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Electrification is one of the key factors to be considered in the design of power transformers utilizing dielectric liquid as a coolant.
Compared with enormous quantity of experimental and analytical studies on electrification, numerical simulations are very few.
This paper describes essential elements of numerical solution methods for the charge transport equations in a space between
concentric cylinders. It is found that maintaining the conservation property of the convective terms in the governing equations
is of the uttermost importance for numerical accuracy, in particular at low reaction rates. Parametric study on the charge transport
on the axial plane of the annular space with a predetermined velocity shows that when the convection effect is weak the solutions
tend to a one-dimensional nature, where diffusion is simply balanced by conduction. As the convection effect is increased the
contours of charge distribution approach the fluid streamlines.Thus, when the conduction effect is weak, charge distribution tends
to be uniform and the role of the convection effect becomes insignificant. At an increased conduction effect, on the other hand, the
fluid motion transports the charge within the electric double layers toward the top and bottom boundaries leading to an increased
amount of total charge in the domain.

1. Introduction

When a dielectric liquid containing impurities is in contact
with a solid surface, a certain physicochemical process occurs
at the interface yielding free ions near the surface of the liquid.
Usually negative ions are adsorbed to the solid surface and the
positive ions are diffused away forming the electric double
layer (to be referred to as EDL). Since the positive ions are
mobile, they are convected by the fluid flow giving rise to
the streaming current, which is called flow electrification.
Problem occurs when they are accumulated in a certain
location downstream resulting in locally high electric-field
intensity which can cause electrical discharge, breakdown,
and local failure of the device employing the liquid transport.

Electrification becomes one of the key factors to be con-
sidered in the design of electrical devices utilizing dielectric
liquid (mineral or ester oil) as a coolant, such as power
transformers. Demand for increased capacity from the users
of power transformers tempts designers to increase the oil
flow rate for increased cooling capacity, which, however,

brings increased electrification and makes the device more
susceptible to the electrical failure.

Studies on electrification and discharge with full-scale
transformers were carried out by Higaki et al. [1, 2] and
Tamura et al. [3].They inserted numerous sensors tomeasure
the charge distribution within transformers and measured
the local leakage current through the solid surfaces. Higaki
et al. [1, 2] demonstrated that the point of maximum electric
field on the solid surface, calculated by solving the potential
equation with the leakage currents being used as the bound-
ary conditions, was consistent with the point of discharge
actually observed from the experiment. Tamura et al. [3]
presented a diagram in the parameter space where high flow
rate was shown to lead to electrical discharge.

In order to perform more fundamental studies,
researchers have considered simple experimental apparatus
other than actual transformers, which is easier to build
and easier to measure data with, such as electrical charge
tendency (ECT). In addition, how to interpret the measured
data in relation to the actual transformers is also an important
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issue in selecting suitable geometries for study. Most of the
initial studies focused on the flow between parallel plates
and circular pipes [4–7]. A spinning disk system was
used by Kedzia and Willner [8] and Gibbings [9] in their
experimental and theoretical studies on electrification.
In order to attain a fully developed flow in a compact
space Washabaugh [10] and Washabaugh and Zahn [11, 12]
used a circular Couette system. Moreau and Touchard
[13] conducted an experimental study to show that an
impinging jet can result in a surface current with an order
of magnitude larger than that with the parallel flow. The
swing cylinder system, where the inner cylinder shows
back-and-forth rotation, was also used in [14] to study
ECT.

With the simple flow apparatus in hand, researchers
can perform investigations on the effect of various factors
on the electrification independently. There are many factors
influencing electrification or ECT. They can be categorized
into two kinds, fluid/flow properties and electrical properties.
Included in the former are flow rate, geometrical features
determined by the fluid path, and fluid viscosity, while
in the latter electrical conductivity and permittivity are
the key elements; the operating temperature and material
degradation may influence many of these properties, such
as viscosity, conductivity and permittivity. Properties of the
pressboard such as chemical composition of the material
and surface roughness may also influence the ECT. General
understanding of the effect of various parameters on ECT
and design aspect for avoiding discharge in transformers was
given in [15, 16].

Touchard [17] and Touchard [18] included detailed kinet-
ics of wall surface reaction in the formulation of the charge
flux through planar and circular duct to attain a reason-
able matching with experimental data. Moreau et al. [19]
measured ECT for a flow passing through a filter made
of degraded pressboard to show that a degraded surface
enhances the charge accumulation and that small amount of
additive (i.e., BTA) can reduce ECT. The effect of additive
was further studied in [20, 21], and by using a flow-loop
apparatus, Bourgeois et al. [21] addressed the mechanism of
the enhancement of ECT in terms of the carboxyl group.
Aksamit and Zmarzly [22] also studied the inhibition of flow
electrification with the additive 𝐶

60
. Developing advanced

models for the wall reaction that can well fit the experimental
data is one of the most important issues in the study of
electrification. Cabaleiro et al. [23] and El-Adawy et al. [24]
for instance demonstrated that the wall-reaction constant
must be varied depending on the other parameters such as
flow rate in order to fit the experimental data. Cabaleiro et al.
[25] performed analysis on ECT within a shallow rectangular
duct with a more complex model for the wall reaction. Paillat
et al. [26] showed that inclusion of the effect of the fluid
shear stress in the physicochemical process at the interface
provides a much better agreement with experimental data
at high laminar Reynolds numbers. El-Adawy et al. [27]
conducted numerical simulation for the foundation of EDL
without the convection effect and calculated ECT in the
presence of fluid flow with source terms representing the
ion dissociation and recombination in the bulk. Kobayashi

et al. [28] paid attention to the competitive role of oil and
pressboard in the electrification process. Okabe et al. [29]
investigated the effect of the compounds in oil on ECT
and showed that increase of ECT was mostly caused by
the oxidation of sulfides. In [30], both the transient and
steady-state data of the electrification experiment could be
matched with the one-dimensional model for ion transport
by using a hybrid boundary condition, where a constant flux
as well as the flux proportional to the local ionic concen-
tration was employed. Due to environmental problems, the
electrical power industry considers using substitutive oils in
transformers. Paillat et al. [31] investigated experimentally
the electrification property of ester oil compared with con-
ventional mineral oil, in particular in terms of ECT. They
confirmed that charge accumulation with ester oil is one
or two orders of magnitude larger than that with mineral
oil.

Most studies on electrification evenwith simple geometry
have been performed experimentally and/or analytically, and
numerical studies, at least in a two-dimensional space, are
very few. In [13], numerical simulation was performed for the
impinging jet configuration by using the authors’ in-house
code. In [27], two-dimensional numerical simulation was
performed to investigate the transient development of EDL
and surface current by using comprehensivemodels incorpo-
rating ion dissociation and recombination of molecules not
only in liquid but also in solid. The authors also included
in their simulation the wall reaction model representing
the combination of cation in the solid and anion in the
fluid. In the second stage in their simulation they considered
a fully developed parabolic velocity profile to investigate
the time-dependent flow electrification. Their numerical
results are qualitatively in line with experimental results and
knowledge.

The main purpose of the present study is to develop a
two-dimensional numerical code and perform simulations
for charge transport in a confined space under a various range
of parameters. In particular, we select as the computational
domain the annulus between concentric cylinders, following
[10–12]. We are concerned with the axisymmetric secondary
flow developed on the axial plane at supercritical Reynolds
numbers. One of the most important issues to be addressed
in this study is the effect of nondimensional parameters on
the numerical solutions as well as their accuracy. Aside from
the one- and two-dimensional in-house codes, we also use the
commercial software COMSOL and exact and approximate
analytical solutions of the one-dimensional problem for
verification of the numerical solutions. The present in-depth
analysis of the characteristics of the equations governing the
charge transport in relation to the numerical solutions may
play an important role in the development of more practical
simulation codes and in interpretation of the numerical
results obtained either by an in-house or a commercial code.

2. Mathematical Formulation

We consider transport of a space charge density distributed in
an annulus space between two concentric circular cylinders
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of radii 𝑅
1
and 𝑅

2
, respectively, caused by diffusion, convec-

tion, and electrical conduction. The governing equations for
the problem can be written as follows:

𝜕𝑞
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⋅ J∗ = 0, (1a)
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∗
⋅ u∗ = 0, (1d)

where 𝑡
∗ is the time, 𝑞∗ the charge density, u∗ the fluid

velocity, 𝑝∗ the pressure, E∗ the electric field related to the
electric potential 𝜙∗ as E∗ = −∇

∗
𝜙
∗,∇
∗
the gradient operator,

and

J∗ = −𝐷∇
∗
𝑞
∗
+ 𝑞
∗u∗ + 𝜎E∗ (2)

the current density (or charge flux). Further,𝜌 is the fluid den-
sity, ] the kinematic viscosity of the fluid,𝐷 the diffusivity of
the species (i.e., charge carriers), 𝜎 the electrical conductivity,
and 𝜀 the electrical permittivity, all of which are assumed to
be constant in this study.

It is assumed that metals or pressboards in contact with
dielectric liquid create charges (or they may be adsorbed)
by certain chemical reaction, and we simply employ the
model used in [10–12] dictating that the charge flux from the
electrode surface to the liquid is proportional to the local
space charge density, reading
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where 𝐽∗
𝑟
denotes the radial component of J∗, 𝑞∗

𝑖𝑤
the wall

charge density at 𝑟∗ = 𝑅
𝑖
(𝑖 = 1 for the inner and 𝑖 = 2

for the outer cylinder surface, resp.), and 𝑘∗
𝑖
the reaction rate

at the surface 𝑖. Between the two cylinder surfaces, we could
connect a resistor and/or apply a potential difference, but in
this study we only consider a short circuit. So, the boundary
conditions for the potential read

𝜙
∗
= 0 at 𝑟∗ = 𝑅

1
, 𝑟
∗
= 𝑅
2
. (4)

We may apply no-slip and impermeable conditions on the
solidwalls surrounding the fluid. Boundary conditions on the
upper and lower ends of the domain will be addressed after
dimensionless equations are presented.

The fluid flow within the annulus can be assumed to be
created by two kinds of forcing; one is by the rotation of the
inner cylinder and the other by the so-called induced charge
electroosmotic effect. While the former is driven by the
boundary condition for the Navier-Stokes equation (1c), the
latter comes from the last term in (1c), that is, the Coulomb-
force term, which couples the fluid flow and the charge

transport problem. Apparently, the fluid velocity created by
the two effects contributes to the convection of the charge,
that is, the second term in (2).

As a first step in our series of studies on the charge
transport within an annulus, we in this paper focus on steady
and axisymmetric solutions. Then the azimuthal component
of the fluid velocity does not contribute to the charge
transport. Thus, even the circular Couette flow driven by the
inner cylinder’s rotation has no effect on the charge transport
when it is stable, which is relevant at low Reynolds numbers
exhibiting only the primary azimuthal flow (referred to as
steady circular Couette flow; see, e.g., Liao et al. [32]); here,
the Reynolds numbermay be based on the tangential velocity
of the inner cylinder and the gap between the two cylinders,
𝑑 ≡ 𝑅

2
− 𝑅
1
. As the Reynolds number is increased, the

primary flow becomes unstable and creates a secondary flow
in the axial plane (referred to as “steady axisymmetric Taylor
vortex flow”; Liao et al. [32]), which now plays an important
role in the convective transport of charge. It is this type of
flow that is used in the calculation of the convective terms
in the charge transport equation (1a); for more complex
supercritical flow regimes in the circular Couette flow system,
such as nonaxisymmetric flow and travelling waves, one can
refer to Koschmieder [33].

In the present study, convection due to the induced
charge electroosmotic flow effect is assumed to be negligible
compared with the effect of the secondary flow caused by
the flow instability mentioned above following El-Adawy et
al. [27]. This is valid in particular at low diffusivity of the
charge carriers,𝐷. Thus, we can decouple the fluid flow from
the charge transport problem and are allowed to impose
an arbitrary velocity field (but without losing the physical
relevance, of course).

Based on the above reasoning, we canwrite the governing
equations for the dimensionless charge density 𝑞 and the
dimensionless potential 𝜙 in dimensionless form as follows:
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/𝜀], and E = −∇𝜙 = E∗/[𝑑𝑞∗

1𝑤
/𝜀] are

dimensionless variables. Further, we define J = J∗/(𝐷𝑞∗
1𝑤
/𝑑).

The dimensionless parameters 𝑃 = 𝑈𝑑/𝐷 and 𝑄 = 𝜎𝑑
2
/(𝜀𝐷)

may be considered as the ratio of time scales; 𝑃 = 𝜏dif/𝜏conv
and 𝑄 = 𝜏dif/𝜏cond, where 𝜏dif ≡ 𝑑

2
/𝐷 is the diffusion time

scale, 𝜏conv ≡ 𝑑/𝑈 the convection time scale, and 𝜏conv ≡ 𝜀/𝜎

the conduction time scale.
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Boundary conditions for 𝑞 can be written in terms of
the dimensionless radial component of the charge flux, 𝐽

𝑟
≡

−𝜕𝑞/𝜕𝑟 − 𝑄𝜕𝜙/𝜕𝑟, as follows:
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= 1. Boundary conditions for 𝜙 are simply
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1
, 𝑟 = 𝑟

2
. (7)

As for the conditions on the upper and lower boundaries
we apply zero gradient for 𝑞 and 𝜙:

𝜕𝑞

𝜕𝑧
=
𝜕𝜙

𝜕𝑧
= 0 at 𝑧 = 0, 𝑧 = ℎ, (8)

where ℎ corresponds to the dimensionless height of the
domain, that is, the recirculating flow cell, whose dimensional
quantity is defined as 𝐻; that is, ℎ = 𝐻/𝑑. In this study ℎ is
set as𝐻 = 𝑑 or ℎ = 1.

The fact that 𝜙 does not explicitly appear in (5a) maymis-
lead to the conclusion that (5a) is decoupled from (5b), but it
is not the case because it appears in boundary conditions (6a)
and (6b).

3. Analytic Solutions of 1D Transport
Equation

When the convection effect is neglected, wemay well assume,
in view of the boundary conditions, that solutions are
independent of 𝑧. Then the system of equations reduces to a
one-dimensional transport problem,where only the diffusion
and conduction effects are present:

𝑑
2
𝑞

𝑑𝑟2
+
1

𝑟

𝑑𝑞

𝑑𝑟
− 𝑄𝑞 = 0, (9a)

𝑑
2
𝜙

𝑑𝑟2
+
1

𝑟

𝑑𝜙

𝑑𝑟
+ 𝑞 = 0. (9b)

The general solution to (9a) takes the following form:
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where 𝐼
0
and 𝐾

0
denote the modified Bessel function of

the first and second kind, respectively, of order zero, and
𝜆 = 1/√𝑄 corresponds to the dimensionless thickness of
EDL adjacent to the cylinder surfaces where charge is mainly
distributed. Eliminating the third terms on the left-hand side
of (9a) and (9b) and integrating the result twice with respect
to 𝑟 yield
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Four constants, 𝐶
1
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4
, in (10) and (11) can be

obtained from the boundary conditions (6a), (6b), and (7) as
follows:
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where 𝑠
𝑖
= 𝑘
𝑖
𝑟
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, 𝐼
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(𝑟
𝑖
/𝜆) are

constants.
For the case with 𝜆 ≪ 1, we are allowed to approximate

the governing equations and obtain the solutions in terms of
more familiar functions. We let 𝑞 = 𝑓(𝑟)/√𝑟 and then (9a)
becomes

𝑑
2
𝑓

𝑑𝑟2
− (

1

𝜆2
−

1

4𝑟2
)𝑓 = 0. (13)

Under the assumption of 𝜆 ≪ 𝑟 (thin-layer approximation),
we can ignore the second term in the bracket. Solving the
resultant equation is straight forward, and we arrive at

𝑞 =
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{
𝑞
1√𝑟1 sinh [(𝑟2 − 𝑟) /𝜆]
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where the unknown constant 𝑞
𝑖
stands for the value of 𝑞 at

𝑟 = 𝑟
𝑖
. Solution (14) is shown to be the same as that provided

in [10]. In fact, the solution form (14) can also be derived
from the leading order terms in the asymptotic expansion of
𝐼
0
and𝐾

0
in (10) for large argument [34]. Equation (11) is still

used for obtaining 𝜙 after 𝑞 is obtained from (14). Applying
boundary conditions (6a), (6b), and (7), we get

𝑞
1
= 1 −

(1 − 𝑞
2𝑤
)

𝑠
1
𝐵

, (15a)

𝑞
2
= 𝑞
2𝑤

+
(1 − 𝑞

2𝑤
)

𝑠
2
𝐵

, (15b)
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)/(𝑠
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𝑠
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) + ln(𝑟

2
/𝑟
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).

4. Numerical Solutions of Full 2D
Transport Equations

When the velocity field is arbitrarily imposed, we must use
numerical methods to solve the 2D charge transport problem
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governed by (5a) and (5b) under the boundary conditions
(6a)–(8). We performed two kinds of numerical simulation,
one using a self-developed (in-house) code and the other
using the commercial code COMSOL.

We briefly address first the numerical method employed
in the in-house code. Although the steady-state solutions are
our primary concern, we add the transient term to the left-
hand side of (5a) in order to facilitate the relaxation method.
There are two key factors in developing the numerical
schemes which must be borne in mind for the successful
run of the simulation, numerical instability and accuracy.
When convection is dominant, as is common in engineering
applications, the convection terms themselves become the
primary cause of the numerical instability when the central
difference schemes are used. For this reason, in this study
we employed the second-order upwind method to discretize
the convection terms. Secondly, numerical accuracy can be
maintained by constructing a variable grid system. Another
key factor affecting numerical accuracy turns out to be the
conservation property of the numerical schemes employed
for discretization of the equations. Using the conservative
formof the convection terms and employing the finite volume
method in discretization turns out to be of the uttermost
importance for maintaining the numerical accuracy.

Since 𝜆 usually remains very small, we expect thin layers,
that is, EDLs, near the surfaces 𝑟 = 𝑟

1
and 𝑟 = 𝑟

2
. To resolve

such thin layers, we construct fine grids there. Along the
radial direction, for instance, we use the algebraic function

𝑟 = 𝑟
1
+
[3 + 2𝑎

𝑟
𝜉 (3 − 2𝜉)] 𝜉

3 + 2𝑎
𝑟

(16)

for the range 0 ≤ 𝜉 ≤ 1, where 𝑎
𝑟
is a control parameter for the

variable grid along the radial direction; the case with 𝑎
𝑟
= 0

corresponds to no grid refinement and a larger value of 𝑎
𝑟

means finer grids near the surfaces. Usually we take 𝑎
𝑟
= 3 or

larger. We use a similar function for the variable grids along
the 𝑧 direction, where the refinement of the grids is controlled
by 𝑎
𝑧
, which is usually taken as 3.

Both 𝑞 and 𝜙 are defined at the point “0” (to be referred
to as 𝑞

𝑖,𝑗
and 𝜙

𝑖,𝑗
), the center of the grid cell being of the

size Δ𝑟0
𝑖
× Δ𝑧
0

𝑗
as shown in Figure 1. Before discretizing the

governing equation (5a), we first integrate it over the grid cell.
Then we use the central difference scheme in discretization
of the first-order derivatives for the diffusion terms at the
surrounding four points denoted as “𝑒,” “𝑛,” “𝑤,” and “𝑠” in
Figure 1. We then need to evaluate the values of 𝑞 at those
four points arising from the convection terms. As mentioned
before, choosing upwind methods in that evaluation is very
important in establishing numerical stability. In this work,
we employ the second-order upwind algorithm. For instance,
when the radial component of the velocity at the point “𝑒,”
𝑢
𝑒
, is positive, we construct the second-order polynomial in

𝑟with 𝑞
𝑖−1,𝑗

, 𝑞
𝑖,𝑗
, and 𝑞

𝑖+1,𝑗
and evaluate the result at the point

“𝑒” to get

w

r = r0i

n

0

s

r = rbi

z = zbj

z = z0j
e Δz0j

Δzbj

Δr0i

Δrbi

Figure 1: Notation for grid sizes, coordinates, and points in the
variable grid system.

𝑞
𝑒
=

−(Δ𝑟
𝑏

𝑖
)
2

𝑞
𝑖−1,𝑗

4Δ𝑟
𝑏

𝑖−1
(Δ𝑟
𝑏

𝑖−1
+ Δ𝑟
𝑏

𝑖
)
+

(2Δ𝑟
𝑏

𝑖−1
+ Δ𝑟
𝑏

𝑖
) 𝑞
𝑖,𝑗

4Δ𝑟
𝑏

𝑖−1

+

(2Δ𝑟
𝑏

𝑖−1
+ Δ𝑟
𝑏

𝑖
) 𝑞
𝑖+1,𝑗

4 (Δ𝑟
𝑏

𝑖−1
+ Δ𝑟
𝑏

𝑖
)

.

(17)

Similarly, when 𝑢
𝑒
is negative, the polynomial is constructed

with 𝑞
𝑖,𝑗
, 𝑞
𝑖+1,𝑗

, 𝑞
𝑖+2,𝑗

, and so on. The Poisson equation (5b)
for 𝜙 is treated in the same way as for the diffusion terms
in (5a). We use the backward Euler method to discretize the
transient term in (5a), which corresponds to the simplest
stable algorithm. Since the accuracy of the solutions is
independent of the time step Δ𝑡 chosen so as to make the
solutions converged, we take the larger time step if possible
to speed up the calculation.

The two algebraic systems of equations constructed in this
way are solved by using the SOR (successive-over relaxation)
method in a coupled manner. Relaxation parameter for (5a)
is usually taken as smaller than that for (5b) due to the
convection terms.

In the use of the commercial software COMSOL, we
employ two models, “transport of a diluted species” and
“electrostatics.”The original form of the model however leads
to numerical instability due to the fact that the conductivity
is set to be proportional to the charge density in the original
model, whereas in this study the conductivity is set to be
constant. So, we modified the model in such a way that the
conduction term is excluded from the charge flux J but treated
as a source. Boundary conditions (3a) and (3b), written in
terms of the flux, must also be modified for the same reason.
On the other hand, COMSOL allows us to use not only
the conservative but also the nonconservative form for the
convection terms. We will see that the nonconservative form
leads to significant errors compared with the conservative
form. The grid system is constructed on the same principle
as applied in developing the in-house code; that is, fine grids
are built near the cylinder surfaces to resolve thin EDLs.
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The velocity field we are interested in is the secondary
Taylor-vortex flow observed in the axial plane caused by
hydrodynamic instability. Instead of using the exact solution
of the secondary flow given from the numerical simulation
of the Navier-Stokes equations or the experimental measure-
ment, we set the flow in an arbitrarymanner but with physical
relevance if possible. For this, we assume that the axial plane
between the coaxial cylinders is occupied by the series of
spatially periodic flow cells. The velocity components 𝑢 and
𝑤 then can be written in a separation-of-variable form like

𝑢 =
𝜋𝜓 (𝑟)

ℎ𝑟
cos(𝜋𝑧

ℎ
) , 𝑤 = −

1

𝑟

𝑑𝜓 (𝑟)

𝑑𝑟
sin(𝜋𝑧

ℎ
) , (18)

where 𝜓 is a kind of stream function for the axisymmetric
velocity field. To determine the functional form of 𝜓(𝑟), we
assume that 𝜓(𝑟) is a quadratic function (or 𝑟𝑤 is a linear
function) of 𝑟 in the bulk, while 𝑟𝑤 exponentially approaches
zero as 𝑟 → 𝑟

1
or 𝑟 → 𝑟

2
. Then we let

𝜓 (𝑟) = 𝑐
0
+ 𝑐
1
𝑟 + 𝑐
2
𝑟
2
+ 𝑐
3
exp [−𝛽

1
(𝑟 − 𝑟
1
)]

+ 𝑐
4
exp [−𝛽

2
(𝑟
2
− 𝑟)] ,

(19)

where five unknown constants 𝑐
0
–𝑐
4
are determined from the

four restrictions

𝜓 (𝑟
1
) = 𝜓 (𝑟

2
) = 0,

𝑑𝜓

𝑑𝑟
(𝑟
1
) =

𝑑𝜓

𝑑𝑟
(𝑟
2
) = 0, (20)

and the normalization condition for 𝑤 on 𝑧 = ℎ/2,

𝜓 (𝑟
𝑚
) = −

𝑟
2

𝑚
− 𝑟
2

1

2
. (21)

Here 𝑟
𝑚
denotes the radial coordinate of the point in the bulk

on 𝑧 = ℎ/2 where 𝑤 vanishes; that is,

𝑑𝜓

𝑑𝑟
(𝑟
𝑚
) = 0. (22)

Note that the spatially averaged vertical velocity component
at 𝑧 = ℎ/2 (averaged over 𝑟

1
≤ 𝑟 ≤ 𝑟

𝑚
) is now 1. The two

parameters 𝛽
1
and 𝛽

2
control the boundary-layer thickness

near the cylinder walls, where the steep distribution of 𝑤
along the normal to the wall is expected; larger 𝛽

𝑖
means

a thinner layer. Figure 2 illustrates typical profiles of the
velocity component 𝑤(𝑟, ℎ/2) for different sets of 𝛽

1
and 𝛽

2
.

It clearly shows that larger 𝛽
𝑖
yields a thinner layer and each

wall-layer thickness can be controlled separately.
We have also prepared 1D code applicable to the

case where no fluid motion exists so that the convection
terms vanish. The numerical schemes are identical to those
employed in the 2D code except that the variables’ depen-
dence on 𝑧 has been removed in the 1D code.
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−0.5

−1

4
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w
(r
,h
/2
)

Figure 2: Typical profiles of the velocity component 𝑤 on 𝑧 = ℎ/2

given with three different sets of 𝛽
1
and 𝛽

2
.

5. Results and Discussion

The standard parameter set is given as follows [10]:

𝑅
1
= 76.2 [mm] , 𝑅

1
= 101.6 [mm] ,

𝜀 = 2 × 8.85 × 10
−12

[s ⋅ S/m] ,

𝑘
∗

1
≡ 𝑘
∗

10
= 2.84 × 10

−6
[m/s] ,

𝑘
∗

2
≡ 𝑘
∗

20
= 3.12 × 10

−6
[m/s] ,

𝜎 = 𝜎
0
≡ 20 × 10

−12
[S/m] ,

𝑞
∗

1𝑤
= 7.71 × 10

−3
[C/m3] ,

𝑞
∗

2𝑤
= 1.84 × 10

−3
[C/m3] .

(23)

The diffusivity is set at 𝐷 = 8.86 × 10
−11 [m2/s] in

Washabaugh [10]. However, in laminar flow with such a very
low diffusivity, numerical simulation in general requires a
very long time and the EDLs near the cylinder surfaces are
too thin to be effectively resolved by a reasonably fine grid
system. It also turned out that the conservation property
cannot be established with such low diffusivity. Since we
are concerned with laminar flow in this study, we assume
much higher diffusivity than the original value, usually in
the range 𝑂(10−5) ∼ 𝑂(10−6) [m2/s]. So, in this study we set
𝐷
0
≡ 10
−6 [m2/s] as the standard diffusivity. Increasing the

diffusivity is equivalent to decreasing the geometric scale as
can be seen from the definition of the twomain dimensionless
parameters, 𝑃 and 𝑄 appearing in (5a). Other parameters to
be varied here are 𝑘∗

𝑖
and 𝜎. So, we set the following: 𝐷 =

𝛼
𝐷
𝐷
0
, 𝑘∗
𝑖
= 𝛼
𝑘𝑖
𝑘
∗

𝑖0
, and 𝜎 = 𝛼

𝜎
𝜎
0
, where 𝛼

𝐷
, 𝛼
𝑘𝑖
, and 𝛼

𝜎

are multiplying factors.The reference velocity will vary in the
range 𝑈 = 10

−6
∼1 [m/s], and the control parameters for the
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Figure 3: Dependence of 𝑞
1𝑐
, the value of 𝑞

1
at 𝑧 = ℎ/2, on

the conservation property of the convection terms and the specific
form of the source terms in the charge transport equation given
from COMSOL simulation with the number of grid elements being
12,000. The diffusivity factor is set at 𝛼

𝐷
= 88.6 and the reference

velocity at𝑈 = 1 [m/s]. Solid lines with square symbols are given by
CN-SC (convection terms in a nonconservative form and the source
term written in terms of the charge), solid lines with circles by CN-
SE (convection terms in a nonconservative form and the source term
written in terms of the electric field), solid line with deltas by CC-
SC (convection terms in a conservative form and the source term
written in terms of the charge), and solid line with diamond symbols
by CC-SE (convection terms in a conservative form and the source
term written in terms of the electric field). The solid line without
symbols, 𝑞

1𝑐
= 0.534, denotes the numerical solution obtained by

the 2D in-house code.

velocity profiles will be set at 𝛽
1
= 𝛽
2
= 20, except where

otherwise mentioned.
Figure 3 shows the sensitive dependence of the numerical

solutions given by the COMSOL simulations on the con-
servation property of the convection terms and the form
of the source term. The diffusivity factor is set at 𝛼

𝐷
=

88.6 in the simulations; then, we get 𝑃 = 287 and 𝑄 =

8.23. Here CC means that the convection terms are treated
with the conservative form, that is, with the form shown
in (5a) (second term). CN means that the convection terms
are treated with the nonconservative form, that is, with
𝑃[𝑢𝜕𝑞/𝜕𝑟+𝑤𝜕𝑞/𝜕𝑧]. Further, SCmeans that the source term
is written as 𝑄𝑞 (like the third term in (5a)), whereas SE
means that it is written as 𝑄∇ ⋅ E. When the nonconservative
form for the convection terms (CN) is used, the results vary
enormously with 𝛼

𝑘
(≡ 𝛼
𝑘1

= 𝛼
𝑘2
), and at low values of 𝛼

𝑘
it

can even be negative, which is physically irrelevant. We also
conducted the grid-dependence test with different grids. At
𝛼
𝑘
= 0.1, the in-house code gives 𝑞

1𝑐
= 0.534with grids 51 ×

51, whereas it gives 𝑞
1𝑐

= 0.536 with 101 × 101, showing
a very small change. The scheme CC-SE in COMSOL on
the other hand gives 𝑞

1𝑐
= 0.399 with the number of grid

elements 12,000, but it gives 𝑞
1𝑐
= 0.502with 33,000 elements

and 𝑞
1𝑐
= 0.524 with 61,000 elements, indicating that as the

grids are refined the data approaches the value given by the in-
house code.We also confirm that the in-house code yields the
same result regardless of 𝛼

𝑘
. We also developed an in-house

code which uses the nonconservative convection terms. For
the same parameter set given above and for 𝛼

𝑘
= 1, we get

𝑞
1𝑐
= 0.025 with the grids 51 × 51 and 𝑞

1𝑐
= 0.113 with the

grids 101 × 101, both being much smaller than the correct
value 𝑞

1𝑐
= 0.534. This implies that the conservative property

of the convection terms is one of the most important factors
regarding numerical accuracy.

The fact that the numerical solutions are sensitively
dependent on the form of the convection or conduction
(source) term in the governing equations implies that a
small error in the equations can yield a significantly different
solution. In order to explore the reason, we perform a
simple analysis with the one-dimensional equation without
convection effect:

𝑞
󸀠󸀠
− 𝜆
2
𝑞 = 𝛿, (24a)

𝜙
󸀠󸀠
+ 𝑞 = 0, (24b)

where the prime denotes differentiation with respect to the
new variable 𝑥 = 𝑟 − 𝑟

1
and 𝛿 is an arbitrary small error

which is supposed to be contained in the charge transport
equation due to the use of different forms of each term. In fact,
the above equations can be derived from (9a) and (9b) under
the limit of very large cylinders, 𝑟 → ∞. The boundary
conditions to be satisfied are

𝐽
𝑟
≡ − (𝑞

󸀠
+ 𝜆
2
𝜙
󸀠
) = −𝑘

1
(𝑞 − 1) at 𝑥 = 0, (25a)

− (𝑞
󸀠
+ 𝜆
2
𝜙
󸀠
) = 𝜅𝑘

1
(𝑞 − 𝑞

2𝑤
) at 𝑥 = 1, (25b)

𝜙 = 0 at 𝑥 = 0, 1. (25c)

Here, 𝑘
1
is taken to be very small, and 𝜅 ≡ 𝑘

2
/𝑘
1
= 𝑂(1);

we calculate 𝑘
1
= 8.1 × 10

−4 with the standard parameter
set and 𝐷 = 8.86 × 10

−5 [m2/s]. Then, after some algebraic
work we derive

𝑞
1
= 𝑞
2
=
1 + 𝜅𝑞

2𝑤
− 𝛿/𝑘
1

1 + 𝜅
. (26)

This gives 𝑞
1
= 𝑞
2
= 0.601 for 𝛿 = 0 (no error), which is

not so much different from 𝑞
1𝑐
= 0.534 given from the two-

dimensional simulation (see Figure 3). More importantly,
we see from (26) that even a small value of 𝛿 can bring a
significantly different value of 𝑞

1
as long as 𝑘

1
remains small.

It can even produce a negative value of 𝑞
1
when 𝛿 > 𝑘

1
(1 +

𝜅𝑞
2𝑤
).
On the other hand, the numerical data of 𝑞

1𝑐
given from

the 2D in-house code with the conservative convection terms
are almost invariant of the parameter 𝑘

1
as shown in Figure 3.

This can be understood from the expansion of (15a) for small
𝑘
1
reading

𝑞
1
= 1 − (1 − 𝑞

2𝑤
)
𝜅𝑟
2
ln (𝑟
2
/𝑟
1
)

𝑟
1
+ 𝜅𝑟
2

+ 𝑂 (𝑘
1
) . (27)
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Equation (27) clearly indicates that 𝑞
1
, which can also be

shown to be the same as 𝑞
2
for small 𝑘

1
, is independent of 𝑘

1

to the leading order. In passing, evaluation of (27) gives 𝑞
1
=

0.547, which differs only 2% from the 2D result 𝑞
1𝑐

= 0.534

(see Figure 3).This agreement is remarkable considering that
in 2D simulations 𝑞

1
is also a function of 𝑧.

Figure 4(a) shows the distribution of 𝑞(𝑟) and 𝑄𝜙(𝑟)

obtained numerically from the 1D code for the case without
convection effect; the graph is almost indistinguishable from
the one given by the analytical solutions (11) and (14). We
confirm an almost linear relationship between 𝑞 and 𝜙 as
described in (11); 𝐶

3
is small because 𝑘

1
is small. Since the

charge is positive everywhere, the second derivative of the
potential is negative, as can be seen from (24b), being con-
sistent with Figure 4(a). Figure 4(b) shows the distribution of
the total amount of the charge flux times the radius, (𝑟𝐽

𝑟
)tot,

and the two contributions, (𝑟𝐽
𝑟
)dif and (𝑟𝐽𝑟)cond obtained from

the 1D code. Since the charge is large near both walls and
small in between the two, the diffusion must occur from
the walls to the central region so that (𝑟𝐽

𝑟
)dif > 0 on the

left-hand side and (𝑟𝐽
𝑟
)dif < 0 on the right-hand side as

shown in Figure 4(b). On the other hand, since the electric
field is directed from the central region toward the walls, the
charge receives Coulomb force in the same direction as the
field vector, and so the sign of (𝑟𝐽

𝑟
)cond is the reverse of that

of (𝑟𝐽
𝑟
)dif as shown in Figure 4(b). We will see below that

those two can make balance with each other independently
of the charge input or output through the walls. First, we
note from Figure 4(b) that (𝑟𝐽

𝑟
)tot is much smaller than the

other two contributions. As addressed before, this is caused
by the smallness of 𝑘

𝑖
. Since (𝑟𝐽

𝑟
)tot is positive, the charge is

transmitted from the inner to the outer cylinder side, which
is physically correct because 𝑞

1𝑤
= 1 is higher than 𝑞

2𝑤
. This

implies that for a small value of 𝑘
𝑖
the diffusive charge flux

is balanced by the conductive flux. We confirm from the 1D
simulation that setting 𝑞

2𝑤
= 𝑞
1𝑤

= 1 produces (𝑟𝐽
𝑟
)tot = 0

although the distributions of (𝑟𝐽
𝑟
)dif and (𝑟𝐽𝑟)cond are similar

to those of Figure 4(b). This means that the nonzero charge
distribution can be established as long as the wall charge is
assigned with a nonzero value.

Two important dimensionless parameters explicitly
appearing in the governing equations (5a) and (5b) are 𝑃

and 𝑄, and exploring the influence of these parameters on
the solutions’ behavior is the main purpose of this study.
The former represents the importance of the convection
terms compared with the diffusion terms, whereas the latter
is related to the thickness of EDL as 𝜆 = 1/√𝑄. Under
the standard parameter set and 𝑈 = 1 [m/s], we calculate
𝑃 = 2.54 × 10

4 and 𝑄 = 729. In the following parametric
study, we will start with small values of 𝑃 and 𝑄, and see
how the solution structures vary with increase of these
parameters.

Figure 5 shows the numerical results of the 2D code given
at 𝛼
𝜎
= 0.001 and 𝑈 = 10

−5 [m/s] at which 𝑃 = 0.254 and
𝑄 = 0.729. 𝑃 remains small enough that the distributions of 𝑞
(Figure 5(a)) and 𝜙 (Figure 5(b)) are almost one-dimensional
being invariant of 𝑧. The diffusive charge-flux vector, Jdif ≡
−∇𝑞 (Figure 5(c)), and the conductive charge-flux vector,
Jcond ≡ −𝑄∇𝜙 (Figure 5(d)), also reveal a one-dimensional
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Figure 4: Numerical results of 1D simulation with 𝛼
𝐷
= 88.6; (a)

distribution of 𝑞(𝑟) (solid line) and 𝑄𝜙(𝑟) (dashed line) and (b)
distribution of (𝑟𝐽

𝑟
)dif (dashed line), (𝑟𝐽

𝑟
)cond (dash-dot line), and

1000(𝑟𝐽
𝑟
)tot (solid line).

nature; they are almost heading for the radial direction and
are balanced by each other. On the other hand, the convective
charge-flux vector, Jconv ≡ 𝑃u𝑞 (Figure 5(e)), is almost in
the same pattern as the velocity vector, u, because the charge
distribution is nearly uniform as shown in Figure 5(a). The
total charge-flux vector, Jtot ≡ Jdif + Jconv + Jcond (Figure 5(f)),
then looks not somuch different from Jconv, because although
Jdif and Jcond are in the same order of magnitude as Jconv, they
combine to becomemuch smaller than each one, as discussed
above. The stream traces of the total charge flux (Figure 5(f))
show that thewall charge at 𝑟 = 𝑟

1
is diffused into the domain,

convected along the streamlines, and finally diffused into the
wall at 𝑟 = 𝑟

2
. In the bulk, the total charge-flux vector plot

shows a recirculating pattern like the fluid velocity vector.
Figure 6 shows a sketch of the passage through which the
charge is transmitted from the inner wall at 𝑟 = 𝑟

1
to the outer
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Figure 5: Numerical results of 2D simulation at 𝛼
𝜎
= 10
−3 and 𝑈 = 10

−5 [m/s]; (a) contours of 𝑞, (b) contours of 𝜙, (c) Jdif, (d) Jcond, (e) Jconv,
and (f) Jtot.
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z = h

𝛿Lc

z = 0
r = r1 r = r2

𝛿Tc

Figure 6: Passage of the charge transmission from the inner
cylindrical wall at 𝑟 = 𝑟

1
to the outer cylindrical wall at 𝑟 = 𝑟

2
. Also

shown are the thickness of the passage at 𝑧 = ℎ/2 on the inner wall,
𝛿
𝐿𝑐
, and that at 𝑟 = 𝑟

𝑐
on the top wall, 𝛿

𝑇𝑐
.

wall at 𝑟 = 𝑟
2
together with the definition of the thicknesses

of the passage, 𝛿
𝐿𝑐
and 𝛿
𝑇𝑐
at particular places.

At a reference velocity 10 times higher,𝑈 = 10
−4 [m/s], we

get 𝑃 = 2.54 and 𝑄 = 0.729. Distribution of 𝑞 (Figure 7(a))
shows deviation from the one-dimensional structure, while 𝜙
(Figure 7(b)) still keeps its one-dimensional nature. Accord-
ingly, Jdif is somewhat deteriorated (Figure 7(c)), but Jcond is
still heading for the radial direction (Figure 7(d)). The sum
of the two flux vectors, Jdif + Jcond (Figure 7(e)), now shows
much decreased level caused by their mutual balance but
with complex stream-trace structure. The total flux vector,
Jtot (Figure 7(f)), then shows that most of the bulk region
is composed of the recirculating pattern and simultaneously
the passage near the walls responsible for the wall-to-wall
charge transmission is more narrowed than in Figure 5(f)
with smaller 𝑈.

Further increase of 𝑈 (at 𝑈 = 10
−3 [m/s]; 𝑃 = 25.4,

𝑄 = 0.729) tends to make the contours of 𝑞 the closed-
curve style in particular in the bulk (Figure 8(a)). Thus the
diffusive flux vectors (Figure 8(c)) focus on the center of the
contours of 𝑞, where 𝑞 is minimized. However variation of
𝑞 is not so significant that the contours of 𝜙 still show the
one-dimensional nature (Figure 8(b)). Thus, the conductive
flux vectors (Figure 8(d)) are heading for the radial direction.
The pattern of Jdif + Jcond (Figure 8(e)) is now more complex
than Figure 7(e) but its magnitude still remains at low value.
The charge transmission passages near the walls at 𝑟 = 𝑟

1

and 𝑟 = 𝑟
2
become thinner than Figure 7(f) because the

convective effect is more pronounced.
When𝑈 is further increased, the contour plot of 𝑞 tends to

the streamline pattern of the fluid flow and the diffusive flux
vector plot shows the radial inward pattern more clearly than

Figure 8(c), but the distribution of 𝜙 and the conductive flux
vector plot are qualitatively the same as Figures 8(b) and 8(d).
The total charge-flux vector plot also tends more closely to
the convective flux vector plot, because the convective effect
is more dominant at higher values of 𝑈 (or equivalently at
larger values of 𝑃). The thickness of the transmission passage
becomes smaller at larger 𝑈. We measure the dimensionless
thickness 𝛿

𝐿𝑐
as 0.094 at 𝑈 = 10

−5 [m/s] (from Figure 5(f)),
0.024 at 𝑈 = 10

−4 [m/s] (from Figure 7(f)), 0.0070 at 𝑈 =

10
−3 [m/s] (from Figure 8(f)), 0.0016 at 𝑈 = 10

−2 [m/s], and
so forth. We also measure 𝛿

𝑇𝑐
as 0.127 at 𝑈 = 10

−5 [m/s],
0.014 at 𝑈 = 10

−4 [m/s], 0.0014 at 𝑈 = 10
−3 [m/s], 0.00014 at

𝑈 = 10
−2 [m/s], and so forth. This indicates that the amount

of charge transmitted through the walls per unit area and unit
time is almost independent of 𝑈 at high values of 𝑈.

As 𝑈 is increased at a fixed 𝜎, the contour of 𝑞 tends to
follow the fluid streamline pattern because, when the fluid
circulates along its closed path with high velocity, the fluid
circulation time, that is, 𝜏conv, becomes so short compared
with 𝜏dif and 𝜏cond that the diffusive or conductive action
does not have enough time to modify the value of 𝑞 but
must leave it to remain at a constant value specific to the
circulation path. That is, we can estimate for large value of 𝑈
the relation 𝑞 = 𝑞(Ψ), whereΨ is the stream function reading
Ψ = 𝜓(𝑟) sin(𝜋𝑧/ℎ) in this study. This can be also proved
from (5a). At the limit 𝑃 → ∞, (5a) becomes ∇ ⋅ (u𝑞) ≈ 0

or equivalently (u∇)𝑞 ≈ 0 (from the continuity equation).
In terms of the material derivative, this can be written as
𝐷𝑞/𝐷𝑡 = 0, indicating that 𝑞 = constant along the streamline,
on which Ψ is set as constant.

In order to confirm the above reasoning, we calculate the
Lagrangian variation of 𝑞 of a fluid particle while it flows
along the given streamline. Figure 9 shows the numerical
results obtained at various reference velocities and at fixed
𝛼
𝜎
= 10
−3. The abscissa 𝑠 indicates the distance travelled by

the fluid particle along the closed streamline specified by the
initial point, normalized by the total length of the streamline.
So, 𝑠 = 0 means the starting point and 𝑠 = 1 the final point,
which is set to be the same as the initial point. The figure
clearly demonstrates that as the reference velocity increases,
the charge density variation ismore uniformbecause the time
taken for one complete circulation is decreased accordingly.
It also reveals that the inner streamline starting at (𝑟, 𝑧) =

(𝑟
𝑐
, 0.2) (Figure 9(b)) shows smaller variation of 𝑞 than the

outer one starting at (𝑟, 𝑧) = (𝑟
𝑐
, 0.02) (Figure 9(a)) for the

same parameter set; this is also consistent with the above
reasoning because the former requires a smaller circulation
time than the latter. The overall level of 𝑞 is observed to
increase as 𝑈 is increased in particular near 𝑠 = 0.5, because
the contour of 𝑞 tends to the plume structure when 𝑈 is
increased (partly shown in Figure 8(a) near 𝑧 = 0 and 1).

Nowwe investigate the effect of 𝜎 on the charge-transport
behavior at fixed 𝑈 = 10

−4 [m/s]. Figure 10 shows the
numerical results given at 𝛼

𝜎
= 0.1 (𝑃 = 2.54, 𝑄 = 72.9).

Compared with Figure 7(a) for 𝜎 being 100 times smaller, the
level of 𝑞 is significantly decreased in the bulk, because 𝜆 is
decreased by the factor 0.1. As a result, the level of 𝜙 is also
decreased (Figure 10(b)).The vector plots of Jdif (Figure 10(c))
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Figure 7: Numerical results of 2D simulation at 𝛼
𝜎
= 10
−3 and 𝑈 = 10

−4 [m/s]; (a) contours of 𝑞, (b) contours of 𝜙, (c) Jdif, (d) Jcond, (e)
Jdif + Jcond, and (f) Jtot.



12 Journal of Applied Mathematics

0.52

0.5
2

0.
5
2

0.5
3

0.5
3

0.
5
3

0.
5
3

0.
5
40.
5
4

0.
5
5

0.
5
5

0.
56

r

z

3 3.2 3.4 3.6 3.8 4
0

0.2

0.4

0.6

0.8

1

5
4

(a)

0.
01

0.
01

0.
02 0.
02

0.
03

0.
03

0.
04

0.
04

0.
05

0.
050.
06

0.
06

r

z

3 3.2 3.4 3.6 3.8 4
0

0.2

0.4

0.6

0.8

1

(b)

r

z

3 3.2 3.4 3.6 3.8 4
0

0.2

0.4

0.6

0.8

1

0.5

(c)

r

z

3 3.2 3.4 3.6 3.8 4
0

0.2

0.4

0.6

0.8

1

0.5

(d)

r

z

3 3.2 3.4 3.6 3.8 4
0

0.2

0.4

0.6

0.8

1

0.1

(e)

r

z

3 3.2 3.4 3.6 3.8 4
0

0.2

0.4

0.6

0.8

1

30

(f)

Figure 8: Numerical results of 2D simulation at 𝛼
𝜎
= 10
−3 and 𝑈 = 10

−3 [m/s]; (a) contours of 𝑞, (b) contours of 𝜙, (c) Jdif, (d) Jcond, (e)
Jdif + Jcond, and (f) Jtot.
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Figure 9: Lagrangian variation of the charge density versus the
normalized distance travelling from the initial point of a fluid
particle while flowing along the streamline, numerically given at the
four reference velocities indicated and at 𝛼

𝜎
= 10
−3. Initial points

are (a) (𝑟, 𝑧) = (rc, 0.02) and (b) (𝑟, 𝑧) = (rc, 0.2).

and Jcond (Figure 10(d)) show the one-dimensional nature and
they are not qualitatively so much different from Figures 7(c)
and 7(d), respectively. However, their magnitude is increased
significantly, in particular near the walls, of course. The
level of their sum, Jdif + Jcond (Figure 10(e)), is accordingly
increased but not somuch as Jdif and Jcond. On the other hand,
Jtot (Figure 10(f)) differs from Figure 7(f) significantly. Its
magnitude is about 3 times smaller than Figure 7(f), because
at 𝛼
𝜎

= 0.1 the charge density 𝑞 decreases sharply with
the normal distance from the walls, which causes Jconv to be
reduced; note that in this parameter set, too, the contribution
of Jconv to Jtot is dominant over the other fluxes. On the other
hand, in the central region near 𝑟 = 𝑟

𝑐
, the level of 𝑞 is much

lowered so that the levels of Jconv and Jtot must also be low

there. Thus, in order to satisfy the charge conservation, the
passage of the charge transmission near the top wall must be
wider than that near the side walls, 𝛿

𝑇𝑐
> 𝛿
𝐿𝑐
. In other words,

at a high enough value of 𝜎, the central region is dominated
by the diffusive and conductive flux but not by the convective
flux, whereas the EDLs are dominated by the convective flux,
except for the very thin EDLs closer to the walls where the
diffusion terms should be more effective because the fluid
velocity remains very small.

As 𝛼
𝜎
is further increased, the EDLs are clearly distin-

guished from the bulk as shown in Figure 11(a) for the radial
distribution of 𝑞 and 𝜙 at 𝑧 = ℎ/2. Since 𝑞 ≈ 0 in the
bulk (to be referred to as “charge depletion zone”), 𝜙 must
be a logarithmic function of 𝑟 as indicated in (11) and shown
in Figure 11(a). Thus the electric field is nonzero in the bulk
causing Jcond ≡ 𝑄𝜎E to be finite there. The diffusive flux and
convective flux must vanish in the bulk, because 𝑞 ≈ 0 there.
Then, the total flux must be dominated by the conductive
flux, which can be confirmed from Figures 11(b), 11(c), and
11(f), where the patterns of stream trace of the fluxes look
similar to each other near the central region, 𝑟 = 𝑟

𝑐
. On

the other hand, the EDLs are dominated by the convective
flux. At this parameter set, the level of Jtot shown in Figures
11(e) and 11(f) is further decreased from Figure 10(f) because
of the decreased EDL thickness. We also observe that 𝛿

𝑇𝑐
is

increased significantlywith increase of𝜎.Measurement of 𝛿
𝑇𝑐

from the simulation results gives 𝛿
𝑇𝑐

= 0.021 at 𝛼
𝜎
= 0.01,

0.079 at 𝛼
𝜎
= 0.1, and 0.386 at 𝛼

𝜎
= 1, while 𝛿

𝐿𝑐
is not so

much changed upon 𝜎; we measure 𝛿
𝐿𝑐
= 0.028 at 𝛼

𝜎
= 0.01,

0.034 at 𝛼
𝜎
= 0.1, and 0.038 at 𝛼

𝜎
= 1.

We can estimate the dependence of the charge density
distribution on 𝜎 from the Lagrangian variation of 𝑞 for
various values of 𝛼

𝜎
as shown in Figure 12. On the streamline

having the initial point at (0.5, 0.02), the overall level of
𝑞 decreases with 𝛼

𝜎
, but the range of variation is rather

increased up to 𝛼
𝜎

= 0.1 (Figure 12(a)). The latter result
can be understood from the fact that as 𝛼

𝜎
is increased the

wall charge 𝑞
𝑖
remains almost constant (we measure only

4% change for the range 10
−3

≤ 𝛼
𝜎

≤ 1) but the charge
depletion zone begins to appear near 𝛼

𝜎
= 0.1. As 𝛼

𝜎
is

further increased, EDLs become thinner while the charge
depletion zone becomes wider, which causes the variation
of 𝑞 to be smaller as shown in Figure 12(a). We can also
give a qualitatively similar description as to the Lagrangian
variation of 𝑞 of the fluid particle on the streamline with the
initial point at (𝑟

𝑐
, 0.2) (Figure 12(b)). In particular, the level

of 𝑞 vanishes all the way through the streamline at 𝛼
𝜎
= 1

implying that charge depletion zone should encompass the
region surrounded by the streamline.

A typical solution structure of the charge transport equa-
tions with 𝛼

𝜎
and 𝑈 sufficiently high is shown in Figure 13.

We can say that the given value of 𝛼
𝜎
is high enough in that

the EDLs are thin and the charge depletion zone is wide. We
can also say that the given value of 𝑈 is high enough in that
contours of 𝑞 in the regions near 𝑧 = 0 and 𝑧 = 1 show the
plume structure, which then causes the charge to accumulate
there and makes the contour of 𝜙 to be of a saddle type near
the center point at (𝑟

𝑐
, ℎ/2).
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Figure 10: Numerical results of 2D simulation at 𝛼
𝜎
= 0.1 and 𝑈 = 10

−4 [m/s]; (a) contours of 𝑞, (b) contours of 𝜙, (c) Jdif, (d) Jcond, (e)
Jdif + Jcond, and (f) Jtot.
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Figure 11: Numerical results of 2D simulation at 𝛼
𝜎
= 1 and 𝑈 = 10

−4 [m/s]; (a) radial distributions of 𝑞 and 𝜙 on 𝑧 = ℎ/2, (b) Jcond, (c)
Jdif + Jcond, (d) Jconv, (e) Jtot showing its 𝑟-profile, and (f) Jtot showing its 𝑧-profile.
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Figure 12: Lagrangian variation of the charge density versus the normalized distance travelling from the initial point of a fluid particle while
flowing along the streamline, numerically given at the three indicated values of 𝛼

𝜎
and at 𝑈 = 10

−4 [m/s]. Initial points are (a) (𝑟, 𝑧) = () =

(rc, 0.02) and (b) (𝑟, 𝑧) = () = (rc, 0.2).

Electrification is known to be directly related to the
amount of charge accumulated in the bulk, which in this
study is quantified by the averaged charge density

𝑞av =
2

ℎ (𝑟
2

2
− 𝑟
2

1
)
∫
𝐴

𝑟𝑞 𝑑𝑟 𝑑𝑧. (28)

Figure 14 shows variation of 𝑞av obtained from the 2D code
for various 𝑈 values. In the limit 𝑈 → 0, 𝑞av asymptotes
to a constant value, because the charge distribution tends to
the 1D structure (see, e.g., Figure 5(a)). As 𝑈 increases, 𝑞av
also increases, because the fluid conveys the charge within
the EDLs to the top (𝑧 = 1) and bottom (𝑧 = 0) boundaries
of the domain, leading to the plume structure there (see,
e.g., Figures 8(a) and 13(a)). The amount of increase however
depends on the value of 𝜎. At low values of 𝛼

𝜎
, the level of 𝑞

is high but its spatial variation is small (Figures 7(a) and 8(a))
so that even the plume structure brings a slight increase of 𝑞av
upon 𝑈 as shown in Figure 14(a). On the other hand, at high
values of 𝛼

𝜎
, thin EDLs appear distinctively and a nonzero

value of 𝑞 is detected only within the EDLs. In this case,
existence of the convection effect would sweep the charge
carriers within EDLs toward the top and bottom boundaries,
giving rise to additional thin layers of nonzero charge (i.e.,
plume structure) there. Since increase of𝑈 tends to make the
overall level of 𝑞 higher in those additional layers, we expect
more increase of 𝑞av upon 𝑈, as shown in Figure 14(a), than
is the case with lower 𝛼

𝜎
(Figure 14(b)).

6. Conclusions

We studied the physics of charge transport in an annulus
between concentric circular cylinders from theoretical and

numerical analysis by using a commercial software COMSOL
and 2D in-house code.

We have found that the conservation property of the
convective terms in the charge transport equation affects
numerical accuracy significantly. In both the COMSOL and
in-house code simulations, keeping the convective terms in
conservative form is essential in maintaining the numerical
accuracy. In COMSOL, the conductive terms being treated as
sourcesmust also bewritten in the gradient-of-field form, not
in the form of charge so as not to deteriorate the numerical
accuracy. Such sensitive dependence of the numerical solu-
tions’ accuracy on a small error in the governing equations
can be explained in terms of 1D simplified equations.

In the absence of the convection effect, the analytical
and numerical solutions of the 1D equations show that the
diffusive charge flux is balanced by the conductive flux and
the sum of the two fluxes yields the total flux which remains
much smaller than the two fluxes for small values of 𝑘

𝑖
.

The effect of two dimensionless parameters, 𝑃 and 𝑄, on
the solution structure is then studied from the simulation
with 2D in-house code. At low values of 𝑃, the solutions tend
to a one-dimensional nature being independent of 𝑧. Increase
of 𝑃 caused by increase of 𝑈 tends to make the convective
effect dominate over the diffusive or conductive effect and
the contour of 𝑞 tends to follow the fluid’s streamline
pattern, because the time taken by the fluid particle for one
complete circulation along the streamline becomes so short
that the diffusive or conductive action is ineffective. At low
values of 𝑄, on the other hand, 𝑞 tends to be uniformly
distributed, because the diffusion effect is strong compared
with conduction. Accordingly, 𝑃 is less effective at low values
of 𝑄; spatially averaged value of 𝑞 increases only 2.2% when
𝑈 increases from 10

−5 [m/s] to 0.1 [m/s] at 𝛼
𝜎
= 10
−3 fixed,
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Figure 13: Typical solution structure of the system of charge
transport equations given numerically at 𝛼

𝜎
= 0.2 and 𝑈 =

0.01 [m/s]; contours of (a) 𝑞 and (b) 𝜙.

whereas it increases 42% at 𝛼
𝜎
= 0.2 for the same increase of

𝑈.
Increase of 𝑄 caused by increase of 𝜎 makes the EDLs

thinner and the charge depletion zone wider. Thickness of
the passage near the inner and outer walls through which the
charge is transmitted fromonewall to the other also decreases
as 𝑄 is increased.
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