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This paper provides an analytic solution of𝑅𝐿 electrical circuit described by a fractional differential equation of the order 0 < 𝛼 ≤ 1.
We use the Laplace transform of the fractional derivative in the Caputo sense. Some special cases for the different source terms have
also been discussed.

1. Introduction

Fractional calculus, involving derivatives of integrals of non-
integer order, is the natural generalization of the classical
calculus, which during recent years became a powerful and
widely used tool for better modeling and control of processes
in many areas of science and engineering [1–3]. Many
physical phenomena have been discussed by fractional cal-
culus approach [4]. In many applications, fractional calculus
provides more accurate models of the physical systems than
ordinary calculus does. Fundamental physical considerations
in favor of the use of models based on derivatives of non-
integer order are given in [5]. Fractional derivatives provide
an excellent instrument for the description of memory and
hereditary properties of various materials and processes
[6]. This is the main advantage of fractional calculus in
comparison with the classical integer-order models, in which
such effects are in fact neglected. Fractional order models
have been already used for modeling of electrical circuits
(such as domino ladders and tree structures) and elements
(coils, memristor, etc.). The review of such models can be
found in [7].

Recently, a fractional differential equation has been sug-
gested that combines the simple harmonic oscillations of
an LC circuit with the discharging of an RC circuit. The
behavior of this new hybrid circuit without sources has been

analyzed [8]. In the work of [9], the simple current source-
wire circuit has been studied fractionally using direct and
alternating current source. It was shown that thewire acquires
an inducting behavior as the current is initiated in it and
gradually recovers its resisting behavior. Recently, Guia et al.
[10] have analyzed time delay, rise time, and settling time of
an RC circuit. In this paper, in the framework of fractional
calculus, we are interested in the solution of an 𝑅𝐿 circuit for
different source terms.

2. Preliminary

The function 𝐹(𝑠) of the complex variable 𝑠 defined by

𝐹 (𝑠) =L {𝑓 (𝑡) ; 𝑠} = ∫
∞

0

𝑒
−𝑠𝑡

𝑓 (𝑡) 𝑑𝑡, Re (𝑠) > 𝛼, (1)

is called the Laplace transform of the function 𝑓(𝑡) [3]. For
the existence of the integral (1), the function 𝑓(𝑡) must be
piecewise continuous and of exponential order 𝛼.

The original 𝑓(𝑡) can be restored from the Laplace
transform 𝐹(𝑠)with the help of the inverse Laplace transform
[3]

𝑓 (𝑡) =L
−1

{𝐹 (𝑠) ; 𝑡} =
1

2𝜋𝑖
∫

𝑐+𝑖∞

𝑐−𝑖∞

𝑒
𝑠𝑡

𝐹 (𝑠) 𝑑𝑠,

𝑐 = Re (𝑠) > 𝑐
0
,

(2)

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 343814, 5 pages
http://dx.doi.org/10.1155/2014/343814

http://dx.doi.org/10.1155/2014/343814


2 Abstract and Applied Analysis

where 𝑐
0
lies in the right half plane of the absolute conver-

gence of the Laplace integral (1). In this work, we use the
Caputo definition of the fractional derivative [3]

𝑑
𝛼

𝑓 (𝑡)

𝑑𝑡𝛼
=
𝐶

0
𝐷
𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)
∫

𝑡

0

𝑓
𝑛

(𝜏)

(𝑡 − 𝜏)
𝛼−𝑛+1

𝑑𝜏, (3)

where 𝛼 ∈ R is the order of the fractional derivative and 𝑛 −
1 < 𝛼 ≤ 𝑛 ∈ N = {1, 2, 3, . . .}, 𝑓𝑛(𝜏) = (𝑑𝑛/𝑑𝑡𝑛)𝑓(𝜏), and Γ(⋅)
is the Euler Gamma function. We consider the case 𝑛 = 1;
then 0 < 𝛼 ≤ 1; that is, in the integrand (3), there is only first
derivative. The Caputo definition of the fractional derivative
is very useful in the time domain studies, because the initial
conditions for the fractional order differential equations with
the Caputo derivatives can be given in the same manner as
for the ordinary differential equations with a known physical
interpretation.

The formula for the Laplace transform of the Caputo
fractional derivative (3) has the form [3]

L [
𝑑
𝛼

𝑑𝑡𝛼
𝑓 (𝑡)] = 𝑠

𝛼

𝐹 (𝑠) −

𝑛−1

∑

𝑗=0

𝑠
𝛼−𝑗−1

𝑓
𝑘

(0) , (4)

where 𝑓𝑘 is the ordinary derivative. The inverse Laplace
transform requires the introduction of the Mittag-Leffler
function [3], which is defined as

𝐸
𝛼
(𝑡) =

∞

∑

𝑛=0

𝑡
𝑛

Γ (𝛼𝑛 + 1)
(𝛼 > 0) , (5)

where Γ(⋅) is the Gamma function. When 𝛼 = 1, from (5), we
have

𝐸
1
(𝑡) =

∞

∑

𝑛=0

𝑡
𝑛

Γ (𝑛 + 1)
=

∞

∑

𝑛=0

𝑡
𝑛

𝑛!
= 𝑒
𝑡

. (6)

Therefore, the Mittag-Leffler function includes the exponen-
tial function as a special case.

3. Formulation of Fractional Differential
Equation Models for Flow of Electricity
in Resistance-Inductance Circuit

The differential equation for the 𝑅𝐿 circuit shown in Figure 1
is given by

𝐿
𝑑𝐼

𝑑𝑡
+ 𝑅𝐼 = 𝐸 (𝑡) , (7)

where 𝐼 is the current and 𝐿 is the inductance.
The solution of 𝑅𝐿 circuit is reported by Kreyszig [11] as

𝐼 (𝑡) = 𝑒
(−𝑅/𝐿)𝑡

[∫ 𝑒
(𝑅/𝐿)𝑡

𝐸

𝐿
𝑑𝑡 + 𝑐] . (8)

In this paper, we develop the resistance-inductance circuit
model in the form of fractional differential equation as

𝐷
𝛼

𝑡
𝐼 (𝑡) +

𝑅

𝐿
𝐼 (𝑡) =

𝐸 (𝑡)

𝐿
where 𝐷𝛼

𝑡
𝐼 (𝑡) =

𝑑
𝛼

𝐼

𝑑𝑡𝛼
, 0 < 𝛼 ≤ 1.

(9)
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Figure 1: 𝑅𝐿 circuit.

If lim
𝛼→1
(𝑑
𝛼

𝐼/𝑑𝑡
𝛼

) = 𝑑𝐼/𝑑𝑡, then (9) reduces to its original
form 𝐿(𝑑𝐼/𝑑𝑡) + 𝑅𝐼 = 𝐸(𝑡).

Since 𝑑𝐼/𝑑𝑡 = lim
𝛿𝑡→0

(𝛿𝐼/𝛿𝑡), it means that 𝛿𝑡 → 0 is
very, very small.

Throughout the paper, we consider lim
𝛼→0
(𝑑
𝛼

𝐼/𝑑𝑡
𝛼

) =

𝐼 and lim
𝛼→1
(𝑑
𝛼

𝐼/𝑑𝑡
𝛼

) = 𝑑𝐼/𝑑𝑡. Therefore, we are not
interested to consider the dimensionless variables.

Solution of (9) Using the Initial Condition (𝐼(0) = 𝑐, (𝑐 >
0)). Applying the Laplace transform on (9) using the initial
condition 𝐼(0) = 𝑐, (𝑐 > 0), we have

𝐼 (𝑠) = 𝑐 (
𝑠
𝛼−1

𝑠𝛼 + 𝑅/𝐿
) +
1

𝐿
(
𝐸 (𝑠)

𝑠𝛼 + 𝑅/𝐿
) . (10)

Now, applying the inverse Laplace transform and convolu-
tion, we have

𝐼 (𝑡) = 𝑐𝐸
𝛼
(−
𝑅

𝐿
𝑡
𝛼

) −
1

𝑅
∫

𝑡

0

𝐸 (𝑡 − 𝑢) 𝐸


𝛼
(−
𝑅

𝐿
𝑢
𝛼

)𝑑𝑢. (11)

Here, we obtain the solution of different cases of the
resistance-inductance circuit model (9) for different source
terms.

Case 1 (when no electromotive force is applied (no source
term), i.e., 𝐸(𝑡) = 0). In this case, (9) becomes

𝐷
𝛼

𝑡
𝐼 (𝑡) +

𝑅

𝐿
𝐼 (𝑡) = 0 (12a)

and the initial condition is

𝐼 (0) = 𝑐, (𝑐 > 0) (Since, lim
𝛼→0

𝑑
𝛼

𝐼

𝑑𝑡𝛼
= 𝐼) . (12b)

Solution. Rewrite (12a) as

𝐷
𝛼

𝑡
𝐼 (𝑡) = −

𝑅

𝐿
𝐼 (𝑡) = 0. (13)

Taking the Laplace transform on both sides and using (12b),
we get

𝐼 (𝑠) = 𝑐
𝑠
𝛼−1

(𝑠
𝛼 + 𝑅/𝐿)

. (14)
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Figure 2: Time 𝑡 v/s current 𝐼.

Taking the inverse Laplace transformon both sides, we obtain

𝐼 (𝑡) = 𝑐𝐸
𝛼
(−
𝑅

𝐿
𝑡
𝛼

) . (15)

Case 2 (when constant electromotive force is applied,
i.e., 𝐸(𝑡) = 𝐸

0
). In this case, (9) becomes

𝐷
𝛼

𝑡
𝐼 (𝑡) +

𝑅

𝐿
𝐼 (𝑡) =

𝐸
0

𝐿
(16a)

and the initial condition is

𝐼 (0) = 𝑐, (𝑐 > 0) (Since, lim
𝛼→0

𝑑
𝛼

𝐼

𝑑𝑡𝛼
= 𝐼) . (16b)

Rewrite (16a) as

𝐷
𝛼

𝑡
𝐼 (𝑡) =

𝐸
0

𝐿
−
𝑅

𝐿
𝐼 (𝑡) . (17)

Taking the Laplace transform on both sides and using (16b),
we get

𝐼 (𝑠) =
𝐸
0

𝐿

1

𝑠 (𝑠
𝛼 + 𝑅/𝐿)

+ 𝑐
𝑠
𝛼−1

(𝑠
𝛼 + 𝑅/𝐿)

. (18)

Taking the inverse Laplace transform on both sides, we have

𝐼 (𝑡) =
𝐸
0

𝐿
L
−1

{
1

𝑠 (𝑠
𝛼 + 𝑅/𝐿)

} + 𝑐L
−1

{
𝑠
𝛼−1

(𝑠
𝛼 + 𝑅/𝐿)

} (19)

on applying the convolution theorem and using
(𝜆/Γ(𝛼)) ∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1

𝐸
𝛼
(𝜆𝑡
𝛼

)𝑑𝑡 = 𝐸
𝛼
(𝜆𝑥
𝛼

) − 1, 𝛼 > 0

[12, page 109], we get

L
−1

{
1

𝑠 (𝑠
𝛼 + 𝑅/𝐿)

} = −
𝐿

𝑅
[𝐸
𝛼
(−
𝑅

𝐿
𝑡
𝛼

) − 1] (20)

and from (15), we have

L
−1

{
𝑠
𝛼−1

(𝑠
𝛼 + 𝑅/𝐿)

} = 𝐸
𝛼
(−
𝑅

𝐿
𝑡
𝛼

) . (21)

Using (19), (20), and (21), we get

𝐼 (𝑡) = (𝑐 −
𝐸
0

𝑅
)𝐸
𝛼
(−
𝑅

𝐿
𝑡
𝛼

) +
𝐸
0

𝑅
, where(𝑐 −

𝐸
0

𝑅
) ≥ 0.

(22)

In Figure 2, we observe the interesting behavior of current
by using fractional calculus approach for different values of
𝛼. When 𝛼 = 0.1, the current decreases very sharply and
it moves towards stability as time increases. On increasing
the value of 𝛼, the current increases for the specific time
and afterwards attains its stability. Finally, when 𝛼 = 1, then
current shows its natural behavior. This exhibits the behavior
of current for different values of 𝛼 with respect to time (𝑡)
before it attends the natural behavior.

Case 3 (when electromotive force is in terms of unit step
function, i.e., 𝐸(𝑡) = 𝑢(𝑡)). In this case, (9) becomes

𝐷
𝛼

𝑡
𝐼 (𝑡) +

𝑅

𝐿
𝐼 (𝑡) =

𝑢 (𝑡)

𝐿
, (23a)

where 𝑢(𝑡) is a unit step function.
The initial condition is

𝐼 (0) = 𝑐, (𝑐 > 0) (Since, lim
𝛼→0

𝑑
𝛼

𝐼

𝑑𝑡𝛼
= 𝐼) . (23b)

Solution. Rewrite (23a) as

𝐷
𝛼

𝑡
𝐼 (𝑡) =

1

𝐿
𝑢 (𝑡) −

𝑅

𝐿
𝐼 (𝑡) . (24)
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Taking the Laplace transform on both sides and using (23b),
we get

𝐼 (𝑠) =
1

𝐿

1

𝑠 (𝑠
𝛼 + 𝑅/𝐿)

+ 𝑐
𝑠
𝛼−1

(𝑠
𝛼 + 𝑅/𝐿)

. (25)

Taking the inverse Laplace transform, we obtain

𝐼 (𝑡) =
1

𝐿
L
−1

{
1

𝑠 (𝑠
𝛼 + 𝑅/𝐿)

} + 𝑐L
−1

{
𝑠
𝛼−1

(𝑠
𝛼 + 𝑅/𝐿)

} . (26)

on applying the convolution theorem and using the result
(𝜆/Γ(𝛼)) ∫

𝑥

0

(𝑥−𝑡)
𝛼−1

𝐸
𝛼
(𝜆𝑡
𝛼

)𝑑𝑡 =𝐸
𝛼
(𝜆𝑥
𝛼

)−1, 𝛼 > 0 [12, page
109], we get

L
−1

{
1

𝑠 (𝑠
𝛼 + 𝑅/𝐿)

} = −
𝐿

𝑅
[𝐸
𝛼
(−
𝑅

𝐿
𝑡
𝛼

) − 1] (27)

and using (15), (26), and (27), we obtain

𝐼 (𝑡) = (𝑐 −
1

𝑅
)𝐸
𝛼
(−
𝑅

𝐿
𝑡
𝛼

) +
1

𝑅
, where (𝑐 − 1

𝑅
) ≥ 0.

(28)

Case 4 (when periodic electromotive force is applied, i.e.,
𝐸(𝑡) = 𝐸

0
sin𝜔𝑡). In this case, (9) becomes

𝐷
𝛼

𝑡
𝐼 (𝑡) +

𝑅

𝐿
𝐼 (𝑡) =

𝐸
0

𝐿
sin𝜔𝑡. (29a)

The initial condition is

𝐼 (0) = 𝑐, (𝑐 > 0) (Since, lim
𝛼→0

𝑑
𝛼

𝐼

𝑑𝑡𝛼
= 𝐼) . (29b)

Solution. Rewrite (29a) as

𝐷
𝛼

𝑡
𝐼 (𝑡) =

𝐸
0

𝐿
sin𝜔𝑡 − 𝑅

𝐿
𝐼 (𝑡) . (30)

Taking the Laplace transform on both sides and using (29b),
we get

𝐼 (𝑠) =
𝐸
0

𝐿

𝜔

(𝑠2 + 𝜔2) (𝑠
𝛼 + 𝑅/𝐿)

+ 𝑐
𝑠
𝛼−1

(𝑠
𝛼 + 𝑅/𝐿)

. (31)

Taking the inverse Laplace transform, we obtain

𝐼 (𝑡) =
𝐸
0

𝐿
L
−1

{
𝜔

(𝑠2 + 𝜔2) (𝑠
𝛼 + 𝑅/𝐿)

}

+ 𝑐L
−1

{
𝑠
𝛼−1

(𝑠
𝛼 + 𝑅/𝐿)

}

(32)

on applying the convolution theorem, this yields

L
−1

{
𝜔

(𝑠2 + 𝜔2) (𝑠
𝛼 + 𝑅/𝐿)

}= −
𝐿

𝑅
∫

𝑡

0

sin𝜔 (𝑡 − 𝑢) 𝐸
𝛼

× (−
𝑅

𝐿
𝑢
𝛼

)𝑑𝑢.

(33)

Using (15), (32), and (33), we obtain

𝐼 (𝑡) = 𝑐𝐸
𝛼
(−
𝑅

𝐿
𝑡
𝛼

) −
𝐸
0

𝑅
∫

𝑡

0

sin𝜔 (𝑡 − 𝑢) 𝐸
𝛼
(−
𝑅

𝐿
𝑢
𝛼

)𝑑𝑢.

(34)

Case 5 (when periodic electromotive force is applied, i.e.,
𝐸(𝑡) = 𝐸

0
cos𝜔𝑡). In this case, (9) becomes

𝐷
𝛼

𝑡
𝐼 (𝑡) +

𝑅

𝐿
𝐼 (𝑡) =

𝐸
0

𝐿
cos𝜔𝑡. (35)

The initial condition is

𝐼 (0) = 𝑐, (𝑐 > 0) (Since, lim
𝛼→0

𝑑
𝛼

𝐼

𝑑𝑡𝛼
= 𝐼) . (36)

Solution. Rewrite (35) as

𝐷
𝛼

𝑡
𝐼 (𝑡) =

𝐸
0

𝐿
cos𝜔𝑡 − 𝑅

𝐿
𝐼 (𝑡) . (37)

Taking the Laplace transform on both sides and using (36),
we get

𝐼 (𝑠) =
𝐸
0

𝐿

𝑠

(𝑠2 + 𝜔2) (𝑠
𝛼 + 𝑅/𝐿)

+
𝑠
𝛼−1

(𝑠
𝛼 + 𝑅/𝐿)

. (38)

Taking the inverse Laplace transform, we obtain

𝐼 (𝑡) =
𝐸
0

𝐿
L
−1

{
𝑠

(𝑠2 + 𝜔2) (𝑠
𝛼 + 𝑅/𝐿)

}

+ 𝑐L
−1

{
𝑠
𝛼−1

(𝑠
𝛼 + 𝑅/𝐿)

}

(39)

on applying the convolution theorem, this gives

L
−1

{
𝜔

(𝑠2 + 𝜔2) (𝑠
𝛼 + 𝑅/𝐿)

} = −
𝐿

𝑅
∫

𝑡

0

cos𝜔 (𝑡 − 𝑢)

× 𝐸


𝛼
(−
𝑅

𝐿
𝑢
𝛼

)𝑑𝑢.

(40)

Further, using (15), (39), and (40) we get

𝐼 (𝑡) = 𝑐𝐸
𝛼
(−
𝑅

𝐿
𝑡
𝛼

) −
𝐸
0

𝑅
∫

𝑡

0

cos𝜔 (𝑡 − 𝑢) 𝐸
𝛼
(−
𝑅

𝐿
𝑢
𝛼

)𝑑𝑢.

(41)
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