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This paper investigates some generalized Gronwall-Bellman type impulsive integral inequalities containing integration on infinite
intervals. Some new results are obtained, which generalize some existing conclusions. Our result is also applied to study a boundary

value problem of differential equations with impulsive terms.

1. Introduction

It is well known that Gronwall-Bellman type integral inequal-
ities involving functions of one and more than one indepen-
dent variables play important roles in the study of existence,
uniqueness, boundedness, stability, invariant manifolds, and
other qualitative properties of solutions of the theory of
differential and integral equations. A lot of contributions to
its generalization have been archived by many researchers
(see [1-14]). Pachpatte [15] especially studied the following
inequality:

(o]

u (x) Sa(x)+J b(s)u(s)ds 1)

X

containing integration on infinite integral and used it in the
study of terminal value problems for Gronwall-Bellman type
differential equations. Then, Cheung and Ma [16] generalized
it into two independent variables with a nonlinear term:

u(x,y)<a(x,y)+c(xy) J J d(s,t)w (u(s,t))dsdt.
x Jy

)

Along the development of the theory of impulsive dif-

ferential systems, more and more attention is paid to gen-
eralizations of Gronwall-Bellman’s results for discontinuous

functions (that is, impulsive integral inequalities) and their
applications (see [17-25]). Among them, one of the important
things is that Samoilenko and Perestyuk [17] considered

u(x)5c+J-xf(s)u(s)ds+ Z Biu(x;=0) (3)

Xo<X;<X

about the nonnegative piecewise continuous function u(x)
where ¢, f3; are nonnegative constants, f(x) is a positive
function, and x; are the first kind discontinuity points of
the function u(x). Then Borysenko [18] investigated integral
inequalities with two independent variables:

Xy
u(x,y)Sa(x,y)+J J 7(s,t)u(s,t)dsdt

Xo “Yo

+ Z Biu(x; =0, y; - 0).
(%050)<(x;,y:) < (%, )

(4)

Here u(x, y) is an unknown nonnegative continuous function
with the exception of the points (x;, ;) where there is a finite
jump u(x; — 0,5, — 0)#u(x; + 0,y + 0) fori = 1,2,....
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In 2013, Zheng [25] considered the following delay integral
inequalities containing integration on infinite intervals:

u(x)<c+ J*oo f1 (6 s)u(r(s))ds

[T hw9ewEe)ds (5)
+ Z Biu (x; = 0),

u(x,y)<c+ J*oo wal (s,)u(o(s),t(t))dsdt

x Yy

+J J LD (o(s),7(t)dsdt  (6)

x Yy

+ Z Biu(x; = 0,5, 0)

X<X;<00,y<y;<00

with one general nonlinear term w(u). They assumed that
w € g where the class g consists of all nonnegative, non-
decreasing, and continuous functions w(u) on [0, c0) such
that w(0) = 0 and w(au) < w(a)w(u) for all « > 0 and
u > 0. Actually, when we study behaviors of solutions of
differential equations with impulsive terms, w may not satisfy
the following condition: w € . For example, w(u) = " does
not belong to the class g for any « > 1 and large u > 0. Thus,
it is very interesting to avoid such conditions. Our main aim
here, motivated by the work above, is to discuss the following
much more general integral inequality:

2 rco
u@<a@+ Y [ fots) @ (o 9)ds
k=1°%
(7)
+ Z Bu" (x;-0), m>0,

X<x;<00

u(xy) <a(xy)
+ kZ: LOO LOO fie (6, p5,t)

x wy (u 0k (5), 7 (1)) ds dt

B (x;=0,y,-0), m>0

t)

X<x,;<00,y<y;<00

(8)

with two nonlinear terms w, (1) and w, (1) where we do not
restrict w; and w, to the class . Moreover, our main results
are applied to estimate the bounds of solutions of differential
equations with impulsive terms.

2. Main Results

In what follows, R denotes the set of real numbers, R, =
[0, 00), and D,z(x, y) denotes the first-order partial deriva-
tive of z(x, y) with respect to x.
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Consider (7) and assume that

(H;) fi(x,s) (k = 1,2) is a continuous and nonnegative
function for x,s € R, and is bounded in x € R, for
each fixed s € R,;

(H,) w;(u) and w,(u) are continuous and nonnegative
functions on [0, co) and positive on (0, co) such that
w,(u)/w, (1) is nondecreasing;

(H;) u(x) is a nonnegative and continuous function
defined on R, with the first kind of discontinuities at
the points x; wherei = 1,2,...,nand 0 < x, < x; <
Xy < vor < Xy < Xy = 003

(H,) a(x) is a continuous and bounded function for x €
R, and a(co) # 0; f; is a nonnegative constant for any
positive integer i;

(Hs) 0,(x) and o,(x) are continuous and nonnegative
functions on R, such that 0;(x) > x and 0(x) < x;
forx € [x;_1,x;),i=1,2,...,n+1l,and k = 1,2.

Let Wj(u) = _[;(dz/wj(z)) foru > i and j = 1,2 where
7
i1 is a given positive constant. Clearly, W is strictly increasing

so its inverse Wj_1 is well defined, continuous, and increasing
in its corresponding domain.

Theorem 1. Suppose that (H,)-(Hs) hold and u(x) satisfies
(7) for a positive constant m. If one lets u;_,(x) = u(x) for
x € [x_,%), i = 1,2,...,n+ 1, then the estimate of u(x)
is recursively given by

Uy (x) < W; [Wz ° Wfl (Wl (ri—l(x))+J ij?l (x,'s) dS)

X

+J ifz(x,s)ds]
)
forx € [x;_1,x;) andi=1,2,...,n+ 1, where
. (x) = sup la(7)|,
X<T<00
fk(x,s) = sup fi(1,s), k=1,2,
X<T<00
i (x) =7, (x)
(10)

Xj

i 2 +1
+2) J e s) @ (u (0 (5))) ds

j=ik=1"%j

+iﬁj”;n(xj—0)) i=12,...,n,
=
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provided that

W, (rie; (%) +J ifl (x,5)ds < J dz

bl
7 w(2)

W, o VV{1 <W1 (ri (%) + J-Xi J?1 (x,5) ds) (11

+ J:ifz(x,s) ds < JOO dz

i, wZ (Z) ’

Proof. From the assumptions, we know that r,(x) and
fi(x,s) (k = 1,2) are well defined. Moreover, r,,(x) is non-

negative and nonincreasing in x and f;(x, s) is nonnegative
and nonincreasing in x and satisfies a(x) < r,(x), fi(x,s) <

fk(x, s).

Case 1.1f x € [x,,,00) (in fact, x,,,; = 00), from the definition
of 03, we have 0;.(x) € [x,,00) (k = 1,2). According to (7)
and (10) we get

2

u@sr @+ Y [ feda o @)ds 1)

k=1°%

Take any fixed T € [x,, 00), and we investigate the following
inequality:

2

u(x)<r, (T)+ Y ro fi (T, s) wy, (u(0y (5)))ds — (13)

k=1°%
for x € [T, 00). Let
2

2= Y [ ATaw@o)d 09

k=1°"%

and let z(co) = 0. Hence, u(x) < r,(T) + z(x). Clearly, z(x)
is a nonnegative, nonincreasing, and differentiable function
for x € [T, 00). The assumption a(co) # 0 yields that r,,(T) +
z(x) > 0. Thus

Z' (x)
w, (1, (T) +z (x))

_ _fl (T, %) w, (u (0 (x))) - J?z (T, x) w, (u (0, (x)))
w, (r, (1) + z (x))

> (=1 (T,x) w, (1, (T) + 2 (0} (x)))
~f (T, x) @, (r,, (T) + 2 (0, (x))))
x (w; (r, (T) +z (%))

. _H oo (1) +2 ()
- W, (Tn (T) +z (x))

A(Tx) @, (r, (T) +2(x))
a)l (rn (T) tz (x))

fo (T, x) w, (r, (T) + z (x))
w, (1, (T) +z (x))

> —f, (T, x) -
(15)

Integrating both sides of the above inequality from x to oo,
we obtain

Wi (’"n (T)) -W (Tn (M +z (x))
> —L fl(T,s)ds (16)

- J H(T,9) ¢ (r, (T) + 2 (s)) ds

for x € [T, 00), where ¢(x) = w,(x)/w, (x), so
W (1, (T) + z(x)) < W, (r, (T)) + I £, (T,s)ds

+ Jmfz (T, s) ¢ (r, (T) + z (s)) ds

17)
or, equivalently,
E(x) < W, (r,(T)) + J £, (T,s)ds
N i (18)
[ R@os (W Ee)ds 2z ),
where
§(x) =W, (1, (T) + 2 (x)). (19)

It is easy to check that &(x) < z,(x), z,(c0) = W, (r,(T)) and
z,(x) is differentiable, positive, and nonincreasing on [T, co).
Since ¢(W Yw)) is nondecreasing, from the assumption
(H,), we have

z (%)

(0 (Wl_l (Z1 (x)))
Ay hTe(WEW))
oWz () d(W (2, ()
- £ (T, x)

T e[t (W () + [ F (T ds)]

- £, (T, x).
(20)

Note that

Joo —Zi () ds
= (W (2 (9))

Joo w, (W (2, (9))) 2} (5) .
X w2 (W;l (Zl (S)))

=W, o W, (2, (00)) = W, o W, (2 (%))

(21)

=W, (r, (1)) - Wy o Wy (2, (x)).



Integrating both sides of (20) from x to co, we obtain

W, (7, (T)) = Wy o Wy (2, ()
_ J‘°° z1 (s)
= d(W (2 (S)))
. fi (T,s)

(o] - d
L ¢ (Wit (W, (r, (D) + [ 1 (T,7) d7))] )
[T Rgas
2 =W, oWy <W1 (r, (1)) + Joofl (T,s) ds)

H%mw»{ 7, (T, s) ds.

(22)
Thus,
W, o W (2, (x))
SWPWT(WAQG»+EVHIﬂﬁ> (23)
; LOO 7 (T,s) ds.
We have by (11)

u(x) <z(x)+r,(T)

W EE) < W (7, (%)

wy! <W1 (r, (1)) + JOO £, (T, s) ds>

<w;! [Wzo
+JOO]F2(T,S) ds].
’ (24)

Since the inequality above is true for any x € [T, 00), we
obtain

u(T)<w," [Wz oW, (W1 (r, () + LOO f, (T, s) ds>

+ j;ofz (T, s) ds] .
(25)

Replacing T by x and co by x,,,, yields

u(x) < W, [Wz oW <W1 (r, (%)) + jxm fi(x,9) dS)

+ Jxm fz (x,5) ds] .

X

(26)
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This means that (9) is true for x € [x,,, 00) if we replace u(x)
with u,,(x).

Case 2. If x € [x,_,,x,), (7) becomes

u(x) <r,(x)
. Z J " fe (9 @y (1, (03 (5))) ds
+ By (x, - 0)
S

k=1°"%

(27)
i (%8) g (u (0 (5))) ds

2 x

Srn,l(x)+ZJn

k=1°%

fi (x5 9) @y (u (04 (5))) ds,

where the definition of r,,_, (x) is given in (10), which is similar
to (12). Then, we obtain

u(x) <w,' [Wz ow;! <W1 (1 (%)) + J:n £, (x,5) ds)

+J nfz(x,s)ds] .
X

(28)
This implies that (9) is true for x € [x,,_;,x,) if we replace
u(x) by u,_; (x).

Case 3.1f (7) is true for x € [x;, x;,1), that is,

JXM f~1 (x,5) ds)

X

u; (x) < Wz_l [Wz o Wl_1 <W1 (r; () +

+ JXM ]?2 (x,8) ds] ,

(29)
then, for x € [x,_;, x;), (7) becomes
u(x) <r,(x)
" 2 xj+1
+ z Z J Si (x,8) wy (”j (0% (S))) ds
j=i k=1 "%j
+ ;ﬁjuT (x;-0) 30)

+ ZJ Ji (6.8) @y (u (0 (5))) ds

2

<1 (%) + Z J.xi

k=1°"%

i (%, 5) @y (u (0% (5))) ds,

where we use the fact that the estimate of u(x) is already
known for x € [x;,x},1), j = ii +1,...,n. By assumption
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(29), again (30) is the same as (27) if we replace r,_,(x) by
7;_1(x) and x,, by x;. Thus, by (28), we have

u(x) < W{l [Wz ° Wfl (W1 (r; (%)) + J:I fl (x,5) ds)

+ J:fz (x,5) ds] .
(31)

This completes the proof of Theorem1 by mathematical
induction. O

Remark 2. Zheng [25] investigated (5) which is the special
case of (7). His results are under the assumptions that a(x) =
¢, f1(x,5), f,(x,s) are decreasing in s for every fixed s and
w € p. In our result, these assumptions are avoided.

Consider the inequality

2 o)
pu@) <at+) [ filn 9w (uon()ds
k=1°%
(32)
+ Y By (u(x-0),

which looks much more complicated than (7).

Corollary 3. In addition to the assumptions (H;)-(Hs),
suppose that y(u) is positive on (0,00), ¢(u) is positive and
strictly increasing on (0, 00), and u(x) satisfies (32). If one lets
u;_1(x) = u(x) for x € [x;_1,x;),i = 1,2,...,n+ 1, then the
estimate of u(x) is recursively given by

w, (x)<g {Wz_l [w2 ow; !

x (W1 (r; (%)) + in £, (x,5) ds)

X

+ JXi fz (x,5) ds] ]» ,
) (33)

where Wj(u) = L;j(dz/wj((p_l(z))), 1,(x), and ﬁ(x,s) are

given in Theorem I and r;_, (x) is defined as follows:

LG 2 xj+1
i (x) =71, (x) + Z Z J fie (x,8) Wy (uj (0% (s))) ds

j=i k=1"%j

+Z/3j1//(uj (x;-0)), i=L2...n,
] (34)

provided that

Wy (1,2 (x)) + J ifl (x,5)ds < J dz

o, (01 (Z)’
W, e Wl_l <W1 (121 (20)) + J i fi(x,9) dS) (35)

+ J-:l j?z (x,8)ds < ro dz

u, (02 (Z) '

Proof. Let ¢(u(x)) = h(x). Since the function ¢ is strictly
increasing on [0, 00), its inverse <p_1 is well defined. And (32)
becomes

2 rco
) <a@ Y [ finaa (o™ (b0 o)) ds
k=1°%
(36)
+ Z By (‘/’71 (h(xi_o)))'

Let @ = w0 ' and ¥ = y o ¢ '; (36) becomes
2 roo
h(x)<a(x)+ ) J i (6, 9) @ (h (0 (5))) ds
k=1-%
(37)
+ ) By (h(x-0).

x<x;<00

It is easy to see that y(u) > 0, @, (u) and @,(u) are continu-
ous and nonnegative functions on [0, 00), and @, (u)/®, (1)
is nondecreasing on (0,00). Even though y(u) is much
more general, using the same way in Theorem 1, for x €
[x,_1,%;), i = 1,2,...,n+ 1, we can obtain the estimate of
u(x):

u;_q (x)

<g’ {Wz_l [Wz oWy (W1 (riy () + r Jir 69 ds)

[ Ao

(38)
This completes the proof of Corollary 3. O

If p(u) = " where A > 0 is a constant, we can study the
inequality

2 oo
ut (x) <a(x)+ > J fi (6, s) wp (u oy (5))) ds
k=17 (39)

+ Z Biw (u(x; - 0)).

Xx<x;<00
According to Corollary 3, we have the following result.

Corollary 4. In addition to the assumptions (H,)-(Hj),
suppose that y(u) is positive on (0, 00) and u(x) satisfies (39).



If one lets u;_,(x) = u(x) for x € [x;_;,%;), i=1,2,...
then the estimate of u(x) is recursively given by

n+1,

u_q (x) < {Wz_l [Wz ° W1_1<W1 (ri; (x)) + J:fl (x,s) ds>
+ J:C fz (x,5) ds] }IM,

where Wj(u) = L.: (dz/w(zlm)), 7,(x), 7,1 (%), andfk(x, s) are

given in Corollary 3.

(40)

Let
Q=U; j51
(41)
Oy = {(X’)’) PX SX<Xp Y sy < )’j}’
fori,j=1,2,...,n+ 1,0 <xy < x; <X, <+ < X, < Xppq =

00, and 0 < yy < y; < ¥, <o+ < Y, < Ypupy = 00.
Consider (8) and assume that

(C)) filx, y,s,t) (k = 1,2) is continuous and nonnegative
on Q x Q) and bounded in (x, y) € Q for each fixed
(s,t) € Q and satisfies f(x, y,s,t) = 0 (k = 1,2) if
(s,t) € Qyj, i # jforarbitraryi, j=1,2,...,n+ 1;

(C,) w (1) and w,(u) are continuous and nonnegative
functions on [0, c0) and are positive on (0, co0) such
that w, (1) /w, (1) is nondecreasing;

(C5) u(x, ) is nonnegative and continuous on () with the
exception of the points (x;, ¥;) where there is a finite
jump: u(x; -0, y;—0) #u(x; +0, y;,+0), i =1,2,...,n;

(Cy) a(x, y) is continuous and bounded for (x,y) € Q
and a(00, 00) # 0; f; is a nonnegative constant for any
positive integer i;

(Cs5) op(x) and 7.(y) (k = 1,2) are continuous and
nonnegative such that o,.(x) > x and 0;(x) < x; for
x € [x_1,%;), i =12,...,n+1,and 7 (y) > y and
T(y) <y foryely_,y) i=12,...,n+1L

Theorem 5. Suppose that (C,)-(Cs) hold and u(x, y) satisfies
(8) for a positive constant m. If one lets u;(x, y) = u(x, y) for
(x,y) € Q, i = 1,2,...,n, then the estimate of u(x, y) is
recursively given by

Uiy (x, )’)

<w;! [WZ ow;!

x0wm4u4»+fjfﬁwwmomm)

X

Xi (Vi _
+J J £ (x, y,5,t) dsdt] ,
y

X

(42)
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for(x,y) € Q;, i=1,2,...,n+ 1, where

ra(xy) = sup sup |a(&n)l,

x<€<oo y<n<oo

fk(x,y,s,t)= sup sup fi (&1,5.1),

x<&<oo y<H<oo
ri (x,9)
=1, (x,y)

320

j=i k=1 Vi

Vi1

fi (%, y,8,1) wy (u (s, t))dsdt

B (5 -0y~ 0), i=12m
j=i

(43)

provided that

Xi (Vi _ © Az
Wil o)+ [ A Geysdsars |
x Jy

@, w(2) '

Wy W | W, (1 (30 0) +

X

in Lyl £ (%, y,5,t)ds dt]

Xi (Vi o~ ©
+J J (%, y,s,t)dsdt < J dz
y

x 7, w;(2) '
(44)

Proof. Obviously, for any (x, y) € Q, r,(x, y) is positive and
nonincreasing with respect to x and y; fi(x, y,s,t) (k = 1,2)
is nonnegative and nonincreasing with respect to x and y
for each fixed s and t. They satisty a(x, y) < r,(x, y) and

filx, y,5,1) < ﬁ(x, 9,5, 1).

Case LIf (x,y) € Q100 = {6 9) 1 X, S x < x,005 ¥, <
¥y < Yni1)> we have from (8)

u(xy) <r, (%)

2 ro0 foo
+ Z J J i (%, y,8,t) @y (45)
k=1"% 7Y

x (u oy (s), 7 ())) ds dt.

Take any fixed X € [x,,00), ¥ € [y,,00), and for arbitrary
x € [X,00), y € [,00), we get

u(x,y) <r, (%)
+ZJ J fi (& 7,5, 1) wy (46)

x (u(op (s), 7 ())) ds dt.
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Let
z(x,y) =1, (% 7)

+ZJJ i@ 75 t)w (47)

x (u (0 (s), 7 (1)) ds dt

and let z(co, y) = r,(X, ¥). Hence, u(x, y) < z(x, y). Clearly,
z(x, y) is a nonnegative, nonincreasing, and differentiable
function for x € [X,00) and y € [¥, 00). Since a(co, c0) #0
and w, (z(x, y)) > 0, we have

Diz(xy) ), hEFxe (o 0.7 ®)dt
w (2 (x, 7)) w, (2 (x, 7))
[ F & 5x ) @ (u(o (), 7, (1)) dt
w (z(x, 7))
J & Fxt) o (z(0) (x),7 (1) dt
w (z(x, 7))
[ 72 (&5, 8) 0y (2 (0, (x), 7, (1))t
w (z(x))
L AEpe)e e
w, (2 (x, 7))
[ Fa (&5 xt)w (2 (x0)dt
w (2 (x, 7))
> —rofl (%, 7, x,t)dt
), B B

(48)

Integrating both sides of the above inequality from x to oo,
we obtain

Wi (z (00, ) =W, (2 (x. y))
z—L L fi (%, 7,s.t)dsdt (49)
Qoo w, (z (s, 1))
- L L £ (%, 7,s,t) o (26, t))ds dt.
Thus,

Wy (z(x.y)) < Wi (r, (% 7))

X 9,51)¢(z(s,t))dsdt
(50)

for ¥ < x < coand ¥ < y < 00, where ¢(u) = w,(u)/w, (u),
or equivalently

§(xy) =W, (1, (%.7))

+J J £ (%, 7,s,t)dsdt
x Jy

+ ro rofz (% 7,5,t) ¢ (W' (E(s,1))) dsdt
x Jy

2z (%), (51)
51

where

§(xy) =W, (2(x, ). (52)

It is easy to check that &(x,y) < z,(x,y), z;(c0,y) =
W, (r, (X, ¥)), and z,(x, y) is differentiable, positive, and
nonincreasing on [X,00) and [y, 00). Since ¢p(W, Yw)) is
nondecreasing, from assumption (C,), we have

Dz, (x, y)
¢ (Wi (2, (x,9)))

D hGEpxd
¢ (W' (21 (x.3)))
[ h & 5xt) ¢ (W E o)) dt
¢ (Wi (21 (x. 7))
§ INACSEDL
[ (W )+ [T R G s dsar)
S REER)(W (5 ) de
¢ (Wi (21 (x. 7))
INACSEOL
o[wit (Wi (& 9) + [ [ Fi (R 75 t) dsd) |

- Loo £ (%, 7, x, 1) dt.
(53)

Note that

ds

joo Dz, (s, y)

» ¢(W (2 (s.9)))
J'°° Dyz, (s, y) @, ( (zl (s, y)))ds
x w, (Wi (2, (s, 2)))

~ JMI(Zl(OOJ)) du

Wiz (xy) @) ()




=Wy e Wi (21 (00, 3)) = Wy o W[ (2 (%, %))
=W, e W (Wi (1, (5,9))) = Wy o Wy (21 (x, 7))

=W, (1, (%, 7)) = Wy o Wy (21 (x, 7).
(54)

Integrating both sides of (53) from x to co, we obtain

W, (1, (7)) =W e W (21 (x, 9))

_ JOO Dz, (s, y)
x oWt (21 (s %))

> _ro [AES A
R A G ACHES)) [NAESADEL dt)|

ds

ds

—JOO Joo £ (%, 7,s,t)dsdt

x Yy

=W Wl (Wi @) + [T s dsae]
+ W, (r, (%, 7)) - LOO LOO £, (%, 7,s,t) dsdt.
(55)

Thus,

W, e Wfl (z1 (%, 7))

<W, oW, [W1 (r, (x,y))+J J £ (% ¥,s,t)dsdt
x Jy

+ L L fo (%, 7,5,t) dsdt.
(56)

Hence,
u(xy) <z(xy) Wi (E(x ) < W' (2 (% 7))
<w,! [W2 ow; !
y <W1(rn(5c', )7))+LOO wal (%75 1) ds dt>

+L L fz(f,yis,t)dsdt]. .
57
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Since the above inequality is true for any x € [X,00), y €
[¥, 00), we obtain

u(®y) <w,! [W2 oW,

X

(Wit y>)+j°°j;°ﬁ<x, gst)ds)

+ L:x) j;o £ (% 7,51 dsdt] .
(58)

Replacing X, ¥, and co by x, y, and x,,,,, respectively, yields

u(xy)

<w,! [W2 ow; !

X <W1(rn(x, y)) + J:MJ'%H_}?I (x, y,s,t)ds dt)

y

Xn+1 yn+1 —_
+J J £ (x, y,5,t) dsdt] :
y

X

(59)
This means that (42) is true for (x, y) € Q,,,,,, and i = nif
we replace u(x, y) with u,(x, ).

n—lsx<xn’ yn—1£y<

Case 2.If (x, y) € Q,,, = {(x, y) : x
¥}, (8) becomes

u(xy) <r,(xy)

2 Xnt1 [ Vnr1
+ZJ J i (%, 3, 5.1) wy

k=1 "*n In
x (u, (0y (s), 7 (1)) ds dt

+ :Bnu;n (xn - O’yn - O)

2 xYl n
+ Z J Jy fi (%, v, 5,t) wy (60)

k=1°"% Y

x (u 0y (), 7 (1)) ds dt

< Tp-1 (x’ y)

2 Xy (Y
+ZJ J i (3, 3, 5.1) wy
k=1°% ¥

X (u(og (), 7 (1)) ds dt,

where the definition of r,,_; (x, y) is given in (43). Note that the
estimate of u,,(x, ) is known. Clearly, (60) is the same as (45)
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if we replace r,(x, y) and (0o, 00) by r,,_;(x, y) and (x,, y,,)-
Thus, by (59), we have

u(xy)

<w,! [Wz oW,
Xn(In -
x (Wit [ [ sy dsa
x Jy

xn y?'l —_~
+ J J f(x, 9,8, t)ds dt] .
x Jy

(61)

This implies that (42) is true for (x, y) € Q,,and i = n - 1if

we replace u(x, y) by u,_,(x, y).

Case 3. Assume that (42) is true for (x,y) € Q.
{(6,9) : x; < x < x4415 ¥; < ¥ < Y1) Then for (x, y) €
Q; ={(x,y) 1 x,, Sx<x; ¥, <y<y} (8 becomes

u(xy) <7, (xy)

1 i1 (Vi1
+ZZL J fi (%, v, 5,t) wy

j=i k=1 i

X (uj (0% (5), T (t))) dsdt

+ iﬁj“;'n (x;-0,5;-0)
=
SN

x (u(ok (), 7 (1)) dsdt
<7 ()

+zj

k=1°%

|| lerso
X (u(og (s), 7 (1)) ds dt,
(62)

where we use the fact that the estimate of u(x, y) is already
known for (x, y) € Q;, j = i,...,n. Again, (62) is the same
as (60) if we replace r,_;(x, y) and (x,,, ,) by r;_;(x, ) and
(x;, y;). Thus, by (61), we have

u(xy)

<w;! [W2 ow;!
Xi( Vi -
x (W + [ Fiesasa)
x Jy

Xi (Vi -
+J J £ (%, y,5,1t) dsdt] .
x Jy

(63)

This yields that (42) is true for (x, y) € (;; if we replace
u(x, y) by u;_,(x, y). By mathematical induction, we know
that (42) holds for (x, y) € €;; for any nonnegative integer
i. This completes the proof of Theorem 5. O

Remark 6. (1) If a(x, y) is nonincreasing in each variable
x,y € R, and we take f;(x,y,st) = b(x,y)c(s,t),
(% 9,81) = 0, 0r(x) = x, .(y) = y, and u(x, y) being
continuous on Ri, then (8) reduces to (2) and Theorem 1
becomes Theorem 2.2 in [16].

(2) Zheng [25] investigated (6) which is the special case
of (8). His results are under the assumptions that a(x, y) =
6 filx, y,5t) = fi(s,t), and w € . In our results, these
assumptions are avoided.

Consider the inequality

¢(u(xy) <alxy)

+ZJ J fi (%, y,8,1) wy o
x (u(0y (), 7 (1)) ds dt

+ Z Biw (u(x; = 0,y;,-0)),

X<x;<00,y<y;<00

which looks much more complicated than (8).

Corollary 7. In addition to the assumptions (C,)-(Cs), sup-
pose that y(u) is positive on (0, 00), ¢(u) is positive and strictly
increasing on (0, 00), and u(x, y) satisfies (64) for a positive
constant m. If one lets u;(x, y) = u(x, y) for (x, y) € Q;, then
the estimate of u(x, y) is recursively given by

ey (v y) <9 {Wil [Wz oW
(W0 ()

Xi (Vi -
+ J j fi(x, y,s,t)ds dt)
y

+ JXi in £y (x, ,5,t) dsdt” ,
o (65)

where W(u) = _[;] (dz/wj((p_l(z))), r.(%, ), and fi(x, y,s,1)
are given in Theorem 5; 1;_(x, y) is defined as follows:

ri (6 y) =1, (% 9)

+i2jx J}?ka X, ¥, 5, t) Wy

j=i k=1 "%j

X (uj (s, t)) dsdt

(66)
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provided that

Xi (Vi _ ©
Wy (1o (x,9)) + J J fi(x y,s,t)dsdt < J il
x Jy

ﬁ1 wl (Z)

W, o Wfl [W1 (r; (x,9) + J'xi jyi ]?1 (x, y,s,t)ds dt]

x Jy
Xi (Vi ®©  dz
+ X, 9,5t dsdtsJ. .
J ] Rbsrsn e

(67)
The proof is similar to Corollary 3.
Ifo(u) = u*, where A > 0 is a constant, we can study the

inequality
' (x,y) <a(xy)
2 oo oo
L e
k=1°% ¥

x @y (u 0k (s), 7 (1)) ds dt

Biw (u(x; =0, y;-0)).

(68)
)
X<x;<00,y< ¥;<00
According to Corollary 7, we have the following result.
Corollary 8. In addition to the assumptions (C,)-(Cs), sup-
pose that y(u) is positive on (0, 00) and u(x, y) satisfies (68)
for a positive constant m. If one lets u;(x, y) = u(x,y) for

(x,y) € Q;, then the estimate of u(x, y) is recursively given
by

(% y) < {Wz_l [Wz ° Wl_l
(W i (1)
+ J':t Jjﬁ (x, y,s,t)ds dt)

Xi (. 1/A
+ L Jj o (x, y,5,t)ds dt] } (6,9)

where Wj(u) = J;j(dz/w(zl/’l)), r,(%, ¥), 11 (x, ¥), and

fi(x, y,5,t) are given in Corollary 7.

3. Applications

Example 9. Consider the following impulsive differential
equation:

d
ﬁ =F(x,g), x#x;, (70)
Agly—y, = I; (%), g(00) =0+0, (71)

Journal of Applied Mathematics

whereg : R — R, F:R* - R [;: R — Randi = 1,
2,...,m,0<x)<x; <Xy <--- <X, <X, =00. Here, 0 is
a constant.

Assume that

(A) [F(x, 9)l < hy (x)e' + hz(x)ezlg| where h; and h, are
nonnegative, bounded, and continuous on R*;

(A) 1L(g)l < PBilgl™ where B; and m are nonnegative
constants.

Theorem 10. Suppose that (A,) and (A,) hold. If one lets
gio1(x) = g(x) for x € [x;1,x,), i = 1,2,...,n+ 1, then
the solution of (70) has an estimate for x € [x;_;, x;):

|9i—1 (x)|
1 (%) Xi 2 Xi
S_Eln e " — | hi(s)ds| —-2| hy(s)ds|,
(72)
where r,(x) = |0| and
i (x) =1, (x)
+ Z J i hy (s) €99 ds
j=i 7Xi
+ j B h, (s) e7991dss
; x; (73)

n
+ Zﬂj'ﬂj (xj - 0)'m, i=12,...,n
j=i

X; 2 Xi
(e—r,q(x) _ ZJ h, (s) d5> - 2J h, (s)ds > 0.

X

Proof. Integrating (70) from x to oo and using the initial
conditions (71), we get

(o)

g(x)=9—j F(s,g)ds— Y I(g(x,-0), (74)

x x<x;<00

which implies that

lg ()] <16
+ LOO hy (s) 9O gs 4+ LOO h, (s) 290N g (75)
+ Z Bilg (x; - 0)|m'
Let
ux) =lgx|, a)=16, oK =0x) =x
f1(x,8) =hy (s), fr(x,8) =hy (s), w, (u) = €",
w, (u) = ™.
(76)
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Thus, (75) is the same as (7). It is easy to obtain that for any
positive constants 7, and 7,

r() =101,  fiGes)=h (),  foGons)=hy(s),
W, () = j - j crdz= e o,
W) = —ln (6 - ),

S

Wz_l (u) = —% In (e_m2 - Zu) ,
n

ra@ =Y [

j=i 7%j

+zj'

j=i %

+ Y Bilg; (x-0)["
j=i

hy (s) €99 ds

h, (s) 21991 g

(77)
Therefore, for any nonnegative i and x € [x;_;, x;)
|gi-1 ()]
1 Xi 2 X
< - In [(e_ @) _ J h, (s) ds) - ZJ h, (s) ds] ,
(78)
provided that

X; 2 Xi
<e—r,-71(X) _9 J hy (s) ds> -2 J h,(s)ds>0. (79)
O

Example 11. Consider the following partial differential equa-
tion with an impulsive term:

2
T b (),
(., y) € Q. x#x;, yEY,
Av| xmsxy=y; = L(v), (80)
v(x,00) = ¢ (x),  v(coy)=¢,(y),

¢, (00) = ¢, (00) #0,
wherev: R”> - RH:R —» R [ : R — Ryandi =
1,2,...,n+1.

Assume that
(B,) H(x, y,v(x, )| < hy(x, )™ 1 hy(x, y)e?")
where hy, h, are nonnegative, bounded, and contin-
uous on Q, hy(x,y) = 0, hy(x,y) = 0 for (x,y) €
Qijs i?éj) iaj = 1,2,...,n+ 1;

1

(B) ILWI < BivI™

constants.

where f; and m are nonnegative

Theorem 12. Suppose that (B,) and (B,) hold. If one lets
vi(x, ¥) = v(x, y) for (x, y) € Q, then the solution of system
(80) has an estimate for (x, y) € Q;;:

Xi (i 2
j J by (s,8)ds dt)
x Jy

Xi (Vi
—2J J hz(s,t)dsdt],
x JYy

|vi (X, y)| < —% In |:(e‘ri1(x,y) _

(81)

where

r,(x,y) = sup sup |¢; (&) +¢, (1) — ¢y (00)] > 0,

x<é<ocoysn<oco

rio (6 y) =1, (%, y)

2

Vi1
+ Z J J h, (s, 1) e ds dt
j=i 0% i

)U+1
J hy (s,t) il gs dy

Vi

(82)

+ Zﬁj|"j (%= 0,35 - 0)|m’
j=i

Xi (Vi 2
<e_ri,l(x,y)_J J h (s,t)dsdt>
x Jy

Xi (Vi
—zj j hy (s,£) dsdt > 0.
y

X

Proof. The solution of (80) with an initial value is given by

v(x,y) = v(x,00) + v (00, y) — v (0o, 0)
+ J-OO J-OOH(S, t,v(s,t))dsdt

x Yy

Y L(v(x-0y-0)

X<x;<00,y<y;<00

= ¢, (x) + ¢, (y) = ¢, (00)

(83)

+ J-OO J-OOH(S, t,v(s,t))dsdt

x Jy

" Z I(v(x; - 0,9 -0)),

X<x;<00,y< ;<00
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which implies that
v (2 )] < [y () + 5 () = ¢y (00)]

+ J J hy (s,t) el gs gt

x 7y

00 oo (84)
+ J J h, (s,t) 0l gs gt
x Jy

t )

X<x,;<00,y<y;<00

Bilv (x; = 0, y; = 0)[ ™.
Similar to Theorem 10, we can obtain, for (x, y) € Q;,

P 2
v (x,9)| < -+ In [(a’fl("’y) —j ‘Jy'h (s.1) dsdt)
i )}’ = 2 x Jy 1\

o r" Jy" I (1) dsdt] .

y
(85)

O

Remark 13. From Examples 9 and 11, we know that w, (1) =
e". Clearly, w, (2u) = e < w,(2)w, (1) = e*e* does not hold
for large u > 0. Thus, w, (1) = e does not belong to class g in
[25]. Hence, the results in [25] can not be applied to inequality
(75).

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This research was supported by National Natural Science
Foundation of China (no. 11371314), Guangdong Natural
Science Foundation (no. $2013010015957), and the Project of
the Department of Education of Guangdong Province, China
(no. 2012KJCX0074).

References

[1] R.P. Agarwal, S. E Deng, and W. N. Zhang, “Generalization of a
retarded Gronwall-like inequality and its applications,” Applied
Mathematics and Computation, vol. 165, no. 3, pp. 599-612,
2005.

[2] W. S. Cheung, “Some new nonlinear inequalities and applica-
tions to boundary value problems,” Nonlinear Analysis, vol. 64,
no. 9, pp. 2112-2128, 2006.

[3] S. E Deng, “Nonlinear discrete inequalities with two variables
and their applications,” Applied Mathematics and Computation,
vol. 217, no. 5, pp. 2217-2225, 2010.

[4] S.E Dengand C. Prather, “Generalization of an impulsive non-
linear singular Gronwall-Bihari inequality with delay;” Journal
of Inequalities in Pure and Applied Mathematics, vol. 9, no. 2,
article 34, 11 pages, 2008.

Journal of Applied Mathematics

[5] E. W. Meng and W. N. Li, “On some new integral inequalities
and their applications,” Applied Mathematics and Computation,
vol. 148, no. 2, pp- 381-392, 2004.

[6] S. B. Pachpatte and B. G. Pachpatte, “Inequalities for terminal
value problems for differential equations,” Tamkang Journal of
Mathematics, vol. 33, no. 2, pp. 199-208, 2002.

[71 Y. Wu, X. P. Li, and S. E Deng, “Nonlinear delay discrete
inequalities and their applications to Volterra type difference
equations,” Advances in Difference Equations, vol. 2010, no. 1,
Article ID 795145, 14 pages, 2010.

[8] Y. Wu, “Nonlinear discrete inequalities of Bihari-type and
applications,” Acta Mathematicae Applicatae Sinica, vol. 29, no.
3, pp. 603-614, 2013.

[9] Y. Yan, “Nonlinear Gronwall-Bellman type integral inequalities
with maxima in two variable,” Journal of Applied Mathematics,
vol. 2013, Article ID 853476, 10 pages, 2013.

[10] K.L.Zheng, Y. Wu, and S. E Deng, “Nonlinear integral inequal-
ities in two independent variables and their applications,’
Journal of Inequalities and Applications, vol. 2007, Article ID
32949, 13 pages, 2007.

[11] K. L. Zheng, “On nonlinear sum-difference inequality with
two variables and application to BVP,” Studies in Mathematical
Sciences, vol. 9, no. 2, pp. 124-134, 2011.

[12] K. L. Zheng and S. M. Zhong, “Nonlinear sum-difference
inequalities with two variables,” International Journal of Applied
Mathematics and Computer Sciences, vol. 6, no. 1, pp. 140-147,
2010.

[13] W. S. Wang and C. X. Shen, “On a generalized retarded
integral inequality with two variables,” Journal of Inequalities
and Applications, vol. 2008, Article ID 518646, 9 pages, 2008.

[14] W. S. Wang, “A generalized retarded Gronwall-like inequality
in two variables and applications to BVP Applied Mathematics
and Computation, vol. 191, no. 1, pp. 144-154, 2007.

[15] B. G. Pachpatte, Inequalities for Differential and Integral Equa-
tions, vol. 197 of Mathematics in Science and Engineering,
Academic Press, New York, NY, USA, 1998.

[16] W. S. Cheung and Q. H. Ma, “On certain new Gronwall-
Ou-lang type integral inequalities in two variables and their
applications,” Journal of Inequalities and Applications, vol. 2005,
no. 4, Article ID 541438, 2005.

[17] A. M. Samoilenko and N. A. Perestyuk, Differential Equations
with Impulse Effect, Visha Shkola, Kyiv, Ukraine, 1987.

[18] S.D. Borysenko, “Integro-sum inequalities for functions of sev-
eral independent variables,” Differential Equations, vol. 25, no.
9, pp. 1634-1641, 1989.

[19] S. D. Borysenko, M. Ciarletta, and G. Iovane, “Integro-sum
inequalities and motion stability of systems with impulse per-
turbations,” Nonlinear Analysis, vol. 62, no. 3, pp. 417-428, 2005.

[20] S.Borysenko and G. Iovane, “About some new integral inequal-
ities of Wendroff type for discontinuous functions,” Nonlinear
Analysis, vol. 66, no. 10, pp. 2190-2203, 2007.

[21] S.D. Borysenko, G. Iovane, and P. Giordano, “Investigations of
the properties motion for essential nonlinear systems perturbed
by impulses on some hypersurfaces,” Nonlinear Analysis, vol. 62,
no. 2, pp. 345-363, 2005.

[22] S.D.Borysenko and S. Toscano, “Impulsive differential systems:
the problem of stability and practical stability, Nonlinear
Analysis, vol. 71, no. 12, pp. e1843-e1849, 2009.

[23] G.Iovane, “On Gronwall-Bellman-Bihari type integral inequal-
ities in several variables with retardation for discontinuous
functions,” Mathematical Inequalities and Applications, vol. 11,
no. 3, pp. 1331-4343, 2008.



Journal of Applied Mathematics

(24]

[25]

G. Angela and M. Anna, “On some generalizations Bellman-
Bihari result for integro-functional inequalities for discontinu-
ous functions and their applications,” Boundary Value Problems,
vol. 2009, no. 1, Article ID 808124, 2009.

B. Zheng, “Some generalized Gronwall-Bellman type nonlinear
delay integral inequalities for discontinuous functions,” Journal
of Inequalities and Applications, vol. 2013, article 297, 12 pages,
2013.

13



