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The r-Whitney numbers of the second kind are a generalization of all the Stirling-type numbers of the second kind which are in
line with the unified generalization of Hsu and Shuie. In this paper, asymptotic formulas for r-Whitney numbers of the second kind
with integer and real parameters are obtained and the range of validity of each formula is established.

1. Introduction

The 𝑟-Whitney numbers of the second kind, denoted by
𝑊𝛽,𝑟(𝑛,𝑚), have been introduced by Mezo [1] to obtain a
new formula for Bernoulli polynomials. These numbers are
equivalent to the numbers considered by Rucinski and Voigt
[2] and the (𝑟, 𝛽)-Stirling numbers [3].They are considered as
a generalization of all the Stirling-type numbers of the second
kind which satisfy

1

𝛽
𝑚
(𝑚!)

𝑒
𝑟𝑧
(𝑒
𝛽𝑧
− 1)

𝑚
=

∞

∑

𝑛=𝑚

𝑊𝛽,𝑟 (𝑛,𝑚)
𝑧
𝑛

𝑛!

, (1)

where 𝑛 and 𝑚 are positive integers. More properties of 𝑟-
Whitney numbers of the second kind can be found in [1, 3–
7]. For instance, the index 𝐾̂𝛽,𝑟(𝑛) for which the sequence
{𝑊𝛽,𝑟(𝑛, 𝑘)}

𝑛

𝑘=0
assumes its maximum value satisfies

𝐾̂𝛽,𝑟 (𝑛) <
𝑛

log 𝑛 − log log 𝑛
, 𝑛 ≥ 3,

𝑛

𝛽 log 𝑛
−

𝑟

𝛽

< 𝐾̂𝛽,𝑟 (𝑛) , 𝑛 ≥ max{𝑛𝛽,
log 2𝛽

log (1 + 𝛽/𝑟)
} .

(2)

This sequence was also shown in [3] to be unimodal for fixed
𝑛 ≥ 3 with 𝑘 ≤ 𝑛 and further shown to be asymptotically
normal in the sense that
𝑥
𝑛

∑

𝑗=1

1

𝐺𝑛,𝑟,𝛽

𝑊𝛽,𝑟 (𝑛, 𝑘) 󳨀→
1

√2𝜋

∫

𝑥

−∞
𝑒
−𝑡2/2

𝑑𝑡 as 𝑛 󳨀→ ∞,

(3)

where

𝑥𝑛 =
√

𝐺𝑛+2,𝑟,𝛽

𝐺𝑛,𝑟,𝛽

− (

𝐺𝑛+1,𝑟,𝛽

𝐺𝑛,𝑟,𝛽

)

2

𝑥 + (

𝐺𝑛+1,𝑟,𝛽

𝐺𝑛,𝑟,𝛽

− 1) ,

𝐺𝑛,𝑟,𝛽 =

𝑛

∑

𝑘=0

𝑊𝛽,𝑟 (𝑛, 𝑘)

(4)

represents the generalized Bell numbers.
The 𝑟-Whitney numbers of the second kind can be

interpreted combinatorially as follows [5].
Consider 𝑘 + 1 distinct cells the first 𝑘 of which each

has 𝛽 distinct compartments and the last cell with 𝑟 distinct
compartments. Suppose we distribute 𝑛 distinct balls into the
𝑘 + 1 cells one ball at a time such that

(A1) the capacity of each compartment is unlimited;
(B1) the first 𝑘 cells are nonempty.
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Table 1

Exact value Approximate value Relative error
𝑊7,4(100, 5) 5.685 × 10

152
6.335 × 10

152
0.11428

𝑊7,4(100, 10) 7.728 × 10
171

8.169 × 10
171

0.05713

𝑊7,4(100, 15) 8.411 × 10
178

8.731 × 10
178

0.03804

𝑊7,4(100, 30) 5.604 × 10
174

5.706 × 10
174

0.01824

𝑊7,4(100, 60) 7.399 × 10
122

7.446 × 10
122

0.00641

𝑊7,4(100, 80) 1.275 × 10
70

1.279 × 10
70

0.00263

𝑊7,4(100, 90) 2.208 × 10
38

2.211 × 10
38

0.00123

Let Ω be the set of all possible ways of distributing 𝑛 balls
under restriction (A1). Then |Ω| = (𝛽𝑘 + 𝑟)𝑛 and the number
of outcomes in Ω satisfying (B1) is 𝛽𝑘𝑘!𝑊𝛽,𝑟(𝑛, 𝑘) with 𝛽, 𝑟 ≥
0.

Recently, Cheon and Jung [8] gave certain combinatorial
interpretation for the 𝑟-Whitney numbers over the Dowling
lattice and derived some algebraic identities for such num-
bers. Moreover, they defined 𝑟-Dowling polynomials as

𝐷𝑚,𝑟 (𝑛, 𝑥) =

𝑛

∑

𝑘=0

𝑊𝛽,𝑟 (𝑛, 𝑘) 𝑥
𝑘
, (5)

which give the above generalized Bell numbers 𝐺𝑛,𝑟,𝛽 as
particular case. That is, 𝐺𝑛,𝑟,𝛽 = 𝐷𝑚,𝑟(𝑛, 1). It is worth
mentioning that Rahmani [9] obtained more combinatorial
identities in relation to 𝑟-Dowling polynomials. On the other
hand, Belbachir and Bousbaa [10] defined, combinatorially,
certain translated 𝑟-Whitney numbers in terms of permu-
tations and partitions under some conditions and obtained
some properties parallel to those of 𝑟-Whitney numbers.

In a separate paper [11], an asymptotic formula has been
obtained for 𝑟-Whitney numbers of the second kind, also
called generalized Stirling numbers of the second kind, using
saddle-point method. More precisely,

𝑊𝛽,𝑟 (𝑛,𝑚) ≈
𝑛!

𝑚!

𝑒
𝜇𝑅
(𝑒
𝑅
− 1)

𝑚

2𝛽
𝑚−𝑛

𝑅
𝑛√𝜋𝑚𝑅𝐻

[1 +

𝐼

𝑚𝑅√𝜋

] , (6)

which is valid for𝑚 > (1/4)𝑛(𝑟/𝛽), 𝑛 > 4 such that 𝑛 − 𝑚 →

∞ as 𝑛 → ∞, where 𝜇 = 𝑟/𝛽, 𝛽 ̸= 0, and 𝑅 is the unique
positive solution to the equation

𝑅(𝜇 +

𝑦

1 − 𝑒
−𝑅
) − 𝑥 = 0,

𝐻 =

𝜇

2𝑦

+

𝑒
𝑅
(𝑒
𝑅
− 𝑅 − 1)

2(𝑒
𝑅
− 1)
2

.

(7)

Table 1 displays the exact and approximate values of
𝑊𝛽,𝑟(𝑛,𝑚) for 𝑛 = 100, 𝑟 = 4, 𝛽 = 7.

The approximation should be good for 𝑚 > 15 following
the restriction 𝑚 > (1/4)𝑛(𝑟/𝛽). The computed approximate
values for𝑚 = 15, 30, 60, 80, 90 confirm this.

In this paper, another asymptotic formula for the 𝑟-
Whitney numbers of the second kind 𝑊𝛽,𝑟(𝑛, 𝑛 − 𝑚) with
integral values of𝑚 and 𝑛 is obtained using a similar analysis
as that in [12], which is proved to be valid when 𝑚 is in the

range 𝑛 − 𝑜(√𝑛) ≤ 𝑛 − 𝑚 ≤ 𝑛. This can be considered
as the final range since it covers the right most tail of the
interval 0 < 𝑚 ≤ 𝑛. Since these subranges overlap, the present
formula also counterchecks the other and may be used as an
alternative formula for better computation. Moreover, it is
shown that the formula obtained is valid in the given range
when 𝑛 and𝑚 are real numbers.

2. Derivation of the Asymptotic Formula

Applying Cauchy integral formula to (1), the following inte-
gral representation is obtained:

𝑊𝛽,𝑟 (𝑛,𝑚) =
𝑛!

2𝜋𝑖𝛽
𝑚
(𝑚!)

∫

𝐶

𝑒
𝑟𝑧
(𝑒
𝛽𝑧
− 1)

𝑚

𝑧
𝑛+1

𝑑𝑧, (8)

where 𝐶 is a circle about the origin. Using this representation
with𝑚 being replaced by 𝑛 − 𝑚, we have

𝑊𝛽,𝑟 (𝑛, 𝑛 − 𝑚) = (
𝑛

𝑚
)

𝑚!𝛽
𝑚

2𝜋𝑖

∫

𝐶

𝑒
]𝑢
(𝑒
𝑢
− 1)
𝑛−𝑚

𝑢
𝑛+1

𝑑𝑢, (9)

where 𝑢 = 𝛽𝑧, ] = 𝑟/𝛽.
With 𝑓(𝑢) = ((𝑒

𝑢
− 1)/𝑢) − 1, 𝑑𝑢 = 𝛽𝑑𝑧, and 𝑒𝑢 − 1 =

𝑢[𝑓(𝑢) + 1], (9) can be written as

𝑊𝛽,𝑟 (𝑛, 𝑛 − 𝑚) = (
𝑛

𝑚
)

𝑚!𝛽
𝑚

2𝜋𝑖

∫

𝐶

𝑒
]𝑢
[𝑓(𝑢) + 1]

𝑛−𝑚

𝑢
𝑚+1

𝑑𝑢. (10)

We let 𝑞 = 2/(𝑛 − 𝑚) and introduce the new variable 𝑞𝑤 = 𝑢.
Then 𝑑𝑢 = 𝑞𝑑𝑤 and (10) can further be written as

𝑊𝛽,𝑟 (𝑛, 𝑛 − 𝑚)

= (

𝑛

𝑚
)

𝑚!𝛽
𝑚

2𝜋𝑖𝑞
𝑚
∫

𝐶
𝑒
]𝑞𝑤
[𝑓(𝑞𝑤) + 1]

2/𝑞
𝑤
−(𝑚+1)

𝑑𝑤.

(11)

Let

𝑇 (𝑞, 𝑤, ]) = exp{−𝑤 + ]𝑞𝑤 +
2

𝑞

log (𝑓 (𝑞𝑤) + 1)} , (12)

where the logarithm is to the base 𝑒. Then

𝑊𝛽,𝑟 (𝑛, 𝑛 − 𝑚) = (
𝑛

𝑚
)

𝑚!𝛽
𝑚

2𝜋𝑖𝑞
𝑚
∫

𝐶

𝑇 (𝑞, 𝑤, ])
𝑤
𝑚+1

𝑑𝑤. (13)

Consider ℎ(𝑞, 𝑤) = 𝑒
𝑞𝑤
− 1. The Maclaurin series of

ℎ(𝑞, 𝑤) is given by

ℎ (𝑞, 𝑤) =

∞

∑

𝑘=0

(𝑞𝑤)
𝑘

𝑘!

− 1 =

∞

∑

𝑘=1

𝑞
𝑘
𝑤
𝑘

𝑘!

. (14)

Thus,

𝑓 (𝑞𝑤) =

ℎ (𝑞, 𝑤)

𝑞𝑤

− 1 =

∞

∑

𝑘=1

𝑞
𝑘−1
𝑤
𝑘−1

𝑘!

− 1

=

∞

∑

𝑘=2

𝑤
𝑘−1

𝑘!

𝑞
𝑘−1
.

(15)
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Let 𝐺(𝑞, 𝑤) = log[𝑓(𝑞𝑤) + 1]. Then

𝐺 (𝑞, 𝑤) =

𝑤

2

𝑞 +

𝑤
2

24

𝑞
2
+ 0𝑞
3
−

𝑤
4

2880

𝑞
4
+ ⋅ ⋅ ⋅ , (16)

𝐻(𝑞, 𝑤) =

𝐺 (𝑞, 𝑤)

𝑞

=

𝑤

2

+

𝑤
2

24

𝑞 + 0𝑞
2
−

𝑤
4

2880

𝑞
3
+ ⋅ ⋅ ⋅ .

(17)

Note that 𝑇(𝑞, 𝑤, ]) = exp[𝐹(𝑞, 𝑤, ])], where 𝐹(𝑞, 𝑤, ]) =
−𝑤 + ]𝑞𝑤 + 2𝐻(𝑞, 𝑤) and 𝐹(0, 𝑤, ]) = 0.

Writing 𝑇𝑘(𝑤, ]) = 𝑇
𝑘
(0, 𝑤, ])/𝑘!, we have

𝑇 (𝑞, 𝑤, ]) =
∞

∑

𝑘=0

𝑇𝑘 (𝑤, ]) 𝑞
𝑘
= 1 +

∞

∑

𝑘=1

𝑇𝑘 (𝑤, ]) 𝑞
𝑘
. (18)

We prove the following lemma.

Lemma 1. 𝑇𝑘(𝑤, ]) is a polynomial in 𝑤 whose lowest power
in 𝑤 is at least 𝑘.

Proof. Let 𝐸(𝑞, 𝑤) = 𝑒−𝑤+2𝐻(𝑞,𝑤) and 𝐿(𝑞, 𝑤) = 𝑒]𝑞𝑤. Then

𝑇 (𝑞, 𝑤, ]) = 𝑒−𝑤+]𝑞𝑤 exp [2
𝑞

log [𝑓 (𝑞𝑤) + 1]]

= 𝐸 (𝑞, 𝑤) 𝐿 (𝑞, 𝑤) .

(19)

By Leibniz Rule,

[

𝑑
𝑘
𝑇

𝑑𝑞
𝑘
]

𝑞=0

= [𝐸 (𝑞, 𝑤) 𝐿
𝑘
(𝑞, 𝑤)]

𝑞=0

+ [

𝑘

∑

𝑝=1

(

𝑘

𝑝
)𝐸
(𝑝)
(𝑞, 𝑤)𝐿

(𝑘−𝑝)
(𝑞, 𝑤)]

𝑞=0

,

(20)

where 𝐸(𝑝)(𝑞, 𝑤) denotes the 𝑝th derivative of 𝐸(𝑞, 𝑤) with
respect to 𝑞 and 𝐿(𝑘−𝑝)(𝑞, 𝑤) denotes the (𝑘 − 𝑝)th derivative
of 𝐿(𝑞, 𝑤) with respect to 𝑞 and 𝐸(0)(𝑞, 𝑤) = 𝐸(𝑞, 𝑤).

Denote the lowest power of 𝑤 in a polynomial 𝑃(𝑤)
by 𝜂[𝑃(𝑤)]. From the computations above, 𝜂[𝑓(𝑞𝑤)] = 1;
𝜂[𝑓
(𝑘−1)

(𝑞𝑤)]𝑞=0 = 𝑘 − 1; 𝜂[𝐻(𝑞, 𝑤)] = 1; 𝜂[𝐻(𝑘)(0, 𝑤)] =
𝑘 + 1. With ℎ(𝑞) = −𝑤 + 2𝐻(𝑞, 𝑤), ℎ(𝑘)(𝑞) = 2𝐻

(𝑘)
(𝑞, 𝑤).

Hence, 𝜂[ℎ(𝑘)(0, 𝑤)] = 𝑘 + 1.
To find 𝜂[𝐸(𝑘)(0, 𝑤)], note that the concern is only the

power of𝑤, so we omit the details of the constant coefficients
in the formula. With 𝐸(𝑞, 𝑤) = 𝑒

ℎ(𝑞,𝑤) and applying Faa
di Bruno’s formula on the 𝑚th derivative of a composite
function, the following will be obtained:

[𝐸
(𝑘)
(𝑞, 𝑤)]

𝑞=0

= [𝑒
−𝑤+2𝐻(𝑞,𝑤)

∑𝑐𝑖(ℎ
󸀠
(𝑞))

𝑏
1

(ℎ
󸀠󸀠
(𝑞))

𝑏
2

⋅ ⋅ ⋅ (ℎ
(𝑘)
(𝑞))

𝑏
𝑘

]

𝑞=0
,

(21)

where 𝑐𝑖 denotes the constant coefficient.

The factor 𝑒
−𝑤+2𝐻(𝑞,𝑤) in the above expression for

[𝐸
(𝑘)
(𝑞, 𝑤)]𝑞=0 does not contribute to the resulting power of

𝑤 because𝐻(0, 𝑤) = 𝑤/2; and hence at 𝑞 = 0, 𝑒−𝑤+2𝐻(0,𝑤) =
𝑒
0
= 1. Thus, we only need to count the power of 𝑤 in each

term of the sum. Each ℎ(𝑗)(0), if it does occur as a factor in a
term, contributes at least (𝑗 + 1)𝑏𝑗 in the power of 𝑤. Hence,
the lowest power of𝑤 in𝐸(𝑘)(0, 𝑤) is 𝑘+𝑖, where 1 ≤ 𝑖 ≤ 𝑘.The
least 𝑖 is 1; thus; the least power of𝑤 in 𝐸𝑘(0, 𝑤) is 𝑘+1. Using
the greatest value of 𝑖 which is 𝑘, we get 2𝑘 as the greatest
power of 𝑤 in 𝐸(𝑘)(0, 𝑤). Now, we have

𝜂 [𝐸 (𝑞, 𝑤) 𝐿
(𝑘)
(𝑞, 𝑤)]

= 𝜂 [𝐸 (𝑞, 𝑤)] + 𝜂 [𝐿
(𝑘)
(𝑞, 𝑤)] = 0 + 𝑘 = 𝑘,

(22)

while

𝜂 [𝐸
(𝑝)
(𝑞, 𝑤) 𝐿

(𝑘−𝑝)
(𝑞, 𝑤)] = 𝑝 + 1 + 𝑘 − 𝑝 = 𝑘 + 1. (23)

Note that

[

𝑑
𝑘
𝑇

𝑑𝑞
𝑘
]

𝑞=0

= [𝐸 (𝑞, 𝑤) 𝐿
(𝑘)
(𝑞, 𝑤)]

𝑞=0

+ [

𝑘

∑

𝑝=1

(

𝑘

𝑝
)𝐸
(𝑝)
(q, 𝑤)𝐿(𝑘−𝑝)(𝑞, 𝑤)]

𝑞=0

.

(24)

Hence, 𝑇𝑘(𝑤, ]) is a polynomial in 𝑤 whose lowest power in
𝑤 is at least 𝑘.

In particular, for 𝑘 = 1, 2, 3, the computation for 𝑇𝑘(𝑤, ])
gives

𝑇1 (𝑤, ]) = ]𝑤 +
𝑤
2

12

,

𝑇2 (𝑤, ]) = ]2𝑤2 +
]𝑤3

6

+

𝑤
4

144

,

𝑇3 (𝑤, ]) = ]3𝑤3 + (
]2

4

−

1

240

)𝑤
4

+

V𝑤5

48

+

𝑤
6

1728

.

(25)

Continuing in the derivation of the formula, we see that

𝑊𝛽,𝑟 (𝑛, 𝑛 − 𝑚)

= (

𝑛

𝑚
)(

𝛽

𝑞

)

𝑚

[(

𝑑
𝑚

𝑑𝑤
𝑚
𝑒
𝑤
)

𝑤=0

+(

𝑑
𝑚

𝑑𝑤
𝑚

𝑚

∑

𝑘=1

𝑇𝑘 (𝑤, ]) 𝑞
𝑘
𝑒
𝑤
)

𝑤=0

] .

(26)
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Note that the upper limit of the sum is replaced by𝑚 because,
for 𝑘 > 𝑚, the 𝑚th derivative of the sum evaluated at 𝑤 = 0

is 0. Hence

𝑊𝛽,𝑟 (𝑛, 𝑛 − 𝑚)

= (

𝑛

𝑚
)(

𝛽

𝑞

)

𝑚

[1 +

𝑚

∑

𝑘=1

𝑞
𝑘
(

𝑑
𝑚

𝑑𝑤
𝑚
𝑇𝑘(𝑤, ])𝑒

𝑤
)

𝑤=0

] .

(27)

To find the first few terms of the sum in (27), we
solve ((𝑑𝑚/𝑑𝑤𝑚)𝑇𝑘(𝑤, ])𝑒

𝑤
)𝑤=0 for 𝑘 = 1, 2, 3, . . . using the

formula

(

𝑑
𝑚

𝑑𝑤
𝑚
𝑇𝑘 (𝑤, ]) 𝑒

𝑤
)

𝑤=0

=

𝑚

∑

𝑗=0

(

𝑚

𝑗
)(

𝑑
𝑗

𝑑𝑤
j𝑇𝑘 (𝑤, ]))

𝑤=0

(

𝑑
𝑚−𝑗

𝑑𝑤
𝑚−𝑗

𝑒
𝑤
)

𝑤=0

=

𝑚

∑

𝑗=0

(𝑚)𝑗

𝑗!

(

𝑑
𝑗

𝑑𝑤
j𝑇𝑘(𝑤, ]))

𝑤=0

.

(28)

It follows from the preceding lemma that, for 𝑗 < 𝑘,

(

𝑑
𝑗

𝑑𝑤
𝑗
𝑇𝑘(𝑤, ]))

𝑤=0

= 0. (29)

Moreover, for 𝑗 ≥ 𝑘,

(

𝑑
𝑗

𝑑𝑤
𝑗
𝑇𝑘(𝑤, ]))

𝑤=0

= 𝑗! [𝑤
𝑗
] , (30)

where [𝑤𝑗] is the coefficient of 𝑤𝑗 in 𝑇𝑘(𝑤, ]). Thus,

(

𝑑
𝑚

𝑑𝑤
𝑚
𝑇𝑘(𝑤, ])𝑒

𝑤
)

𝑤=0

=

𝑚

∑

𝑗=𝑘

(𝑚)𝑗 [𝑤
𝑗
] . (31)

The first few terms of (27) are given as follows:

𝑊𝛽,𝑟 (𝑛, 𝑛 − 𝑚)

= (

𝑛

𝑚
)(

𝛽

𝑞

)

𝑚

{{𝑚] +
(𝑚)2

12

} 𝑞

+

1

2

{]2(𝑚)2 +
](𝑚)3
6

+

(𝑚)4

144

} 𝑞
2

+

1

6

{]3(𝑚)3 + [
]2

4

−

1

240

] (𝑚)4

+

](𝑚)5
48

+

(𝑚)6

1728

} 𝑞
3
+ ⋅ ⋅ ⋅ }.

(32)

Table 2

Exact value Approximate value
𝑊2,1(100, 90) 7.896 × 10

32
7.895 × 10

32

𝑊2,1(100, 94) 9.223 × 10
20

9.223 × 10
20

𝑊2,1(100, 95) 6.350 × 10
17

6.350 × 10
17

𝑊2,1(100, 96) 3.542 × 10
14

3.542 × 10
14

When ] = 0, (32) will reduce to the formula obtained in [12].
Substituting 𝑞 = 2/(𝑛 − 𝑚) in (32) will yield

𝑊𝛽,𝑟 (𝑛, 𝑛 − 𝑚)

= (

𝑛

𝑚
)(

𝛽 (𝑛 − 𝑚)

2

)

𝑚

× [1 +

1

𝑛 − 𝑚

{2𝑚] +
(𝑚)2

6

}

+

1

(𝑛 − 𝑚)
2
{2]2(𝑚)2 +

](𝑚)3
3

+

(𝑚)4

72

}

+

1

(𝑛 − 𝑚)
3
{

4

3

]3(𝑚)3 + [
]2

3

−

1

180

] (𝑚)4

+

](𝑚)5
36

+

(𝑚)6

1296

} + ⋅ ⋅ ⋅ ] .

(33)

The formula in (33) gives values correct up to even the 3rd
digit for𝑚 = 10, 6, 5, 4; 𝑟 = 1, 𝛽 = 2 as shown in Table 2.

3. The Range of Validity of the Formula

To be able to use (33) as an exact formula beyond 𝑚 = 3

requires finding

(

𝑑
𝑚

𝑑𝑤
𝑚
𝑇𝑘(𝑤, ])𝑒

𝑤
)

𝑤=0

, (34)

for 𝑘 = 4, 5, . . .. Such computation is quite tedious consider-
ing that 𝑇(𝑞, 𝑤, ]) is a composition of a number of functions.
Hence, we need to establish the range of 𝑚 for which (33)
behaves as an asymptotic approximation for large 𝑛.

Write (27) in the form

𝑊𝛽,𝑟 (𝑛,𝑚) = (
𝑛

𝑚
)(

𝛽

𝑞

)

𝑚

× [1 +

𝑠

∑

𝑘=1

𝑞
𝑘
(

𝑑
𝑚

𝑑𝑤
𝑚
𝑇𝑘(𝑤, ])𝑒

𝑤
)

𝑤=0

+ 𝐸𝑆] ,

(35)

where

𝐸𝑆 =

𝑚

∑

𝑘=𝑠+1

𝑞
𝑘
(

𝑑
𝑚

𝑑𝑤
𝑚
T𝑘(𝑤, ])𝑒

𝑤
)

𝑤=0

. (36)
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Let

𝐴
𝑘
𝑚 = (

𝑑
𝑚

𝑑𝑤
𝑚
𝑇𝑘(𝑤, ])𝑒

𝑤
)

𝑤=0

. (37)

Then, by Leibniz’s rule,

𝐴
𝑘
𝑚 =

𝑚

∑

𝑗=0

(

𝑚

𝑗
)𝑇
(𝑗)

𝑘 (
0, ]) , (38)

where 𝑇(𝑗)
𝑘
(0, ]) is the 𝑗th derivative of 𝑇𝑘(𝑤, ]) evaluated at

𝑤 = 0. Because 𝑇𝑘(𝑤, ]) is a polynomial in 𝑤 whose lowest
power in 𝑤 is at least 𝑘, we may write

𝐴
𝑘
𝑚 =

𝑚

∑

𝑗=𝑘

(

𝑚

𝑗
)𝑇
(𝑗)

𝑘 (
0, ]) . (39)

Consider the Maclaurin expansion of ℎ(𝑞, 𝑤) in (16) and
note that

lim
𝑘→∞

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑞
𝑘+1
𝑤
𝑘+1

(𝑘 + 1)!

⋅

𝑘!

𝑞
𝑘
𝑤
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= lim
𝑘→∞

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑞𝑤

𝑘 + 1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 0. (40)

Thus, by ratio test, the expansion of ℎ(𝑞, 𝑤) in (14) is abso-
lutely convergent. In particular, it is absolutely convergent if
|𝑞𝑤| < 1.

Similarly, the series expansion of 𝑓(𝑞, 𝑤) in (15) is
absolutely convergent if |𝑞𝑤| < 1. These imply that 𝑓(𝑞, 𝑤)
and ℎ(𝑞, 𝑤) are both analytic in the interior to the circle
|𝑤| = 1 and consequently, so is 𝑇(𝑞, 𝑤, ]) as defined in
(12). Moreover, by the maximum modulus principle 𝑇𝑘(𝑤, ])
takes its maximum on the circle and not inside the circle. By
Cauchy’s inequality, we have

󵄨
󵄨
󵄨
󵄨
󵄨
𝑇
(𝑗)
(0, ])

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑀𝑗!, (41)

where𝑀 is themaximum value of𝑇𝑘(𝑤, ]) on the circle |𝑤| =
1. Hence,

󵄨
󵄨
󵄨
󵄨
󵄨
𝐴
𝑘
𝑚

󵄨
󵄨
󵄨
󵄨
󵄨
≤

𝑚

∑

𝑗=𝑘

(

𝑚

𝑗
)𝑀𝑗! = 𝑀

𝑚

∑

𝑗=𝑘

𝑚!𝑗!

𝑗! (𝑚 − 𝑗)!

≤ 𝑀𝑚!

∞

∑

𝑛=0

1

𝑛!

≤ 𝑀𝑚!𝑒 ≤ 𝑀(𝑚)
2𝑘
𝑒,

(42)

where 𝑒 denotes the natural number 𝑒 = 2.71828 . . .. The last
inequality above is justified by 𝑚! = (𝑚)𝑚 ≤ (𝑚)

𝑚
≤ (𝑚)

2𝑘,
because𝑚 ≤ 2𝑘 and the degree of 𝑇𝑘(𝑤) is at most 2𝑘.

An estimate of 𝐸𝑆 is given by

𝑚

∑

𝑘=𝑠+1

[𝑀𝑒

2𝑚
2

𝑛 − 𝑚

]

𝑘

. (43)

Note that the right hand side of the last inequality is a
geometric series with common ratio

𝜌 =

2𝑚
2
𝑀𝑒

𝑛 − 𝑚

. (44)

Table 3

Exact value Approximate value Relative error
𝑊7,4(100, 15) 8.411 × 10

178
3.962 × 10

168
1.00000

𝑊7,4(100, 30) 5.604 × 10
174

3.648 × 10
170

0.99993

𝑊7,4(100, 60) 7.399 × 10
122

3.700 × 10
122

0.50000

𝑊7,4(100, 80) 1.275 × 10
70

1.269 × 10
70

0.00539

𝑊7,4(100, 90) 2.208 × 10
38

2.211 × 10
38

0.00118

𝑊7,4(100, 92) 2.613 × 10
31

2.615 × 10
31

0.00095

𝑊7,4(100, 93) 7.249 × 10
27

7.255 × 10
27

0.00083

𝑊7,4(100, 95) 3.358 × 10
20

3.360 × 10
20

0.00058

𝑊7,4(100, 97) 6.617 × 10
12

6.619 × 10
12

0.00035

𝑊7,4(100, 98) 597867963 598005375 0.00023

If𝑚2 = 𝑜(𝑛 − 𝑚), for sufficiently large 𝑛,

󵄨
󵄨
󵄨
󵄨
𝐸𝑠
󵄨
󵄨
󵄨
󵄨
≤ 2[2𝑀𝑒

𝑚
2

𝑛 − 𝑚

]

𝑠+1

, (45)

where 𝑀 a finite constant. Therefore, (33) behaves as an
asymptotic approximation for large values of 𝑛 provided that
lim𝑛→∞(𝑚

2
/(𝑛 − 𝑚)) = 0. In other words,𝑚 = 𝑜(√𝑛 − 𝑚) ≤

𝑜(√𝑛). Thus, we have the following theorem.

Theorem 2. The formula

𝑊𝛽,𝑟 (𝑛, 𝑛 − 𝑚)

= (

𝑛

𝑚
)(

𝛽 (𝑛 − 𝑚)

2

)

𝑚

× [1 +

1

𝑛 − 𝑚

{2𝑚] +
(𝑚)2

6

}

+

1

(𝑛 − 𝑚)
2
{2]2(𝑚)2 +

](𝑚)3
3

+

(𝑚)4

72

}

+

1

(𝑛 − 𝑚)
3
{

4

3

]3(𝑚)3 + [
]2

3

−

1

180

] (𝑚)4

+

](𝑚)5
36

+

(𝑚)6

1296

} + ⋅ ⋅ ⋅ ]

(46)

behaves as an asymptotic approximation as 𝑛 → ∞ for 𝑛 −𝑚
in the range 𝑛 − 𝑜(√𝑛) ≤ 𝑛 − 𝑚 ≤ 𝑛.

Table 3 displays the exact and approximate values of
𝑊𝛽,𝑟(𝑛, 𝑛 − 𝑚) and their corresponding relative errors when
𝛽 = 7, 𝑟 = 4, and 𝑛 = 100.

We observe that the asymptotic formula for𝑊𝛽,𝑟(𝑛,𝑚) in
(6) is valid when 𝑚 > (1/4)𝑛(𝑟/𝛽) such that 𝑛 − 𝑚 → ∞

as 𝑛 → ∞. On the other hand, the asymptotic formula
in Theorem 2 for 𝑊𝛽,𝑟(𝑛, 𝑛 − 𝑚) is valid when 𝑛 − 𝑜(√𝑛) ≤
𝑛 − 𝑚 ≤ 𝑛 as 𝑛 → ∞. These two asymptotic formulas are
complimentary to each other since, for large values of 𝑛, the
former will give a good approximation when𝑚 is not close to
𝑛, while the preceding will work efficiently when 𝑚 is close
to 𝑛. However, the two asymptotic formulas will fail when
𝑚 ≤ (1/4)𝑛(𝑟/𝛽). Hence, it is interesting to establish the
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asymptotic formula for 𝑊𝛽,𝑟(𝑛,𝑚) when 𝑚 ≤ (1/4)𝑛(𝑟/𝛽).
Meantime, the formula in [11] which is obtained using saddle
point method can be used for this range.

4. Asymptotic Formula with Real Parameters

Following Flajolet and Prodinger [13], we define

𝑊𝛽,𝑟 (𝑦, 𝑥) =
𝑦!

2𝜋𝑖𝛽
𝑥
𝑥!

∫

H

𝑒
𝑟𝑧
(𝑒
𝛽𝑧
− 1)

𝑥

𝑧
𝑦+1

𝑑𝑧, (47)

where 𝑥 and 𝑦 are positive real numbers, 𝑦! and 𝑥! are
generalized factorials defined via the gamma function as

𝑦! = Γ (𝑦 + 1) , 𝑥! = Γ (𝑥 + 1) , (48)

and H is the Hankel contour which starts at −∞, circles
the origin, and goes back to −∞ subject to |I𝑧| < 2𝜋. The
integral in (47) may be written in the form

𝑊𝛽,𝑟 (𝑦, 𝑥) = 𝛽
𝑦−𝑥 𝑦!

2𝜋𝑖𝑥!

∫

H

𝑒
]𝑢
(𝑒
𝑢
− 1)
𝑥 𝑑𝑢

𝑢
𝑦+1
. (49)

Consequently,

𝑊𝛽,𝑟 (𝑦, 𝑦 − 𝑥) = (
𝑦

𝑥
)

𝑥!𝛽
𝑥

2𝜋𝑖

∫

H

𝑒
]𝑢
(𝑒
𝑢
− 1)
𝑥

𝑢
𝑦+1

𝑑𝑢. (50)

Then the computations from (10) up to the lemma are valid.
Equation (50) becomes

𝑊𝛽,𝑟 (𝑦, 𝑦 − 𝑥)

= (

𝑦

𝑥
)

𝑥!𝛽
𝑥

2𝜋𝑖𝑞
𝑥
∫

H

𝑇 (𝑞, 𝑤, ])
𝑤
𝑥+1

𝑑𝑤

= (

𝑦

𝑥
)

𝑥!𝛽
𝑥

2𝜋𝑖𝑞
𝑥
∫

H

1 + ∑
∞
𝑘=1 𝑇𝑘 (𝑤, ])
𝑤
𝑥+1

𝑑𝑤,

(51)

where 𝑇𝑘(𝑤, ]) is a polynomial in 𝑤 in Lemma 1. Then

𝑊𝛽,𝑟 (𝑦, 𝑦 − 𝑥)

= 𝛽
𝑥
(

𝑦

𝑥
)(

𝑦 − 𝑥

2

)

𝑥

[

𝑥!

2𝜋𝑖

∫

H

𝑒
𝑤

𝑤
𝑥+1

+

𝑥!

2𝜋𝑖

∫

H

∞

∑

𝑘=1

𝑇𝑘 (𝑤, ]) 𝑞
𝑘
𝑒
𝑤

𝑤
𝑥+1

𝑑𝑤] .

(52)

To compute the first few terms of the integrals in (52), we
use the computed value of𝑇1,𝑇2, and𝑇3 obtained in Section 2
and apply the following classical identity due to Hankel:

1

2𝜋𝑖

∫

H

𝑒
𝑤
𝑤
−𝑥−1

𝑑𝑤 =

1

Γ (𝑥 + 1)

. (53)

Computation yields

1

2𝜋𝑖

∫

H

𝑇1 (𝑤, ]) 𝑞
1
𝑒
𝑤

𝑤
𝑥+1

𝑑𝑤

= 𝑞 [

]
(𝑥 − 1)!

+

1

12

+

1

(𝑥 − 2)!

] ,

1

2𝜋𝑖

∫

H

𝑇2 (𝑤, ]) 𝑞
2
𝑒
𝑤

𝑤
𝑥+1

𝑑𝑤

= 𝑞
2
[

]2

(𝑥 − 2)!

+

]
6

⋅

1

(𝑥 − 3)!

+

1

144

⋅

1

(𝑥 − 4)!

] ,

1

2𝜋𝑖

∫

H

𝑇3 (𝑤, ]) 𝑞
3
𝑒
𝑤

𝑤
𝑥+1

𝑑𝑤

= 𝑞
3
[

]3

(𝑥 − 3)!

+ (

]2

4

−

1

240

)

1

(𝑥 − 4)!

+

]
48

⋅

1

(𝑥 − 5)!

+

1

1728

⋅

1

(𝑥 − 6)!

] .

(54)

Substituting to (52) gives the following asymptotic formula:

𝑊𝛽,𝑟 (𝑦, 𝑦 − 𝑥)

= (

𝑦

𝑥
)(

𝛽 (𝑦 − 𝑥)

2

)

𝑥

× [1 +

1

𝑦 − 𝑥

{2𝑥] +
(𝑥)2

6

}

+

1

(𝑦 − 𝑥)
2
{2]2(𝑥)2 +

](𝑥)3
3

+

(𝑥)4

72

}

+

1

(𝑦 − 𝑥)
3
{

4

3

]3(𝑥)3 + [
]2

3

−

1

180

] (𝑥)4

+

](𝑥)5
36

+

(𝑥)6

1296

} + ⋅ ⋅ ⋅ ] ,

(55)

which is analogous to the asymptotic formula inTheorem 2.
For the range of validity of this formula, we observe that,

in (52), we can let

𝐸𝑠 =
𝑥!

2𝜋𝑖

∫

H

∞

∑

𝑘=𝑠+1

𝑇𝑘 (𝑤, ]) 𝑞
𝑘
𝑒
𝑤

𝑤
𝑥+1

𝑑𝑤. (56)

Since the series is convergent, we can interchange the order
of integration and summation. Thus,

𝐸𝑠 =
𝑥!

2𝜋𝑖

∞

∑

𝑘=𝑠+1

𝑞
𝑘
∫

H

𝑇𝑘 (𝑤, ]) 𝑒
𝑤

𝑤
𝑥+1

𝑑𝑤. (57)
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Note that

𝑥!

2𝜋𝑖

∫

H

𝑇𝑘 (𝑤, ]) 𝑞
𝑘
𝑒
𝑤

𝑤
𝑥+1

𝑑𝑤

=

𝑥!

2𝜋𝑖

∫

H

𝑞
𝑘
𝑒
𝑤
∑
2𝑘
𝑗=𝑘 𝑎𝑗𝑤

𝑗

𝑤
𝑥+1

𝑑𝑤

= 𝑥!𝑞
𝑘
2𝑘

∑

𝑗=𝑘

𝑎𝑗

1

2𝜋𝑖

∫

H

𝑤
−(𝑥+1−𝑗)

𝑒
𝑤
𝑑𝑤.

(58)

Using the classical identity of Hankel, we obtain

𝑥!

2𝜋𝑖

∫

H

𝑇𝑘 (𝑤, ]) 𝑞
𝑘
𝑒
𝑤

𝑤
𝑥+1

𝑑𝑤 = 𝑥!𝑞
𝑘
2𝑘

∑

𝑗=𝑘

𝑎𝑗

1

Γ (𝑥 + 1 − 𝑗)

= 𝑞
𝑘
2𝑘

∑

𝑗=𝑘

𝑎𝑗

Γ (𝑥 + 1)

Γ (𝑥 + 1 − 𝑗)

.

(59)

Since 𝑎𝑗 is finite for all 𝑗 = 𝑘, 𝑘 + 1, . . . , 2𝑘, there is a constant
𝑀 such that |𝑎𝑗| ≤ 𝑀. Thus, we have

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥!

2𝜋𝑖

∫

H

𝑇𝑘 (𝑤, ]) 𝑞
𝑘
𝑒
𝑤

𝑤
𝑥+1

𝑑𝑤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑀

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2𝑘

∑

𝑗=𝑘

𝑞
𝑘 Γ (𝑥 + 1)

Γ (𝑥 + 1 − 𝑗)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

. (60)

It is known that Γ(𝑥 + 1)/Γ(𝑥 + 1 − 𝑗) ∼ 𝑥𝑗. Hence,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥!

2𝜋𝑖

∫

H

𝑇𝑘 (𝑤, ]) 𝑞
𝑘
𝑒
𝑤

𝑤
𝑥+1

𝑑𝑤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑀

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑞
𝑘
2𝑘

∑

𝑗=𝑘

𝑥
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 𝑀

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑞
𝑘
𝑥
2𝑘
𝑘

∑

𝑗=1

1

𝑥
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑀

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑞
𝑘
𝑥
2𝑘 1

1 − 1/𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

.

(61)

Then,

󵄨
󵄨
󵄨
󵄨
𝐸𝑠
󵄨
󵄨
󵄨
󵄨
≤

∞

∑

𝑘=𝑠+1

𝑀

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑞
𝑘
𝑥
2𝑘 1

1 − 1/𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 2
𝑘
𝑀

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

1 − 1/𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∞

∑

𝑘=𝑠+1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(

𝑥
2

𝑦 − 𝑥

)

𝑘󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 2
𝑘
𝑀

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

1 − 1/𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(

𝑥
2

𝑦 − 𝑥

)

𝑠+1 ∞

∑

𝑘=0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(

𝑥
2

𝑦 − 𝑥

)

𝑘󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

.

(62)

The series

∞

∑

𝑘=0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(

𝑥
2

𝑦 − 𝑥

)

𝑘󵄨󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(63)

is bounded provided 𝑥2 = 𝑜(𝑦 − 𝑥). Moreover, the factor
1/(1 − 1/𝑥) is bounded for 𝑥 ̸= 1. Hence, the expansion for
𝑊𝛽,𝑟(𝑦, 𝑦 − 𝑥) behaves as an asymptotic formula when 𝑥 =
𝑜(√𝑦 − 𝑥) ≤ 𝑜(√𝑦), that is, when 𝑦 − 𝑜(√𝑦) ≤ 𝑦 − 𝑥 ≤ 𝑦.
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