
Research Article
Approximations for Equilibrium Problems and
Nonexpansive Semigroups

Huan-chun Wu and Cao-zong Cheng

Department of Mathematics, Beijing University of Technology, Beijing 100124, China

Correspondence should be addressed to Huan-chun Wu; wuhuanchun@emails.bjut.edu.cn

Received 29 November 2013; Accepted 4 February 2014; Published 16 March 2014

Academic Editor: Hassen Aydi

Copyright © 2014 H.-c. Wu and C.-z. Cheng. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We introduce a new iterative method for finding a common element of the set of solutions of an equilibrium problem and the set
of all common fixed points of a nonexpansive semigroup and prove the strong convergence theorem in Hilbert spaces. Our result
extends the recent result of Zegeye and Shahzad (2013). In the last part of the paper, by the way, we point out that there is a slight
flaw in the proof of the main result in Shehu’s paper (2012) and perfect the proof.

1. Introduction

Let𝐻 be a real Hilbert space, and let 𝐶 be a nonempty closed
convex subset of 𝐻. A mapping 𝑇 : 𝐶 → 𝐶 is called
nonexpansive if ‖𝑇𝑥 − 𝑇𝑦‖ ≤ ‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 ∈ 𝐶. We
denote the set of fixed points of 𝑇 by 𝐹(𝑇). It is known that
𝐹(𝑇) is closed and convex. A family S = {𝑇(𝑡) : 0 ≤ 𝑡 <

∞} of mappings from 𝐶 into itself is called a nonexpansive
semigroup on 𝐶 if it satisfies the following conditions:

(i) 𝑇(0)𝑥 = 𝑥 for all 𝑥 ∈ 𝐶;
(ii) 𝑇(𝑠 + 𝑡) = 𝑇(𝑠)𝑇(𝑡) for all 𝑠, 𝑡 ≥ 0;
(iii) ‖𝑇(𝑠)𝑥 − 𝑇(𝑠)𝑦‖ ≤ ‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 ∈ 𝐶 and 𝑠 ≥ 0;
(iv) for all 𝑥 ∈ 𝐶, 𝑠 󳨃→ 𝑇(𝑠)𝑥 is continuous.

We denote by 𝐹(S) the set of all common fixed points of S;
that is,𝐹(S) = ⋂

0≤𝑡<∞
𝐹(𝑇(𝑡)). It is clear that𝐹(S) is a closed

convex subset.
The equilibrium problem for 𝑓 : 𝐶 × 𝐶 → R is to

find 𝑥 ∈ 𝐶 such that 𝑓(𝑥, 𝑦) ≥ 0 for all 𝑦 ∈ 𝐶. The set of
such solutions is denoted by EP(𝑓). Numerous problems in
physics, optimization, and economics can be reduced to find
a solution of the equilibrium problem (for instance, see [1]).

For solving equilibrium problem, we assume that the
bifunction 𝑓 satisfies the following conditions:

(A1) 𝑓(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐶;

(A2) 𝑓 is monotone; that is, 𝑓(𝑥, 𝑦) + 𝑓(𝑦, 𝑥) ≤ 0 for any
𝑥, 𝑦 ∈ 𝐶;

(A3) for each 𝑥, 𝑦, 𝑧 ∈ 𝐶, lim sup
𝑡↓0
𝑓(𝑡𝑧 + (1 − 𝑡)𝑥, 𝑦) ≤

𝑓(𝑥, 𝑦);
(A4) 𝑓(𝑥, ⋅) is convex and lower semicontinuous for each

𝑥 ∈ 𝐶.

Several methods have been proposed to solve the equilib-
rium problem; see [1–7]. For finding common fixed points of
a nonexpansive semigroup, Nakajo and Takahashi [8] intro-
duced a convergent sequence for nonexpansive semigroup
S = {𝑇(𝑡) : 0 ≤ 𝑡 < ∞} as follows:

𝑥
0
= 𝑥 ∈ 𝐶,

𝑦
𝑛
= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
)
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑥
𝑛
𝑑𝑠,

𝐶
𝑛
= {𝑧 ∈ 𝐶 :

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩} ,

𝑄
𝑛
= {𝑧 ∈ 𝐶 : ⟨𝑥

𝑛
− 𝑧, 𝑥

0
− 𝑥
𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1

= 𝑃
𝐶
𝑛
⋂𝑄
𝑛

(𝑥
0
) .

(1)

Some authors have paidmore attention to find an element
𝑝 ∈ 𝐹(S)∩EP(𝑓). Buong and Duong [9] constructed the fol-
lowing iterative sequence and proved the weak convergence
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theorem for an equilibrium problem and a nonexpansive
semigroup in Hilbert spaces:

𝑥
0
∈ 𝐻,

𝑢
𝑘
∈ 𝐶, 𝑓 (𝑢

𝑘
, 𝑦) +

1

𝑟
𝑘

⟨𝑦 − 𝑢
𝑘
, 𝑢
𝑘
− 𝑥
𝑘
⟩ ≥ 0 ∀𝑦 ∈ 𝐶,

𝑥
𝑘+1

= 𝜇
𝑘
𝑥
𝑘
+ (1 − 𝜇

𝑘
)
1

𝑡
𝑘

∫

𝑡
𝑘

0

𝑇 (𝑠) 𝑢
𝑘
𝑑𝑠.

(2)

In 2012, Shehu [10] studied iterative methods for fixed
point problem, variational inequality, and generalized mixed
equilibrium problem and introduced a new algorithm which
does not involve the CQ algorithm and viscosity approxima-
tion method. However, we discover that there is a slight flaw
in the proof of Theorem 3.1 in [10].

Motivated by Nakajo and Takahashi [8], Buong and
Duong [9], and especially Shehu [10] andZegeye and Shahzad
[11], we present a new iterative method for finding a common
element of the set of solutions of an equilibrium problem
and the set of all common fixed points of a nonexpansive
semigroup and prove the strong convergence theorem in
Hilbert spaces. Our result extends the recent result of [11]. In
the last part of the paper, we perfect and simplify the proof of
Theorem 3.1 in [10].

2. Preliminaries

Throughout this paper, let𝐻be a realHilbert spacewith inner
product ⟨⋅, ⋅⟩ and norm ‖ ⋅ ‖, and let 𝐶 be a nonempty closed
convex subset of 𝐻. We write 𝑥

𝑛
→ 𝑥 to indicate that the

sequence {𝑥
𝑛
} converges strongly to 𝑥. Similarly, 𝑥

𝑛
⇀ 𝑥 will

symbolize weak convergence. It is well known that𝐻 satisfies
Opial’s condition; that is, for any sequence {𝑥

𝑛
} ⊂ 𝐻 with

𝑥
𝑛
⇀ 𝑥, we have

lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩 < lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑦 ̸= 𝑥. (3)

For any 𝑥 ∈ 𝐻, there exists a unique point 𝑃
𝐶
𝑥 ∈ 𝐶 such that

󵄩󵄩󵄩󵄩𝑥 − 𝑃𝐶𝑥
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑦 ∈ 𝐶. (4)

𝑃
𝐶
is called the metric projection of𝐻 onto 𝐶. We know that

𝑃
𝐶
is a nonexpansive mapping of𝐻 onto 𝐶 and 𝑃

𝐶
satisfies

⟨𝑥 − 𝑦, 𝑃
𝐶
𝑥 − 𝑃
𝐶
𝑦⟩ ≥

󵄩󵄩󵄩󵄩𝑃𝐶𝑥 − 𝑃𝐶𝑦
󵄩󵄩󵄩󵄩

2
, ∀𝑥, 𝑦 ∈ 𝐻. (5)

For 𝑥 ∈ 𝐻 and 𝑧 ∈ 𝐶, we have

𝑧 = 𝑃
𝐶
𝑥 ⇐⇒ ⟨𝑥 − 𝑧, 𝑦 − 𝑧⟩ ≤ 0, for every𝑦 ∈ 𝐶. (6)

The following lemmas will be used in the proof of our
results.

Lemma 1 (see [1]). Let 𝐶 be a nonempty closed convex subset
of𝐻, and let𝑓 be a bifunction from𝐶×𝐶 toR satisfying (A1)–
(A4). If 𝑟 > 0 and 𝑥 ∈ 𝐻, then there exists 𝑧 ∈ 𝐶 such that

𝑓 (𝑧, 𝑦) +
1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (7)

Lemma2 (see [2]). For 𝑟 > 0, define amapping 𝑇
𝑟
: 𝐻 → 2

𝐶

as follows:

𝑇
𝑟 (𝑥) = {𝑧 ∈ 𝐶 : 𝑓 (𝑧, 𝑦) +

1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} .

(8)

Then the following hold:

(i) 𝑇
𝑟
is single valued;

(ii) 𝑇
𝑟
is firmly nonexpansive; that is, for any 𝑥, 𝑦 ∈ 𝐻,

⟨𝑥 − 𝑦, 𝑇
𝑟
𝑥 − 𝑇
𝑟
𝑦⟩ ≥ ‖𝑇

𝑟
𝑥 − 𝑇
𝑟
𝑦‖
2;

(iii) 𝐹(𝑇
𝑟
) = 𝐸𝑃(𝑓);

(iv) 𝐸𝑃(𝑓) is closed and convex.

Lemma 3 (see [12]). Suppose that (A1)–(A4) hold. If 𝑥, 𝑦 ∈ 𝐻
and 𝑟
1
, 𝑟
2
> 0, then

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑟
2

𝑦 − 𝑇
𝑟
1

𝑥
󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩𝑦 − 𝑥

󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨𝑟2 − 𝑟1
󵄨󵄨󵄨󵄨

𝑟
2

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑟
2

𝑦 − 𝑦
󵄩󵄩󵄩󵄩󵄩
. (9)

Lemma 4 (see [13]). Let 𝐶 be a nonempty bounded closed
subset of 𝐻, and let {𝑇(𝑠) : 0 ≤ 𝑠 < ∞} be a nonexpansive
semigroup on 𝐶. Then, for every ℎ ≥ 0,

lim
𝑡→+∞

sup
𝑥∈𝐶

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
∫

𝑡

0

𝑇 (𝑠) 𝑥 𝑑𝑠 − 𝑇 (ℎ)
1

𝑡
∫

𝑡

0

𝑇 (𝑠) 𝑥 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 0. (10)

Lemma 5 (see [14]). Let {𝑥
𝑛
} and {𝑦

𝑛
} be bounded sequences

in a Banach space 𝑋, and let {𝛽
𝑛
} be a sequence in [0, 1]

with 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1. Suppose

that 𝑥
𝑛+1

= (1 − 𝛽
𝑛
)𝑥
𝑛
+ 𝛽
𝑛
𝑦
𝑛
for all integers 𝑛 ≥ 1

and lim sup
𝑛→∞

(‖𝑦
𝑛+1

− 𝑦
𝑛
‖ − ‖𝑥

𝑛+1
− 𝑥
𝑛
‖) ≤ 0. Then,

lim
𝑛→∞

‖𝑦
𝑛
− 𝑥
𝑛
‖ = 0.

Lemma 6 (see [15]). Let {𝑎
𝑛
} be a sequence of nonnegative real

numbers satisfying 𝑎
𝑛+1

≤ (1 − 𝛼
𝑛
)𝑎
𝑛
+ 𝛼
𝑛
𝛽
𝑛
, where

(i) {𝛼
𝑛
} ⊂ (0, 1), ∑∞

𝑛=1
𝛼
𝑛
= ∞;

(ii) lim sup
𝑛→∞

𝛽
𝑛
≤ 0.

Then, lim
𝑛→∞

𝑎
𝑛
= 0.

3. Strong Convergence Theorems

In this section, we introduce a new iterative method for
finding a common element of the set of solutions of an
equilibriumproblemand the set of all commonfixedpoints of
a nonexpansive semigroup and prove the strong convergence
theorem in Hilbert spaces.

Theorem 7. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space 𝐻, and let 𝑓 be a bifunction from 𝐶 × 𝐶 to
R satisfying (A1)–(A4). Suppose that S = {𝑇(𝑡) : 0 ≤ 𝑡 < ∞}
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is a nonexpansive semigroup on 𝐶 such that 𝐹(S) ∩𝐸𝑃(𝑓) ̸= 0.
For 𝑢 ∈ 𝐻, let {𝑥

𝑛
}, {𝑦
𝑛
}, and {𝑧

𝑛
} be generated by

𝑥
1
∈ 𝐶 chosen arbitrarily,

𝑦
𝑛
= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) 𝑥
𝑛
,

𝑧
𝑛
∈ 𝐶, such that𝑓 (𝑧

𝑛
, 𝑦) +

1

𝑟
𝑛

⟨𝑦 − 𝑧
𝑛
, 𝑧
𝑛
− 𝑦
𝑛
⟩ ≥ 0

∀𝑦 ∈ 𝐶,

𝑥
𝑛+1

= (1 − 𝛽
𝑛
) 𝑥
𝑛
+ 𝛽
𝑛

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑧𝑛𝑑𝑠,

(11)

where the real sequences {𝛼
𝑛
}, {𝛽
𝑛
} in (0, 1) and {𝑟

𝑛
} ⊂ (0,∞)

satisfy the following conditions:

(1) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=1
𝛼
𝑛
= ∞;

(2) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1;

(3) 0 < 𝑐 ≤ 𝑟
𝑛
< ∞, lim

𝑛→∞
|𝑟
𝑛+1

− 𝑟
𝑛
| = 0;

(4) {𝑡
𝑛
} ⊂ (0,∞), lim

𝑛→∞
𝑡
𝑛
= ∞ and lim

𝑛→∞
(|𝑡
𝑛+1

−

𝑡
𝑛
|/𝑡
𝑛+1
) = 0.

Then, the sequence {𝑥
𝑛
} converges strongly to 𝑃

𝐹(S)∩𝐸𝑃(𝑓)𝑢.

Proof. Note that the set 𝐹(S) ∩ EP(𝑓) is closed and convex
since 𝐹(S) and EP(𝑓) are closed and convex. For simplicity,
we writeΩ := 𝐹(S) ∩ EP(𝑓).

From Lemmas 1 and 2, we have 𝑧
𝑛
= 𝑇
𝑟
𝑛

𝑦
𝑛
, and, for any

𝑝 ∈ Ω,

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑟
𝑛

𝑦
𝑛
− 𝑇
𝑟
𝑛

𝑝
󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩 . (12)

Observe that
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ≤ 𝛼𝑛
󵄩󵄩󵄩󵄩𝑢 − 𝑝

󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 . (13)

It follows that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(1 − 𝛽
𝑛
) 𝑥
𝑛
+ 𝛽
𝑛

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑧
𝑛
𝑑𝑠 − 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ 𝛽
𝑛

1

𝑡
𝑛

∫

𝑡
𝑛

0

󵄩󵄩󵄩󵄩𝑇 (𝑠) 𝑧𝑛 − 𝑇 (𝑠) 𝑝
󵄩󵄩󵄩󵄩 𝑑𝑠

≤ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛽𝑛
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ 𝛽
𝑛
[𝛼
𝑛

󵄩󵄩󵄩󵄩𝑢 − 𝑝
󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩]

≤ (1 − 𝛼
𝑛
𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛼𝑛𝛽𝑛
󵄩󵄩󵄩󵄩𝑢 − 𝑝

󵄩󵄩󵄩󵄩

≤ max {󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩𝑢 − 𝑝

󵄩󵄩󵄩󵄩} .

(14)

From a simple inductive process, one has
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩 ≤ max {󵄩󵄩󵄩󵄩𝑥1 − 𝑝
󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩𝑢 − 𝑝

󵄩󵄩󵄩󵄩} , (15)

which yields that {𝑥
𝑛
} is bounded. So are {𝑦

𝑛
} and {𝑧

𝑛
}.

Set 𝜎
𝑛
= (1/𝑡

𝑛
) ∫
𝑡
𝑛

0
𝑇(𝑠)𝑧
𝑛
𝑑𝑠. For any 𝑝 ∈ Ω, we have

󵄩󵄩󵄩󵄩𝜎𝑛+1 − 𝜎𝑛
󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛+1

∫

𝑡
𝑛+1

0

𝑇 (𝑠) 𝑧
𝑛+1
𝑑𝑠 −

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑧
𝑛
𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛+1

∫

𝑡
𝑛+1

0

𝑇 (𝑠) 𝑧
𝑛+1
𝑑𝑠 −

1

𝑡
𝑛+1

∫

𝑡
𝑛+1

0

𝑇 (𝑠) 𝑧
𝑛
𝑑𝑠

+
1

𝑡
𝑛+1

∫

𝑡
𝑛+1

0

𝑇 (𝑠) 𝑧
𝑛
𝑑𝑠 −

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑧
𝑛
𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛+1

∫

𝑡
𝑛+1

0

(𝑇 (𝑠) 𝑧
𝑛+1

− 𝑇 (𝑠) 𝑧
𝑛
) 𝑑𝑠

+(
1

𝑡
𝑛+1

−
1

𝑡
𝑛

)∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑧𝑛𝑑𝑠 +
1

𝑡
𝑛+1

∫

𝑡
𝑛+1

𝑡
𝑛

𝑇 (𝑠) 𝑧𝑛𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛+1

∫

𝑡
𝑛+1

0

(𝑇 (𝑠) 𝑧
𝑛+1

− 𝑇 (𝑠) 𝑧
𝑛
) 𝑑𝑠

+ (
1

𝑡
𝑛+1

−
1

𝑡
𝑛

)∫

𝑡
𝑛

0

(𝑇 (𝑠) 𝑧
𝑛
− 𝑇 (𝑠) 𝑝) 𝑑𝑠

+(
1

𝑡
𝑛+1

−
1

𝑡
𝑛

)∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑝 𝑑𝑠 +
1

𝑡
𝑛+1

∫

𝑡
𝑛+1

𝑡
𝑛

𝑇 (𝑠) 𝑧𝑛𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛+1

∫

𝑡
𝑛+1

0

(𝑇 (𝑠) 𝑧
𝑛+1

− 𝑇 (𝑠) 𝑧
𝑛
) 𝑑𝑠

+ (
1

𝑡
𝑛+1

−
1

𝑡
𝑛

)∫

𝑡
𝑛

0

(𝑇 (𝑠) 𝑧
𝑛
− 𝑇 (𝑠) 𝑝) 𝑑𝑠

+
1

𝑡
𝑛+1

∫

𝑡
𝑛+1

𝑡
𝑛

(𝑇 (𝑠) 𝑧𝑛 − 𝑇 (𝑠) 𝑝) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧𝑛

󵄩󵄩󵄩󵄩 +
2
󵄨󵄨󵄨󵄨𝑡𝑛+1 − 𝑡𝑛

󵄨󵄨󵄨󵄨

𝑡
𝑛+1

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(16)

It follows from Lemma 3 that

󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧𝑛
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦𝑛
󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨𝑟𝑛+1 − 𝑟𝑛
󵄨󵄨󵄨󵄨

𝑟
𝑛+1

󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑦𝑛+1
󵄩󵄩󵄩󵄩 .

(17)

Hence,

󵄩󵄩󵄩󵄩𝜎𝑛+1 − 𝜎𝑛
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦𝑛

󵄩󵄩󵄩󵄩 +

󵄨󵄨󵄨󵄨𝑟𝑛+1 − 𝑟𝑛
󵄨󵄨󵄨󵄨

𝑟
𝑛+1

󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑦𝑛+1
󵄩󵄩󵄩󵄩

+
2
󵄨󵄨󵄨󵄨𝑡𝑛+1 − 𝑡𝑛

󵄨󵄨󵄨󵄨

𝑡
𝑛+1

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝛼𝑛+1𝑢 + (1 − 𝛼𝑛+1) 𝑥𝑛+1 − 𝛼𝑛𝑢 − (1 − 𝛼𝑛) 𝑥𝑛

󵄩󵄩󵄩󵄩
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+

󵄨󵄨󵄨󵄨𝑟𝑛+1 − 𝑟𝑛
󵄨󵄨󵄨󵄨

𝑟
𝑛+1

󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑦𝑛+1
󵄩󵄩󵄩󵄩 +

2
󵄨󵄨󵄨󵄨𝑡𝑛+1 − 𝑡𝑛

󵄨󵄨󵄨󵄨

𝑡
𝑛+1

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩 + 𝛼𝑛+1 (‖𝑢‖ +
󵄩󵄩󵄩󵄩𝑥𝑛+1

󵄩󵄩󵄩󵄩) + 𝛼𝑛 (‖𝑢‖ +
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩)

+

󵄨󵄨󵄨󵄨𝑟𝑛+1 − 𝑟𝑛
󵄨󵄨󵄨󵄨

𝑐

󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑦𝑛+1
󵄩󵄩󵄩󵄩 +

2
󵄨󵄨󵄨󵄨𝑡𝑛+1 − 𝑡𝑛

󵄨󵄨󵄨󵄨

𝑡
𝑛+1

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(18)

This implies that

lim sup
𝑛→∞

(
󵄩󵄩󵄩󵄩𝜎𝑛+1 − 𝜎𝑛

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩) ≤ 0. (19)

It follows from Lemma 5 that lim
𝑛→∞

‖𝜎
𝑛
− 𝑥
𝑛
‖ = 0. Thus,

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = lim
𝑛→∞

𝛽
𝑛

󵄩󵄩󵄩󵄩𝜎𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (20)

For any 𝑝 ∈ Ω, we have
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
=
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑟
𝑛

𝑦
𝑛
− 𝑇
𝑟
𝑛

𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨𝑦
𝑛
− 𝑝, 𝑧

𝑛
− 𝑝⟩

=
1

2
[
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩

2
] .

(21)

Thus
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
≤
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩

2
. (22)

From the convexity of ‖ ⋅ ‖2, it follows that
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(1 − 𝛽
𝑛
) (𝑥
𝑛
− 𝑝) + 𝛽

𝑛
(
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑧𝑛𝑑𝑠 − 𝑝)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛

∫

𝑡
𝑛

0

(𝑇 (𝑠) 𝑧𝑛 − 𝑇 (𝑠) 𝑝) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛽
𝑛
[
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩

2
]

≤ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛽
𝑛
[
󵄩󵄩󵄩󵄩𝛼𝑛𝑢 + (1 − 𝛼𝑛) 𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩

2
]

≤ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛽
𝑛
[(1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+𝛼
𝑛

󵄩󵄩󵄩󵄩𝑢 − 𝑝
󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩

2
] .

(23)

Hence

𝛽
𝑛

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩

2
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝛼
𝑛
𝛽
𝑛

󵄩󵄩󵄩󵄩𝑢 − 𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩)

+ 𝛼
𝑛
𝛽
𝑛

󵄩󵄩󵄩󵄩𝑢 − 𝑝
󵄩󵄩󵄩󵄩

2
.

(24)

Since lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0 and lim

𝑛→∞
𝛼
𝑛
= 0, one has

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩 = 0. (25)

Observe that
lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = lim
𝑛→∞

𝛼
𝑛

󵄩󵄩󵄩󵄩𝑢 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (26)

As ‖𝑧
𝑛
− 𝑥
𝑛
‖ ≤ ‖𝑧

𝑛
− 𝑦
𝑛
‖ + ‖𝑦

𝑛
− 𝑥
𝑛
‖, the following equality

holds:
lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (27)

Now we show that
lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑇 (𝑠) 𝑧𝑛 − 𝑧𝑛
󵄩󵄩󵄩󵄩 = 0, ∀0 ≤ 𝑠 < ∞. (28)

In fact, we have
󵄩󵄩󵄩󵄩𝑇 (𝑠) 𝑧𝑛 − 𝑧𝑛

󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑇 (𝑠) 𝑧𝑛 − 𝑇 (𝑠)
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑧𝑛𝑑𝑠

+ 𝑇 (𝑠)
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑧𝑛𝑑𝑠 −
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑧𝑛𝑑𝑠

+
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑧
𝑛
𝑑𝑠 − 𝑧

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑇 (𝑠) 𝑧
𝑛
− 𝑇 (𝑠)

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑧
𝑛
𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑇 (𝑠)
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑧𝑛𝑑𝑠 −
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑧𝑛𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑧
𝑛
𝑑𝑠 − 𝑧

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑧
𝑛
𝑑𝑠 − 𝑧

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑇 (𝑠)
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑧𝑛𝑑𝑠 −
1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑧𝑛𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

.

(29)

Notice that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑧
𝑛
𝑑𝑠 − 𝑧

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑧
𝑛
𝑑𝑠 − 𝑥

𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧𝑛

󵄩󵄩󵄩󵄩

=
1

𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧𝑛
󵄩󵄩󵄩󵄩 󳨀→ 0, as 𝑛 󳨀→ ∞.

(30)

For any 𝑝 ∈ Ω, let 𝐺 = {𝑥 ∈ 𝐶 : ‖𝑥 − 𝑝‖ ≤ max{‖𝑥
1
− 𝑝‖, ‖𝑢 −

𝑝‖}}. It is easy to see that𝐺 is a bounded closed convex subset
and 𝑇(𝑠)𝐺 is a subset of 𝐺. Since

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑟
𝑛

𝑦
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝑢 − 𝑝

󵄩󵄩󵄩󵄩

≤ max {󵄩󵄩󵄩󵄩𝑥1 − 𝑝
󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩𝑢 − 𝑝

󵄩󵄩󵄩󵄩} ,

(31)
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the sequence {𝑧
𝑛
} is contained in 𝐺. It follows from Lemma 4

that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑧
𝑛
𝑑𝑠 − 𝑇 (𝑠)

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑧
𝑛
𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 0. (32)

From (29), (30), and (32), the expression (28) is obtained.
Next we prove that

lim sup
𝑛→∞

⟨𝑢 − 𝑥, 𝑥
𝑛
− 𝑥⟩ ≤ 0, (33)

where 𝑥 = 𝑃
Ω
𝑢. In order to show this inequality, we can

choose a subsequence {𝑥
𝑛
𝑗

} of {𝑥
𝑛
} such that

lim sup
𝑛→∞

⟨𝑢 − 𝑥, 𝑥
𝑛
− 𝑥⟩ = lim

𝑗→∞

⟨𝑢 − 𝑥, 𝑥
𝑛
𝑗

− 𝑥⟩ . (34)

Due to the boundedness of {𝑥
𝑛
𝑗

}, there exists a subsequence
{𝑥
𝑛
𝑗
𝑖

} of {𝑥
𝑛
𝑗

} such that 𝑥
𝑛
𝑗
𝑖

⇀ 𝜔. Without loss of generality,
we assume that 𝑥

𝑛
𝑗

⇀ 𝜔. From (27), we see that 𝑧
𝑛
𝑗

⇀ 𝜔.
Since {𝑧

𝑛
𝑗

} ⊂ 𝐶 and 𝐶 is closed and convex, we get 𝜔 ∈ 𝐶.
We first show that 𝜔 ∈ EP(𝑓). By 𝑧

𝑛
= 𝑇
𝑟
𝑛

𝑦
𝑛
, we have

𝑓 (𝑧
𝑛
, 𝑦) +

1

𝑟
𝑛

⟨𝑦 − 𝑧
𝑛
, 𝑧
𝑛
− 𝑦
𝑛
⟩ ≥ 0, ∀𝑦 ∈ 𝐶. (35)

It follows from the monotonicity of 𝑓 that

1

𝑟
𝑛

⟨𝑦 − 𝑧
𝑛
, 𝑧
𝑛
− 𝑦
𝑛
⟩ ≥ 𝑓 (𝑦, 𝑧

𝑛
) , ∀𝑦 ∈ 𝐶. (36)

Replacing 𝑛 by 𝑛
𝑗
, we obtain

⟨𝑦 − 𝑧
𝑛
𝑗

,

𝑧
𝑛
𝑗

− 𝑦
𝑛
𝑗

𝑟
𝑛
𝑗

⟩ ≥ 𝑓(𝑦, 𝑧
𝑛
𝑗

) , ∀𝑦 ∈ 𝐶. (37)

From (25), (27), and (A4), we have

𝑓 (𝑦, 𝜔) ≤ 0, ∀𝑦 ∈ 𝐶. (38)

For 0 < 𝑡 ≤ 1, 𝑦 ∈ 𝐶, set 𝑦
𝑡
= 𝑡𝑦 + (1 − 𝑡)𝜔. We have 𝑦

𝑡
∈ 𝐶

and 𝑓(𝑦
𝑡
, 𝜔) ≤ 0. Hence

0 = 𝑓 (𝑦
𝑡
, 𝑦
𝑡
) ≤ 𝑡𝑓 (𝑦

𝑡
, 𝑦) + (1 − 𝑡) 𝑓 (𝑦

𝑡
, 𝜔) ≤ 𝑡𝑓 (𝑦

𝑡
, 𝑦) .

(39)

Dividing by 𝑡, we see that

𝑓 (𝑦
𝑡
, 𝑦) ≥ 0. (40)

Letting 𝑡 ↓ 0 and from (A3), we get

𝑓 (𝜔, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐶. (41)

That is, 𝜔 ∈ EP(𝑓).
Second, we prove that 𝜔 ∈ 𝐹(S). Note that the equality

(27) implies that 𝑧
𝑛
𝑗

⇀ 𝜔. Suppose for contradiction that 𝜔 ∉
𝐹(S); that is,

there exists 𝑠
0
> 0 such that 𝑇 (𝑠

0
) 𝜔 ̸= 𝜔. (42)

Then from Opial’s condition and (28), we obtain

lim inf
𝑗→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛
𝑗

− 𝑇 (𝑠
0
) 𝜔
󵄩󵄩󵄩󵄩󵄩󵄩

= lim inf
𝑗→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛
𝑗

− 𝑇 (𝑠
0
) 𝑧
𝑛
𝑗

+ 𝑇 (𝑠
0
) 𝑧
𝑛
𝑗

− 𝑇 (𝑠
0
) 𝜔
󵄩󵄩󵄩󵄩󵄩󵄩

= lim inf
𝑗→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑇 (𝑠
0
) 𝑧
𝑛
𝑗

− 𝑇 (𝑠
0
) 𝜔
󵄩󵄩󵄩󵄩󵄩󵄩

≤ lim inf
𝑗→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛
𝑗

− 𝜔
󵄩󵄩󵄩󵄩󵄩󵄩
,

(43)

which is a contradiction.Therefore, 𝜔 ∈ 𝐹(S). Consequently,
one gets 𝜔 ∈ Ω.

From (34) and the property of metric projection, we have

lim sup
𝑛→∞

⟨𝑢 − 𝑥, 𝑥
𝑛
− 𝑥⟩ = lim

𝑗→∞

⟨𝑢 − 𝑥, 𝑥
𝑛
𝑗

− 𝑥⟩

= ⟨𝑢 − 𝑥, 𝜔 − 𝑥⟩ ≤ 0.

(44)

The inequality (33) arrives.
Finally we show that 𝑥

𝑛
→ 𝑥. From (11), we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(1 − 𝛽
𝑛
) 𝑥
𝑛
+ 𝛽
𝑛

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑧𝑛𝑑𝑠 − 𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

󵄩󵄩󵄩󵄩

2
+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

󵄩󵄩󵄩󵄩

2
+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
𝛽
𝑛
[2 (1 − 𝛼

𝑛
) ⟨𝑢 − 𝑥, 𝑥

𝑛
− 𝑥⟩ + 𝛼

𝑛‖𝑢 − 𝑥‖
2
] .

(45)

It follows from (33) and Lemma 6 that {𝑥
𝑛
} converges strongly

to 𝑥.

Remark 8. Let𝐻 = R and 𝐶 = [0, 1]. Setting 𝑓(𝑥, 𝑦) = 𝑦2 −
𝑥
2, we see that 𝑓(𝑥, 𝑦) satisfies (A1)–(A4). For 0 ≤ 𝑡 < +∞,

let

𝑇 (𝑡) 𝑥 =
𝑥

1 + 𝑡𝑥
, ∀𝑥 ∈ [0, 1] . (46)

Thus, it follows thatS = {𝑇(𝑡) : 0 ≤ 𝑡 < ∞} is a nonexpansive
semigroup such that 𝐹(S) ∩ EP(𝑓) = {0}. If we take

𝛼
𝑛
=

1

𝑛 + 1
, 𝛽
1
= 𝛽
2
=
1

2
, 𝛽
𝑛
=
1

2
−
1

𝑛
, ∀𝑛 ≥ 3,

𝑟
𝑛
≡ 𝑐 > 0, 𝑡

𝑛
= 𝑛,

(47)

then all assumptions and conditions in Theorem 7 are
satisfied.

Remark 9. Taking 𝑢 = 0 inTheorem 7, we obtain the iterative
method for minimum-norm solution of an equilibrium
problem and a nonexpansive semigroup.
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As a direct consequence of Theorem 7, we obtain the
following corollary.

Corollary 10. Let 𝐶 be a nonempty closed convex subset of a
real Hilbert space𝐻, and assume that S = {𝑇(𝑡) : 0 ≤ 𝑡 < ∞}

is a nonexpansive semigroup on 𝐶 such that 𝐹(S) ̸= 0. Let {𝛼
𝑛
}

and {𝛽
𝑛
} be real sequences in (0, 1), and let {𝑥

𝑛
} and {𝑧

𝑛
} be

generated by

𝑥
1
∈ 𝐶 chosen arbitrarily,

𝑧
𝑛
= 𝑃
𝐶
[(1 − 𝛼

𝑛
) 𝑥
𝑛
] ,

𝑥
𝑛+1

= (1 − 𝛽
𝑛
) 𝑥
𝑛
+ 𝛽
𝑛

1

𝑡
𝑛

∫

𝑡
𝑛

0

𝑇 (𝑠) 𝑧
𝑛
𝑑𝑠.

(48)

Suppose that the following conditions are satisfied:

(1) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=1
𝛼
𝑛
= ∞;

(2) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1;

(3) {𝑡
𝑛
} ⊂ (0,∞), lim

𝑛→∞
𝑡
𝑛
= ∞, and lim

𝑛→∞
(|𝑡
𝑛+1

−

𝑡
𝑛
|/𝑡
𝑛+1
) = 0.

Then the sequence {𝑥
𝑛
} converges strongly to 𝑃

𝐹(S)0.

Proof. Letting 𝑓(𝑥, 𝑦) = 0 for all 𝑥, 𝑦 ∈ 𝐶, 𝑟
𝑛
= 1, and 𝑢 = 0

in Theorem 7, we get the result.

Remark 11. Corollary 10 extends the recent results of Zegeye
and Shahzad [11, Corollaries 3.2 and 3.3] from finite family of
nonexpansive mappings to a nonexpansive semigroup.

4. A Note on Shehu’s Paper ‘‘Iterative Method
for Fixed Point Problem, Variational
Inequality and Generalized Mixed
Equilibrium Problems with Applications’’

In 2012, Shehu [10] studied iterative methods for fixed
point problem, variational inequality, and generalized mixed
equilibrium problem and gave an interesting convergence
theorem. However, there is a slight flaw in the proof of the
main result (Theorem 3.1 in [10]).

Shehu obtained the following result (for more details, see
[10]).

Theorem 12 (see [10]). Let 𝐾 be a closed convex subset of
a real Hilbert space 𝐻, let 𝐹 be a bifunction from 𝐾 × 𝐾

satisfying (A1)–(A4), let 𝜑 : 𝐾 → R ∪ {+∞} be a proper
lower semicontinuous and convex function with assumption
(B1) or (B2), let A be a 𝜇-Lipschitzian, relaxed (𝜆, 𝛾)-cocoercive
mapping of 𝐾 into 𝐻, and let 𝜓 be an 𝛼-inverse, strongly
monotone mapping of 𝐾 into 𝐻. Suppose that 𝑇 : 𝐾 → 𝐾

is a nonexpansive mapping of 𝐾 into itself such that Ω :=

𝐹(𝑇) ∩ 𝑉𝐼(𝐾,𝐴) ∩ 𝐺𝑀𝐸𝑃 ̸= 0. Let {𝛼
𝑛
} and {𝛽

𝑛
} be two real

sequences in (0, 1) and {𝑟
𝑛
}, {𝑠
𝑛
} ⊂ (0,∞). Let {𝑥

𝑛
}, {𝑦
𝑛
}, and

{𝑢
𝑛
} be generated by 𝑥

1
∈ 𝐾,

𝑦
𝑛
= 𝑃
𝐾
[(1 − 𝛼

𝑛
) 𝑥
𝑛
] ,

𝑢
𝑛
= 𝑇
(𝐹,𝜑)

𝑟
𝑛

(𝑦
𝑛
− 𝑟
𝑛
𝜓𝑦
𝑛
) ,

𝑥
𝑛+1

= (1 − 𝛽
𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑇𝑃
𝐾
(𝑢
𝑛
− 𝑠
𝑛
𝐴𝑢
𝑛
) .

(49)

Suppose that the following conditions are satisfied:

(a) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=1
𝛼
𝑛
= ∞;

(b) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1;

(c) 0 < 𝑎 ≤ 𝑠
𝑛
≤ 𝑏 < 2(𝛾−𝜆𝜇

2
)/𝜇
2
, lim
𝑛→∞

|𝑠
𝑛+1
−𝑠
𝑛
| = 0;

(d) 0 < 𝑐 ≤ 𝑟
𝑛
≤ 𝑑 < 2𝛼, lim

𝑛→∞
|𝑟
𝑛+1

− 𝑟
𝑛
| = 0.

Then, the sequence {𝑥
𝑛
} converges strongly to an element of

𝐹(𝑇) ∩ 𝑉𝐼(𝐾,𝐴) ∩ 𝐺𝑀𝐸𝑃.

This theorem is proved in [10] by the following steps.

Step 1. The sequence {𝑥
𝑛
} is bounded.

Step 2. The following equalities hold:

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝐴𝑢𝑛 − 𝐴𝑥
∗󵄩󵄩󵄩󵄩 = 0, lim

𝑛→∞

󵄩󵄩󵄩󵄩𝜓𝑦𝑛 − 𝜓𝑥
∗󵄩󵄩󵄩󵄩 = 0,

∀𝑥
∗
∈ Ω.

(50)

Step 3. If 𝜔 is a weak limit of {𝑥
𝑛
𝑗

} which is a subsequence of
{𝑥
𝑛
}, then 𝜔 ∈ Ω.

Step 4. The sequence { 𝑥
𝑛
} converges strongly to 𝜔.

In Step 4, in order to show that the sequence {𝑥
𝑛
} con-

verges strongly to 𝜔, the author shows the inequality
lim sup

𝑛→∞
⟨−𝜔, 𝑥

𝑛
− 𝜔⟩ ≤ 0 by defining a mapping 𝜙 :

𝐻 → 𝑅 as follows: 𝜙(𝑥) = 𝜇
𝑛
‖𝑥
𝑛
− 𝑥‖
2, where 𝜇 is a Banach

limit. It is proved that the set 𝐾∗ = {𝑥 ∈ 𝐻 : 𝜙(𝑥) =

min
𝑢∈𝐻

𝜙(𝑢)} ̸= 0 and𝐾∗∩𝐹(𝑇) ̸= 0. An element of𝐾∗∩𝐹(𝑇)
is taken arbitrarily and is denoted by𝜔. Of course, the element
𝜔 is not necessarily the weak sequential cluster point of {𝑥

𝑛
}.

However, in Step 3, the symbol 𝜔 stands for the weak limit of
{𝑥
𝑛
𝑗

}which is a subsequence of {𝑥
𝑛
}. In the sequel, the author

obtains

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝜔
󵄩󵄩󵄩󵄩

2
≤ (1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝜔

󵄩󵄩󵄩󵄩

2
+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝜔
󵄩󵄩󵄩󵄩

2
. (51)

The meaning of the element 𝜔 in (51) is ambiguous. It is
difficult to ensure consistency.

Now, we perfect and simplify the proof of Step 4. Accord-
ing to the equality in Step 2, lim

𝑛→∞
‖𝐴𝑢
𝑛
−𝐴𝑥
∗
‖ = 0, for all

𝑥
∗
∈ Ω, we see that the set {𝐴𝑥∗ : 𝑥∗ ∈ Ω} contains only one

element. Since 𝐴 is a relaxed (𝜆, 𝛾)-cocoercive mapping of 𝐾
into𝐻, that is, there exist 𝜆, 𝛾 > 0 such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ −𝜆
󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩

2
+ 𝛾

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2
,

∀𝑥, 𝑦 ∈ 𝐾,

(52)
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it follows that themapping𝐴 is one-to-one.Therefore, the set
Ω is a singleton. By Step 3, the sequence {𝑥

𝑛
} possesses only

oneweak sequential cluster point. It follows fromLemma2.38
in [16] that {𝑥

𝑛
} converges weakly to 𝜔 and so

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝜔
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝜔

󵄩󵄩󵄩󵄩

2
+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝜔
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝜔

󵄩󵄩󵄩󵄩

2
+ 𝛽
𝑛

󵄩󵄩󵄩󵄩(1 − 𝛼𝑛) 𝑥𝑛 − 𝜔
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝜔

󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛
[(1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝜔

󵄩󵄩󵄩󵄩

2

+2𝛼
𝑛
(1 − 𝛼

𝑛
) ⟨−𝜔, 𝑥

𝑛
− 𝜔⟩ + 𝛼

2

𝑛
‖𝜔‖
2
]

≤ (1 − 𝛼
𝑛
𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝜔

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
𝛽
𝑛
[2 (1 − 𝛼

𝑛
) ⟨−𝜔, 𝑥

𝑛
− 𝜔⟩ + 𝛼

𝑛‖𝜔‖
2
] .

(53)

Since {𝑥
𝑛
} converges weakly to 𝜔, it follows from Lemma 2.2

in [10] or Lemma 6 in this paper that {𝑥
𝑛
} converges strongly

to 𝜔 ∈ Ω.
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