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We obtain some fixed point theorems with error estimates for multivalued mappings satisfying a new 𝛼-𝜓-contractive type
condition. Our theorems generalize many existing fixed point theorems, including some fixed point theorems proved for 𝛼-𝜓-
contractive type conditions.

1. Introduction

Samet et al. [1] introduced and studied the notions of 𝛼-
𝜓-contractive and 𝛼-admissible self-mappings and obtained
some well-known fixed point and coupled fixed point theo-
rems in complete metric spaces as consequences. Karapınar
and Samet [2] generalized these notions and obtained some
results as an extension of the results of Samet et al. [1]
and those contained therein. Asl et al. [3] extended these
notions to multifunctions by introducing the notions of
𝛼
∗
-𝜓-contractive and 𝛼

∗
-admissible mappings and obtained

somefixedpoint theorems.Ali andKamran [4] further gener-
alized the notion of 𝛼

∗
-𝜓-contractivemappings and obtained

somefixed point theorems formultivaluedmappings. Related
results in this direction are also given in [5–9]. In addition
to that, Ali et al. [10] introduced the notion of (𝛼, 𝜓, 𝜉)-
contractive multivalued mappings to generalize and extend
the notion of 𝛼-𝜓-contractive mappings to closed valued
multifunctions and proved some fixed point theorems for
suchmappings in completemetric spaces. For details on fixed
point theory for multivalued mappings, we refer to [11–16].
The purpose of this paper is to establish some fixed point
theorems for a new type of 𝛼-𝜓-contractive condition for
multivalued mappings that also provides convergence rate
and error estimates.

We recall the following definitions and results, for the
sake of completeness. Let (𝑋, 𝑑) be a metric space. For each
𝑥 ∈ 𝑋 and 𝐴 ⊆ 𝑋, 𝑑(𝑥, 𝐴) = inf{𝑑(𝑥, 𝑦) : 𝑦 ∈ 𝐴}. We denote
by 𝐶𝐿(𝑋) the class of all nonempty closed subsets of 𝑋. For
every 𝐴, 𝐵 ∈ 𝐶𝐿(𝑋), let

𝐻(𝐴, 𝐵)

=

{
{
{
{

{
{
{
{

{

max{sup
𝑥∈𝐴

𝑑 (𝑥, 𝐵) , sup
𝑦∈𝐵

𝑑 (𝑦, 𝐴)} ,

if the maximum exists;
∞, otherwise.

(1)

Such a map 𝐻 is called a generalized Hausdorff metric
induced by 𝑑. A point 𝑥 ∈ 𝑋 is said to be a fixed point of
𝑇 : 𝑋 → 𝐶𝐿(𝑋) if 𝑥 ∈ 𝑇𝑥. If, for 𝑥

0
∈ 𝑋, there exists a

sequence {𝑥
𝑛
} in 𝑋 such that 𝑥

𝑛
∈ 𝑇𝑥
𝑛−1

, then 𝑂(𝑇, 𝑥
0
) =

{𝑥
0
, 𝑥
1
, 𝑥
2
, . . .} is said to be an orbit of 𝑇 : 𝑋 → 𝐶𝐿(𝑋).

A mapping 𝑓 : 𝑋 → R is said to be 𝑇-orbitally lower
semicontinuous if {𝑥

𝑛
} is a sequence in 𝑂(𝑇, 𝑥

0
) and 𝑥

𝑛
→

𝜉 implies 𝑓(𝜉) ≤ lim inf
𝑛
𝑓(𝑥
𝑛
). Throughout this paper 𝐽

denotes an interval on R
+
containing 0, that is, an interval

of the form [0, 𝐴], [0, 𝐴), or [0,∞) and 𝑆
𝑛
(𝑡) denotes the

polynomial 𝑆
𝑛
(𝑡) = 1 + 𝑡 + ⋅ ⋅ ⋅ + 𝑡

𝑛−1. We use the abbreviation
𝜓
𝑛 for the 𝑛th iterate of a function 𝜓 : 𝐽 → 𝐽.
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Definition 1 (see [17]). Let 𝑟 ≥ 1. A function 𝜓 : 𝐽 → 𝐽 is
said to be a gauge function of order 𝑟 on 𝐽 if it satisfies the
following conditions:

(i) 𝜓(𝜆𝑡) ≤ 𝜆
𝑟

𝜓(𝑡) for all 𝜆 ∈ (0, 1) and 𝑡 ∈ 𝐽;
(ii) 𝜓(𝑡) < 𝑡 for all 𝑡 ∈ 𝐽 − {0}.

It is easy to see that the first condition of Definition 1
is equivalent to the following: 𝜓(0) = 0 and 𝜓(𝑡)/𝑡

𝑟 is
nondecreasing on 𝐽 − {0}.

Definition 2 (see [17]). A nondecreasing function 𝜓 : 𝐽 → 𝐽

is said to be a Bianchini-Grandolfi gauge function [18] on 𝐽 if

𝜎 (𝑡) =

∞

∑

𝑛=0

𝜓
𝑛

(𝑡) < ∞, ∀ 𝑡 ∈ 𝐽. (2)

Remark 3. A function 𝜓 : 𝐽 → 𝐽 satisfying (2) can be used
as a rate of convergence [19] on 𝐽. Also note that 𝜓 satisfies
the following functional equation:

𝜎 (𝑡) = 𝜎 (𝜓 (𝑡)) + 𝑡. (3)

Remark 4 (see [17]). Every gauge function of order 𝑟 ≥ 1 on
𝐽 is a Bianchini-Grandolfi gauge function on 𝐽.

Lemma 5. Let (𝑋, 𝑑) be a metric space. Let 𝐵 ∈ 𝐶𝐿(𝑋) and
𝑥 ∈ 𝑋. Then, for each 𝜖 > 0, there exists 𝑏 ∈ 𝐵 such that
𝑑(𝑥, 𝑏) ≤ 𝑑(𝑥, 𝐵) + 𝜖.

Lemma 6 (see [17]). Let 𝜓 be a gauge function of order 𝑟 ≥ 1

on 𝐽. If 𝜙 is a nonnegative and nondecreasing function on 𝐽

satisfying

𝜓 (𝑡) = 𝑡𝜙 (𝑡) ∀ 𝑡 ∈ 𝐽, (4)

then it has the following properties:

(i) 0 ≤ 𝜙(𝑡) < 1 for all 𝑡 ∈ 𝐽;
(ii) 𝜙(𝜆𝑡) ≤ 𝜆

𝑟−1

𝜙(𝑡) for all 𝜆 ∈ (0, 1) and 𝑡 ∈ 𝐽.

Moreover, for each 𝑛 ≥ 0, we have

(iii) 𝜓
𝑛

(𝑡) ≤ 𝑡𝜙(𝑡)
𝑆
𝑛
(𝑟) for all 𝑡 ∈ 𝐽,

(iv) 𝜙(𝜓
𝑛

(𝑡)) ≤ 𝜙(𝑡)
𝑟
𝑛

for all 𝑡 ∈ 𝐽.

Definition 7 (see [3]). Let (𝑋, 𝑑) be a metric space and let 𝛼 :

𝑋×𝑋 → [0,∞) be a mapping. A mapping 𝑇 : 𝑋 → 𝐶𝐿(𝑋)

is said to be an 𝛼
∗
-admissible if

𝛼 (𝑥, 𝑦) ≥ 1 󳨐⇒ 𝛼
∗
(𝑇𝑥, 𝑇𝑦) ≥ 1, (5)

where 𝛼
∗
(𝑇𝑥, 𝑇𝑦) = inf{𝛼(𝑎, 𝑏) : 𝑎 ∈ 𝑇𝑥, 𝑏 ∈ 𝑇𝑦}.

2. Main Results

Theorem 8. Let (𝑋, 𝑑) be a complete metric space and let 𝑇 :

𝑋 → 𝐶𝐿(𝑋) be an 𝛼
∗
-admissible mapping such that

𝛼 (𝑥, 𝑦)𝐻 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) , (6)

for all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑇𝑥, with 𝑑(𝑥, 𝑦) ∈ 𝐽, where 𝜓 is a
Bianchini-Grandolfi gauge function on 𝐽. Moreover, the strict
inequality holds when 𝑑(𝑥, 𝑦) ̸= 0. Suppose that there exists
𝑥
0

∈ 𝑋 such that 𝑑(𝑥
0
, 𝑧) ∈ 𝐽 and 𝛼(𝑥

0
, 𝑧) ≥ 1, for some

𝑧 ∈ 𝑇𝑥
0
. Then,

(i) there exists an orbit {𝑥
𝑛
} of 𝑇 in𝑋 and 𝜉 ∈ 𝑋 such that

lim
𝑛
𝑥
𝑛

= 𝜉;
(ii) 𝜉 is a fixed point of 𝑇 if and only if the function 𝑓(𝑥) :=

𝑑(𝑥, 𝑇𝑥) is 𝑇-orbitally lower semicontinuous at 𝜉.

Proof. Consider 𝑥
1

= 𝑧 ∈ 𝑇𝑥
0
. We assume that 𝑑(𝑥

0
, 𝑥
1
) ̸= 0,

for otherwise𝑥
0
is a fixed point of𝑇. Define𝜌

0
= 𝜎(𝑑(𝑥

0
, 𝑥
1
)),

where 𝜎 is defined by (2). Since, from (3), 𝜎(𝑡) ≥ 𝑡, we have

𝑑 (𝑥
0
, 𝑥
1
) ≤ 𝜌
0
. (7)

Notice that 𝑥
1

∈ 𝑆(𝑥
0
, 𝜌
0
). It follows from (6) that

𝛼(𝑥
0
, 𝑥
1
)𝐻(𝑇𝑥

0
, 𝑇𝑥
1
) < 𝜓(𝑑(𝑥

0
, 𝑥
1
)). By hypothesis, we have

𝛼(𝑥
0
, 𝑥
1
) ≥ 1. We can choose an 𝜖

1
> 0 such that

𝛼 (𝑥
0
, 𝑥
1
)𝐻 (𝑇𝑥

0
, 𝑇𝑥
1
) + 𝜖
1
≤ 𝜓 (𝑑 (𝑥

0
, 𝑥
1
)) . (8)

Thus, we have

𝑑 (𝑥
1
, 𝑇𝑥
1
) + 𝜖
1
≤ 𝐻 (𝑇𝑥

0
, 𝑇𝑥
1
) + 𝜖
1

≤ 𝛼 (𝑥
0
, 𝑥
1
)𝐻 (𝑇𝑥

0
, 𝑇𝑥
1
) + 𝜖
1

≤ 𝜓 (𝑑 (𝑥
0
, 𝑥
1
)) .

(9)

It follows from Lemma 5 that there exists 𝑥
2
∈ 𝑇𝑥
1
such that

𝑑 (𝑥
1
, 𝑥
2
) ≤ 𝑑 (𝑥

1
, 𝑇𝑥
1
) + 𝜖
1
. (10)

We assume that 𝑑(𝑥
1
, 𝑥
2
) ̸= 0, for otherwise 𝑥

1
is a fixed point

of 𝑇. From inequalities (9) and (10), we have

𝑑 (𝑥
1
, 𝑥
2
) ≤ 𝜓 (𝑑 (𝑥

0
, 𝑥
1
)) . (11)

Note that 𝑑(𝑥
1
, 𝑥
2
) ∈ 𝐽. Also, we have 𝑥

2
∈ 𝑆(𝑥
0
, 𝜌
0
), since

𝑑 (𝑥
0
, 𝑥
2
) ≤ 𝑑 (𝑥

0
, 𝑥
1
) + 𝑑 (𝑥

1
, 𝑥
2
)

≤ 𝑑 (𝑥
0
, 𝑥
1
) + 𝜓 (𝑑 (𝑥

0
, 𝑥
1
))

≤ 𝑑 (𝑥
0
, 𝑥
1
) + 𝜎 (𝜓 (𝑑 (𝑥

0
, 𝑥
1
)))

= 𝜎 (𝑑 (𝑥
0
, 𝑥
1
)) (by using (3))

= 𝜌
0
.

(12)

Since 𝑇 is an 𝛼
∗
-admissible, then we have 𝛼(𝑥

1
, 𝑥
2
) ≥ 1. Now

choose 𝜖
2
> 0 such that

𝛼 (𝑥
1
, 𝑥
2
)𝐻 (𝑇𝑥

1
, 𝑇𝑥
2
) + 𝜖
2
≤ 𝜓 (𝑑 (𝑥

1
, 𝑥
2
)) . (13)

Thus, we have

𝑑 (𝑥
2
, 𝑇𝑥
2
) + 𝜖
2
≤ 𝐻 (𝑇𝑥

1
, 𝑇𝑥
2
) + 𝜖
2

≤ 𝛼 (𝑥
1
, 𝑥
2
)𝐻 (𝑇𝑥

1
, 𝑇𝑥
2
) + 𝜖
2

≤ 𝜓 (𝑑 (𝑥
1
, 𝑥
2
)) .

(14)
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It again follows from Lemma 5 that there exists 𝑥
3
∈ 𝑇𝑥
2
such

that

𝑑 (𝑥
2
, 𝑥
3
) ≤ 𝑑 (𝑥

2
, 𝑇𝑥
2
) + 𝜖
2
. (15)

We assume that 𝑑(𝑥
2
, 𝑥
3
) ̸= 0, for otherwise 𝑥

2
is a fixed point

of 𝑇. From (11), (14), and (15), we have

𝑑 (𝑥
2
, 𝑥
3
) ≤ 𝜓
2

(𝑑 (𝑥
0
, 𝑥
1
)) . (16)

Note that 𝑑(𝑥
2
, 𝑥
3
) ∈ 𝐽. Also, we have 𝑥

3
∈ 𝑆(𝑥
0
, 𝜌
0
), since

𝑑 (𝑥
0
, 𝑥
3
)

≤ 𝑑 (𝑥
0
, 𝑥
1
) + 𝑑 (𝑥

1
, 𝑥
2
) + 𝑑 (𝑥

2
, 𝑥
3
)

≤ 𝑑 (𝑥
0
, 𝑥
1
) + 𝜓 (𝑑 (𝑥

0
, 𝑥
1
)) + 𝜓

2

(𝑑 (𝑥
0
, 𝑥
1
))

≤

∞

∑

𝑗=0

𝜓
𝑗

(𝑑 (𝑥
0
, 𝑥
1
))

= 𝜎 (𝑑 (𝑥
0
, 𝑥
1
)) = 𝜌

0
.

(17)

Repeating the above argument, inductively we obtain a
sequence {𝑥

𝑛
}
𝑛∈N such that

𝑥
𝑛

∈ 𝑇𝑥
𝑛−1

, (18)

𝛼 (𝑥
𝑛−1

, 𝑥
𝑛
) ≥ 1, (19)

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝜓
𝑛

(𝑑 (𝑥
0
, 𝑥
1
)) , (20)

𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) ∈ 𝐽, 𝑥

𝑛
∈ 𝑆 (𝑥

0
, 𝜌
0
) . (21)

We claim that {𝑥
𝑛
} is a Cauchy sequence. For 𝑛, 𝑝 ∈ N, from

(20) we have

𝑑 (𝑥
𝑛
, 𝑥
𝑛+𝑝

) ≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) + ⋅ ⋅ ⋅ + 𝑑 (𝑥
𝑛+𝑝−1

, 𝑥
𝑛+𝑝

)

≤ 𝜓
𝑛

(𝑑 (𝑥
0
, 𝑥
1
)) + ⋅ ⋅ ⋅ + 𝜓

𝑛+𝑝−1

(𝑑 (𝑥
0
, 𝑥
1
))

≤

∞

∑

𝑗=𝑛

𝜓
𝑗

(𝑑 (𝑥
0
, 𝑥
1
)) .

(22)

By using (2), it follows from (22) that {𝑥
𝑛
} is a Cauchy

sequence. Thus, there exists 𝜉 ∈ 𝑆(𝑥
0
, 𝜌
0
) with 𝑥

𝑛
→ 𝜉 as

𝑛 → ∞. Since 𝑥
𝑛

∈ 𝑇𝑥
𝑛−1

, from (6), (19), and (20), we have

𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
) ≤ 𝛼 (𝑥

𝑛−1
, 𝑥
𝑛
)𝐻 (𝑇𝑥

𝑛−1
, 𝑇𝑥
𝑛
)

≤ 𝜓 (𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
))

≤ 𝜓
𝑛

(𝑑 (𝑥
0
, 𝑥
1
)) .

(23)

Letting 𝑛 → ∞, from (23), we get

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
) = 0. (24)

Suppose𝑓(𝑥) = 𝑑(𝑥, 𝑇𝑥) is𝑇-orbitally lower semicontinuous
at 𝜉; then,

𝑑 (𝜉, 𝑇𝜉) = 𝑓 (𝜉) ≤ lim
𝑛

inf 𝑓 (𝑥
𝑛
) = lim
𝑛

inf 𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
) = 0.

(25)

Hence, 𝜉 ∈ 𝑇𝜉, since 𝑇𝜉 is closed. Conversely, if 𝜉 is fixed
point of 𝑇, then 𝑓(𝜉) = 0 ≤ lim

𝑛
inf 𝑓(𝑥

𝑛
).

Example 9. Let 𝑋 = [−100,∞) be endowed with the usual
metric 𝑑 and let 𝐽 = [0,∞). Define 𝑇 : 𝑋 → 𝐶𝐿(𝑋) by

𝑇𝑥 =

{

{

{

[0,

𝑥

3

] if 𝑥 ≥ 0

[𝑥 + 1, 0] otherwise,
(26)

and define 𝛼 : 𝑋 × 𝑋 → [0,∞) by

𝛼 (𝑥, 𝑦) = {

1 if 𝑥, 𝑦 ∈ [0,∞)

0 otherwise.
(27)

Take 𝜓(𝑡) = 𝑡/2 for each 𝑡 ≥ 0. Let 𝑥
0

= 1; then, we have
𝑧 = 1/3 ∈ 𝑇𝑥

0
such that 𝑑(𝑥

0
, 𝑧) ∈ 𝐽 and 𝛼(𝑥

0
, 𝑧) = 1.

As we know, 𝛼(𝑥, 𝑦) = 1 for 𝑥, 𝑦 ∈ [0,∞). Then, we have
𝛼
∗
(𝑇𝑥, 𝑇𝑦) = 1 whenever 𝛼(𝑥, 𝑦) = 1. Thus, 𝑇 is an 𝛼

∗
-

admissible mapping. For 𝑥 ≥ 0 and 𝑦 ∈ 𝑇𝑥, from (6), we
have

𝛼 (𝑥, 𝑦)𝐻 (𝑇𝑥, 𝑇𝑦) =

1

3

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
≤

1

2

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
= 𝜓 (𝑑 (𝑥, 𝑦)) ;

(28)

for 𝑥 < 0 and 𝑦 ∈ 𝑇𝑥, we have

𝛼 (𝑥, 𝑦)𝐻 (𝑇𝑥, 𝑇𝑦) = 0 ≤

1

2

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
= 𝜓 (𝑑 (𝑥, 𝑦)) . (29)

Hence, (6) holds for each 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑇𝑥 with 𝑑(𝑥, 𝑦) ∈ 𝐽.
Therefore, all the conditions of Theorem 8 hold and hence 𝑇

has a fixed point.

Example 10. Let 𝑋 = [−1,∞) be endowed with the usual
metric 𝑑 and let 𝐽 = [0,∞). Define 𝑇 : 𝑋 → 𝐶𝐿(𝑋) by

𝑇𝑥 =

{
{
{
{
{

{
{
{
{
{

{

[−1,

𝑥

3

] if 𝑥 ∈ [−1, 0)

[0, 𝑥
2

] if 𝑥 ∈ [0,

3

5

]

[𝑥, 𝑒
𝑥

] if 𝑥 ∈ (

3

5

,∞) ,

(30)

and define 𝛼 : 𝑋 × 𝑋 → [0,∞) by

𝛼 (𝑥, 𝑦) =

{

{

{

1 if 𝑥, 𝑦 ∈ [0,

3

5

]

0 otherwise.
(31)

Take 𝜓(𝑡) = (24/25)𝑡 for each 𝑡 ≥ 0. Let 𝑥
0

= 3/5; then, we
have 𝑧 = 9/25 ∈ 𝑇𝑥

0
such that 𝑑(𝑥

0
, 𝑧) ∈ 𝐽 and 𝛼(𝑥

0
, 𝑧) = 1.

As we know, 𝛼(𝑥, 𝑦) = 1 for 𝑥, 𝑦 ∈ [0, 3/5]. Then, we have
𝛼
∗
(𝑇𝑥, 𝑇𝑦) = 1 whenever 𝛼(𝑥, 𝑦) = 1. Thus, 𝑇 is an 𝛼

∗
-

admissible mapping. For 𝑥 ∈ [0, 3/5] and 𝑦 ∈ 𝑇𝑥, from (6),
we have

𝛼 (𝑥, 𝑦)𝐻 (𝑇𝑥, 𝑇𝑦)

≤ (

3

5

+

9

25

)
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
=

24

25

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
= 𝜓 (𝑑 (𝑥, 𝑦)) ,

(32)
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for otherwise we have

𝛼 (𝑥, 𝑦)𝐻 (𝑇𝑥, 𝑇𝑦) = 0 ≤

24

25

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
= 𝜓 (𝑑 (𝑥, 𝑦)) . (33)

Hence, (6) holds for each 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑇𝑥 with 𝑑(𝑥, 𝑦) ∈ 𝐽.
Therefore, all the conditions of Theorem 8 hold and hence 𝑇

has a fixed point.

Theorem 11. Let (𝑋, 𝑑) be a complete metric space and let 𝑇 :

𝑋 → 𝐶𝐿(𝑋) be an 𝛼
∗
-admissible mapping such that

𝛼 (𝑥, 𝑦)𝐻 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) , (34)

for all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑇𝑥, with 𝑑(𝑥, 𝑦) ∈ 𝐽, where 𝜓 is a
gauge function of order 𝑟 ≥ 1 on 𝐽 and 𝜙 : 𝐽 → R+ is
a nondecreasing function defined by (4). Moreover, the strict
inequality holds when 𝑑(𝑥, 𝑦) ̸= 0. Suppose that there exists
𝑥
0

∈ 𝑋 such that 𝑑(𝑥
0
, 𝑧) ∈ 𝐽 and 𝛼(𝑥

0
, 𝑧) ≥ 1, for some

𝑧 ∈ 𝑇𝑥
0
. Then,

(i) there exists an orbit {𝑥
𝑛
} of𝑇 in 𝑆(𝑥

0
, 𝜌
0
) that converges

with rate of convergence at least 𝑟 to a point 𝜉 ∈

𝑆(𝑥
0
, 𝜌
0
), where 𝜌

0
= 𝜎(𝑑(𝑥

0
, 𝑧)) and 𝜎 is defined by

(2);
(ii) for all 𝑛 ≥ 0, we have the following a priori estimate:

𝑑 (𝑥
𝑛
, 𝜉) ≤

𝜆
𝑆
𝑛
(𝑟)

𝑑 (𝑥
0
, 𝑥
1
)

1 − 𝜆
𝑟
𝑛

, (35)

where 𝜆 = 𝜙(𝑑(𝑥
0
, 𝑥
1
));

(iii) for all 𝑛 ≥ 1, we have the following a posteriori estimate:

𝑑 (𝑥
𝑛
, 𝜉) ≤

𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

))

1 − [𝜙 (𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

))]
𝑟
; (36)

(iv) for all 𝑛 ≥ 1, we have

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝜆
𝑆
𝑛
(𝑟)

𝑑 (𝑥
0
, 𝑥
1
) , (37)

where 𝜆 = 𝜙(𝑑(𝑥
0
, 𝑥
1
));

(v) 𝜉 is a fixed point of 𝑇 if and only if the function 𝑓(𝑥) :=

𝑑(𝑥, 𝑇𝑥) is 𝑇-orbitally lower semicontinuous at 𝜉.

Proof. (i) Following the proof ofTheorem 8, we have an orbit
{𝑥
𝑛
} of 𝑇 at 𝑥

0
in 𝑆(𝑥

0
, 𝜌
0
) such that lim

𝑛→∞
𝑥
𝑛

= 𝜉 and 𝜉 ∈

𝑆(𝑥
0
, 𝜌
0
).

(ii) For 𝑚 > 𝑛, by using (20) and Lemma 6(iii), we have

𝑑 (𝑥
𝑛
, 𝑥
𝑚
)

≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝑑 (𝑥
𝑛+1

, 𝑥
𝑛+2

) + ⋅ ⋅ ⋅ + 𝑑 (𝑥
𝑚−1

, 𝑥
𝑚
)

≤ 𝜓
𝑛

(𝑑 (𝑥
0
, 𝑥
1
)) + 𝜓

𝑛+1

(𝑑 (𝑥
0
, 𝑥
1
))

+ ⋅ ⋅ ⋅ + 𝜓
𝑚−1

(𝑑 (𝑥
0
, 𝑥
1
))

≤ 𝑑 (𝑥
0
, 𝑥
1
) [𝜆
𝑆
𝑛
(𝑟)

+ 𝜆
𝑆
𝑛+1
(𝑟)

+ ⋅ ⋅ ⋅ + 𝜆
𝑆
𝑚−1
(𝑟)

]

= 𝑑 (𝑥
0
, 𝑥
1
)

𝑚−1

∑

𝑗=𝑛

𝜆
𝑆
𝑗
(𝑟)

.

(38)

Taking 𝑛 fixed and letting 𝑚 → ∞, we get

𝑑 (𝑥
𝑛
, 𝜉) ≤ 𝑑 (𝑥

0
, 𝑥
1
)

∞

∑

𝑗=𝑛

𝜆
𝑆
𝑗
(𝑟)

. (39)

Note that
∞

∑

𝑗=𝑛

𝜆
𝑆
𝑗
(𝑟)

= 𝜆
𝑆
𝑛
(𝑟)

+ 𝜆
𝑆
𝑛+1
(𝑟)

+ ⋅ ⋅ ⋅

= 𝜆
𝑆
𝑛
(𝑟)

[1 + 𝜆
𝑟
𝑛

+ 𝜆
𝑟
𝑛

+𝑟
𝑛+1

+ 𝜆
𝑟
𝑛

+𝑟
𝑛+1

+𝑟
𝑛+2

+ ⋅ ⋅ ⋅ ] .

(40)

Since 𝑟 ≥ 1, therefore

𝑟
𝑛

+ 𝑟
𝑛+1

≥ 2𝑟
𝑛

, 𝑟
𝑛

+ 𝑟
𝑛+1

+ 𝑟
𝑛+2

≥ 3𝑟
𝑛

⋅ ⋅ ⋅ ,

𝜆
𝑟
𝑛

+𝑟
𝑛+1

≤ 𝜆
2𝑟
𝑛

, 𝜆
𝑟
𝑛

+𝑟
𝑛+1

+𝑟
𝑛+2

≤ 𝜆
3𝑟
𝑛

⋅ ⋅ ⋅ ,

(41)

since 0 ≤ 𝜆 < 1. Thus, we have
∞

∑

𝑗=𝑛

𝜆
𝑆
𝑗
(𝑟)

≤ 𝜆
𝑆
𝑛
(𝑟)

[1 + 𝜆
𝑟
𝑛

+ 𝜆
2𝑟
𝑛

+ 𝜆
3𝑟
𝑛

+ ⋅ ⋅ ⋅ ] =

𝜆
𝑆
𝑛
(𝑟)

1 − 𝜆
𝑟
𝑛
.

(42)

Substituting this in (39), we get

𝑑 (𝑥
𝑛
, 𝜉) ≤ 𝑑 (𝑥

0
, 𝑥
1
)

𝜆
𝑆
𝑛
(𝑟)

1 − 𝜆
𝑟
𝑛
. (43)

(iii) For 𝑛 ≥ 0, from (39), we have

𝑑 (𝑥
𝑛
, 𝜉) ≤ 𝑑 (𝑥

0
, 𝑥
1
)

∞

∑

𝑗=𝑛

[𝜙 (𝑑 (𝑥
0
, 𝑥
1
))]
𝑆
𝑗
(𝑟)

. (44)

Putting 𝑛 = 0, 𝑦
0
= 𝑥
𝑛
, and 𝑦

1
= 𝑥
1
, we have

𝑑 (𝑦
0
, 𝜉) ≤ 𝑑 (𝑦

0
, 𝑦
1
)

∞

∑

𝑗=0

[𝜙 (𝑑 (𝑦
0
, 𝑦
1
))]
𝑆
𝑗
(𝑟)

. (45)

Putting 𝑦
0
= 𝑥
𝑛
and 𝑦

1
= 𝑥
𝑛+1

, we have

𝑑 (𝑥
𝑛
, 𝜉) ≤ 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

)

∞

∑

𝑗=0

[𝜙 (𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

))]
𝑆
𝑗
(𝑟)

≤ 𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

))

∞

∑

𝑗=0

[𝜙 (𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

)))]
𝑆
𝑗
(𝑟)

≤ 𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

))

∞

∑

𝑗=0

[𝜙 (𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

)))]
𝑗

(46)

=

𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

))

1 − 𝜙 (𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

)))

, (47)

since 𝑆
𝑗
(𝑟) ≥ 𝑗. Now, by Lemma 6(iv), we have

𝜙 (𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

))) ≤ [𝜙 (𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

))]
𝑟 (48)
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which means that
1

1 − 𝜙 (𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

)))

≤

1

1 − [𝜙 (𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

))]
𝑟
. (49)

For 𝑛 ≥ 1, from (46), we have

𝑑 (𝑥
𝑛
, 𝜉)

≤ 𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

))

∞

∑

𝑗=0

[𝜙 (𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

)))]
𝑆
𝑗
(𝑟)

≤

𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

))

1 − 𝜙 (𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

)))

≤

𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

))

1 − [𝜙 (𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

))]
𝑟

(by using (49)) .

(50)

(iv) For 𝑛 ≥ 1, by using (20) and Lemma 6(iii), we have

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) ≤ 𝜓
𝑛

(𝑑 (𝑥
1
, 𝑥
0
))

≤ 𝑑 (𝑥
0
, 𝑥
1
) 𝜙(𝑑 (𝑥

0
, 𝑥
1
))
𝑆
𝑛
(𝑟)

= 𝑑 (𝑥
0
, 𝑥
1
) 𝜆
𝑆
𝑛
(𝑟)

.

(51)

(v) The proof follows from the same arguments as in the
proof of Theorem 8.

Corollary 12. Let (𝑋, 𝑑) be complete metric space and let 𝑇 :

𝑋 → 𝐶𝐿(𝑋) be an 𝛼
∗
-admissible mapping such that

𝛼 (𝑥, 𝑦)𝐻 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) , (52)

for all 𝑥, 𝑦 ∈ 𝑋 (𝑥 ̸= 𝑦), with 𝑑(𝑥, 𝑦) ∈ 𝐽, where 𝜓 is a gauge
function of order 𝑟 ≥ 1 on an interval 𝐽. Suppose that there
exists 𝑥

0
in 𝑋 such that 𝑑(𝑥

0
, 𝑧) ∈ 𝐽 and 𝛼(𝑥

0
, 𝑧) ≥ 1 for

some 𝑧 ∈ 𝑇𝑥
0
. Suppose that for any sequence {𝑥

𝑛
} in 𝑋 such

that 𝑥
𝑛

→ 𝑥 as 𝑛 → ∞ with 𝛼(𝑥
𝑛−1

, 𝑥
𝑛
) ≥ 1, for each

𝑛 ∈ N, implies 𝛼(𝑥
𝑛
, 𝑥) ≥ 1, for each 𝑛 ∈ N.Then, the following

statements hold true:

(i) there exists an orbit {𝑥
𝑛
} of𝑇 in 𝑆(𝑥

0
, 𝜌
0
) that converges

to a fixed point 𝜉 ∈ 𝑆(𝑥
0
, 𝜌
0
), where 𝜌

0
= 𝜎(𝑑(𝑥

0
, 𝑧))

and 𝜎 is defined by (2);
(ii) the estimates (35)–(37) are valid.

Theorem 13. Let (𝑋, 𝑑) be a complete metric space and let 𝑇 :

𝑋 → 𝐶𝐿(𝑋) be a continuous and𝛼
∗
-admissiblemapping such

that

𝛼 (𝑥, 𝑦)𝐻 (𝑇𝑥, 𝑇𝑦) ≤ 𝜓 (𝑚 (𝑥, 𝑦)) , ∀ 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑇𝑥,

(53)

with strict inequality holds if 𝑚(𝑥, 𝑦) ̸= 0, where 𝜓 is a gauge
function of the first order on 𝐽 = [0,∞) and

𝑚(𝑥, 𝑦) = max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦) ,

1

2

[𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)]} .

(54)

Suppose that there exists 𝑥
0

∈ 𝑋 such that 𝑑(𝑥
0
, 𝑧) ∈ 𝐽 and

𝛼(𝑥
0
, 𝑧) ≥ 1 for some 𝑧 ∈ 𝑇𝑥

0
. Then, the following statements

hold true:

(i) there exists an orbit of 𝑇 in 𝑋 that converges to a fixed
point 𝜉 of 𝑇;

(ii) for 𝑛 ≥ 0, we have the following a priori estimate:

𝑑 (𝑥
𝑛
, 𝜉) ≤

𝜆
𝑛

1 − 𝜆

𝑑 (𝑥
0
, 𝑥
1
) , (55)

where 𝜆 = 𝜙(𝑑(𝑥
0
, 𝑥
1
)) and 𝜙 : 𝐽 → R+ is a nonde-

creasing function defined by (4);
(iii) for all 𝑛 ≥ 1, we have the following a posteriori estimate:

𝑑 (𝑥
𝑛
, 𝜉) ≤

𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

))

1 − 𝜙 [𝜓 (𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

))]

. (56)

Proof. Consider 𝑥
1

= 𝑧 ∈ 𝑇𝑥
0
. Define 𝜌

0
= 𝜎(𝑑(𝑥

0
, 𝑥
1
)),

where 𝜎 is defined by (2). Since, from (3), 𝜎(𝑡) ≥ 𝑡, we have

𝑑 (𝑥
0
, 𝑥
1
) ≤ 𝜌
0
. (57)

Assume that 𝑚(𝑥
0
, 𝑥
1
) ̸= 0, for otherwise 𝑑(𝑥

0
, 𝑇𝑥
0
) ≤

𝑚(𝑥
0
, 𝑥
1
) = 0 and 𝑥

0
is a fixed point of 𝑇. From (53), we have

𝛼(𝑥
0
, 𝑥
1
)𝐻(𝑇𝑥

0
, 𝑇𝑥
1
) < 𝜓(𝑚(𝑥

0
, 𝑥
1
)). By hypothesis, we have

𝛼(𝑥
0
, 𝑥
1
) ≥ 1. We can choose 𝜖

1
> 0 such that

𝛼 (𝑥
0
, 𝑥
1
)𝐻 (𝑇𝑥

0
, 𝑇𝑥
1
) + 𝜖
1
≤ 𝜓 (𝑚 (𝑥

0
, 𝑥
1
)) . (58)

Thus, we have

𝑑 (𝑥
1
, 𝑇𝑥
1
) + 𝜖
1
≤ 𝐻 (𝑇𝑥

0
, 𝑇𝑥
1
) + 𝜖
1

≤ 𝛼 (𝑥
0
, 𝑥
1
)𝐻 (𝑇𝑥

0
, 𝑇𝑥
1
) + 𝜖
1

≤ 𝜓 (𝑚 (𝑥
0
, 𝑥
1
)) .

(59)

It follows from Lemma 5 that there exists 𝑥
2
∈ 𝑇𝑥
1
such that

𝑑 (𝑥
1
, 𝑥
2
) ≤ 𝑑 (𝑥

1
, 𝑇𝑥
1
) + 𝜖
1
. (60)

From the last two inequalities, we have

𝑑 (𝑥
1
, 𝑥
2
)

≤ 𝜓 (𝑚 (𝑥
0
, 𝑥
1
))

= 𝜓(max{𝑑 (𝑥
0
, 𝑥
1
) , 𝑑 (𝑥

0
, 𝑇𝑥
0
) , 𝑑 (𝑥

1
, 𝑇𝑥
1
) ,

𝑑 (𝑥
0
, 𝑇𝑥
1
) + 𝑑 (𝑥

1
, 𝑇𝑥
0
)

2

})

= 𝜓 (max {𝑑 (𝑥
0
, 𝑥
1
) , 𝑑 (𝑥

1
, 𝑇𝑥
1
)}) ,

(61)

since 𝑑(𝑥
0
, 𝑇𝑥
1
)/2 ≤ max{𝑑(𝑥

0
, 𝑥
1
), 𝑑(𝑥
1
, 𝑇𝑥
1
)}. Assume that

max{𝑑(𝑥
0
, 𝑥
1
), 𝑑(𝑥
1
, 𝑇𝑥
1
)} = 𝑑(𝑥

1
, 𝑇𝑥
1
). From (61), we have

𝑑 (𝑥
1
, 𝑇𝑥
1
) ≤ 𝑑 (𝑥

1
, 𝑥
2
) ≤ 𝜓 (𝑑 (𝑥

1
, 𝑇𝑥
1
)) , (62)
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which is not possible. Thus, max{𝑑(𝑥
0
, 𝑥
1
), 𝑑(𝑥
1
, 𝑇𝑥
1
)} =

𝑑(𝑥
0
, 𝑥
1
). From (61), we have

𝑑 (𝑥
1
, 𝑥
2
) ≤ 𝜓 (𝑑 (𝑥

0
, 𝑥
1
)) . (63)

Proceeding inductively in a similar way as in Theorem 8, we
obtain the sequence {𝑥

𝑛
} in 𝑋 such that 𝑥

𝑛
→ 𝜉 ∈ 𝑋 as

𝑛 → ∞. Since 𝑇 is continuous, by taking limit as 𝑛 → ∞,
we have 𝜉 ∈ 𝑇𝜉. Estimates (35) and (36) become (55) and (56)
for 𝑟 = 1.

Remark 14. Note that our results generalize [3, Theorem 2.1];
[5, Theorem 3.4]; [17, Theorems 4.1 and 4.2; and Corollary
4.5]; [20, Theorems 2.1 and 2.8; and Corollary 2.12]; [21,
Theorem 2.1]; [22,Theorems 2.11 and 2.15]; and [23,Theorems
2.1 and 2.2].
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[13] T. A. Lazăr, A. Petruşel, and N. Shahzad, “Fixed points for
non-self operators and domain invariance theorems,”Nonlinear
Analysis: Theory, Methods & Applications, vol. 70, no. 1, pp. 117–
125, 2009.

[14] W.-S. Du, E. Karapınar, and N. Shahzad, “The study of fixed
point theory for various multivalued non-self-maps,” Abstract
and Applied Analysis, vol. 2013, Article ID 938724, 9 pages, 2013.

[15] M. A. Alghamdi, V. Berinde, and N. Shahzad, “Fixed points
of multivalued nonself almost contractions,” Journal of Applied
Mathematics, vol. 2013, Article ID 621614, 6 pages, 2013.
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