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Weuse variationalmethods to investigate the solutions of damped impulsive differential equationswithmixed boundary conditions.
The conditions for the multiplicity of solutions are established. The main results are also demonstrated with examples.

1. Introduction

Impulsive effect exists widely in many evolution processes in
which their states are changed abruptly at certain moments
of time.The theory of impulsive differential systems has been
developed by numerous mathematicians [1–6]. Applications
of impulsive differential equations with or without delays
occur in biology, medicine, mechanics, engineering, chaos
theory, and so on [7–11].

In this paper, we consider the following second-order
damped impulsive differential equations with mixed bound-
ary conditions:

− 𝑢

󸀠󸀠

(𝑡) + 𝑔 (𝑡) 𝑢

󸀠

(𝑡) − 𝜆𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) ,

𝑡 ̸= 𝑡

𝑗
, a.e. 𝑡 ∈ [0, 𝑇] ,

−Δ𝑢

󸀠
(𝑡

𝑗
) = 𝐼

𝑗
(𝑢 (𝑡

𝑗
)) , 𝑗 = 1, 2, . . . , 𝑛,

𝑢

󸀠

(0) = 0, 𝑢 (𝑇) = 0,

(1)

where 0 = 𝑡

0
< 𝑡

1
< 𝑡

2
< ⋅ ⋅ ⋅ < 𝑡

𝑛
< 𝑡

𝑛+1
= 𝑇, 𝑔 ∈ 𝐶[0, 𝑇],

𝑓 : [0, 𝑇] × 𝑅 → 𝑅 is continuous, 𝐼
𝑗
: 𝑅 → 𝑅, 𝑗 = 1, 2, . . . , 𝑛

are continuous, and Δ𝑢

󸀠
(𝑡

𝑗
) = 𝑢

󸀠
(𝑡

+

𝑗
) − 𝑢

󸀠
(𝑡

−

𝑗
) for 𝑢

󸀠
(𝑡

±

𝑗
) =

lim
𝑡→ 𝑡
±

𝑗

𝑢

󸀠
(𝑡), 𝑗 = 1, 2, . . . , 𝑛.

The characteristic of (1) is the presence of the damped
term 𝑔(𝑡)𝑢

󸀠. Most of the results concerning the existence
of solutions of these equations are obtained using upper
and lower solutions methods, coincidence degree theory,

and fixed point theorems [12–15]. On the other hand, when
there is no presence of the damped term, some researchers
have used variational methods to study the existence of
solutions for these problems [16–21]. However, to the best
of our knowledge, there are few papers concerned with the
existence of solutions for impulsive boundary value problems
like problem (1) by using variational methods.

For this nonlinear damped mixed boundary problem (1),
the variational structure due to the presence of the damped
term 𝑔(𝑡)𝑢

󸀠 is not apparent. However, inspired by the work
[22, 23], we will be able to transform it into a variational
formulation. In this paper, our aim is to study the existence
of 𝑛 distinct pairs of nontrivial solutions of problem (1). Our
main results extend the study made in [22, 23], in the sense
that we deal with a class of problems that is not considered in
those papers.

2. Preliminaries and Statements

Let 𝑚 = min
𝑡∈[0,𝑇]

𝑒

𝐺(𝑡), 𝑀 = max
𝑡∈[0,𝑇]

𝑒

𝐺(𝑡), 𝐺(𝑡) =

− ∫

𝑡

0
𝑔(𝑠)𝑑𝑠, 𝑡 ∈ [0, 𝑇]. We transform (1) into the following

equivalent form:

− (𝑒

𝐺(𝑡)
𝑢

󸀠

(𝑡))

󸀠

− 𝜆𝑒

𝐺(𝑡)
𝑢 (𝑡) = 𝑒

𝐺(𝑡)
𝑓 (𝑡, 𝑢 (𝑡)) ,

𝑡 ̸= 𝑡

𝑗
, a.e. 𝑡 ∈ [0, 𝑇] ,
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−Δ𝑢

󸀠
(𝑡

𝑗
) = 𝐼

𝑗
(𝑢 (𝑡

𝑗
)) , 𝑗 = 1, 2, . . . , 𝑛,

𝑢

󸀠

(0) = 0, 𝑢 (𝑇) = 0.

(2)

Obviously, the solutions of (2) are solutions of (1).
Define the space 𝑋 = {𝑢(𝑡) | 𝑢(𝑡) is absolutely

continuous on [0, 𝑇], 𝑢

󸀠
(⋅) ∈ 𝐿

2
[0, 𝑇], 𝑢(𝑇) = 0}. It is easy to

see that 𝐻1
0
(0, 𝑇) ⊂ 𝑋 ⊂ 𝐻

1
(0, 𝑇) and 𝑋 is a closed subset of

𝐻

1
(0, 𝑇). So𝑋 is a Hilbert space with the usual inner product

in𝐻

1
(0, 𝑇).

Consider the Hilbert spaces 𝑋 with the inner product

(𝑢, V) = ∫

𝑇

0

𝑒

𝐺(𝑡)
𝑢

󸀠

(𝑡) V󸀠 (𝑡) 𝑑𝑡, (3)

inducing the norm

‖𝑢‖ = (∫

𝑇

0

𝑒

𝐺(𝑡)󵄨
󵄨

󵄨

󵄨

󵄨

𝑢

󸀠

(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑡)

1/2

.

(4)

We also consider the inner product

(𝑢, V) = ∫

𝑇

0

𝑢

󸀠

(𝑡) V󸀠 (𝑡) 𝑑𝑡, (5)

inducing the norm

‖𝑢‖

𝑋
= (∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

󸀠

(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑡)

1/2

.

(6)

Consider the problem

−𝑢

󸀠󸀠

(𝑡) = 𝜆𝑢 (𝑡) , 𝑡 ∈ [0, 𝑇] ,

𝑢

󸀠

(0) = 0, 𝑢 (𝑇) = 0.

(7)

As is well known, (7) possesses a sequence of eigenvalues
(𝜆

𝑖
)(𝜆

𝑖
= [(2𝑖 − 1)𝜋/2𝑇]

2
) with

0 < 𝜆

1
< 𝜆

2
< ⋅ ⋅ ⋅ < 𝜆

𝑗
< ⋅ ⋅ ⋅ . (8)

The corresponding eigenfunctions are normalized so that
‖𝜑

𝑗
‖

𝑋
= 1 = 𝜆

𝑗
∫

𝑇

0
|𝜑

𝑗
(𝑡)|

2
𝑑𝑡; here

𝜑

𝑗
(𝑡) =

√

2

𝑇𝜆

𝑗

cos (√𝜆

𝑗
𝑡) , 𝑗 = 1, 2, . . . . (9)

Now multiply (2) by V ∈ 𝑋 and integrate on the interval
[0, 𝑇]:

∫

𝑇

0

𝑒

𝐺(𝑡)
𝑢

󸀠

(𝑡) V󸀠 (𝑡) 𝑑𝑡 − 𝜆∫

𝑇

0

𝑒

𝐺(𝑡)
𝑢 (𝑡) V (𝑡) 𝑑𝑡

=

𝑛

∑

𝑗=1

𝑒

𝐺(𝑡
𝑗
)
𝐼

𝑗
(𝑢 (𝑡

𝑗
)) V (𝑡

𝑗
) + ∫

𝑇

0

𝑒

𝐺(𝑡)
𝑓 (𝑡, 𝑢 (𝑡)) V (𝑡) 𝑑𝑡.

(10)

Then, a weak solution of (2) is a critical point of the following
functional:

𝐸 (𝑢) =

1

2

∫

𝑇

0

𝑒

𝐺(𝑡)󵄨
󵄨

󵄨

󵄨

󵄨

𝑢

󸀠

(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑡 −

𝜆

2

∫

𝑇

0

𝑒

𝐺(𝑡)

|𝑢 (𝑡)|

2
𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒

𝐺(𝑡
𝑗
)
∫

𝑢(𝑡
𝑗
)

0

𝐼

𝑗
(𝑡) 𝑑𝑡 − ∫

𝑇

0

𝑒

𝐺(𝑡)
𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡,

(11)

where 𝐹(𝑡, 𝑢) = ∫

𝑢

0
𝑓(𝑡, 𝜉)𝑑𝜉.

We say that 𝑢 ∈ 𝐶[0, 𝑇] is a classical solution of IBVP
(1) if it satisfies the following conditions: 𝑢 satisfies the
first equation of (1) a.e. on [0, 𝑇]; the limits 𝑢

󸀠
(𝑡

+

𝑗
), 𝑢

󸀠
(𝑡

−

𝑗
),

𝑗 = 1, 2, . . . , 𝑛, exist and impulsive condition of (1) holds; 𝑢
satisfies the boundary condition of (1).

Lemma1. If𝑢 ∈ 𝑋 is aweak solution of (1), then𝑢 is a classical
solution of (1).

Proof. If 𝑢 ∈ 𝑋 is a weak solution of (1), then 𝑢 is a weak
solution of (2), so (𝐸

󸀠
(𝑢), V) = 0 holds for all V ∈ 𝑋; that is,

∫

𝑇

0

[𝑒

𝐺(𝑡)
𝑢

󸀠

(𝑡) V󸀠 (𝑡) + 𝜆𝑒

𝐺(𝑡)
𝑢 (𝑡) V (𝑡)] 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒

𝐺(𝑡
𝑗
)
𝐼

𝑗
(𝑢 (𝑡

𝑗
)) V (𝑡

𝑗
)

− ∫

𝑇

0

𝑒

𝐺(𝑡)
𝑓 (𝑡, 𝑢 (𝑡)) V (𝑡) 𝑑𝑡 = 0.

(12)

By integrating by part, we have

∫

𝑇

0

[𝑒

𝐺(𝑡)
𝑢

󸀠

(𝑡) V󸀠 (𝑡) + 𝜆𝑒

𝐺(𝑡)
𝑢 (𝑡) V (𝑡)] 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒

𝐺(𝑡
𝑗
)
𝐼

𝑗
(𝑢 (𝑡

𝑗
)) V (𝑡

𝑗
)

− ∫

𝑇

0

𝑒

𝐺(𝑡)
𝑓 (𝑡, 𝑢 (𝑡)) V (𝑡) 𝑑𝑡

= ∫

𝑇

0

[−(𝑒

𝐺(𝑡)
𝑢

󸀠

(𝑡))

󸀠

+ 𝜆𝑒

𝐺(𝑡)
𝑢 (𝑡) − 𝑒

𝐺(𝑡)
𝑓 (𝑡, 𝑢 (𝑡))] V (𝑡) 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒

𝐺(𝑡
𝑗
)
[Δ𝑢

󸀠
(𝑡

𝑗
) + 𝐼

𝑗
(𝑢 (𝑡

𝑗
))] V (𝑡

𝑗
)

− 𝑒

𝐺(0)
𝑢

󸀠

(0) V (0) + 𝑒

𝐺(𝑇)
𝑢

󸀠

(𝑇) V (𝑇)

= ∫

𝑇

0

[−(𝑒

𝐺(𝑡)
𝑢

󸀠

(𝑡))

󸀠

+ 𝜆𝑒

𝐺(𝑡)
𝑢 (𝑡) − 𝑒

𝐺(𝑡)
𝑓 (𝑡, 𝑢 (𝑡))] V (𝑡) 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒

𝐺(𝑡
𝑗
)
[Δ𝑢

󸀠
(𝑡

𝑗
) + 𝐼

𝑗
(𝑢 (𝑡

𝑗
))] V (𝑡

𝑗
) − 𝑢

󸀠

(0) V (0) .

(13)
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Thus

∫

𝑇

0

[−(𝑒

𝐺(𝑡)
𝑢

󸀠

(𝑡))

󸀠

+ 𝜆𝑒

𝐺(𝑡)
𝑢 (𝑡) − 𝑒

𝐺(𝑡)
𝑓 (𝑡, 𝑢 (𝑡))] V (𝑡) 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒

𝐺(𝑡
𝑗
)
[Δ𝑢

󸀠
(𝑡

𝑗
) + 𝐼

𝑗
(𝑢 (𝑡

𝑗
))] V (𝑡

𝑗
)

− 𝑢

󸀠

(0) V (0) = 0

(14)

holds for all V ∈ 𝑋. Without loss of generality, for any 𝑗 =

{1, 2, . . . , 𝑛} and V ∈ 𝑋 with V(𝑡) ≡ 0, for every 𝑡 ∈ [0, 𝑡

𝑗
] ∪

[𝑡

𝑗+1
, 𝑇], then substituting V into (14), we get

− (𝑒

𝐺(𝑡)
𝑢

󸀠

(𝑡))

󸀠

+ 𝜆𝑒

𝐺(𝑡)
𝑢 (𝑡) − 𝑒

𝐺(𝑡)
𝑓 (𝑡, 𝑢 (𝑡)) = 0,

𝑡 ∈ (𝑡

𝑗
, 𝑡

𝑗+1
) .

(15)

Hence 𝑢 satisfies the first equation of (2). Therefore, by (14)
we have

−

𝑛

∑

𝑗=1

𝑒

𝐺(𝑡
𝑗
)
[Δ𝑢

󸀠
(𝑡

𝑗
) + 𝐼

𝑗
(𝑢 (𝑡

𝑗
))] V (𝑡

𝑗
) − 𝑢

󸀠

(0) V (0) = 0.

(16)

Next we will show that 𝑢 satisfies the impulsive and the
boundary condition in (2). If the impulsive condition in (2)
does not hold, without loss of generality, we assume that there
exists 𝑗 ∈ {1, 2, . . . , 𝑛} such that

Δ𝑢

󸀠
(𝑡

𝑗
) + 𝐼

𝑗
(𝑢 (𝑡

𝑗
)) ̸= 0. (17)

Let V(𝑡) = ∏

𝑛+1

𝑖=0,𝑖 ̸= 𝑗
(𝑡 − 𝑡

𝑖
); then

−

𝑛

∑

𝑗=1

𝑒

𝐺(𝑡
𝑗
)
[Δ𝑢

󸀠
(𝑡

𝑗
) + 𝐼

𝑗
(𝑢 (𝑡

𝑗
))] V (𝑡

𝑗
) − 𝑢

󸀠

(0) V (0)

= −𝑒

𝐺(𝑡
𝑗
)
[Δ𝑢

󸀠
(𝑡

𝑗
) + 𝐼

𝑗
(𝑢 (𝑡

𝑗
))] V (𝑡

𝑗
) ̸= 0,

(18)

which contradicts (16). So 𝑢 satisfies the impulsive condition
in (2) and (16) implies

𝑢

󸀠

(0) V (0) = 0.
(19)

If 𝑢󸀠(0) ̸= 0, pick V(𝑡) = ∏

𝑛+1

𝑖=1
(𝑡 − 𝑡

𝑖
); one has

𝑢

󸀠

(0)

𝑛+1

∏

𝑖=1

(𝑡

0
− 𝑡

𝑖
) ̸= 0, (20)

which contradicts (19), so 𝑢 satisfies the boundary condition.
Therefore, 𝑢 is a solution of (1).

Lemma 2. Let 𝑢 ∈ 𝑋. Then there exists a constant 𝜎 > 0, such
that

‖𝑢‖

∞
≤ 𝜎 ‖𝑢‖ , (21)

where ‖𝑢‖
∞

= max
𝑡∈[0,𝑇]

|𝑢(𝑡)|.

Proof. By Hölder inequality, for 𝑢 ∈ 𝑋,

|𝑢 (𝑡)| =

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢 (𝑇) − ∫

𝑇

𝑡

𝑢

󸀠

(𝑠) 𝑑𝑠

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ (∫

𝑇

0

1

𝑒

𝐺(𝑠)
𝑑𝑠)

1/2

(∫

𝑇

0

𝑒

𝐺(𝑠)󵄨
󵄨

󵄨

󵄨

󵄨

𝑢

󸀠

(𝑠)

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑠)

1/2

≤

√

𝑇

𝑚

‖𝑢‖ = 𝜎 ‖𝑢‖ .

(22)

Lemma 3 (see [24, Theorem 9.1]). Let 𝐸 be a real Banach
space, 𝐼 ∈ 𝐶

1
(𝐸, 𝑅) with 𝐼 even, bounded from below, and

satisfying P.S. condition. Suppose 𝐼(0) = 0; there is a set𝐾 ⊂ 𝐸

such that 𝐾 is homeomorphic to 𝑆

𝑗−1 by an odd map and
sup
𝐾
𝐼 < 0. Then 𝐼 possesses at least 𝑗 distinct pairs of critical

points.

3. Main Results

Theorem 4. Suppose that the following conditions hold.

(H1) There exist 𝑢
1

> 0, 𝑟 > 𝑀𝜆

𝑘
/𝑚, 𝜆

𝑘
which is the kth

eigenvalue of (7) such that

𝑟𝑀𝑢

1
+ 𝑒

𝐺(𝑡)
𝑓 (𝑡, 𝑢

1
) = 0, 𝑟𝑀𝑢

1
+ 𝑒

𝐺(𝑡)
𝑓 (𝑡, 𝑢) > 0

𝑓𝑜𝑟 𝑒V𝑒𝑟𝑦 𝑢 ∈ (0, 𝑢

1
) .

(23)

(H2) There exist 𝑎
𝑗
, 𝑏

𝑗
> 0 and 𝑟

𝑗
∈ [0, 1) (𝑗 = 1, 2, . . . , 𝑛)

such that
󵄨

󵄨

󵄨

󵄨

󵄨

𝐼

𝑗
(𝑢)

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝑎

𝑗
+ 𝑏

𝑗
|𝑢|

𝑟
𝑗

𝑓𝑜𝑟 𝑎𝑛𝑦 𝑢 ∈ 𝑅. (24)

(H3) 𝑓(𝑡, 𝑢) and 𝐼

𝑗
(𝑢) (𝑗 = 1, 2, . . . , 𝑛) are odd about 𝑢.

(H4) 𝑓(𝑡, 𝑢) = 𝑜(|𝑢|), 𝐼
𝑗
(𝑢) = 𝑜(|𝑢|), as |𝑢| → 0, 𝑗 =

1, 2, . . . , 𝑛.

Then, for 𝜆 ∈ (𝑀𝜆

𝑘
/𝑚, 𝑟], problem (1) has at least 𝑘 distinct

pairs of solutions.

Proof. Set

ℎ

1
(𝜆, 𝑡, 𝑢)=

{

{

{

{

{

{

{

𝜆𝑒

𝐺(𝑡)
𝑢 + 𝑒

𝐺(𝑡)
𝑓 (𝑡, 𝑢) 𝑢 ∈ [−𝑢

1
, 𝑢

1
] ,

𝜆𝑒

𝐺(𝑡)
𝑢

1
+ 𝑒

𝐺(𝑡)
𝑓 (𝑡, 𝑢

1
) , 𝑢 ∈ [𝑢

1
, +∞) ,

−𝜆𝑒

𝐺(𝑡)
𝑢

1
− 𝑒

𝐺(𝑡)
𝑓 (𝑡, −𝑢

1
) , 𝑢 ∈ (−∞, −𝑢

1
] .

(25)

Consider

− (𝑒

𝐺(𝑡)
𝑢

󸀠

(𝑡))

󸀠

= ℎ

1
(𝜆, 𝑡, 𝑢 (𝑡)) ,

𝑡 ̸= 𝑡

𝑗
, a.e. 𝑡 ∈ [0, 𝑇] ,

−Δ𝑢

󸀠
(𝑡

𝑗
) = 𝐼

𝑗
(𝑢 (𝑡

𝑗
)) , 𝑗 = 1, 2, . . . , 𝑛,

𝑢

󸀠

(0) = 0, 𝑢 (𝑇) = 0.

(26)
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Next, we will verify that the solutions of problem (26) are
solutions of problem (1).

In fact, let 𝑢

0
(𝑡) be the solution of problem (26). If

max
0≤𝑡≤𝑇

𝑢

0
(𝑡) > 𝑢

1
, then there exists an interval [𝑎, 𝑏] ⊂

[0, 𝑇] such that

𝑢

0
(𝑎) = 𝑢

0
(𝑏) = 𝑢

1
, 𝑢

0
(𝑡) > 𝑢

1
for any 𝑡 ∈ (𝑎, 𝑏) .

(27)

When 𝑡 ∈ [𝑎, 𝑏], by (H1), we have

−(𝑒

𝐺(𝑡)
𝑢

󸀠

0
(𝑡))

󸀠

= ℎ

1
(𝜆, 𝑡, 𝑢)

= 𝜆𝑒

𝐺(𝑡)
𝑢

1
+ 𝑒

𝐺(𝑡)
𝑓 (𝑡, 𝑢

1
) ≤ 𝑟𝑀𝑢

1

+ 𝑒

𝐺(𝑡)
𝑓 (𝑡, 𝑢

1
) = 0.

(28)

That is, 𝑒𝐺(𝑡)𝑢󸀠
0
(𝑡) is nondecreasing in [𝑎, 𝑏]. By 𝑢

󸀠

0
(𝑎) ≥ 0 and

𝑢

󸀠

0
(𝑏) ≤ 0, we have

0 ≤ 𝑒

𝐺(𝑡)
𝑢

󸀠

0
(𝑎) ≤ 𝑒

𝐺(𝑡)
𝑢

󸀠

0
(𝑡) ≤ 𝑒

𝐺(𝑡)
𝑢

󸀠

0
(𝑏) ≤ 0

for every 𝑡 ∈ [𝑎, 𝑏] .

(29)

That is, 𝑒𝐺(𝑡)𝑢󸀠
0
(𝑡) ≡ 0 for any 𝑡 ∈ [𝑎, 𝑏]. Since 𝑒

𝐺(𝑡)
̸= 0, then

𝑢

󸀠

0
(𝑡) ≡ 0. So, there exists a constant 𝜖 such that 𝑢

0
(𝑡) ≡ 𝜖,

which contradicts (27). Then max
0≤𝑡≤𝑇

𝑢

0
(𝑡) ≤ 𝑢

1
. Similarly,

we can prove that min
0≤𝑡≤𝑇

𝑢

0
(𝑡) > −𝑢

1
.

Therefore, any solution of (26) is a solution of (1). Hence
to prove Theorem 4, it suffices to produce at least 𝑘 distinct
pairs of critical points of

𝐸

1
(𝑢) =

1

2

∫

𝑇

0

𝑒

𝐺(𝑡)󵄨
󵄨

󵄨

󵄨

󵄨

𝑢

󸀠

(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑡 − ∫

𝑇

0

𝐻

1
(𝜆, 𝑡, 𝑢 (𝑡)) 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒

𝐺(𝑡
𝑗
)
∫

𝑢(𝑡
𝑗
)

0

𝐼

𝑗
(𝑡) 𝑑𝑡,

(30)

where𝐻

1
(𝜆, 𝑡, 𝑢(𝑡)) = ∫

𝑢

0
ℎ

1
(𝜆, 𝑡, 𝑠)𝑑𝑠.

We will apply Lemma 3 to finish the proof.
By (30) and (H3), 𝐸

1
∈ 𝐶

󸀠
(𝑋, 𝑅) is even and 𝐸

1
(0) = 0.

Next, we will show that 𝐸
1
is bounded from below.

Let 𝐶
1
= max{𝑎

1
, 𝑎

2
, . . . , 𝑎

𝑛
}, 𝐶
2
= max{𝑏

1
, 𝑏

2
, . . . , 𝑏

𝑛
}. By

(H1) and (H3), we have 𝑢ℎ

1
(𝜆, 𝑡, 𝑢(𝑡)) ≤ 0 for |𝑢| ≥ 𝑢

1
; thus

∫

𝑇

0

𝐻

1
(𝜆, 𝑡, 𝑢 (𝑡)) 𝑑𝑡 = ∫

𝑇

0

∫

𝑢(𝑡)

0

ℎ

1
(𝜆, 𝑡, 𝑠) 𝑑𝑠 𝑑𝑡

≤ ∫

𝑇

0

∫

𝑢
1

0

ℎ

1
(𝜆, 𝑡, 𝑠) 𝑑𝑠 𝑑𝑡

≤ ∫

𝑇

0

∫

𝑢
1

0

[𝑟𝑀𝑠 + 𝑓 (𝑡, 𝑠)] 𝑑𝑠 𝑑𝑡 = 𝜌 > 0.

(31)

So, we have

𝐸

1
(𝑢) =

1

2

‖𝑢‖

2
− ∫

𝑇

0

𝐻

1
(𝜆, 𝑡, 𝑢 (𝑡)) 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒

𝐺(𝑡
𝑗
)
∫

𝑢(𝑡
𝑗
)

0

𝐼

𝑗
(𝑡) 𝑑𝑡

≥

1

2

‖𝑢‖

2
− 𝜌 − 𝑛𝜎𝐶

1
𝑀‖𝑢‖ − 𝐶

2
𝑀

𝑛

∑

𝑗=1

𝜎

𝑟
𝑗
+1

‖𝑢‖

𝑟
𝑗
+1

> −∞,

(32)

for any 𝑢 ∈ 𝑋. Therefore, 𝐸
1
is bounded from below.

In the following we will show that 𝐸

1
satisfies the P.S.

condition. Let {𝑢

𝑘
} ⊂ 𝑋 such that {𝐸

1
(𝑢

𝑘
)} is a bounded

sequence and lim
𝑘→∞

𝐸

󸀠

1
(𝑢

𝑘
) = 0; then there exists 𝐶

3
> 0

such that
󵄨

󵄨

󵄨

󵄨

𝐸

1
(𝑢

𝑘
)

󵄨

󵄨

󵄨

󵄨

≤ 𝐶

3
. (33)

By (32), we have

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

𝑘

󵄩

󵄩

󵄩

󵄩

2

≤ 𝐶

3
+ 𝜌 + 𝑛𝜎𝐶

1
𝑀

󵄩

󵄩

󵄩

󵄩

𝑢

𝑘

󵄩

󵄩

󵄩

󵄩

+ 𝐶

2
𝑀

𝑛

∑

𝑗=1

𝜎

𝑟
𝑗
+1

‖𝑢‖

𝑟
𝑗
+1
.

(34)

So {𝑢

𝑘
} is bounded in 𝑋. From the reflexivity of 𝑋, we may

extract a weakly convergent subsequence that, for simplicity,
we call {𝑢

𝑘
}, 𝑢

𝑘
⇀ 𝑢 in𝑋. In the following we will verify that

{𝑢

𝑘
} strongly converges to 𝑢:

(𝐸

󸀠

1
(𝑢

𝑘
) − 𝐸

󸀠

1
(𝑢)) (𝑢

𝑘
− 𝑢)

=

󵄩

󵄩

󵄩

󵄩

𝑢

𝑘
− 𝑢

󵄩

󵄩

󵄩

󵄩

2

− ∫

𝑇

0

[ℎ

1
(𝜆, 𝑡, 𝑢

𝑘
(𝑡)) − ℎ

1
(𝜆, 𝑡, 𝑢 (𝑡))]

× (𝑢

𝑘
(𝑡) − 𝑢 (𝑡)) 𝑑𝑡

+

𝑛

∑

𝑗=1

𝑒

𝐺(𝑡
𝑗
)
[𝐼

𝑗
(𝑢

𝑘
(𝑡

𝑗
)) − 𝐼

𝑗
(𝑢 (𝑡

𝑗
))]

× (𝑢

𝑘
(𝑡

𝑗
) − 𝑢 (𝑡

𝑗
)) .

(35)

By 𝑢

𝑘
⇀ 𝑢 in𝑋, we see that {𝑢

𝑘
} uniformly converges to 𝑢 in

𝐶[0, 𝑇]. So

∫

𝑇

0

[ℎ

1
(𝜆, 𝑡, 𝑢

𝑘
(𝑡)) − ℎ

1
(𝜆, 𝑡, 𝑢 (𝑡))]

× (𝑢

𝑘
(𝑡) − 𝑢 (𝑡)) 𝑑𝑡 󳨀→ 0,

𝑛

∑

𝑗=1

𝑒

𝐺(𝑡
𝑗
)
[𝐼

𝑗
(𝑢

𝑘
(𝑡

𝑗
)) − 𝐼

𝑗
(𝑢 (𝑡

𝑗
))]

× (𝑢

𝑘
(𝑡

𝑗
) − 𝑢 (𝑡

𝑗
)) 󳨀→ 0,

(𝐸

󸀠

1
(𝑢

𝑘
) − 𝐸

󸀠

1
(𝑢)) (𝑢

𝑘
− 𝑢) 󳨀→ 0, as 𝑘 󳨀→ +∞.

(36)
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Sowe obtain ‖𝑢

𝑘
−𝑢‖ → 0, as 𝑘 → +∞.That is, {𝑢

𝑘
} strongly

converges to 𝑢 in 𝑋, which means that 𝐸

1
satisfies the P.S.

condition.
Now set𝐾 = {∑

𝑘

𝑖=1
𝑐

𝑖
𝜑

𝑖
: ∑

𝑘

𝑖=1
𝑐

2

𝑖
= 𝑐

2
}, where 𝜑

𝑖
is defined

in (9). It is clear that 𝐾 is homeomorphic to 𝑆

𝑘−1 by an odd
map for any 𝑐 > 0. In the following we verify that 𝐸

1
|

𝐾
< 0 if

𝑐 is sufficiently small.
For any 𝑢 ∈ 𝐾, 𝑢 = ∑

𝑘

𝑖=1
𝑐

𝑖
𝜑

𝑖
. By (H4) and (30), we have

𝐸

1
(𝑢) =

1

2

∫

𝑇

0

𝑒

𝐺(𝑡)
[

[

(

𝑘

∑

𝑖=1

𝑐

𝑖
𝜑

𝑖
(𝑡))

󸀠

]

]

2

𝑑𝑡

− ∫

𝑇

0

𝐻

1
(𝜆, 𝑡, 𝑢 (𝑡)) 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒

𝐺(𝑡
𝑗
)
∫

𝑢(𝑡
𝑗
)

0

𝐼

𝑗
(𝑡) 𝑑𝑡

=

1

2

𝑘

∑

𝑖=1

𝑐

2

𝑖
∫

𝑇

0

𝑒

𝐺(𝑡)
[𝜑

󸀠

𝑖
(𝑡)]

2

𝑑𝑡

−

𝜆

2

𝑘

∑

𝑖=1

𝑐

2

𝑖
∫

𝑇

0

𝑒

𝐺(𝑡)
[𝜑

𝑖
(𝑡)]

2

𝑑𝑡

− ∫

𝑇

0

𝑒

𝐺(𝑡)
𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒

𝐺(𝑡
𝑗
)
∫

𝑢(𝑡
𝑗
)

0

𝐼

𝑗
(𝑡) 𝑑𝑡

≤

𝑀

2

𝑘

∑

𝑖=1

𝑐

2

𝑖
∫

𝑇

0

[𝜑

󸀠

𝑖
(𝑡)]

2

𝑑𝑡

−

𝑚𝜆

2

𝑘

∑

𝑖=1

𝑐

2

𝑖
∫

𝑇

0

[𝜑

𝑖
(𝑡)]

2

𝑑𝑡

− ∫

𝑇

0

𝑒

𝐺(𝑡)
𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡 −

𝑛

∑

𝑗=1

𝑒

𝐺(𝑡
𝑗
)
∫

𝑢(𝑡
𝑗
)

0

𝐼

𝑗
(𝑡) 𝑑𝑡

=

1

2

𝑘

∑

𝑖=1

𝑐

2

𝑖
(𝑀 −

𝑚𝜆

𝜆

𝑖

) − ∫

𝑇

0

𝑒

𝐺(𝑡)
𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒

𝐺(𝑡
𝑗
)
∫

𝑢(𝑡
𝑗
)

0

𝐼

𝑗
(𝑡) 𝑑𝑡

≤

1

2

(𝑀 −

𝑚𝜆

𝜆

𝑘

) 𝑐

2
+ 𝑜 (𝑐

2
) + 𝑜 (𝑐

2
) ,

(37)

for small 𝑐 > 0. Since 𝜆 ∈ (𝑀𝜆

𝑘
/𝑚, 𝑟], 𝐸

1
(𝑢) < 0 and the

proof is complete.

Theorem 5. Suppose that the following conditions hold.

(H1) There exist 𝑢
1

> 0, 𝑟 > 𝑀𝜆

𝑘
/𝑚, 𝜆

𝑘
which is the kth

eigenvalue of (7) such that

𝑟𝑀𝑢

1
+ 𝑒

𝐺(𝑡)
𝑓 (𝑡, 𝑢

1
) = 0, 𝑟𝑀𝑢

1
+ 𝑒

𝐺(𝑡)
𝑓 (𝑡, 𝑢) > 0

𝑓𝑜𝑟 𝑒V𝑒𝑟𝑦 𝑢 ∈ (0, 𝑢

1
) .

(38)

(H2) ∫

𝑢

0
𝐼

𝑗
(𝑠)𝑑𝑠 ≤ 0 for any 𝑢 ∈ 𝑅 (𝑗 = 1, 2, . . . , 𝑛).

(H3) 𝑓(𝑡, 𝑢) and 𝐼

𝑗
(𝑢) (𝑗 = 1, 2, . . . , 𝑛) are odd about 𝑢.

(H4) 𝑓(𝑡, 𝑢) = 𝑜(|𝑢|), 𝐼
𝑗
(𝑢) = 𝑜(|𝑢|), as |𝑢| → 0, 𝑗 =

1, 2, . . . , 𝑛.

Then, for 𝜆 ∈ (𝑀𝜆

𝑘
/𝑚, 𝑟], problem (1) has at least 𝑘 distinct

pairs of solutions.

Proof. The proof is similar to the proof of Theorem 4, and
therefore we omit it.

Theorem 6. Suppose that the following conditions hold.

(H1) There exist 𝑢
2

> 0, 𝑟 > 𝑀𝜆

𝑘
/𝑚, 𝜆

𝑘
which is the kth

eigenvalue of (7) such that

𝑟𝑀𝑢

2
+ 𝑒

𝐺(𝑡)
𝑓 (𝑡, 𝑢

2
) ≤ 0, 𝐼

𝑗
(𝑢

2
) ≤ 0,

𝑗 = 1, 2, . . . , 𝑛.

(39)

(H2) 𝑓(𝑡, 𝑢) and 𝐼

𝑗
(𝑢) (𝑗 = 1, 2, . . . , 𝑛) are odd about 𝑢.

(H3) 𝑓(𝑡, 𝑢) = 𝑜(|𝑢|), 𝐼
𝑗
(𝑢) = 𝑜(|𝑢|), as |𝑢| → 0, 𝑗 =

1, 2, . . . , 𝑛.

Then, for 𝜆 ∈ (𝑀𝜆

𝑘
/𝑚, 𝑟], problem (1) has at least 𝑘 distinct

pairs of solutions.

Proof. Set

ℎ

2
(𝜆, 𝑡, 𝑢)=

{

{

{

{

{

{

{

𝜆𝑒

𝐺(𝑡)
𝑢 + 𝑒

𝐺(𝑡)
𝑓 (𝑡, 𝑢) , 𝑢 ∈ [−𝑢

2
, 𝑢

2
] ,

𝜆𝑒

𝐺(𝑡)
𝑢

2
+ 𝑒

𝐺(𝑡)
𝑓 (𝑡, 𝑢

2
) , 𝑢 ∈ [𝑢

2
, +∞) ,

−𝜆𝑒

𝐺(𝑡)
𝑢

2
− 𝑒

𝐺(𝑡)
𝑓 (𝑡, −𝑢

2
) , 𝑢 ∈ (−∞, −𝑢

2
] ,

𝑇

𝑗
(𝑢) =

{

{

{

{

{

{

{

𝐼

𝑗
(𝑢) , 𝑢 ∈ [−𝑢

2
, 𝑢

2
] ,

𝐼

𝑗
(𝑢

2
) , 𝑢 ∈ [𝑢

2
, +∞) ,

𝐼

𝑗
(−𝑢

2
) , 𝑢 ∈ (−∞, −𝑢

2
] .

(40)

Consider

− (𝑒

𝐺(𝑡)
𝑢

󸀠

(𝑡))

󸀠

= ℎ

2
(𝜆, 𝑡, 𝑢 (𝑡)) ,

𝑡 ̸= 𝑡

𝑗
, a.e. 𝑡 ∈ [0, 𝑇] ,

−Δ𝑢

󸀠
(𝑡

𝑗
) = 𝑇

𝑗
(𝑢 (𝑡

𝑗
)) , 𝑗 = 1, 2, . . . , 𝑛,

𝑢

󸀠

(0) = 0, 𝑢 (𝑇) = 0.

(41)

Next, we will verify that the solutions of problem (41) are
solutions of problem (1).
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In fact, let 𝜔
1
= {𝑡 ∈ (𝑎

1
, 𝑏

1
) ⊆ [0, 𝑇] : 𝑢(𝑡) > 𝑢

2
}. By the

definitions of ℎ
2
(𝜆, 𝑡, 𝑢) and 𝑇

𝑗
(𝑢), (41) is reduced to

− (𝑒

𝐺(𝑡)
𝑢

󸀠

(𝑡))

󸀠

= ℎ

2
(𝜆, 𝑡, 𝑢

2
) = 𝜆𝑒

𝐺(𝑡)
𝑢

2
+ 𝑒

𝐺(𝑡)
𝑓 (𝑡, 𝑢

2
)

≤ 𝑟𝑀𝑢

2
+ 𝑒

𝐺(𝑡)
𝑓 (𝑡, 𝑢

2
) ≤ 0, 𝑡 ̸= 𝑡

𝑗
, a.e. 𝑡 ∈ (𝑎

1
, 𝑏

1
) ,

−Δ𝑢

󸀠
(𝑡

𝑗
) = 𝑇

𝑗
(𝑢 (𝑡

𝑗
)) = 𝐼

𝑗
(𝑢

2
) ≤ 0, 𝑗 = 1, 2, . . . , 𝑛,

𝑢 (𝑎

1
) = 𝑢 (𝑏

1
) = 𝑢

2
.

(42)

The solution 𝑢(𝑡) of (42) satisfies 𝑢(𝑡) ≤ 𝑢

2
, 𝑡 ∈ (𝑎

1
, 𝑏

1
). So

𝜔

1
= 0 and 𝑢(𝑡) ≤ 𝑢

2
.

Let 𝜔
2

= {𝑡 ∈ (𝑎

2
, 𝑏

2
) ⊆ [0, 𝑇] : 𝑢(𝑡) < −𝑢

2
}. By the

definitions of ℎ
2
(𝜆, 𝑡, 𝑢) and 𝑇

𝑗
(𝑢), (41) is reduced to

−(𝑒

𝐺(𝑡)
𝑢

󸀠

(𝑡))

󸀠

= ℎ

2
(𝜆, 𝑡, −𝑢

2
) = −𝜆𝑒

𝐺(𝑡)
𝑢

2
+ 𝑒

𝐺(𝑡)
𝑓 (𝑡, −𝑢

2
)

≥ −𝑟𝑀𝑢

2
− 𝑒

𝐺(𝑡)
𝑓 (𝑡, 𝑢

2
) ≥ 0,

𝑡 ̸= 𝑡

𝑗
, a.e. 𝑡 ∈ (𝑎

2
, 𝑏

2
) ,

−Δ𝑢

󸀠
(𝑡

𝑗
) = 𝑇

𝑗
(𝑢 (𝑡

𝑗
)) = −𝐼

𝑗
(𝑢

2
) ≥ 0, 𝑗 = 1, 2, . . . , 𝑛,

𝑢 (𝑎

2
) = 𝑢 (𝑏

2
) = −𝑢

2
.

(43)

The solution 𝑢(𝑡) of (43) satisfies 𝑢(𝑡) ≥ −𝑢

2
, 𝑡 ∈ (𝑎

2
, 𝑏

2
). So

𝜔

2
= 0 and 𝑢(𝑡) ≥ −𝑢

2
.

Therefore, the solutions of (41) are solutions of (1). Hence
to prove Theorem 6, it suffices to produce at least 𝑘 distinct
pairs of critical points of

𝐸

2
(𝑢) =

1

2

∫

𝑇

0

𝑒

𝐺(𝑡)󵄨
󵄨

󵄨

󵄨

󵄨

𝑢

󸀠

(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑡 − ∫

𝑇

0

𝐻

2
(𝜆, 𝑡, 𝑢 (𝑡)) 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒

𝐺(𝑡
𝑗
)
∫

𝑢(𝑡
𝑗
)

0

𝑇

𝑗
(𝑡) 𝑑𝑡,

(44)

where𝐻

2
(𝜆, 𝑡, 𝑢(𝑡)) = ∫

𝑢

0
ℎ

2
(𝜆, 𝑡, 𝑠)𝑑𝑠.

We will apply Lemma 3 to finish the proof.
By (44) and (H2), 𝐸

2
∈ 𝐶

󸀠
(𝑋, 𝑅) is even and 𝐸

2
(0) = 0.

Next, we will show that 𝐸
2
is bounded from below.

By (H1) and (H2), we have 𝑢ℎ

2
(𝜆, 𝑡, 𝑢(𝑡)) ≤ 0 and

𝑢𝑇

𝑗
(𝑢) ≤ 0 for |𝑢| ≥ 𝑢

2
; thus

∫

𝑇

0

𝐻

2
(𝜆, 𝑡, 𝑢 (𝑡)) 𝑑𝑡 = ∫

𝑇

0

∫

𝑢(𝑡)

0

ℎ

2
(𝜆, 𝑡, 𝑠) 𝑑𝑠 𝑑𝑡

≤ ∫

𝑇

0

∫

𝑢
2

0

ℎ

2
(𝜆, 𝑡, 𝑠) 𝑑𝑠 𝑑𝑡

≤ ∫

𝑇

0

∫

𝑢
2

0

[𝑟𝑀𝑠 + 𝑓 (𝑡, 𝑠)] 𝑑𝑠 𝑑𝑡 = 𝜌 > 0,

∫

𝑢(𝑡
𝑗
)

0

𝑇

𝑗
(𝑡) 𝑑𝑡 ≤ ∫

𝑢
2

0

𝑇

𝑗
(𝑡) 𝑑𝑡 = 𝛿 > 0.

(45)

So, we have

𝐸

2
(𝑢) =

1

2

‖𝑢‖

2
− ∫

𝑇

0

𝐻

2
(𝜆, 𝑡, 𝑢 (𝑡)) 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒

𝐺(𝑡
𝑗
)
∫

𝑢(𝑡
𝑗
)

0

𝑇

𝑗
(𝑡) 𝑑𝑡

≥

1

2

‖𝑢‖

2
− 𝜌 − 𝑛𝑀𝛿

> −∞,

(46)

for any 𝑢 ∈ 𝑋. Therefore, 𝐸
2
is bounded from below.

In the following we will show that 𝐸

2
satisfies the P.S.

condition. Let {𝑢

𝑘
} ⊂ 𝑋 such that {𝐸

2
(𝑢

𝑘
)} is a bounded

sequence and lim
𝑘→∞

𝐸

󸀠

2
(𝑢

𝑘
) = 0; then there exists 𝐶

4
> 0

such that
󵄨

󵄨

󵄨

󵄨

𝐸

2
(𝑢

𝑘
)

󵄨

󵄨

󵄨

󵄨

≤ 𝐶

4
. (47)

By (46), we have

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

𝑘

󵄩

󵄩

󵄩

󵄩

2

≤ 𝐶

4
+ 𝜌 + 𝑛𝑀𝛿.

(48)

So {𝑢

𝑘
} is bounded in 𝑋. From the reflexivity of 𝑋, we may

extract a weakly convergent subsequence that, for simplicity,
we call {𝑢

𝑘
}, 𝑢

𝑘
⇀ 𝑢 in𝑋. In the following we will verify that

{𝑢

𝑘
} strongly converges to 𝑢:

(𝐸

󸀠

2
(𝑢

𝑘
) − 𝐸

󸀠

2
(𝑢)) (𝑢

𝑘
− 𝑢)

=

󵄩

󵄩

󵄩

󵄩

𝑢

𝑘
− 𝑢

󵄩

󵄩

󵄩

󵄩

2

− ∫

𝑇

0

[ℎ

2
(𝜆, 𝑡, 𝑢

𝑘
(𝑡)) − ℎ

2
(𝜆, 𝑡, 𝑢 (𝑡))]

× (𝑢

𝑘
(𝑡) − 𝑢 (𝑡)) 𝑑𝑡

+

𝑛

∑

𝑗=1

𝑒

𝐺(𝑡
𝑗
)
[𝑇

𝑗
(𝑢

𝑘
(𝑡

𝑗
)) − 𝑇

𝑗
(𝑢 (𝑡

𝑗
))]

× (𝑢

𝑘
(𝑡

𝑗
) − 𝑢 (𝑡

𝑗
)) .

(49)

By 𝑢

𝑘
⇀ 𝑢 in𝑋, we see that {𝑢

𝑘
} uniformly converges to 𝑢 in

𝐶[0, 𝑇]. So

∫

𝑇

0

[ℎ

2
(𝜆, 𝑡, 𝑢

𝑘
(𝑡)) − ℎ

2
(𝜆, 𝑡, 𝑢 (𝑡))] (𝑢

𝑘
(𝑡) − 𝑢 (𝑡)) 𝑑𝑡 󳨀→ 0,

𝑛

∑

𝑗=1

𝑒

𝐺(𝑡
𝑗
)
[𝑇

𝑗
(𝑢

𝑘
(𝑡

𝑗
)) − 𝑇

𝑗
(𝑢 (𝑡

𝑗
))] (𝑢

𝑘
(𝑡

𝑗
) − 𝑢 (𝑡

𝑗
)) 󳨀→ 0,

(𝐸

󸀠

2
(𝑢

𝑘
) − 𝐸

󸀠

2
(𝑢)) (𝑢

𝑘
− 𝑢) → 0, as 𝑘 󳨀→ +∞.

(50)

So we obtain ‖𝑢

𝑘
− 𝑢‖ → 0, as 𝑘 → +∞. That is, {𝑢

𝑘
}

strongly converges to 𝑢 in𝑋, whichmeans 𝐸
2
satisfies the P.S.

condition.
Now set𝐾 = {∑

𝑘

𝑖=1
𝑐

𝑖
𝜑

𝑖
: ∑

𝑘

𝑖=1
𝑐

2

𝑖
= 𝑐

2
}, where 𝜑

𝑖
is defined

in (9). It is clear that 𝐾 is homeomorphic to 𝑆

𝑘−1 by an odd
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map for any 𝑐 > 0. In the following we verify that 𝐸
2
|

𝐾
< 0 if

𝑐 is sufficiently small.
For any 𝑢 ∈ 𝐾, 𝑢 = ∑

𝑘

𝑖=1
𝑐

𝑖
𝜑

𝑖
. By (H3) and (44), we have

𝐸

2
(𝑢) =

1

2

∫

𝑇

0

𝑒

𝐺(𝑡)
[

[

(

𝑘

∑

𝑖=1

𝑐

𝑖
𝜑

𝑖
(𝑡))

󸀠

]

]

2

𝑑𝑡

− ∫

𝑇

0

𝐻

2
(𝜆, 𝑡, 𝑢 (𝑡)) 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒

𝐺(𝑡
𝑗
)
∫

𝑢(𝑡
𝑗
)

0

𝑇

𝑗
(𝑡) 𝑑𝑡

=

1

2

𝑘

∑

𝑖=1

𝑐

2

𝑖
∫

𝑇

0

𝑒

𝐺(𝑡)
[𝜑

󸀠

𝑖
(𝑡)]

2

𝑑𝑡

−

𝜆

2

𝑘

∑

𝑖=1

𝑐

2

𝑖
∫

𝑇

0

𝑒

𝐺(𝑡)
[𝜑

𝑖
(𝑡)]

2

𝑑𝑡

− ∫

𝑇

0

𝑒

𝐺(𝑡)
𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒

𝐺(𝑡
𝑗
)
∫

𝑢(𝑡
𝑗
)

0

𝑇

𝑗
(𝑡) 𝑑𝑡

≤

𝑀

2

𝑘

∑

𝑖=1

𝑐

2

𝑖
∫

𝑇

0

[𝜑

󸀠

𝑖
(𝑡)]

2

𝑑𝑡−

𝑚𝜆

2

𝑘

∑

𝑖=1

𝑐

2

𝑖
∫

𝑇

0

[𝜑

𝑖
(𝑡)]

2

𝑑𝑡

−∫

𝑇

0

𝑒

𝐺(𝑡)
𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡 −

𝑛

∑

𝑗=1

𝑒

𝐺(𝑡
𝑗
)
∫

𝑢(𝑡
𝑗
)

0

𝑇

𝑗
(𝑡) 𝑑𝑡

=

1

2

𝑘

∑

𝑖=1

𝑐

2

𝑖
(𝑀 −

𝑚𝜆

𝜆

𝑖

)− ∫

𝑇

0

𝑒

𝐺(𝑡)
𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡

−

𝑛

∑

𝑗=1

𝑒

𝐺(𝑡
𝑗
)
∫

𝑢(𝑡
𝑗
)

0

𝑇

𝑗
(𝑡) 𝑑𝑡

≤

1

2

(𝑀 −

𝑚𝜆

𝜆

𝑘

) 𝑐

2
+ 𝑜 (𝑐

2
) + 𝑜 (𝑐

2
) ,

(51)

for small 𝑐 > 0. Since 𝜆 ∈ (𝑀𝜆

𝑘
/𝑚, 𝑟], 𝐸

2
(𝑢) < 0 and the

proof is complete.

4. Example

To illustrate how our main results can be used in practice we
present the following example.

Example 1. Let 𝑇 = 𝜋/4, 𝑔(𝑡) = −2𝑡, and consider the
following problem:

− 𝑢

󸀠󸀠

(𝑡) − 2𝑡𝑢

󸀠

(𝑡) − 𝜆𝑢 (𝑡)

= (1 + 𝑡) (𝑢 − 𝑢

2
) − 1000𝑒

(𝜋
2
/16)−𝑡

2

, 𝑡 ∈ [0,

𝜋

4

] , 𝑡 ̸= 𝑡

𝑗
,

−Δ𝑢

󸀠
(𝑡

𝑗
) = 2 −

3
√

𝑢 (𝑡

𝑗
), 𝑗 = 1, 2, . . . , 𝑛,

𝑢

󸀠

(0) = 0, 𝑢 (

𝜋

4

) = 0.

(52)

Compared with (1), 𝑓(𝑡, 𝑢) = (1 + 𝑡)(𝑢 − 𝑢

2
) −

1000𝑒

(𝜋
2
/16)−𝑡

2

, 𝐼
𝑗
(𝑢) = 2 −

3
√

𝑢(𝑡). Obviously (H2), (H3),
and (H4) are satisfied. Let 𝑢

1
= 1, 𝑟 = 1000; then (H1) is

satisfied. By Theorem 4, for (𝑀𝜆

𝑘
/𝑚, 1000] = (4𝑒

𝜋
2
/16

(2𝑘 −

1)

2
𝜋

2
, 1000], 𝑘 = 1, 2, problem (1) has at least 𝑘 distinct pairs

of solutions.

Example 2. Let 𝑇 = 𝜋/2, 𝑔(𝑡) = −𝑡/4, and consider the
following problem:

− 𝑢

󸀠󸀠

(𝑡) −

𝑡

4

𝑢

󸀠

(𝑡) − 𝜆𝑢 (𝑡)

= (1 + 𝑡

2
) (2𝑢 − 𝑢

2
) − 1000𝑒

(𝜋
2
/32)−𝑡

2

,

𝑡 ∈ [0,

𝜋

2

] , 𝑡 ̸= 𝑡

𝑗
,

−Δ𝑢

󸀠
(𝑡

𝑗
) = −𝑢 (𝑡

𝑗
) , 𝑗 = 1, 2, . . . , 𝑛,

𝑢

󸀠

(0) = 0, 𝑢 (

𝜋

2

) = 0.

(53)

Compared with (1), 𝑓(𝑡, 𝑢) = (1 + 𝑡

2
)(2𝑢 − 𝑢

2
) −

1000𝑒

(𝜋
2
/32)−𝑡

2

, 𝐼
𝑗
(𝑢) = −𝑢(𝑡

𝑗
). Obviously (H2), (H3), and

(H4) are satisfied. Let 𝑢
1
= 2, 𝑟 = 500; then (H1) is satisfied.

By Theorem 5, for (𝑀𝜆

𝑘
/𝑚, 500] = (𝑒

𝜋
2
/32

(2𝑘 − 1)

2
𝜋

2
, 500],

𝑘 = 1, 2, 3, 4, problem (53) has at least 𝑘 distinct pairs of
solutions.

Example 3. Let 𝑇 = 𝜋/2, 𝑔(𝑡) = −𝑡/2, and consider the
following problem:

− 𝑢

󸀠󸀠

(𝑡) −

𝑡

2

𝑢

󸀠

(𝑡) − 𝜆𝑢 (𝑡)

= −𝑒

𝜋
2
/16

(1 + 𝑡

2
) 𝑢

3

(𝑡) , 𝑡 ∈ [0,

𝜋

2

] , 𝑡 ̸= 𝑡

𝑗
,

−Δ𝑢

󸀠
(𝑡

𝑗
) = −3𝑢

3
(𝑡

𝑗
) , 𝑗 = 1, 2, . . . , 𝑛,

𝑢

󸀠

(0) = 0, 𝑢 (

𝜋

2

) = 0.

(54)

Compared with (1), 𝑓(𝑡, 𝑢) = −𝑒

𝜋
2
/16

(1 + 𝑡

2
)𝑢

3
(𝑡), 𝐼
𝑗
(𝑢) =

−3𝑢

3
(𝑡

𝑗
). Obviously (H2) and (H3) are satisfied. Let 𝑢

2
=

25, 𝑟 = 625; then (H1) is satisfied. By Theorem 6, for
(𝑀𝜆

𝑘
/𝑚, 625] = (𝑒

𝜋
2
/16

(2𝑘 − 1)

2
𝜋

2
, 625], 𝑘 = 1, 2, 3, problem

(54) has at least 𝑘 distinct pairs of solutions.
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