d
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that is called the uniform distance between two-dimensional
fuzzy-number-valued functions. We define the operator A :
X — Xby

A (F) (s 1)

d b
=f(s,t)€B/\®J J K (s,t,x,y) © F(x, y)dxdy,

c a

V(s,t) € [a,b] x[c,d], VfeX

(44)

Sufficient conditions for the existence of a unique solution
of (41) are given in the following result.

Theorem 25. Let K(s,t,x, y) be continuous and positive for
a<s,x<buandc<t,y<d, andlet f:[a,b] x[c,d] — R,
be continuous on [a,b] x [¢,d]. If B = AM(b - a)(d —¢) < 1,
then the iterative procedure

Fy(s,t) = f(s,1),
E,(st)=f(s,t)® Ao (FR)

d b
: J (FR) J K(s,t,x,y)OF,_, (x,y)dxdy,

a

m=1,
(45)
converges to the unique solution F* of (41).
Moreover, the following error bound holds:
Bm+1
D* (F",F,,) < M, (46)
1-B
where
M, = sup |F(s,t)| ..
' aSsgb d (47)

c<t<d

Proof. To prove this theorem, we investigate the conditions of
the Banach fixed point principle. We first show that A maps X
into X (i.e., A(X) ¢ X). To the end, we show that the operator
A is uniformly continuous. Since f is continuous on compact
set of [a, b] x[¢, d], we deduce that it is uniformly continuous,
and hence for &, > 0 exists §; > 0 such that

D(f (sp.t1), f(so12)) < &

whenever \/(t2 )+ (5, —5,) <8y (48)

Vs, s, € [a,b], Vit t, € [c,d].

As mentioned above, K also is uniformly continuous; thus,
for &, > 0 exists §, > 0 such that

K (51,11, ) = K (55,15, %, )| < &

whenever \/(l‘2 1)+ (5, - 5,)" < &y (49)

Vs, s, € [a,b], Vi, t, € [c,d].

Abstract and Applied Analysis

Let § = min{§,,6,}, s;,s, € [a,b], and t,t, € [c,d], with

\/(t2 —t,)* + (s, —5,)> < &. According to Definition 3 and
Theorem 9, we obtain

D(A(F) (sp.1,), A(F) (s, 1,))

<D(f(spty), f (5215))

d b
+D <)L® (FR) J (FR) j K (51,1, %, y)

O F(x,y)dxdy,

d

b
Ao (FR) I (FR) J K (85,5, %, )

c

o F(x,y)dx dy)

d b
<& +Ao(FR) J D ((FR) J K (st %, y)

c

O F(x,y)dx,

b
(FR) J K (55,5, %, )

OF(x,y) dx) dy G0

<& +A0O(FR)

d b
-j (FR) j D(K (sp,t1,% y) 0 F (%, 7),

K (5315, %, y) © F (x, ) dx dy

<& + MK (s, 1%, y) = K (55,85, %, )|
d b B
@(FR)J (FR)J (F(x,y),0)dxdy

d b
< g + Mg, © (FR) J (FR) J IF (x, y)||Fdx dy
<e + e (b-a)(d-o)|F(x y)"F

<g+A(b-a)d-c)Me,

where M, = sup [[F (s, 1),
a<s<b
c<t<d

and by choosing ¢, = ¢/2 and &, = (1/2M,A(b — a)(d - ¢))e,
we derive

D(A(F) (s t1), A(F) (sp,1,)) < e (51)

This shows that A(F) is uniformly continuous for any F ¢
X and so continuous on [a, b] X [¢,d], and hence A(X) c X.
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Now, we prove that the operator A is a contraction map.
So, for F|,F, € X, s € [a,b], and t € [c,d], we have

D(A(F)(st), A(F,) (s,1))

<D(f(s,t), f(s,1)

d b
+D<Ao(FR)J (FR)I K(s,t,x,y)
© Fy (x, y)dxdy,
d
Ao(FR)J

c

b
(FR) J K(s,t,x,y)

OF, (x,y)dx dy)

d

b
gA@(FR)J (FR)J D(K(s,t,x,y) ©F, (x,y),

K(s,t,x,y) (52

©F, (x,y))dxdy

= A|K (s,t,x, y)| © (FR)

d b
| @ | D) B o) drdy

d b
(FR)] D(F, (x,y),

a

< AM@(FR)J

c

F, (x,y))dxdy

d b
SAMG(FR)J (PR)J D* (F,,F,)dxdy

a
=AM (b-a)(d-c) D" (F,,F,) = BD" (F,F,).
Therefore, we obtained
D* (A(F,)(s,t),A(F,)(s,t)) < BD" (F,F,). (53)
Since B < 1, the operator A is a contraction on Banach space
(X, D). Consequently, Banach’s fixed point principle implies
that (41) has a unique solution F* in X and we also have
D(F* (s,t),F, (s,t))
<D (F',F,)
<AM(b-a)(d-c)D* (F',F,_;)
= BD* (F',F,,,) < BD* (F",F,) + BD" (F,,_,,F,,)

< BD*(F*,F,,)+B"D" (F,, F,);
(54)

therefore,

Bm

D" (F*,F,) <
(F.B) <

D" (Fy, F,); (55)

11
on the other hand,
D" (Fy, Fy)
= supD(f(s,t)eaﬁ,f(s,t)eak@(FR)
o
d b
: J (FR) J K(s,t,x,y)
O Fy (x, y)dx dy)
< sup A @ (FR)
o
d b
: J (FR) J D (O,K (s,t,%,¥) @ Fy (x, y) dx dy)
d b N
< M\ o (FR) J (FR) J sup D (0, F, (x, y)) dxdy
‘ e
=AM (b -a)(d-c)M, = M,B,
(56)

so by (55) and (56), we obtained inequality (46), which
completes the proof. O

Now, we introduce a numerical method to solve (41).
We consider (41) with continuous kernel K(s, t, x, y) having
positive sign on [a,b] x [c,d] x [a,b] x [c,d] and uniform
partitions

D ,ia=sy<s <s;<:+<s, ,<s,=b,
(57)
Dy:ib=ty<t <ty<-<t,,<t,=d,

with's; = a+ih, t;= c+jh/,whereh = (b-a)/n, i = (d-c)/n.
Then, the following iterative procedure gives the approximate
solution of (41) in point (s, t):

uy (s,t) = f (s, 1),

ARK
4

< [(K (5,5 S0, t9) © Uy (So» o)

U, (s,t) = f(s,t) &

oK (S’ t’ 50’ tn) © um—l (SO> tn)
oK (S’ t’ sn’ tO) © um—l (Sn’ tO)

@K (s,t,s,.t,)

© U1 (Sn’ tn) >
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n-1
2 <Z K (s,t,5;,tp)
i=0

Oty (55t0)

n—-1

@ Z K(s, t, so,tj)

The above recursive relation can be written as follows:

uy (s, 1) = f(s,t),

U, (s,t) = f(s,t) & Afih

0% 5 (K (st 0t (501)
=0 j=0
K (st,5,t),)
Oty (Stj11)
® K (s,1,5,11;)
O thyy_y (Siv1r1))

GBK(s,t,s,»H,th)

Oy, (5i+1’tj+1))'

Abstract and Applied Analysis

where

w0y (K,8) = sup { [K (5111, 7) = K (52012, )]

2 2 61
\/(52_51) +(ty 1)) 35} (6D
V6>0, a<s,s,<b, c<t,t,<d,
M= sup  Juds o),
(s:t)€lab]x[c.d]
(62)
I, = sup  ||Fi(s, t)||F,
(s,t)€la,b]x[c,d]
t= izo,rlr,l.i)fn—l (M},
(63)
58 = 1.
58) He g 1

Proof. Considering iterative procedure (59), for all (s,t) €
[a,b] x [c,d], we have

D (F, (s,t),u, (s,1))
9y —PUen.fsn)

+D(/\®(FR)

. Ld (FR) Jj K(s,t,x,y)

© F, (x, y)dxdy,

1n-1

)th' © <
ZO Z [ (s, t, si,tj) O F, (si,tj)

4.1. Error Estimation. Here, we obtain an error estimate
between the exact solution and the approximate solution for oK ( s, b5t ) F, ( Sty 1)

the given fuzzy Fredholm integral equation (41).

Theorem 26. Consider the 2DFFLIE2 (41) with continuous

2" j+1

eaK(s, t,s,-+1,tj) O F, (Si+1’tj)

kernel K(s, t, x, y) having positive sign on [a, b] X [c, d] x[a, b] x GBK(s st )
[c,d] and suppose that f is continuous on [a,b] x [c,d]. If SREAS

B = AM(b-a)(d—c) < 1, where M = maX q<s x<p |K(s, 1, X, )|,

cst,y<d

then the iterative procedure (59) converges to the unique

o F, (5i+1’tj+1)] )

solution of (41), F, and the following error estimate holds true:

m+1

D* (Fu,,) < <1

pth+4TB /
+ (m wst(K,h+h ),

n—-1n-1
B B , =D 1o (FR)
— ) Io + <4 1-B) ) Opapixtear (f-H1') < ;0 ;0

Sit+1 tj+l
. J. (FR) J K(s,t,x,y)
S; t

J

(60) o f (x,y)dxdy,
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n-1n-1

® ;} JZ:(; [K (s,t,si,tj) Qf(si’tj)

AhK

EBK(S t,s; t]+1) f(si,th)
EBK(s,t,sm, j)®f<si+1>tj)
@K(S t 51+1 ]+l)

o f (srrty)] )
n—-1n-1 Siv1 i
<lo) ZD((FR) j (FR)J K (s.t,x,y)
t

i=0 j=0 J

© f(x,y)dxdy,
TO[K(stst)®f< )

s, t,8;,t

(stsitin) o f (sotjn)
(5 Sit1> t) f( Sit1 tj)
(
(

st 5i+1’tj+1)

of Si+1’tj+l)] >

n-ln-1 Siv1 tin
<oy ZD((FR) I (FR)J] K (st %, )
i=0 j=0 S £
o f (x,y)dxdy,
!
b o) [K(s,t,x,y) @f(si,t-)

®K(5:6,%,) 0 f (sptj)
&K (5,t,%,9) 0 f (si1t;)

@K (s,t,x,)

o f (smoti)] )

103 5 (M [k (stx0) 0 (501
i=0 j=0
®K (s,t,%, ) © f (sitj)
&K (s,t,x,y)® (s,+1 t])
O K (s.:%7) Of (si1tj1)]
hi'

T@[K(sts t) (sl tj)
EBK(sts, t]+1) (st )

® K (5,6,5,1,1;) © f (si101;)

13
eBK(s,t,siH,th)

o f (set)] )

n-1n-1

<io) Y [K(stxy)l

i=0 j=0

Sit1 tj+1
D ((FR) j (FR) L f(x,y)dxdy,
hh'

—G[f( ) f(l J+1)
® f (Si10t;) @ f (S0t ] >

n-1n-1

AhH!

—QZZ[DK(stxy)Gf( )

=0 j=
K(s.t;st;) of (sit;))

+D(K(s£:%,9)0 f (sutjn).

K (s:tsntjn) o f (sntjn))
D(K(s:t,% )0 f (siuot))

K (5: £ Siv1s tj) of (5i+1’tj))
D(K(56%9) 0 f (St

K (st,8i15t01) © f (Sia15tj1))] -

(64)

Using part (ii) of Corollary 19, part (v) of Definition 3, and
part (i) of Theorem 13, we obtain

D(F, (s,t),u; (s,t))

AMhh’ e hh'
(4“’[si,si+11x[tj,tj+l] (f’ 4

2 2 ~K(stsot))
XD(f( sn1;),0)

+ |K(s t,x,y)—K (s t,s; t]+1)|
xD(f (sntjn)-0)

+ |K (st,x,y) —
<D(f (s06).9)
+ |K (st %) —K (s, t,si,tj)|
x D(f (Si+1’tj+1)’6)]'

)th

K(st50t)

(65)
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By part (ii) of Theorem 6 and direct computation, it
follows that

D (F, (s,t),u, (s,t))

AM (b—-a)(d-c) )
< ()
n-1n-1
+ Ahh' Z Z ('K (st,x,y) — K(s, t, si,tj)|)
i=0 j=0

sup  D(f(s1),0)
(s,t)e[a,b]x[c,d]

< /\M(b—a)(d—c)w
4

(fihh' )+ A (b-a)(d-c)

Mowg (K. B+ H) = %v (fnH')+ A—B4Mowst (K.h+h);

(66)
therefore, we obtain
D(E, (5,), 14, (1) < 2o (f ') + = Mowoy (Kot ).
1\ > U1 S = 4 > M 0"¥st
(67)
Now, since F,(s,t) = f(st) + A o

(FR) Ld(FR) f: K(s,t,x,y) © F/(x,y)dxdy, we infer
that

D(F2 (S, t)’u2 (S’ t))
=D(f (1), f(s1)

d b
+AD ((FR) J (FR) J K(s,t,x,y) O F, (x, y)dxdy,

hh/ n—-1n-1
T ©] % 2, [K (s,t,si,tj) oOF (si,tj)
i=0 j=

@K(s,t,si,tjﬂ) OF (si,tjﬂ)
EBK(S, t si+1,tj) OF (sm,tj)

@K(s,t,sm,tjﬂ)
OF (Si+1’tj+1)] )

Sit1 tj+1
[D((FR)J (FR) L K(s,t,x,y)

i=0 j=0 i J

OF (x,y)dxdy,

< AM (b—a)(d-c)

Abstract and Applied Analysis

!
%OK(s,t,x,y)

0] [F1 (si,tj) e F (si,th) e F (sm,tj)
® F (5i+1>tj+l)] )
+ hThID (K(s, £x,y)

[F1 (st;) @ Fy (spt01)
®F, (su1rt;) @ Fy (sinstu )]
K (s, x, y)
xur (sp1;)
®uy (sptj) ®uy (sip.t;)
o, (s0t50)] )
+ hTh,D (K(s, t,x,y)
% [ (s 1))
®uy (sptj) ®@uy (si1,t))
®u (siptj)]
[K(st.sut;) 0 (s5;)
OK (s,t,5,t5,1) 0wy (spt),;)
O K (s,t,5,15t;) 01y (Si0151;)
® K (5,6, 5,15tj41)

Oty (Siyptjur)] )]

Oapixica) (Fio i)

4

AMEZDE=) (15, (o 1) 1 s1,)
1)t (sit1))
+ D (Fy (sipot;) >4y (Sia10t5))

+ D (F, (Sie1rtja1)

U (Si+1’tj+1))]

+D(F, (spt),

+A(b-a)(d-c) Mw, (Kh+h');

(68)
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therefore, we have

D (F, (s,), 1, (s,1))

B /
< Z“’[ab]x[cd} (Fuhi')

HLICICEAN’
(Fl( Si> J+1) 5 j+l
CICRRARTCERD)

+D (Fl (Si+1’ tj+1) > Uy (Si+1> tj+1))]
+A(b-a)(d-c) Mywy (K,h+H').

1 (s0t))

() @

@»

+D

By induction for m > 3, using (45), (46), (59), and (62), we
see that

D (F,, (s,t),u,, (s,t))

E“’[mb]x[ad] (B, ')

# 2 [D (B (50174 (501,))
#D(Fy (sot0) 1 (s0851)) (70)
#D (B (5000 5) s (S50015)
D (Ey (s01050) st (50108501))]

+ %Mm_lwst (K,h + h');

taking supremum for (t,s) € [a,b] x [c,d] from (70), we

conclude that
B '
= Zw[a,b]x[c,d] (mephh )
+BD" (F,,_,,t,_,) +
D* (Fm—l’ um—l)

B ’
< Zw[u,b]x[c,d] (Fm_z, hh )

%Mm_lwst (K.h+H'),

+ BD* (Fm—Z’ um—Z) +

D* (Fm—Z’ um—Z)
B (71)

!
< 1 “labixied) (Fm,3, hh )

%Mm,zwst (K.h+H),

: B
+BD* (F,,_3,1,,3) + 1 M3 (K.h+H'),
D" (Fj,uy)
B
< S Vtatixtea (For hh')

; B
+ BD* (Fy, uy) + 1 Mo (K;h+H'),

15
and multiplying the above inequalities by 1, B, B,..., B™,
respectively, and summing them, we obtain

D" (Eyp» th)
B !
<7 (Wapixted) (Fr-1shh') + Baygpugeay
X (P ')
(72)

o+ B i) (£ 1))
+ A_Iflw” (K,h+h') (M, + BM,, , + B°M,,

+ ~-+Bm71MO).

Since, for (s, ty), (s,,t,) € [a,b] X [¢c,d] with |s; —s,] < A,
|t, —t,] < h', we have

D(E,, (s1:t1) > E, (52,1,))

:D<f(sl,t1)ea/l

d b
®J J K (51,1, %, )

c a

Fyy (x,y)dxdy,

d b
f(sz’tz)eaA@J J K (5315, %, )

®F, ;(x, y)dx d)’)
<D(f(spth), f (1)) @A

d b
®J J K (5121, %, ) = K (5,15, %, y)|

><D(Fm,1 (x, y),ﬁ) dxdy
< D(f(51’t1)>f(52’t2))
B
oW wy (K, h+H) T, ),
(73)

we infer that

Wiap]x[c,d] (Fm, hh,)
< i (110) o

+ %wst (K,h + h') I,
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By this inequality and (72), we see that

D* (F,,u,,)
< g (1 + B+ 32 Foeee Bm’l)w[a,b]x[c,d] (f’ hh,)

+ (K,h+h")(BL,

+ %wst (K,h+h'") (M, + BM,, , + B°M,, ,

L+ BT, s+ +B"'L,)

+eeet B"HMO)

3 ( = > Wapitea () + o (K 1)

1-B m
X [(Brm—z + le"m73 bt Bmflro)

+4(M,,_, +BM,, , +B’M, 5+ +B""'M,)].
(75)

By (62) and (63) and since B < 1, we obtain

B(1-B"
=7 <1—> Wapixied) (1)

1-B
B(1-B™) 4(1-B") )
M+ T
1-B 1-B

+ %wst (K,h + h') (

B
< —
4(1 - B)

B+4
vy (i) (B25F);
4M 1-B

Opapistea (1)

(76)
therefore, we obtain

D" (s th)

B !
< (m) Wa,b]x[c,d] (f, hh ) o7

B + 41B
Y (i it wst(K,h+h').
4M (1 - B)

By inequalities (77) and (46), we deduce that
D" (F.u,)

< D*(F,F,) + D" (F,,u,)

Bm+1 B ,
(175 1o+ () Coscn (50) 09

MBZ+4TB '
+ (m wst(K,h+h )
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Remark 27 Since B < 1, it is easy to see that

lim D (Fu,) =0,

: (79)
hh —0

which shows the convergence of the method.

5. Numerical Experiments

The proposed iterative method of successive approximations
was tested on three numerical examples to provide the
accuracy and the convergence of the method and illustrate
the correctness of the theoretical results. In these examples,
we assumed that [a, b] X [¢,d] = [0,1] x [0,1], A = 1, and we
performed the algorithm in point [sy, t,] = [0.5,0.5].

Example 1. Assume that

F(s,t) = f(s,t)® HIK (s,t,x,y) @ F(x, y)dxdy, (80)
0
where
f(s,t,r) = (i(s,t,r),?(s,t,r)),

i(s, t,r) = (r2 + r)ssin %,

(81)
— t
s, tr) = 4-7°—r)ssin -,
fstr)=( )ssin -
K(s,t,x,y) = s’tx;
the exact solution is given by
F(st,r) = (E(s.t,r),F(st,1)),
t 16 1
F (s, t,r) = (r2 + r) <ssin - - — <cos— - l>szt),
- 2 21 2
= t 16 1
F (s, t,r) = (4—1’3 —r) <ssin— - — (cos— - 1>52t>.
2 21 2
(82)

To obtain numerical solution, we apply the proposed
method. To compare numerical and exact solutions, see
Table 1.

Example 2. Consider (80) with
fstn) = (fstn),fstr),
i(s,t,r)zr(%r+§><l+s+t—l—7zst),
f(s,t,r) = (2r2—4r+5)(1+5+t—%st>,

K (s,t,x,y) = stxy
(83)
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TABLE 1: Numerical results on the level sets for Example 1in (s, ¢,) = (0.5,0.5).
r-level m=5,n=10 m=5n=20 m=7,n=10 m=7,n=20
|E - u,,| |F -1, |F —u,,| |F —u,,] |E - u,,| |F —u,,] |F —u,,| |F -1,

0.00 0.000000 0.000657 0.000000 0.000661 0.000000 0.000008 0.000000 0.000003
0.25 0.000067 0.000427 0.000051 0.000617 0.000011 0.000053 0.000001 0.000005
0.50 0.000086 0.000586 0.000024 0.000258 0.000066 0.000815 0.000043 0.000001
0.75 0.000150 0.000423 0.000022 0.000367 0.000069 0.000499 0.000008 0.000006
1.00 0.000229 0.000329 0.000131 0.000221 0.000154 0.000154 0.000005 0.000005

TABLE 2: Numerical results on the level sets for Example 2 in
(s00tp) = (0.5,0.5).

TABLE 3: Numerical results on the level sets for Example 3 in
(500 tp) = (0.5,0.5).

rlevel m=4,n =£0 - m=38,n :EO - r-level m=5n :EO - m=>5n :EO B
|F —u,| |F -, |F —u,l |F -, |F —u,| |F —u,,| |F —u,l |F -,
0.0 0.000000 0.000000 0.000000 0.000000 0.0 0.000047 0.000028 0.000008 0.000003
0.2 0.000003 0.000008 0.000000 0.000002 0.2 0.000039 0.000086 0.000006 0.000009
0.4 0.000007 0.000011 0.000000 0.000008 0.4 0.000009 0.000008 0.000003 0.000000
0.6 0.000004 0.000006 0.000001 0.000000 0.6 0.000004 0.000005 0.000001 0.000000
0.8 0.000000 0.000005 0.000000 0.000000 0.8 0.000012 0.000033 0.000007 0.000002
1.0 0.000000 0.000000 0.000000 0.000000 1.0 0.000006 0.000004 0.000000 0.000000

and exact solution

F (s, t,r) = (E (s,t,7), F (s, t, r)) ,

:<r<§r+§>(s+t+1)’ (84)
(2r2—4r+5)(s+t+1)>.

We perform the proposed method and obtain numerical
solution. Comparison of these two results is presented in
Table 2.

Example 3. The integral equation (80) with
f(str)= (i(s,t,r),?(s,t,r)),

i(s,t,r): (2rcos(1—r)—1)(1+52+t—5(s+t)>,

7(s,t,r): (Z—Sin%><1+sz+t—£(s+t)>,

K(st,x,y) = (s+t)xy

(85)
has the exact solution
F(s,t,r) = (F(s,t,7),F (s,t,7)),
=<(2rcos(1—r)—1)(sz+t+l), (86)

(2—sin%>(sz+t+l)).

For this linear example, we apply our proposed iterative
method and obtain numerical results that can be viewed in
Table 3.

6. Conclusions

In this paper, we introduced 2D fuzzy mappings and defined
2D fuzzy integrals. Quadrature rules to approximate the
solution of 2D fuzzy integrals are given. We established the
theorem of existence of unique solution of 2DFFLIE2, and
we have proved it by using Banach’s fixed point principle.
Moreover, to approximate the solution of 2DFFLIE2, we
have proposed an iterative algorithm based on method of
successive approximations. The convergence to the unique
solution in our iterative method is investigated. The presented
numerical experiments show that the method applies well for
2DFFLIE2.
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