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Let 𝑀 be a C∞ compact 𝐶𝑅 manifold of 𝐶𝑅-codimension ℓ ≥ 1 and 𝐶𝑅-dimension 𝑛 − ℓ in a complex manifold 𝑋 of complex
dimension 𝑛 ≥ 3. In this paper, assuming that𝑀 satisfies condition 𝑌(𝑠) for some 𝑠with 1 ≤ 𝑠 ≤ 𝑛− ℓ− 1, we prove an 𝐿2-existence
theorem and global regularity for the solutions of the tangential Cauchy-Riemann equation for (0, 𝑠)-forms on𝑀.

1. Introduction and Basic Notations

The tangential Cauchy-Riemann complex (or 𝜕
𝑏
-complex)

was first introduced by Kohn and Rossi [1] for studying the
holomorphic extension of 𝐶𝑅 functions from the boundary
of a complexmanifold.The closed range property is related to
existence and regularity theorems for 𝜕

𝑏
and for𝐶𝑅manifolds

to a reason of embedding. It is worth then tomention that the
𝜕
𝑏
-operator has closed range in the 𝐿2-sense on boundaries

of smooth bounded pseudoconvex domains in C𝑛 due to
Shaw [2] for all 1 ≤ 𝑠 < 𝑛 − 2 and Boas and Shaw [3] for
𝑠 = 𝑛 − 2. Later, Kohn [4] obtained results analogue to those
of [2, 3] on boundaries of smooth bounded pseudoconvex
domains in a complex manifold. Nicoara [5] extended the
results of Kohn [4] to compact, orientable, pseudoconvex 𝐶𝑅
manifold of real dimension 2𝑛 − 1, at least five, embedded in
C𝑁, 𝑁 ≥ 𝑛, leading to global regularity for the 𝜕

𝑏
-equation

on such 𝐶𝑅 manifolds. The main tool in his proof is that
of microlocalizations using a new type of weight functions
called strongly𝐶𝑅 plurisubharmonic functions (see also [6]).

In addition, Harrington and Raich [7] adapted the
microlocal analysis used by Nicoara [5] to establish the
closed range property for the 𝜕

𝑏
-operator on 𝐶𝑅 manifold

of hypersurface type satisfying weak 𝑌(𝑠) condition. More
precisely, by using the weighted 𝜕-theory, they showed that
the complex Green’s operator is continuous in the 𝐿2-Sobolev
spaces𝑊𝑘, 𝑘 ∈ N, and they further obtained a global solution
withC∞-regularity for solutions of the 𝜕

𝑏
-equation for (0, 𝑠)-

forms.
This paper is concerned with proving an 𝐿

2-existence
theorem for the 𝜕

𝑏
-Neumann problem on aC∞ 𝐶𝑅 compact

manifold 𝑀 of real dimension 2𝑛 − ℓ (ℓ ≥ 1) that satisfies
condition 𝑌(𝑠) for some 𝑠 with 1 ≤ 𝑠 ≤ 𝑛 − ℓ − 1 in an 𝑛-
dimensional complex manifold 𝑋 and with establishing the
global regularity properties of the 𝜕

𝑏
-equation. In particular,

our 𝜕
𝑏
-problem is set up in the usual 𝐿2-setting with no

weights using our arguments in [8, 9]. Namely, via a partition
of unity, we globalize first the local maximal 𝐿2-Sobolev
estimates obtained by [10] for ◻

𝑏
and patching them together

to obtain global ones on 𝑀. Further, we explore an 𝐿
2-

existence theorem for the 𝜕
𝑏
-equation on𝑀. These 𝐿2 results

allow us to prove that the complex Green operator𝐺
𝑏
and the

Szegö projection operators 𝑆
𝑠
are continuous in the Sobolev

spaces 𝑊𝑘
0,𝑠
(𝑀) for some 𝑠 such that 1 ≤ 𝑠 ≤ 𝑛 − ℓ − 1 and

𝑘 ≥ 0. Furthermore, we obtain a global smooth solution for
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the 𝜕
𝑏
-equation given smooth data on𝑀. Before we proceed,

we recall first some basic definitions and notations on 𝐶𝑅

manifolds.

Definition 1. Let𝑀 be aC∞-manifold of real dimension 2𝑛−
ℓ.Then a𝐶𝑅 structure on𝑀 is given by a complex subbundle
𝑇
1,0

(𝑀) of the complexified tangent bundle C𝑇(𝑀) =

𝑇(𝑀) ⊗ C such that the following conditions are satisfied.

(1) dimC𝑇
1,0

𝑧
(𝑀) = 𝑛 − ℓ, where 𝑇1,0

𝑧
(𝑀) is the fiber at

each 𝑧 ∈ 𝑀.
(2) If we define 𝑇0,1(𝑀) = 𝑇1,0(𝑀), then 𝑇

1,0

(𝑀) ∩

𝑇
0,1

(𝑀) = {0}.
(3) 𝑇1,0(𝑀) is involutive (or formally integrable); that is,

if 𝐿
1
and 𝐿

2
are two smooth sections of 𝑇1,0(𝑀),

defined on an open subset U of 𝑀, then so is their
Lie bracket [𝐿

1
, 𝐿
2
] = 𝐿

1
𝐿
2
− 𝐿
2
𝐿
1
, for every open

subset U of𝑀.

A C∞ manifold𝑀 endowed with this 𝐶𝑅 structure is called
a 𝐶𝑅 manifold of 𝐶𝑅-dimension 𝑛 − ℓ and 𝐶𝑅 codimension
ℓ.

Let𝑀 be a generic 𝐶𝑅manifold of real dimension 2𝑛 − ℓ
embedded in an 𝑛-dimensional complex manifold 𝑋. Such a
manifold𝑀 can be represented locally in the following form:
for each 𝑧 ∈ 𝑀 there exists an open neighborhood 𝑈 of 𝑧 in
𝑋 such that

𝑀∩𝑈 = {𝜁 ∈ 𝑈 | 𝜌
1
(𝜁) = ⋅ ⋅ ⋅ = 𝜌

ℓ
(𝜁) = 0} , (1)

where {𝜌]}]=1,...,ℓ areC
∞ real-valued functions on𝑈 such that

𝜕𝜌
1
(𝜁) ∧ ⋅ ⋅ ⋅ ∧ 𝜕𝜌

ℓ
(𝜁) ̸= 0 on 𝑀∩𝑈. (2)

The complex subbundle which defines the induced 𝐶𝑅

structure on 𝑀 is given by 𝑇1,0(𝑀) = 𝑇
1,0

(𝑋) ∩ C𝑇(𝑀).
Denote by C∞

0,𝑠
(𝑀) the space of (0, 𝑠)-forms with C∞-

coefficients on𝑀.The involution condition (3) ofDefinition 1
implies that there is a restriction of the de Rham exterior
derivative 𝑑 toC∞

0,𝑠
(𝑀), which is defined by 𝜕

𝑏
: C∞
0,𝑠
(𝑀) →

C∞
0,𝑠+1

(𝑀).
Let us equip 𝑋 with a Hermitian metric such that

𝑇
1,0

(𝑋) ⊥ 𝑇
0,1

(𝑋) and consider on 𝑀 the induced metric,
then 𝑇1,0(𝑀) ⊥ 𝑇

0,1

(𝑀). Let D
0,𝑠
(𝑀) be the space of (0, 𝑠)-

forms whose coefficients areC∞ with compact support in𝑀.
We then can define aHermitian inner product onD

0,𝑠
(𝑀) by

(𝜑, 𝜓) = ∫
𝑀

⟨𝜑, 𝜓⟩
𝑧
𝑑V, (3)

where 𝑑V is the volume element associated with the induced
metric on 𝑀 and ⟨𝜑, 𝜓⟩

𝑧
is the pointwise inner product

induced onC∞
0,𝑠
(𝑀) by the metric on C𝑇(𝑀) at each 𝑧 ∈ 𝑀.

Let ‖𝜑‖2 = (𝜑, 𝜑) be the corresponding norm and 𝐿2
0,𝑠
(𝑀) the

𝐿
2-completion ofD

0,𝑠
(𝑀) with respect to this norm. Let 𝜕

𝑏
:

𝐿
2

0,𝑠
(𝑀) → 𝐿

2

0,𝑠+1
(𝑀) be themaximal closed extension of the

original 𝜕
𝑏
onC∞
0,𝑠
(𝑀). A form 𝑢 ∈ 𝐿

2

0,𝑠
(𝑀) is in the domain

of 𝜕
𝑏
if 𝜕
𝑏
𝑢, defined in the sense of distributions, belongs

to 𝐿2
0,𝑠+1

(𝑀). In this way, 𝜕
𝑏
defines a linear, closed, densely

defined operator. Let 𝜕
∗

𝑏
: 𝐿
2

0,𝑠+1
(𝑀) → 𝐿

2

0,𝑠
(𝑀) be the 𝐿2-

Hilbert space adjoint of 𝜕
𝑏
such that (𝜑, 𝜕

𝑏
𝜓) = (𝜕

∗

𝑏
𝜑, 𝜓) for

all 𝜓 in Dom(𝜕
𝑏
) and 𝜑 in Dom(𝜕

∗

𝑏
). The Kohn-Laplacian ◻

𝑏

is defined by

◻
𝑏
= 𝜕
𝑏
𝜕
∗

𝑏
+ 𝜕
∗

𝑏
𝜕
𝑏
: Dom (◻

𝑏
) 󳨀→ 𝐿

2

0,𝑠
(𝑀) , (4)

where

Dom (◻
𝑏
)

= {𝜑 ∈ Dom (𝜕
𝑏
) ∩ Dom (𝜕

⋆

𝑏
)

⊂ 𝐿
2

0,𝑠
(𝑀) | 𝜕

𝑏
𝜑 ∈ Dom (𝜕

⋆

𝑏
) , 𝜕
⋆

𝑏
𝜑 ∈ Dom (𝜕

𝑏
)} .

(5)

We recall that the Kohn-Laplacian ◻
𝑏
is not elliptic, so it

has a characteristic set of dimension ℓ. Let 𝑁(𝑀) be the ℓ-
dimensional bundle such that

C𝑇 (𝑀) = 𝑇
1,0

(𝑀) ⊕ 𝑇
0,1

(𝑀) ⊕ 𝑁 (𝑀) . (6)

Let𝑁∗(𝑀) be the dual bundle of𝑁(𝑀). Let 𝛾 ∈ 𝑁∗(𝑀), then
𝛾 annihillates 𝑇1,0(𝑀) ⊕ 𝑇

0,1

(𝑀). Thus 𝑁∗(𝑀) is called the
characteristic bundle. The Levi form of𝑀 at a point 𝑧 ∈ 𝑀

is defined as the Hermitian form on 𝑇1,0(𝑀) with values in
𝑁(𝑀) such that

L
𝑧
(𝐿
1
, 𝐿
2
) = 𝑖𝜋

𝑧
([𝐿
1
, 𝐿
2
]
𝑧

) , 𝐿
1
, 𝐿
2
∈ 𝑇
1,0

(𝑀) , (7)

where 𝜋
𝑧
is the projection of C𝑇

𝑧
(𝑀) onto𝑁

𝑧
(𝑀).

The Levi form of 𝑀 at a point 𝑧 ∈ 𝑀 in the direction
𝛾 ∈ 𝑁

∗

(𝑀) is the scalar Hermitian form denotedL
𝑧
(𝛾) and

is given by

L
𝑧
(𝛾) = ⟨L

𝑧
(𝐿
1
, 𝐿
2
) , 𝛾⟩

= 𝑖⟨[𝐿
1
, 𝐿
2
] , 𝛾⟩
𝑧

, 𝐿
1
, 𝐿
2
∈ 𝑇
1,0

(𝑀) .

(8)

Definition 2 (see [10, Definition 1.2]). A 𝐶𝑅 manifold 𝑀 of
real dimension 2𝑛 − ℓ and codimension ℓ ≥ 1 in a complex
manifold of complex dimension 𝑛 is said to satisfy condition
𝑍(𝑠), 1 ≤ 𝑠 ≤ 𝑛 − ℓ − 1, at a point 𝑧 ∈ 𝑀 in the direction
𝛾 ∈ 𝑁

∗

(𝑀) if the Levi form L
𝑧
(𝛾) has at least 𝑛 − ℓ − 𝑠 + 1

positive eigenvalues or at least 𝑠+1 negative eigenvalues.𝑀 is
said to satisfy condition 𝑌(𝑠) at 𝑧 ∈ 𝑀 if it satisfies condition
𝑍(𝑠) for all directions 𝛾 ∈ 𝑁∗

𝑧
(𝑀).

Note that in the hypersurface case, that is, ℓ = 1, the
condition 𝑌(𝑠) defined above is equivalent to the classical
𝑌(𝑠) condition of Kohn for hypersurfaces (see, e.g., [11] for
more details). In particular, if the 𝐶𝑅 structure is strictly
pseudoconvex; that is, the Levi form of 𝑀 is positive or
negative definite, condition 𝑌(𝑠) holds for all 1 ≤ 𝑠 ≤ 𝑛 − 2.

2. 𝐿2-Existence Theory for 𝜕
𝑏

Let 𝑀 be a C∞ generic 𝐶𝑅 manifold of real dimension
2𝑛 − ℓ and codimension ℓ ≥ 1 in a complex manifold 𝑋
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of complex dimension 𝑛. For each point 𝑝
0
∈ 𝑀, there is

then a neighborhood 𝑈 of 𝑝
0
in 𝑋 and a local orthonormal

basis consisting of smooth vector fields 𝐿
1
, . . . , 𝐿

𝑛−ℓ
for

𝑇
1,0

(𝑈) (see, e.g., [12, Section 7.2;Theorem 3]).The collection
of vector fields {𝐿

1
, . . . , 𝐿

𝑛−ℓ
} forms a local orthonormal

basis for 𝑇
0,1

(𝑈). Let 𝑇
1
, . . . , 𝑇

ℓ
be real vector fields on

𝑈 such that the set {𝐿
1
, . . . , 𝐿

𝑛−ℓ
, 𝐿
1
, . . . , 𝐿

𝑛−ℓ
, 𝑇
1
, . . . , 𝑇

ℓ
}

forms a local orthonormal basis for C𝑇(𝑈). Denote by
{𝜔
1

, . . . , 𝜔
𝑛−ℓ, 𝜔1, . . . , 𝜔𝑛−ℓ, 𝛾

1
, . . . , 𝛾

ℓ
} the basis for C𝑇⋆(𝑈)

dual to {𝐿
1
, . . . , 𝐿

𝑛−ℓ
, 𝑇
1
, . . . , 𝑇

ℓ
}. In terms of this basis, an

element 𝜑 inC∞
0,𝑠
(𝑈) can be uniquely expressed as a sum:

𝜑 = ∑

|𝐼|=𝑠

𝜑
𝐼
𝜔
𝐼

, (9)

where 𝐼 = (𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑠
) is an 𝑠-tuple of integers with 1 ≤ 𝑖

1
<

⋅ ⋅ ⋅ < 𝑖
𝑠
≤ 𝑛 − ℓ and 𝜔𝐼 = 𝜔𝑖1 ∧ ⋅ ⋅ ⋅ ∧ 𝜔𝑖𝑠 .

We then have

𝜕
𝑏
𝜑 = ∑

|𝐼|=𝑠

𝑛−ℓ

∑

𝑗=1

𝐿
𝑗
(𝜑
𝐼
) 𝜔
𝑗

∧ 𝜔
𝐼

+ ⋅ ⋅ ⋅

= ∑

|𝐽|=𝑠+1

(∑

𝑗,𝐼

𝜀
𝑗𝐼

𝐽
𝐿
𝑗
(𝜑
𝐼
))𝜔
𝐽

+ ⋅ ⋅ ⋅ ,

(10)

where 𝜀𝑗𝐼
𝐽

is zero if 𝑗 ∪ {𝐼} ̸= 𝐽 as sets and is the sign of the
permutation that reorders 𝑗𝐼 as 𝐽 if 𝑗 ∪ {𝐼} = 𝐽, and the ⋅ ⋅ ⋅
stands for terms of order zero. Using integration by parts, we
obtain

𝜕
∗

𝑏
𝜑 = −∑

|𝐼|=𝑠

𝑛−ℓ

∑

𝑗=1

𝐿
𝑗
(𝜑
𝑗𝐼
) 𝜔
𝐼

+ ⋅ ⋅ ⋅

= − ∑

|𝐾|=𝑠−1

(∑

𝑗,𝐼

𝜀
𝑗𝐼

𝐾
𝐿
𝑗
(𝜑
𝐼
))𝜔
𝐾

+ ⋅ ⋅ ⋅ .

(11)

For 𝜑 in C∞
0,𝑠
(𝑈), the subspace of smooth (0, 𝑠)-forms on

𝑈 that can be extended smoothly up to and including the
boundary, we set

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

L(𝑈)
=

𝑛−ℓ

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝐿
𝑗
(𝜑)

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

,

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

L(𝑈)
=

𝑛−ℓ

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝐿
𝑗
(𝜑)

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

.

(12)

If we further assume that𝑀 satisfies condition 𝑌(𝑠) for some
𝑠 with 1 ≤ 𝑠 ≤ 𝑛 − ℓ − 1, for each 𝑝

0
∈ 𝑀, we can find a

constant 𝐶 = 𝐶(𝑝
0
) > 0 such that

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

L(𝑈)
+
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

L(𝑈)
≤ 𝐶(

󵄩󵄩󵄩󵄩󵄩
𝜕
𝑏
𝜑
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
∗

𝑏
𝜑
󵄩󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

) (13)

uniformly for all 𝜑 ∈ D
0,𝑠
(𝑈) (see, e.g., [10]).

Set 𝐿
𝑗
= 𝑋
2𝑗−1

+ 𝑖𝑋
2𝑗
; 𝑗 = 1, . . . , 𝑛 − ℓ. The condition

𝑌(𝑠) implies that the real vector 𝑋
1
, . . . , 𝑋

2𝑛−2ℓ
and their

commutators of length at most two span the tangent space
at each point in 𝑈. Thus 𝑋

1
, . . . , 𝑋

2𝑛−2ℓ
satisfy Hörmander’s

finite rank condition of order two. It follows then from [13,
Theorem A] (see also [14]) that there is a positive constant
𝐶 = 𝐶(𝑈) satisfying the following 1/2-subelliptic estimate:

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

1/2(𝑈)
≤ 𝐶(

2𝑛−2ℓ

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑋𝑖𝜑
󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

) , 𝜑 ∈ D
0,𝑠
(𝑈) . (14)

Here and always ‖ ⋅ ‖
𝑘(𝑈)

denotes the 𝐿2 Sobolev space 𝑘-
norm, ‖ ⋅ ‖

−𝑘
is the norm of its dual space, and ‖ ⋅ ‖ is the

usual 𝐿2-norm. We may omit the subscript 𝑈 from the norm
notation when there is no danger of confusion.

Combining the above 1/2-subelliptic estimate with (13),
as in [10], we get the following theorem.

Theorem 3. Let 𝑀 be a C∞ 𝐶𝑅 manifold of real dimension
2𝑛 − ℓ and codimension ℓ ≥ 1 in a complex manifold 𝑋 of
complex dimension 𝑛. Suppose that𝑀 satisfies condition 𝑌(𝑠)
for some 𝑠 with 1 ≤ 𝑠 ≤ 𝑛 − ℓ − 1. For each point 𝑝

0
∈ 𝑀, there

is then an open neighborhood 𝑈 on which the Kohn Laplacian
◻
𝑏
satisfies the 1/2-subelliptic estimate

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩1/2(𝑈) ≤ 𝐶(

󵄩󵄩󵄩󵄩󵄩
𝜕
𝑏
𝜑
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
∗

𝑏
𝜑
󵄩󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

) (15)

uniformly for all 𝜑 inD
0,𝑠
(𝑈).

In addition, if 𝑀 is compact, the estimate (15) holds
uniformly on𝑀 for all 𝜑 inC∞

0,𝑠
(𝑀).

Theorem 4 (see [10]). Let𝑀 be given as in Theorem 3 and 𝜙
the unique solution of the equation (◻

𝑏
+ 𝐼𝑑)𝜙 = 𝑓 for 𝑓 ∈

𝐿
2

0,𝑠
(𝑀), where 𝐼𝑑 is the identity operator. Let 𝑈 ⊂⊂ 𝑀 be a

relatively compact subset of𝑀. If the restriction of 𝑓 to 𝑈 is in
C∞
0,𝑠
(𝑈), the restriction of 𝜙 to𝑈 is then inC∞

0,𝑠
(𝑈). In addition,

suppose that 𝜂 and 𝜂
1
are two cut-off functions supported in 𝑈

such that 𝜂 = 1 on the support of 𝜂
1
; then if the restriction of 𝑓

to 𝑈 is in the 𝐿2-Sobolev space 𝑊𝑘
0,𝑠
(𝑈) for some nonnegative

integer 𝑘, the restriction of 𝜂
1
𝜙 to 𝑈 is in𝑊𝑘+1

0,𝑠
(𝑈) and there is

a constant 𝐶
𝑘
> 0 (independent of 𝑓) such that
󵄩󵄩󵄩󵄩𝜂1𝜙

󵄩󵄩󵄩󵄩𝑘+1(𝑈) ≤ 𝐶𝑘 (
󵄩󵄩󵄩󵄩𝜂𝑓

󵄩󵄩󵄩󵄩𝑘(𝑈) +
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩) . (16)

Patching the above local estimates, we obtain the follow-
ing global one.

Theorem 5. Let 𝑀 be a C∞ compact 𝐶𝑅 manifold of real
dimension 2𝑛 − ℓ and codimension ℓ ≥ 1 in an 𝑛-dimensional
complex manifold 𝑋. Suppose that 𝑀 satisfies condition 𝑌(𝑠)
for some 𝑠 with 1 ≤ 𝑠 ≤ 𝑛 − ℓ − 1. Let 𝜙 ∈ Dom(◻

𝑏
) such that

(◻
𝑏
+ 𝐼𝑑)𝜙 = 𝑓 for 𝑓 in𝑊𝑘

0,𝑠
(𝑀), 𝑘 ≥ 0, then 𝜙 is in𝑊𝑘+1

0,𝑠
(𝑀)

and there exists a constant𝐶
𝑘
> 0 (independent of𝑓) such that

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩𝑘+1(𝑀) ≤ 𝐶𝑘

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑘(𝑀). (17)

Using Theorem 5 and following an induction argument
on 𝑘, we get the following result.

Proposition 6. Let 𝑀 be given as in Theorem 5. Then the
Kohn Laplacian ◻

𝑏
is hypoelliptic. Moreover, if ◻

𝑏
𝜙 = 𝑓 for 𝑓
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in𝑊𝑘
0,𝑠
(𝑀), 𝑘 ≥ 0, then𝜙 is in𝑊𝑘+1

0,𝑠
(𝑀) and there is a constant

𝐶
𝑘
> 0 (independent of 𝑓) such that

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
2

𝑘+1(𝑀)
≤ 𝐶
𝑘
(
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝑘(𝑀)
+
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩
2

) . (18)

Let

H
𝑏

0,𝑠
(𝑀)

= {𝛼 ∈ Dom (𝜕
𝑏
) ∩ Dom (𝜕

⋆

𝑏
) ⊂ 𝐿
2

0,𝑠
(𝑀) | 𝜕

𝑏
𝛼 = 𝜕
⋆

𝑏
𝛼 = 0}

(19)

be the closed subspace of 𝐿2
0,𝑠
(𝑀) consisting of harmonic

forms and

⊥

H
𝑏

0,𝑠
(𝑀) = {𝛼 ∈ 𝐿

2

0,𝑠
(𝑀) | (𝛼, 𝜙) = 0 ∀𝜙 ∈ H

𝑏

0,𝑠
(𝑀)} .

(20)

The main 𝐿2-result is the following theorem.

Theorem 7. Let 𝑀 be a C∞ compact 𝐶𝑅 manifold of real
dimension 2𝑛 − ℓ and codimension ℓ ≥ 1 in an 𝑛-dimensional
complex manifold 𝑋. Suppose that 𝑀 satisfies condition 𝑌(𝑠)
for some 𝑠 such that 1 ≤ 𝑠 ≤ 𝑛 − ℓ − 1. Then the following
holds.

(1) The space of harmonic (0, 𝑠)-formsH𝑏
0,𝑠
(𝑀) is of finite

dimensional.
(2) The operators 𝜕

𝑏
: 𝐿
2

0,𝑠
(𝑀) → 𝐿

2

0,𝑠+1
(𝑀), 𝜕

⋆

𝑏
:

𝐿
2

0,𝑠+1
(𝑀) → 𝐿

2

0,𝑠
(𝑀), and ◻

𝑏
= 𝜕
𝑏
𝜕
∗

𝑏
+ 𝜕
∗

𝑏
𝜕
𝑏
:

Dom(◻
𝑏
) → 𝐿

2

0,𝑠
(𝑀) have closed ranges.

(3) The complex Green operator 𝐺
𝑏

: 𝐿
2

0,𝑠
(𝑀) →

Dom(◻
𝑏
) exists and is a compact operator in 𝐿2

0,𝑠
(𝑀).

(4) For any 𝑓 in 𝐿2
0,𝑠
(𝑀), we have

𝑓 = 𝜕
𝑏
𝜕
⋆

𝑏
𝐺
𝑏
𝑓 + 𝜕
⋆

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓 + 𝐻

𝑏

0,𝑠
𝑓, (21)

where𝐻𝑏
0,𝑠

is the orthogonal projection of 𝐿2
0,𝑠
(𝑀) onto

H𝑏
0,𝑠
(𝑀).

(5) 𝐺
𝑏
𝐻
𝑏

0,𝑠
= 𝐻
𝑏

0,𝑠
𝐺
𝑏
= 0. 𝐺

𝑏
◻
𝑏
= ◻
𝑏
𝐺
𝑏
= 𝐼𝑑 − 𝐻

𝑏

0,𝑠
on

Dom(◻
𝑏
).

(6) If𝐺
𝑏
is defined on 𝐿2

0,𝑠+1
(𝑀) (resp., 𝐿2

0,𝑠−1
(𝑀)), 𝜕

𝑏
𝐺
𝑏
=

𝐺
𝑏
𝜕
𝑏
on Dom(𝜕

𝑏
) (resp., 𝜕

⋆

𝑏
𝐺
𝑏
= 𝐺
𝑏
𝜕
⋆

𝑏
on Dom(𝜕

⋆

𝑏
)).

(7) If 𝑓 is in 𝐿2
0,𝑠
(𝑀) such that 𝜕

𝑏
𝑓 = 0 and 𝑓 ⊥ H𝑏

0,𝑠
(𝑀),

then 𝑓 = 𝜕
𝑏
𝜕
⋆

𝑏
𝐺
𝑏
𝑓 and 𝑢 = 𝜕

⋆

𝑏
𝐺
𝑏
𝑓 is the unique

solution to the equation 𝜕
𝑏
𝑢 = 𝑓 which is orthogonal

to Ker(𝜕
𝑏
) and satisfies ‖𝑢‖2 ≤ 𝐶‖𝑓‖2.

(8) 𝐺
𝑏
(C∞
0,𝑠
(𝑀)) ⊆ C∞

0,𝑠
(𝑀), and for each 𝑘 ∈ R there is a

positive constant 𝐶
𝑠
such that the estimate ‖𝐺

𝑏
𝑓‖
𝑘+1

≤

𝐶
𝑠
‖𝑓‖
𝑘
holds uniformly for all 𝑓 inC∞

0,𝑠
(𝑀).

Proof. Since 𝑀 is compact, via a partition of unity, the esti-
mate (15) holds globally on𝑀. Suppose that 𝑓

𝑘
is a sequence

in Dom(𝜕
𝑏
) ∩Dom(𝜕

∗

𝑏
) ∩ 𝐿
2

0,𝑠
(𝑀) such that ‖𝑓

𝑘
‖ is bounded,

𝜕
𝑏
𝑓
𝑘
→ 0 in the 𝐿2

0,𝑠+1
(𝑀)-norm and 𝜕

∗

𝑏
𝑓
𝑘
→ 0 in the

𝐿
2

0,𝑠−1
(𝑀)-norm as 𝑘 → ∞. Thus, we have ‖𝑓

𝑘
‖
1/2(𝑀)

≤ 𝑐

for some constant 𝑐. By Rellich’s Lemma, the inclusion map
𝑖
𝑀
: 𝑊
1/2

0,𝑠
(𝑀) → 𝐿

2

0,𝑠
(𝑀) is compact; we can then extract

a subsequence of 𝑓
𝑘
which converges in 𝐿

2

0,𝑠
(𝑀). Then the

hypotheses of Theorem 1.1.3 in Hörmander [15] are satisfied
which implies that H𝑏

0,𝑠
(𝑀) is finite dimensional and the

estimate

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

≤ 𝐶(
󵄩󵄩󵄩󵄩󵄩
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
∗

𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

2

) (22)

holds for every 𝑓 in Dom(𝜕
𝑏
) ∩Dom(𝜕

∗

𝑏
) with 𝑓 ⊥ H𝑏

0,𝑠
(𝑀).

By Theorem 1.1.2 in [15], we then conclude that the
operators 𝜕

𝑏
: 𝐿
2

0,𝑠
(𝑀) → 𝐿

2

0,𝑠+1
(𝑀) and 𝜕

⋆

𝑏
: 𝐿
2

0,𝑠
(𝑀) →

𝐿
2

0,𝑠−1
(𝑀) have closed ranges. We obtain also from (22) that

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 ≤ 𝐶

󵄩󵄩󵄩󵄩◻𝑏𝑓
󵄩󵄩󵄩󵄩 , 𝑓 ∈ Dom (◻

𝑏
) , 𝑓 ⊥ H

𝑏

0,𝑠
(𝑀) . (23)

This estimate implies that ◻
𝑏
is one-to-one and in view of

Theorem 1.1.1 in [15] that the range of ◻
𝑏
is closed. It forces,

since ◻
𝑏
is self-adjoint, the strong Hodge decomposition:

𝐿
2

0,𝑠
(𝑀) = Range (◻

𝑏
) ⊕H

𝑏

0,𝑠
(𝑀)

= 𝜕
𝑏
𝜕
∗

𝑏
Dom (◻

𝑏
) ⊕ 𝜕
∗

𝑏
𝜕
𝑏
Dom (◻

𝑏
) ⊕H

𝑏

0,𝑠
(𝑀) .

(24)

Thus ◻
𝑏
: Dom(◻

𝑏
)→
⊥H𝑏
0,𝑠
(𝑀) is one-to-one and onto.

This implies the existence of the complex Green operator
𝐺
𝑏
: 𝐿
2

0,𝑠
(𝑀) → Dom(◻

𝑏
) as a unique operator that inverts

◻
𝑏
on ⊥H𝑏

0,𝑠
(𝑀). The operator 𝐺

𝑏
is defined as follows: if 𝑓

is in Range(◻
𝑏
), we define 𝐺

𝑏
𝑓 = 𝜙, where 𝜙 is the unique

solution of ◻
𝑏
𝜙 = 𝑓 with 𝑓 ⊥ H𝑏

0,𝑠
(𝑀). 𝐺

𝑏
is extended to

the whole 𝐿2
0,𝑠
(𝑀) space by setting 𝐺

𝑏
= 0 on H𝑏

0,𝑠
(𝑀). The

boundedness of 𝐺
𝑏
in 𝐿2
0,𝑠
(𝑀) follows from (23).

To show that 𝐺
𝑏
is compact in 𝐿2

0,𝑠
(𝑀), it suffices to show

compactness on ⊥H𝑏
0,𝑠
(𝑀) (since𝐺

𝑏
≡ 0 onH𝑏

0,𝑠
(𝑀)).When

𝑓 ⊥ H𝑏
0,𝑠
(𝑀) (and hence 𝐺

𝑏
𝑓 ⊥ H𝑏

0,𝑠
(𝑀)), the integration

by parts, Cauchy-Schwarz inequality (|(𝑢, V)| ≤ ‖𝑢‖‖V‖), and
(23) imply

󵄩󵄩󵄩󵄩󵄩
𝜕
𝑏
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
∗

𝑏
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

2

= (𝜕
𝑏
𝐺
𝑏
𝑓, 𝜕
𝑏
𝐺
𝑏
𝑓) + (𝜕

∗

𝑏
𝐺
𝑏
𝑓, 𝜕
∗

𝑏
𝐺
𝑏
𝑓)

= (𝜕
∗

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓,𝐺
𝑏
𝑓) + (𝜕

𝑏
𝜕
∗

𝑏
𝐺
𝑏
𝑓,𝐺
𝑏
𝑓)

= (𝑓, 𝐺
𝑏
𝑓) ≤

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐺𝑏𝑓

󵄩󵄩󵄩󵄩 ≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

.

(25)

By applying (15) to 𝐺
𝑏
𝑓 and using (23), we get

󵄩󵄩󵄩󵄩𝐺𝑏𝑓
󵄩󵄩󵄩󵄩
2

1/2(𝑀)
≤ 𝐶(

󵄩󵄩󵄩󵄩󵄩
𝜕
𝑏
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
∗

𝑏
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝐺𝑏𝑓

󵄩󵄩󵄩󵄩
2

)

≤ 𝐾
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

,

(26)
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where𝐾 is a positive constant.Thus the compactness of𝐺
𝑏
in

𝐿
2

0,𝑠
(𝑀) follows from Rellich’s Lemma.
The assertions in (5) follow immediately from the defini-

tion of 𝐺
𝑏
. For assertion (6), if 𝑓 ∈ Dom(𝜕

𝑏
) and 𝐺

𝑏
is also

defined on 𝐿2
0,𝑠+1

(𝑀), by (21) and the first assertion of (5), we
have

𝐺
𝑏
𝜕
𝑏
𝑓 = 𝐺

𝑏
𝜕
𝑏
𝜕
∗

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓

= 𝐺
𝑏
(𝜕
𝑏
𝜕
⋆

𝑏
+ 𝜕
⋆

𝑏
𝜕
𝑏
) 𝜕
𝑏
𝐺
𝑏
𝑓

= 𝐺
𝑏
◻
𝑏
𝜕
𝑏
𝐺
𝑏
𝑓 = 𝜕

𝑏
𝐺
𝑏
𝑓.

(27)

A similar equation holds for 𝜕
⋆

𝑏
. Assertions (1)–(6) have been

established.
To show assertion (7), if 𝑓 ⊥ H𝑏

0,𝑠
(𝑀) and 𝜕

𝑏
𝑓 = 0,

then 𝜕
𝑏
𝜕
⋆

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓 = 0 as well (from (21)). Consequently,

‖𝜕
⋆

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓‖
2

= (𝜕
𝑏
𝜕
⋆

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓, 𝜕
𝑏
𝐺
𝑏
𝑓) = 0, since 𝜕

𝑏
𝐺
𝑏
𝑓 ∈

Dom(𝜕
⋆

𝑏
), and hence 𝜕

⋆

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓 = 0. Thus 𝑓 = 𝜕

𝑏
(𝜕
⋆

𝑏
𝐺
𝑏
𝑓) and

𝑢 = 𝜕
⋆

𝑏
𝐺
𝑏
𝑓 is orthogonal to Ker(𝜕

𝑏
). Following assertion (3)

and the fact that 𝐺
𝑏
is bounded, 𝑢 satisfies the following 𝐿2-

estimate:

‖𝑢‖
2

=
󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
⋆

𝑏
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

2

= (𝜕
⋆

𝑏
𝐺
𝑏
𝑓, 𝜕
⋆

𝑏
𝐺
𝑏
𝑓)

= (𝜕
𝑏
𝜕
⋆

𝑏
𝐺
𝑏
𝑓,𝐺
𝑏
𝑓) = ((𝜕

𝑏
𝜕
⋆

𝑏
+ 𝜕
⋆

𝑏
𝜕
𝑏
)𝐺
𝑏
𝑓,𝐺
𝑏
𝑓)

= (𝑓, 𝐺
𝑏
𝑓) ≤

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐺𝑏𝑓

󵄩󵄩󵄩󵄩 ≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

.

(28)

Finally, we show assertion (8); if 𝑓 ∈ C∞
0,𝑠
(𝑀), then 𝑓 −

𝐻
𝑏

0,𝑠
𝑓 ∈ C∞

0,𝑠
(𝑀) and, since 𝑀 is compact, 𝑓 ∈ Dom(◻

𝑏
).

On other hand, from assertion (5), ◻
𝑏
𝐺
𝑏
𝑓 = 𝑓−𝐻

𝑏

0,𝑠
𝑓. Since

◻
𝑏
is hypoelliptic, by Proposition 6, 𝐺

𝑏
𝑓 ∈ C∞

0,𝑠
(𝑀).

Again Proposition 6 implies

󵄩󵄩󵄩󵄩𝐺𝑏𝑓
󵄩󵄩󵄩󵄩𝑘+1(𝑀) ≤ 𝐶𝑘 (

󵄩󵄩󵄩󵄩◻𝑏𝐺𝑏𝑓
󵄩󵄩󵄩󵄩𝑘(𝑀) +

󵄩󵄩󵄩󵄩𝐺𝑏𝑓
󵄩󵄩󵄩󵄩)

≤ 𝐶
𝑘
(
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑘(𝑀) +

󵄩󵄩󵄩󵄩󵄩
𝐻
𝑏

0,𝑠
𝑓
󵄩󵄩󵄩󵄩󵄩𝑘(𝑀)

+ (const.) 󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑘(𝑀).

(29)

Herewe have used the fact thatH𝑏
0,𝑠
(𝑀) is of finite dimension

to conclude the estimate
󵄩󵄩󵄩󵄩󵄩
𝐻
𝑏

0,𝑠
𝑓
󵄩󵄩󵄩󵄩󵄩𝑘(𝑀)

≤ 𝐶
𝑘

󵄩󵄩󵄩󵄩󵄩
𝐻
𝑏

0,𝑠
𝑓
󵄩󵄩󵄩󵄩󵄩
≤ 𝐶
𝑘

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑘(𝑀) (30)

for some constant 𝐶
𝑘
. The theorem is proved.

3. Sobolev Space Estimates

In this section, we prove that the complex Green operator
𝐺
𝑏
, the canonical solution operators 𝜕

𝑏
𝐺
𝑏
and 𝜕

∗

𝑏
𝐺
𝑏
, and

the Szegö projection 𝑆
𝑠
operators enjoy some regularity

properties in the 𝐿2-Sobolev spaces 𝑊𝑘
0,𝑠
(𝑀), 𝑘 ≥ 0, for

some 𝑠 with 1 ≤ 𝑠 ≤ 𝑛 − ℓ − 1. Furthermore, we
obtain a global regularity for the solutions of the 𝜕

𝑏
-equation.

By the same way for bounded pseudoconvex domains, a
differential operator is said to be exactly regular if it maps all
𝐿
2-Sobolev spaces𝑊𝑘

0,𝑠
(𝑀) (𝑘 ≥ 0) to themselves and globally

regular if it maps the spaceC∞
0,𝑠
(𝑀) continuously to itself.

3.1. Continuity of the Complex Green Operator. We prove first
the continuity of the complex Green operator𝐺

𝑏
on𝑊𝑘
0,𝑠
(𝑀),

𝑘 ≥ 0.

Theorem 8. Let 𝑀 be a C∞ compact 𝐶𝑅 manifold of real
dimension 2𝑛 − ℓ and codimension ℓ ≥ 1 in an 𝑛-dimensional
complex manifold 𝑋. Suppose that 𝑀 satisfies condition 𝑌(𝑠)
for some 𝑠 with 1 ≤ 𝑠 ≤ 𝑛 − ℓ − 1. Then the complex Green
operator𝐺

𝑏
is continuous on the Sobolev space𝑊𝑘

0,𝑠
(𝑀), 𝑘 ≥ 0;

that is, there is a constant 𝐶 = 𝐶(𝑘) > 0 such that
󵄩󵄩󵄩󵄩𝐺𝑏𝑓

󵄩󵄩󵄩󵄩𝑘(𝑀) ≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑘(𝑀), 𝑓 ∈ 𝑊

𝑘

0,𝑠
(𝑀) . (31)

Proof. We consider the special case when 𝑘 = 0, 1, 2, 3, . . ..
Indeed the general case is then derived by means of interpo-
lation of linear operators. Since 𝑀 is compact, it is easy to
show that C∞

0,𝑠
(𝑀) is a dense subspace in 𝑊𝑘

0,𝑠
(𝑀). Further,

by Theorem 7 (8), we have 𝐺
𝑏
𝑓 ∈ C∞

0,𝑠
(𝑀) for 𝑓 ∈ C∞

0,𝑠
(𝑀).

Thus it suffices to establish (31) for 𝑓 ∈ C∞
0,𝑠
(𝑀). For 𝑘 = 0,

(31) follows from (23).
For each 𝑘 ≥ 0, let Λ𝑘(𝜉) be a pseudodifferential operator

of order 𝑘 with symbol (1 + |𝜉|
2

)
𝑘/2. Let 𝑈 be an open

neighborhood of 𝜁 in 𝑀 and let 𝜂 and 𝜂
1
be two cutoff

functions with supports in𝑈 such that 𝜂 = 1 on supp 𝜂
1
; then

𝜂Λ
𝑘

𝜂
1
𝑓 ∈ D

0,𝑠
(𝑈) whenever 𝑓 ∈ D

0,𝑠
(𝑈).

Recall that the compactness of 𝐺
𝑏
in 𝐿2
0,𝑠
(𝑈) is equivalent

to the compactness estimate: for every 𝜖 > 0 there is a
constant𝐶(𝜖) > 0 such that for every𝜑 ∈ Dom(𝜕

𝑏
)∩Dom(𝜕

∗

𝑏
)

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

≤ 𝜖𝑄
𝑏
(𝜑, 𝜑) + 𝐶 (𝜖)

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

−1(𝑈)
, (32)

where 𝑄
𝑏
(𝜑, 𝜑) = (𝜕

𝑏
𝜑, 𝜕
𝑏
𝜑) + (𝜕

∗

𝑏
𝜑, 𝜕
∗

𝑏
𝜑). For this estimate

and further results on the compactness of the complex Green
operator see, e.g., [16–19].

Applying (32) for 𝜂Λ𝑘𝜂
1
𝐺
𝑏
𝑓, we obtain

󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

≤ 𝜖𝑄
𝑏
(𝜂Λ
𝑘

𝜂
1
𝐺
𝑏
𝑓, 𝜂Λ
𝑘

𝜂
1
𝐺
𝑏
𝑓)

+ 𝐶 (𝜖)
󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

−1(𝑈)

.

(33)

We sometimes use 𝐴 for 𝜂Λ𝑘𝜂
1
and 𝐴∗ for its formal adjoint,

which is also a tangential operator of order 𝑘. We estimate
the first term on the right hand side in (33), it is a standard
consequence of [20, Corollary 3.1] (or [11, Lemma 2.4.2]) that

𝑄
𝑏
(𝐴𝐺
𝑏
𝑓,𝐴𝐺

𝑏
𝑓) = Re𝑄

𝑏
(𝐺
𝑏
𝑓,𝐴
∗

𝐴𝐺
𝑏
𝑓)

+ O (
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝐷𝐺𝑏𝑓

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨
2

𝑘−1(𝑈)
)

≤ Re𝑄
𝑏
(𝐺
𝑏
𝑓,𝐴
∗

𝐴𝐺
𝑏
𝑓) + 𝐶

󵄩󵄩󵄩󵄩𝐺𝑏𝑓
󵄩󵄩󵄩󵄩
2

𝑘(𝑈)
.

(34)
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Here we have used the fact that the tangential derivative 𝐷𝛼
of order |𝛼| = 𝜆 satisfies the tangential Sobolev estimate
|||𝐷
𝛼

𝑓|||
𝑟
≤ ‖𝑓‖

𝑟+𝜆
.

Taking V = 𝐴∗𝐴𝑓 in the form 𝑄
𝑏
(𝐺
𝑏
𝑢, V) = (𝑢, V), we get

𝑄
𝑏
(𝐴𝐺
𝑏
𝑓,𝐴𝐺

𝑏
𝑓) ≤ Re (𝑓, 𝐴∗𝐴𝐺

𝑏
𝑓) + 𝐶

󵄩󵄩󵄩󵄩𝐺𝑏𝑓
󵄩󵄩󵄩󵄩
2

𝑘(𝑈)

≤
󵄨󵄨󵄨󵄨(𝑓, 𝐴

∗

𝐴𝐺
𝑏
𝑓)
󵄨󵄨󵄨󵄨 + 𝐶

󵄩󵄩󵄩󵄩𝐺𝑏𝑓
󵄩󵄩󵄩󵄩
2

𝑘(𝑈)
.

(35)

The Cauchy-Schwarz inequality implies

𝑄
𝑏
(𝐴𝐺
𝑏
𝑓,𝐴𝐺

𝑏
𝑓) ≤

󵄩󵄩󵄩󵄩𝐴𝑓
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐴𝐺𝑏𝑓

󵄩󵄩󵄩󵄩 + 𝐶
󵄩󵄩󵄩󵄩𝐺𝑏𝑓

󵄩󵄩󵄩󵄩
2

𝑘(𝑈)
. (36)

Inequality (33) becomes

󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

≤ 𝜖
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑘(𝑈)

󵄩󵄩󵄩󵄩𝐺𝑏𝑓
󵄩󵄩󵄩󵄩𝑘(𝑈) + 𝐶 (𝜖)

󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

−1(𝑈)

.

(37)

Summing over a partition of unity subordinate to an open
covering of𝑀 by patches {𝑈

𝑖
}
𝑚

𝑖=1
, we obtain estimate like (37)

on each of these patches and using the interior regularity
properties, we get

󵄩󵄩󵄩󵄩𝐺𝑏𝑓
󵄩󵄩󵄩󵄩
2

𝑘(𝑀)
≤ 𝜖

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑘(𝑀)

󵄩󵄩󵄩󵄩𝐺𝑏𝑓
󵄩󵄩󵄩󵄩𝑘(𝑀) + 𝐶 (𝜖)

󵄩󵄩󵄩󵄩𝐺𝑏𝑓
󵄩󵄩󵄩󵄩
2

𝑘−1(𝑀)
. (38)

The first term in the right-hand side of (38) is estimated by
𝜖(s.c.)‖𝐺

𝑏
𝑓‖
2

𝑘(𝑀)
+ 𝜖(l.c.)‖𝑓‖2

𝑘(𝑀)
, where s.c. and l.c. denote

a small and a large constants, respectively, in the inequality
|𝑎𝑏| ≤ (s.c.)𝑎2 + (l.c.)𝑏2. The second term is estimated by
interpolation of Sobolev norms (‖𝐺

𝑏
𝑓‖
2

𝑘−1(𝑀)
≤ 𝜀‖𝐺

𝑏
𝑓‖
2

𝑘(𝑀)
+

𝐶(𝜀)‖𝐺
𝑏
𝑓‖
2) and then by using the continuity of 𝐺

𝑏
in

𝐿
2

0,𝑠
(𝑀) with 𝐿2-bounded norm.
Adding up the analogues terms and absorbing, by choos-

ing 𝜖 and 𝜀 to be small enough, ‖𝐺
𝑏
𝑓‖
2

𝑘(𝑀)
into the left, this

gives

󵄩󵄩󵄩󵄩𝐺𝑏𝑓
󵄩󵄩󵄩󵄩
2

𝑘(𝑀)
≤ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝑘(𝑀)
+ 𝐾

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

, (39)

where 𝐶 = 𝐶(𝜖, 𝑘) > 0 and 𝐾 = 𝐾(𝜖, 𝑘) > 0. The embedding
Sobolev space implies (31) for 𝑘 = 0, 1, 2, 3, . . .. The general
case is obtained from interpolation of linear operators. As
mentioned above, the density of C∞

0,𝑠
(𝑀) in 𝑊𝑘

0,𝑠
(𝑀) passes

(31) to forms 𝑓 in𝑊𝑘
0,𝑠
(𝑀). This proves the continuity of 𝐺

𝑏

in𝑊𝑘
0,𝑠
(𝑀).

Corollary 9. Let 𝑀 be given as in Theorem 8, then the
canonical solution operators 𝜕

𝑏
𝐺
𝑏
and 𝜕
∗

𝑏
𝐺
𝑏
are continuous on

𝑊
𝑘

0,𝑠
(𝑀) for all 𝑘 ≥ 0.

Proof. We argue by induction on 𝑘. The case when 𝑘 =

0 follows from (25). Suppose that the assertions hold for
positive integers less than 𝑘 and assume that 𝜁, 𝑈, 𝜂, and
𝜂
1
are given as in the proof of Theorem 8. By the interior

elliptic regularity properties, we prove first a priori estimate
for 𝜕
𝑏
𝐺
𝑏
𝑓 and 𝜕

∗

𝑏
𝐺
𝑏
𝑓 with 𝑓 ∈ D

0,𝑠
(𝑈) as follows:

󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝜕
𝑏
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝜕
∗

𝑏
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

2

= (𝜂Λ
𝑘

𝜂
1
𝜕
𝑏
𝐺
𝑏
𝑓, 𝜕
𝑏
𝜂Λ
𝑘

𝜂
1
𝐺
𝑏
𝑓)

+ (𝜂Λ
𝑘

𝜂
1
𝜕
∗

𝑏
𝐺
𝑏
𝑓, 𝜕
∗

𝑏
𝜂Λ
𝑘

𝜂
1
𝐺
𝑏
𝑓)

+ O ((
󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝜕
𝑏
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝜕
∗

𝑏
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩𝐺𝑏𝑓

󵄩󵄩󵄩󵄩𝑘(𝑈))

= (𝜂Λ
𝑘

𝜂
1
𝜕
∗

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓, 𝜂Λ
𝑘

𝜂
1
𝐺
𝑏
𝑓)

+ (𝜂Λ
𝑘

𝜂
1
𝜕
𝑏
𝜕
∗

𝑏
𝐺
𝑏
𝑓, 𝜂Λ
𝑘

𝜂
1
𝐺
𝑏
𝑓)

+ O ((
󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝜕
𝑏
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝜕
∗

𝑏
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩𝐺𝑏𝑓

󵄩󵄩󵄩󵄩𝑘(𝑈)

+
󵄩󵄩󵄩󵄩𝐺𝑏𝑓

󵄩󵄩󵄩󵄩
2

𝑘(𝑈)
)

= (𝜂Λ
𝑘

𝜂
1
◻
𝑏
𝐺
𝑏
𝑓, 𝜂Λ
𝑘

𝜂
1
𝐺
𝑏
𝑓)

+ O ((
󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝜕
𝑏
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝜕
∗

𝑏
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩𝐺𝑏𝑓

󵄩󵄩󵄩󵄩𝑘(𝑈)

+
󵄩󵄩󵄩󵄩𝐺𝑏𝑓

󵄩󵄩󵄩󵄩
2

𝑘(𝑈)
)

≤ 𝐶
1

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑘(𝑈)

󵄩󵄩󵄩󵄩𝐺𝑏𝑓
󵄩󵄩󵄩󵄩𝑘(𝑈)

+ 𝐶
2
((
󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝜕
𝑏
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝜕
∗

𝑏
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩𝐺𝑏𝑓

󵄩󵄩󵄩󵄩𝑘(𝑈)

+
󵄩󵄩󵄩󵄩𝐺𝑏𝑓

󵄩󵄩󵄩󵄩
2

𝑘(𝑈)
) .

(40)

Summing over a partition of unity, using the small and
large constants for the resulting terms ‖𝑓‖

𝑘
‖𝐺
𝑏
𝑓‖
𝑘
,

‖𝜕
𝑏
𝐺
𝑏
𝑓‖
𝑘
‖𝐺
𝑏
𝑓‖
𝑘
, and ‖𝜕

∗

𝑏
𝐺
𝑏
𝑓‖
𝑘
‖𝐺
𝑏
𝑓‖
𝑘
, using (31) and

adding up the analogues terms, we see that the terms on the
right-hand side containing ‖𝜕

𝑏
𝐺
𝑏
𝑓‖
2

𝑘
and ‖𝜕

∗

𝑏
𝐺
𝑏
𝑓‖
2

𝑘
can be

absorbed into the left hand side. We therefore obtain

󵄩󵄩󵄩󵄩󵄩
𝜕
𝑏
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

𝑘(𝑀)

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
∗

𝑏
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑘(𝑀)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝑘(𝑀)
, 𝑓 ∈ D

0,𝑠
(𝑀) .

(41)

This completes the induction on 𝑘 for the norms of 𝜕
𝑏
𝐺
𝑏
and

𝜕
∗

𝑏
𝐺
𝑏
. By the density of C∞

0,𝑠
(𝑀) in 𝑊

𝑘

0,𝑠
(𝑀), the estimates

extend to forms in 𝑊
𝑘

0,𝑠
(𝑀). As before, the general case is

obtained from interpolation of linear operators. Then 𝜕
𝑏
𝐺
𝑏

and 𝜕
∗

𝑏
𝐺
𝑏
are continuous on𝑊𝑘

0,𝑠
(𝑀).

3.2. Exact and Global Regularity Theorems. We now show
the expression of the complex Green operator by Szegö
projections.
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Theorem 10. The Szegö projections 𝑆
𝑠
: 𝐿
2

0,𝑠
(𝑀) → Ker(𝜕

𝑏
)

are given by the following relations:

𝑆
𝑠
= 𝐼𝑑 − 𝜕

∗

𝑏
𝜕
𝑏
𝐺
𝑏
= 𝐼𝑑 − 𝐺

𝑏
𝜕
∗

𝑏
𝜕
𝑏
, 𝑠 ≥ 0, (42)

𝑆
𝑠−1

= 𝐼𝑑 − 𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
, 𝑠 ≥ 1. (43)

Proof. We first show that 𝜕
∗

𝑏
𝜕
𝑏
𝐺
𝑏
= 𝐺
𝑏
𝜕
∗

𝑏
𝜕
𝑏
. For 𝛼, 𝛽 ∈

⊥

H𝑏
0,𝑠
(𝑀), we observe that

𝜕
𝑏
𝛼 = 0 󳨐⇒ 𝜕

∗

𝑏
𝜕
𝑏
𝐺
𝑏
𝛼 = 0 󳨐⇒ 𝛼 = 𝜕

𝑏
𝜕
∗

𝑏
𝐺
𝑏
𝛼 = 𝐺

𝑏
𝜕
𝑏
𝜕
∗

𝑏
𝛼,

(44)

𝜕
⋆

𝑏
𝛽 = 0 󳨐⇒ 𝜕

𝑏
𝜕
∗

𝑏
𝐺
𝑏
𝛽 = 0 󳨐⇒ 𝛽 = 𝜕

∗

𝑏
𝜕
𝑏
𝐺
𝑏
𝛽 = 𝐺

𝑏
𝜕
∗

𝑏
𝜕
𝑏
𝛽.

(45)

As Range (𝜕
𝑏
) ⊥ Ker(𝜕

∗

𝑏
) and Range (𝜕

∗

𝑏
) ⊥ Ker(𝜕

𝑏
), one has

𝜕
𝑏
𝛼 = 0 󳨐⇒ 𝜕

𝑏
𝐺
𝑏
𝛼 = 0, (46)

𝜕
∗

𝑏
𝛽 = 0 󳨐⇒ 𝜕

∗

𝑏
𝐺
𝑏
𝛽 = 0. (47)

Any 𝑓 ⊥ H𝑏
0,𝑠
(𝑀) can then be written as 𝑓 = 𝛼 + 𝛽 so

that 𝜕
𝑏
𝛼 = 0 and 𝜕

∗

𝑏
𝛽 = 0. By (45) and (46), we then have

𝜕
⋆

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓 = 𝜕

⋆

𝑏
𝜕
𝑏
𝐺
𝑏
(𝛼 + 𝛽) = 𝜕

⋆

𝑏
𝜕
𝑏
𝐺
𝑏
𝛽

= 𝐺
𝑏
𝜕
⋆

𝑏
𝜕
𝑏
𝛽 = 𝐺

𝑏
𝜕
⋆

𝑏
𝜕
𝑏
𝑓.

(48)

This implies the second equality in (42). Now, If 𝑓 ∈ Ker(𝜕
𝑏
),

then (𝐼𝑑 − 𝐺
𝑏
𝜕
∗

𝑏
𝜕
𝑏
)𝑓 = 𝑓, so the expression for 𝑆

𝑠
holds.

Next, if 𝑓 ⊥ Ker(𝜕
𝑏
) and hence 𝑓 ⊥ H𝑏

0,𝑠
(𝑀), so 𝑓 =

𝜕
𝑏
𝜕
⋆

𝑏
𝐺
𝑏
𝑓 + 𝜕

⋆

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓 and 𝑢 = 𝜕

⋆

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓 is the canonical

solution to the equation 𝜕
𝑏
𝑢 = 𝜕
𝑏
𝑓. Thus 𝜕

𝑏
(𝑓 − 𝑢) = 0, that

is, 𝑓−𝑢 ∈ Ker(𝜕
𝑏
). We claim that 𝑢 ⊥ Ker(𝜕

𝑏
). Indeed, for all

𝑔 ∈ Ker(𝜕
𝑏
) one has (𝑢, 𝑔) = (𝜕

⋆

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓, 𝑔) = (𝜕

𝑏
𝐺
𝑏
𝑓, 𝜕
𝑏
𝑔) =

0. Since 𝑓 ⊥ Ker(𝜕
𝑏
), it turns out that 𝑓 − 𝑢 ⊥ Ker(𝜕

𝑏
) so

𝑓 − 𝑢 = 0 and then 0 = 𝑓 − 𝑢 = (𝐼𝑑 − 𝜕
⋆

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓). This proves

(42). Similarly, we get (43).

Theorem 11. Let𝑀 be given as in Theorem 8. Then the Szegö
projections operators 𝑆

𝑠−1
and 𝑆
𝑠
are continuous in the Sobolev

spaces𝑊𝑘
0,𝑠−1

(𝑀) and𝑊𝑘
0,𝑠
(𝑀) for all 𝑘 ≥ 0, respectively.

Proof. We investigate first the continuity of 𝑆
𝑠−1

. For the case
𝑘 = 0, when 𝑓 ∈ 𝐿

2

0,𝑠
(𝑀), we have

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

2

= (𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓, 𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓)

= (𝐺
𝑏
𝜕
𝑏
𝑓, 𝜕
𝑏
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓)

= (𝐺
𝑏
𝜕
𝑏
𝑓, 𝜕
𝑏
𝑓) = (𝜕

∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓, 𝑓)

≤
󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 .

(49)

Here we have used the fact that 𝜕
𝑏
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓 = 𝜕

𝑏
𝑓, because

𝜕
2

𝑏
= 0. The relation (43) thus implies that ‖𝑆

𝑠−1
𝑓‖ ≤ 𝐶‖𝑓‖.

This proves the continuity in 𝐿2
0,𝑠−1

(𝑀).
The case 𝑘 ≥ 1. Applying (32) for 𝜑 = 𝜂Λ

𝑘

𝜂
1
𝐺
𝑠
𝜕
𝑏
𝑓 on 𝑈,

we obtain

󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

≤ 𝜖𝑄
𝑏
(𝜂Λ
𝑘

𝜂
1
𝐺
𝑏
𝜕
𝑏
𝑓, 𝜂Λ
𝑘

𝜂
1
𝐺
𝑏
𝜕
𝑏
𝑓)

+ 𝐶 (𝜖)
󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

−1(𝑈)

.

(50)

The first term on the right-hand side of (50) is estimated as

𝑄
𝑏
(𝐴𝐺
𝑏
𝜕
𝑏
𝑓,𝐴𝐺

𝑏
𝜕
𝑏
𝑓) =

󵄩󵄩󵄩󵄩󵄩
𝜕
𝑏
𝐴𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
∗

𝐴𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

2

= (𝜕
𝑏
𝐴𝐺
𝑏
𝜕
𝑏
𝑓, 𝜕
𝑏
𝐴𝐺
𝑏
𝜕
𝑏
𝑓)

+ (𝜕
∗

𝑏
𝐴𝐺
𝑏
𝜕
𝑏
𝑓, 𝜕
∗

𝑏
𝐴𝐺
𝑏
𝜕
𝑏
𝑓)

= (𝐴𝜕
𝑏
𝐺
𝑏
𝜕
𝑏
𝑓, 𝜕
𝑏
𝐴𝐺
𝑏
𝜕
𝑏
𝑓)

+ (𝐴𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓, 𝜕
∗

𝑏
𝐴𝐺
𝑏
𝜕
𝑏
𝑓)

+ ([𝜕
𝑏
, 𝐴]𝐺

𝑏
𝜕
𝑏
𝑓, 𝜕
𝑏
𝐴𝐺
𝑏
𝜕
𝑏
𝑓)

+ ([𝜕
∗

𝑏
, 𝐴]𝐺

𝑏
𝜕
𝑏
𝑓, 𝜕
∗

𝑏
𝐴𝐺
𝑏
𝜕
𝑏
𝑓) .

(51)

The sum of the last two terms on the right-hand side of the
preceding equality is estimated by

󵄩󵄩󵄩󵄩󵄩
[𝜕
𝑏
, 𝐴]𝐺

𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝜕
𝑏
𝐴𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩
[𝜕
∗

𝑏
, 𝐴]𝐺

𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
∗

𝑏
𝐴𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝐷𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩𝑘−1(𝑈)

󵄩󵄩󵄩󵄩󵄩
𝜕
𝑏
𝐴𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝐷𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩𝑘−1(𝑈)

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
∗

𝑏
𝐴𝐺
𝑠
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩𝑘(𝑈)

(
󵄩󵄩󵄩󵄩󵄩
𝜕
𝑏
𝐴𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
∗

𝑏
𝐴𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩
)

= O ((l.c.) 󵄩󵄩󵄩󵄩󵄩𝐺𝑏𝜕𝑏𝑓
󵄩󵄩󵄩󵄩󵄩

2

𝑘(𝑈)

+ (s.c.) (󵄩󵄩󵄩󵄩󵄩𝜕𝑏𝐴𝐺𝑏𝜕𝑏𝑓
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
∗

𝑏
𝐴𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩
)
2

)

= O (
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

𝑘(𝑈)

) .

(52)

We then have

𝑄
𝑏
(𝐴𝐺
𝑏
𝜕
𝑏
𝑓,𝐴𝐺

𝑏
𝜕
𝑏
𝑓) ≤ (𝜕

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓,𝐴
∗

𝜕
𝑏
𝐴𝐺
𝑏
𝜕
𝑏
𝑓)

+ (𝐴𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓, 𝜕
∗

𝑏
𝐴𝐺
𝑏
𝜕
𝑏
𝑓)

+ O (
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

𝑘(𝑈)

) .

(53)
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The first term on the right-hand side of (53) equals zero due
to the fact that 𝜕

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓 = 𝜕

2

𝑏
𝐺
𝑏
𝑓 = 0.

We now analyze the second term as follows:

(𝐴𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓, 𝜕
∗

𝑏
𝐴𝐺
𝑏
𝜕
𝑏
𝑓)

= (𝜕
𝑏
𝐴𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓,𝐴𝐺

𝑏
𝜕
𝑏
𝑓)

= (𝐴𝜕
𝑏
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓,𝐴𝐺

𝑏
𝜕
𝑏
𝑓) + ([𝜕

𝑏
, 𝐴] 𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓,𝐴𝐺

𝑏
𝜕
𝑏
𝑓)

= (𝐴𝜕
𝑏
𝑓,𝐴𝐺

𝑏
𝜕
𝑏
𝑓) + ([𝜕

𝑏
, 𝐴] 𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓,𝐴𝐺

𝑏
𝜕
𝑏
𝑓)

= (𝜕
𝑏
𝐴𝑓,𝐴𝐺

𝑏
𝜕
𝑏
𝑓) + ([𝐴, 𝜕

𝑏
] 𝑓, 𝐴𝐺

𝑏
𝜕
𝑏
𝑓)

+ ([𝜕
𝑏
, 𝐴] 𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓,𝐴𝐺

𝑏
𝜕
𝑏
𝑓)

= (𝐴𝑓, 𝜕
∗

𝑏
𝐴𝐺
𝑏
𝜕
𝑏
𝑓) + ⋅ ⋅ ⋅

= (𝐴𝑓,𝐴𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓) + (𝐴𝑓, [𝜕

∗

𝑏
, 𝐴]𝐺

𝑏
𝜕
𝑏
𝑓)

+ ([𝐴, 𝜕
𝑏
] 𝑓, 𝐴𝐺

𝑏
𝜕
𝑏
𝑓) + ([𝜕

𝑏
, 𝐴] 𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓,𝐴𝐺

𝑏
𝜕
𝑏
𝑓) .

(54)

Thus

𝑄
𝑏
(𝐴𝐺
𝑏
𝜕
𝑏
𝑓,𝐴𝐺

𝑏
𝜕
𝑏
𝑓)

≤ (𝐴𝑓,𝐴𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓) + 𝐸 + O (

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑏
𝜕𝑓
󵄩󵄩󵄩󵄩󵄩

2

𝑘(𝑈)

)

≤
󵄨󵄨󵄨󵄨󵄨󵄨
(𝐴𝑓,𝐴𝜕

∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓)
󵄨󵄨󵄨󵄨󵄨󵄨
+ |𝐸| + O (

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

𝑘(𝑈)

) ,

(55)

where

𝐸 = (𝐴𝑓, [𝜕
∗

𝑏
, 𝐴]𝐺

𝑏
𝜕
𝑏
𝑓) + ([𝐴, 𝜕

𝑏
] 𝑓, 𝐴𝐺

𝑏
𝜕
𝑏
𝑓)

+ ([𝜕
𝑏
, 𝐴] 𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓,𝐴𝐺

𝑏
𝜕
𝑏
𝑓) .

(56)

As above, the three terms on the right-hand side of (56) are
estimated, respectively, by

󵄩󵄩󵄩󵄩𝐴𝑓
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩
[𝜕
∗

𝑏
, 𝐴]𝐺

𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑘(𝑈)

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩𝑘(𝑈)

≤ (s.c.) 󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝑘(𝑈)
+ (l.c.) 󵄩󵄩󵄩󵄩󵄩𝐺𝑏𝜕𝑏𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑘(𝑈)

,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑘(𝑈)

󵄩󵄩󵄩󵄩󵄩
𝐴𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

≤ (s.c.) 󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝑘(𝑈)
+ (l.c.) 󵄩󵄩󵄩󵄩󵄩𝐴𝐺𝑏𝜕𝑏𝑓

󵄩󵄩󵄩󵄩󵄩

2

= O (
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

𝑘(𝑈)

) ,

󵄩󵄩󵄩󵄩󵄩󵄩
[𝜕
𝑏
, 𝐴] 𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝐴𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

≤ (s.c.)
󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑘(𝑈)

+ (l.c.) 󵄩󵄩󵄩󵄩󵄩𝐴𝐺𝑏𝜕𝑏𝑓
󵄩󵄩󵄩󵄩󵄩

2

.

(57)

Now we are left with the first term in the right-hand side
of (55) which, by applying the Cauchy-Schwarz inequality, is
estimated by ‖𝑓‖

𝑘(𝑈)
‖𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓‖
𝑘(𝑈)

. By choosing the s.c. small
enough we can absorb the first term in the right-hand side of
the last inequality into ‖𝑓‖

𝑘(𝑈)
‖𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓‖
𝑘(𝑈)

. This completes
the estimation of the first term on the right-hand side of (50).
Therefore (50) becomes

󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

≤ 𝜖
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑘(𝑈)

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩𝑘(𝑈)

+ 𝜖 (s.c.) 󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝑘(𝑈)
+ 𝜖𝐶

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

𝑘(𝑈)

+ 𝐶 (𝜖)
󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

−1(𝑈)

≤ 𝜖
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑘(𝑈)

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩𝑘(𝑈)

+ 𝜖 (s.c.) 󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝑘(𝑈)
+ 𝜖𝐶

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

𝑘(𝑈)

+ 𝐶
󸀠

(𝜖)
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

𝑘−1(𝑈)

.

(58)

By summing over a partition of unity subordinate to an open
covering of 𝑀 by patches {𝑈

𝑖
}
𝑚

𝑖=1
so that on each of these

patches an estimate like (58) is satisfied, using the interior
regularity properties, we get

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

𝑘(𝑀)

≤ 𝜖
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑘(𝑀)

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩𝑘(𝑀)

+ 𝜖 s.c.󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝑘(𝑀)

+ 𝜖𝐶
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩𝑘(𝑀)

+ 𝐶
󸀠

(𝜖)
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

𝑘−1(𝑀)

.

(59)

By using the small and large constants, the first term on the
right-hand side in (59) is estimated as

𝜖 ((s.c.) 󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝑘(𝑀)
+ (l.c.)

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑘(𝑀)

) . (60)

Then adding and choosing 𝜖 and the s.c. small enough we can
absorb the third term on the right-hand side of (59) into the
left-hand side; we obtain

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

𝑘(𝑀)

≤ 𝜖𝐶
󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑘(𝑀)

+ 𝐶
󸀠

(𝜖) (
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝑘(𝑀)
+
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

𝑘−1(𝑀)

) .

(61)

Applying this inequality with 𝑘 replaced by 𝑘 − 1 to the last
term on the right-hand side and repeating, we obtain

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

𝑘(𝑀)

≤ 𝜖𝐶
󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑘(𝑀)

+ 𝐶
󸀠

(𝜖) (
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝑘(𝑀)
+
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

) .

(62)
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We have

󵄩󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

2

= (𝜂Λ
𝑘

𝜂
1
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓, 𝜂Λ
𝑘

𝜂
1
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓)

= (𝜕
∗

𝑏
𝜂Λ
𝑘

𝜂
1
𝐺
𝑏
𝜕
𝑏
𝑓, 𝜂Λ
𝑘

𝜂
1
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓)

+ O (
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩𝑘(𝑈)

󵄩󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩
)

= (𝜂Λ
𝑘

𝜂
1
𝐺
𝑏
𝜕
𝑏
𝑓, 𝜂Λ
𝑘

𝜂
1
𝜕
𝑏
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓)

+ O (
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩𝑘(𝑈)

󵄩󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩
)

= (𝜂Λ
𝑘

𝜂
1
𝐺
𝑏
𝜕
𝑏
𝑓, 𝜂Λ
𝑘

𝜂
1
𝜕
𝑏
𝑓)

+ O (
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩𝑘(𝑈)

󵄩󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩
)

= (𝜂Λ
𝑘

𝜂
1
𝐺
𝑏
𝜕
𝑏
𝑓, 𝜕
𝑏
𝜂Λ
𝑘

𝜂
1
𝑓)

+ O (
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩𝑘(𝑈)

(
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑘(𝑈) +

󵄩󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩
))

= (𝜕
∗

𝑏
𝜂Λ
𝑘

𝜂
1
𝐺
𝑏
𝜕
𝑏
𝑓, 𝜂Λ
𝑘

𝜂
1
𝑓)

+ O (
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩𝑘(𝑈)

(
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑘(𝑈) +

󵄩󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩
))

= (𝜂Λ
𝑘

𝜂
1
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓, 𝜂Λ
𝑘

𝜂
1
𝑓)

+ O (
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩𝑘(𝑈)

(
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑘(𝑈) +

󵄩󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩
))

≤
󵄩󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝑓
󵄩󵄩󵄩󵄩󵄩

+ O (
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩𝑘(𝑈)

(
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑘(𝑈) +

󵄩󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩
)) .

(63)

Again summing over a partition of unity, using the interior
regularity properties and the small and large constants
technique, we obtain

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑘(𝑀)

≤ 𝐶(
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

𝑘(𝑀)

+
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝑘(𝑀)
) . (64)

Substituting (62) into (64), we obtain

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑘(𝑀)

≤ 𝐾𝜖
󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑘(𝑀)

+ 𝐶
󸀠

(𝜖) (
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝑘(𝑀)
+
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

) .

(65)

Choosing 𝜖 > 0 small enough allows us to absorb the first
term on the right-hand side into the left, we then get

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑘(𝑀)

≤ 𝐶
󸀠

(𝜖) (
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝑘(𝑀)
+
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

2

) . (66)

As the operator 𝜕
∗

𝑏
has 𝐿2(𝑀)-closed range, it follows from

Theorem 1.1.1 in Hörmander [15] that there is a positive
constant 𝐶 such that

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩
≤ 𝐶

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩
. (67)

Then, by (49), we obtain
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩
≤ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 . (68)

Substituting (68) into (66), we get

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑘(𝑀)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝑘(𝑀)
. (69)

By (43), the Szegö projection 𝑆
𝑠−1

is therefore continuous on
𝑊
𝑘

0,𝑠−1
(𝑀) for each 𝑘 = 0, 1, 2 . . ..The general case is obtained

from interpolation of linear operators.
For the continuity of the Szegö projection 𝑆

𝑠
, in view of

(42), it suffices to show that

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
∗

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

2

𝑘(𝑀)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝑘(𝑀)
, 𝑘 ≥ 0. (70)

For 𝑘 = 0, we have

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
∗

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

2

= (𝜕
𝑏
𝜕
∗

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓, 𝜕
𝑏
𝐺
𝑏
𝑓) = (𝜕

𝑏
𝑓, 𝜕
𝑏
𝐺
𝑏
𝑓)

= (𝑓, 𝜕
∗

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓) ≤ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
∗

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩
.

(71)

For 𝑘 ≥ 1, as before, an elliptic regularity argument implies

󵄩󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝜕
∗

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

2

= (𝜂Λ
𝑘

𝜂
1
𝜕
∗

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓, 𝜂Λ
𝑘

𝜂
1
𝜕
∗

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓)

= (𝜂Λ
𝑘

𝜂
1
𝜕
𝑏
𝜕
∗

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓, 𝜂Λ
𝑘

𝜂
1
𝜕
𝑏
𝐺
𝑏
𝑓)

+ (𝜂Λ
𝑘

𝜂
1
𝜕
∗

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓, [𝜂Λ

𝑘

𝜂
1
, 𝜕
∗

𝑏
] 𝜕
𝑏
𝐺
𝑏
𝑓)

+ ([𝜕
𝑏
, 𝜂Λ
𝑘

𝜂
1
] 𝜕
∗

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓, 𝜂Λ
𝑘

𝜂
1
𝜕
𝑏
𝐺
𝑏
𝑓)

= (𝜂Λ
𝑘

𝜂
1
𝜕
𝑏
𝑓, 𝜂Λ
𝑘

𝜂
1
𝜕
𝑏
𝐺
𝑏
𝑓)

+ O (
󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝜕
𝑏
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝜕
∗

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩
)

= (𝜂Λ
𝑘

𝜂
1
𝑓, 𝜂Λ
𝑘

𝜂
1
𝜕
∗

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓)

+ O (
󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝜕
𝑏
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝜕
∗

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩
)

+ O (
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑘(𝑈)

󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝜕
𝑏
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩
)

≤
󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝑓
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝜕
∗

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩

+ O ((
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑘(𝑈) +

󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝜕
𝑏
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩󵄩󵄩
𝜂Λ
𝑘

𝜂
1
𝜕
∗

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩
) .

(72)
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Summing over a partition of unity, using the small and
large constants argument, absorbing the terms containing
‖𝜕
∗

𝑏
𝜕
𝑏
𝐺
𝑏
𝑓‖
𝑘(𝑀)

, and finally using the fact that 𝜕
𝑏
𝐺
𝑏
is contin-

uously bounded on𝑊𝑘
0,𝑠
(𝑀), we conclude (70) which proves

the continuity of 𝑆
𝑠
on𝑊𝑘
0,𝑠
(𝑀).

Corollary 12. Let 𝑀 be a C∞ compact 𝐶𝑅 manifold of real
dimension 2𝑛 − ℓ and codimension ℓ ≥ 1 in an 𝑛-dimensional
complex manifold 𝑋. Suppose that 𝑀 satisfies condition 𝑌(𝑠)
for some 𝑠 with 1 ≤ 𝑠 ≤ 𝑛 − ℓ − 1. Then for any 𝑓 in𝑊𝑘

0,𝑠
(𝑀)

(𝑘 ≥ 0) such that 𝜕
𝑏
𝑓 = 0 and 𝑓 ⊥ H𝑏

0,𝑠
(𝑀), there exists 𝑢 in

𝑊
𝑘

0,𝑠−1
(𝑀) which solves the equation 𝜕

𝑏
𝑢 = 𝑓.

Theorem 13. Let 𝑀 be a C∞ compact 𝐶𝑅 manifold of real
dimension 2𝑛 − ℓ and codimension ℓ ≥ 1 in an 𝑛-dimensional
complex manifold 𝑋. Suppose that 𝑀 satisfies condition 𝑌(𝑠)
for some 𝑠 with 1 ≤ 𝑠 ≤ 𝑛 − ℓ − 1. Then for any 𝑓 in C∞

0,𝑠
(𝑀),

with 𝜕
𝑏
𝑓 = 0 and 𝑓 ⊥ H𝑏

0,𝑠
(𝑀), there exists a global solution

𝑢 inC∞
0,𝑠−1

(𝑀) to the equation 𝜕
𝑏
𝑢 = 𝑓.

Proof. By Corollary 12, for each 𝑘 ≥ 0, there exists some
𝑢
𝑘
∈ 𝑊
𝑘

0,𝑠−1
(𝑀) such that 𝜕

𝑏
𝑢
𝑘
= 𝑓. We modify each 𝑢

𝑘

by an element of Ker(𝜕
𝑏
) in order to construct a telescoping

series that belongs to 𝑊𝑘
0,𝑠
(𝑀) for each 𝑘 ≥ 1. To conclude

the proof, we first claim that 𝑊𝑘
0,𝑠
(𝑀) ∩ Ker(𝜕

𝑏
) is dense in

𝑊
𝑚

0,𝑠
(𝑀) ∩ Ker(𝜕

𝑏
) for any 𝑘 > 𝑚 ≥ 0. Since C∞

0,𝑠
(𝑀) is

dense in𝑊𝑚
0,𝑠
(𝑀), 𝑚 ≥ 0, in the𝑊𝑚-norm, then for a given

𝜂 ∈ 𝑊
𝑚

0,𝑠
(𝑀) ∩ Ker(𝜕

𝑏
) there is a sequence 𝜂

𝑗
∈ C∞
0,𝑠
(𝑀)

converging to 𝜂 in the𝑊𝑚
0,𝑠
(𝑀)-norm; that is, ‖𝜂

𝑗
− 𝜂‖
𝑚(𝑀)

→

0 as 𝑗 → ∞. 𝜕
𝑏
𝜂 = 0 implies that 𝜂 − 𝑆

𝑠
𝜂 = 𝜕

∗

𝑏
𝐺
𝑏
𝜕
𝑏
𝜂 = 0,

so 𝜂 = 𝑆
𝑠
𝑢. Let 𝜂

𝑗
= 𝑆
𝑠
𝜂
𝑗
. 𝜂
𝑗
∈ 𝑊
𝑘

0,𝑠
(𝑀) ∩ Ker(𝜕

𝑏
) since

the Szegö projection 𝑆
𝑠
is a bounded operator on𝑊𝑘

0,𝑠
(𝑀). By

the same reason we have ‖𝜂
𝑗
− 𝜂‖
𝑚(𝑀)

= ‖𝑆
𝑠
(𝜂
𝑗
− 𝜂)‖
𝑚(𝑀)

≤

𝐶‖𝜂
𝑗
− 𝜂‖
𝑚(𝑀)

→ 0 as 𝑗 → ∞. This implies that 𝜂
𝑗
→ 𝜂

in the𝑊𝑚-norm.Thus, indeed,𝑊𝑘
0,𝑠
(𝑀)∩Ker(𝜕

𝑏
) is dense in

𝑊
𝑚

0,𝑠
(𝑀) ∩ Ker(𝜕

𝑏
) for any 𝑘 > 𝑚 ≥ 0.

Next, using this result and following the inductive argu-
ment due to [21, page 230], we can construct a sequence
𝑢̃
𝑘
∈ 𝑊
𝑘

0,𝑠−1
(𝑀), 𝜕

𝑏
𝑢̃
𝑘
= 𝑓, and ‖𝑢̃

𝑘+1
− 𝑢
𝑘
‖
𝑘(𝑀)

≤ 2
−𝑘 as

follows:

𝑢̃
1
= 𝑢
1
, 𝑢̃

2
= 𝑢
2
+ V
2
, (73)

where V
2
∈ 𝑊
2

0,𝑠−1
(𝑀) ∩ Ker(𝜕

𝑏
) is such that

󵄩󵄩󵄩󵄩𝑢̃2 − 𝑢1
󵄩󵄩󵄩󵄩1(𝑀) ≤ 2

−1 (74)

and in general

𝑢̃
𝑘+1

= 𝑢
𝑘+1

+ V
𝑘+1

, (75)

where V
𝑘+1

∈ 𝑊
𝑘+1

0,𝑠
(𝑀) ∩ Ker(𝜕

𝑏
) is such that

󵄩󵄩󵄩󵄩𝑢̃𝑘+1 − 𝑢𝑘
󵄩󵄩󵄩󵄩𝑘(𝑀) ≤ 2

−𝑘

. (76)

Clearly 𝜕
𝑏
𝑢̃
𝑘
= 𝑓, so set

𝑢 = 𝑢̃
𝑗
+

∞

∑

𝑘=𝑗

(𝑢̃
𝑘+1

− 𝑢̃
𝑘
) , 𝑗 ∈ N. (77)

It follows that 𝑢 ∈ 𝑊
𝑘

0,𝑠−1
(𝑀) for each 𝑘 ∈ N, and hence 𝑢 ∈

C∞
0,𝑠−1

(𝑀) and 𝜕
𝑏
𝑢 = 𝑓. The general case is obtained from

interpolation of linear operators.
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