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This paper deals with the problem of estimating the Hurst parameter in the fractional Brownian motion when the Hurst index
is greater than one half. The estimation procedure is built upon the marriage of the autocorrelation approach and the maximum
likelihood approach. The asymptotic properties of the estimators are presented. Using the Monte Carlo experiments, we compare
the performance of ourmethod to existing ones, namely, R/Smethod, variations estimators, andwaveletmethod.These comparative
results demonstrate that the proposed approach is effective and efficient.

1. Introduction

It is well-known that many time series, in diverse fields of
application, may exhibit the phenomenon of long-memory
or long-range dependence. As a result, time series with long-
memory are currently used as stochastic models in various
applications including telecommunications, hydrodynamics,
economics, and environment.Moreover, applications of long-
memory are found in areas as diverse as energy market
analysis [1], neurosciences and other biological applications
[2], and more traditional financial analysis and statistical
theory [3–6]. We refer to the monographs Beran [7] and
Rao [8] for complete expositions on theoretical and practical
aspects of long-memory processes.

In the literature, there exist many stochastic processes
which exhibit long-memory property.Themost popular self-
similar stochastic process that exhibits long-range depen-
dence is of course the fractional Brownian motion (fBm),
which is a well-known Gaussian self-similar stochastic pro-
cess with stationary increments. In fact, up to a multiplicative
constant, the fBm is the only Gaussian process with these two
properties. Obviously, if some phenomenon can be modeled
by fBm, the estimation of the Hurst parameter in fBm is
an important problem. In other words, to avoid using an
arbitrary value of the unknown Hurst parameter of fBm, we

should estimate the Hurst exponent. This leads to a demand
for rigorous estimation procedures for fBm, which is the aim
of this paper.

Actually, there are several estimation procedures for
obtaining the Hurst parameter for fBm (see, e.g., [9]). One
of the estimators worth mentioning is the celebrated rescaled
range analysis (R/S analysis) since it is very popular among
researchers until today. In fact, there aremany othermethods
available in the literature for estimating the Hurst exponent.
For example, variance-time analysis, Higuchi’s approach, cor-
relogram method, periodogram method, Whittle estimator,
wavelet method, and Detrended fluctuation analysis method.
Recently, Chronopoulou and Viens [10] proposed a new
estimator of the Hurst parameter based on the discrete
variations. Actually, some comparisons of these estimation
methods have also been investigated in that paper. Taqqu et al.
[11] stated that theWhittle method is better than the classical
methods using the empirical studywhile Abry andVeitch [12]
showed that the wavelet method is better than the Whittle
method. For a general comparison of Fourier and wavelet
approach, see Faÿ et al. [9].

As far as the estimation is concerned, there is not yet a
perfect method that is agreed by all researchers. Eachmethod
has its own drawbacks and cannot be used as a sole estimator
in all cases. For more detailed discussions, see the work by
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Beran [7]. In this paper, for estimating the Hurst coefficient
in fBm, we present a new estimation procedure, which is
built upon the marriage of the autocorrelation approach
and the maximum likelihood approach. Specifically, when
𝐻 ∈ (1/2, 3/4], we present the asymptotic normality of
the estimator borrowing the idea of Hosking [13]. Moreover,
when 𝐻 ∈ (3/4, 1), we propose the asymptotic normality
of the maximum likelihood estimator under strictly weaker
conditions than those employed by Lai [14]. We also describe
the numerical implementation based on our method and
compare the performance of our method with the other
known approaches, namely, R/S method, variations estima-
tors, and wavelet method.

The remainder of this paper is organized as follows. In
Section 2, we give a brief description of the key result and
present the asymptotic distributions of our estimators. In
Section 3, the performance of the proposed estimator is
illustrated by some numerical experiments. Finally, Section 4
draws the concluding remarks. All technical details are
relegated to the appendix.

2. The Estimators Based on
Discrete Observations

With the dramatic increase of the importance of application
of long-memory in time series, the fBM model has been
successfully applied in many fields of economics, finance,
physics, chemistry, medicine, and environmental studies.
Indeed, when fBm is used to describe some phenomena, a
crucial problem is how to identify the Hurst parameter.Thus,
the parameter estimation problem for the Hurst parameter
was of great interest and became a challenging theoretical
problem in the past decade. In what follows, we consider the
problem of estimating the Hurst index in fBm.

Now, let us recall that a fractional Brownian motion
𝐵
𝐻

𝑡
with the Hurst coefficient 𝐻, defined on a complete

probability space (Ω,F,P), is a centered Gaussian process.
Its law is thus characterized by its covariance function, which
is given by

E [𝐵
𝐻

𝑡
𝐵
𝐻

𝑠
] = 𝑅
𝐻 (𝑡, 𝑠)

=
1

2
(𝑠
2𝐻

+ 𝑡
2𝐻

− |𝑠 − 𝑡|
2𝐻
) , 𝑡 ≥ 0, 𝑠 ≥ 0,

(1)

where E[𝐵𝐻
𝑡
] = 0 and 𝐵

𝐻

0
= 0 and 𝐻 ∈ (0, 1) denotes the

long-memory parameter. Moreover, let X = (𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑁
)
𝑡

be the column vector of this observed time series at instances
𝑡
𝑖
= 𝑖, where the superscript 𝑡 denotes the transpose of a

vector.

2.1. The Estimator When 1/2 <𝐻 ≤ 3/4. In this subsection,
we develop the estimator of the Hurst parameter using the
autocorrelation function.

From (1), we can see that the covariance can be written
as 𝑅
1/2
(𝑡, 𝑠) = min(𝑠, 𝑡) for 𝐻 = 1/2, and the process 𝐵

1/2

is an ordinary Brownian motion. In this case the increments
of the process in disjoint intervals are independent. How-
ever, for 𝐻 ̸= 1/2, the increments are not independent. Set

𝑌
𝑘
= 𝐵
𝐻

𝑘
− 𝐵
𝐻

𝑘−1
, 𝑘 ≥ 1. Then {𝑌

𝑘
, 𝑘 ≥ 1} is a Gaussian

stationary sequence with unit variance and autocovariance
function

𝜌 (𝑘) = E [𝑌
𝑛+𝑘

𝑌
𝑛
]

=
1

2
(|𝑘 − 1|

2𝐻
− 2|𝑘|

2𝐻
+ |𝑘 + 1|

2𝐻
) , 𝑘 ∈ Z.

(2)

Moreover, straightforward computations show that

𝜌 (𝑘) ∼ 𝐻 (2𝐻 − 1) |𝑘|
2𝐻−1

, (3)
as 𝑘 → ∞.

Therefore, the autocovariance function is nonsummable
for 𝐻 > 1/2. This phenomenon is called long-range depen-
dence, indicating (relatively) a slow decay of the covariance
function. Since 𝑌

𝑘
is exactly second-order self-similar, we

have from (2) that

𝜌 (1) = 2
2𝐻−1

− 1. (4)
Thus, we can solve for𝐻 to get

𝐻̂ =
1

2
[1 + log

2
(1 + 𝜌 (1))] . (5)

Now, given data 𝑌
1
, . . . , 𝑌

𝑁
, let

𝜇
𝑁
=

1

𝑁

𝑁

∑

𝑖=1

𝑌
𝑖
,

𝛾
𝑁 (𝑘) =

1
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𝑖
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𝑁
) (𝑌
𝑖+𝑘

− 𝜇
𝑁
) ,

𝜎̂
2

𝑁
= 𝛾
𝑁 (0) ,

𝜌
𝑁 (𝑘) =

𝛾
𝑁 (𝑘)

𝜎̂
2

𝑁

(6)

denote the sample mean, the sample covariance, the sample
variance, and the sample autocorrelation, respectively. Based
on (4), we can write the estimator for the Hurst parameter in
fBm as

𝐻̂ =
1

2
[1 + log

2
(1 + 𝜌

𝑁 (1))] . (7)

To assess the performance of the proposed estimate, we
appeal to the following result due to Hosking [13].

Theorem 1. Let 𝑌
𝑘

= 𝐵
𝐻

𝑘
− 𝐵
𝐻

𝑘−1
, 𝑘 ≥ 1 be an exactly

second-order self-similar Gaussian process, that is, a fractional
Gaussian noise. Assume in (2) that 0 < 𝐻 ≤ 3/4. Then for a
large sample size𝑁, 𝜌

𝑁
(1) is approximatelyN(𝜇

𝑁
, 𝜎
2

𝑁
), where

𝜇
𝑁
= 𝜌 (1) − (1 − 𝜌 (1))𝑁

2𝐻−2
,

𝜎
2

𝑁
=

1

𝑁
{(1 + 3𝜌

2
(1))

+ 2

∞

∑

𝑘=1

[(1 + 2𝜌
2
(1)) 𝜌

2
(𝑘)

+ 𝜌 (𝑘 − 1) 𝜌 (𝑘 + 1)

− 4𝜌 (1) 𝜌 (𝑘 − 1) 𝜌 (𝑘)]} ,

(8)
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when𝐻 ∈ (0, 3/4) and

𝜎
2

𝑁
=
log𝑁
𝑁

[2𝐻(2𝐻 − 1)(1 + 𝜌(1))]
2
, (9)

when𝐻 = 3/4.

Proof. This is a special case of Hosking [13].

2.2. The Estimator When 3/4 <𝐻<1. In what follows, we deal
with the problem of estimating the Hurst index in fBm when
3/4 < 𝐻 < 1. The technique we employed here is the
maximum likelihood method. The reason for choosing this
approach is that this technique has been applied efficiently in
a large set. Since the fBm isGaussian the log-likelihood for the
discrete observations X = (𝐵

1
, 𝐵
2
, . . . , 𝐵

𝑁
)
𝑡 may be explicitly

computed. Borrowing the idea of Lai [14], we can obtain the
exact maximum likelihood estimator of the Hurst parameter
for the fBm. However, since our assumptions are slightly
different from those in Lai [14], we present the detailed
derivations and make some comparisons.

Note that for any 𝑖, 𝐵
𝑖ℎ

is Gaussian. Thus the joint
probability density function of X is

𝑓
𝑁 (X, 𝐻) = (2𝜋)

−𝑁/2󵄨󵄨󵄨󵄨Γ𝐻
󵄨󵄨󵄨󵄨

−1/2 exp(−1
2
X𝑡Γ−1
𝐻
X) , (10)

where

Γ
𝐻
= [Cov [𝐵𝐻

𝑖
, 𝐵
𝐻

𝑗
]]
𝑖,𝑗=1,2,...,𝑁

=
1

2
(𝑖
2𝐻

+ 𝑗
2𝐻

−
󵄨󵄨󵄨󵄨𝑖 − 𝑗

󵄨󵄨󵄨󵄨

2𝐻
)
𝑖,𝑗=1,2,...,𝑁

.

(11)

As a consequence, the log-likelihood function of X is given
as

𝐿
𝑁 (X; 𝐻) = ln𝑓

𝑁 (X; 𝐻)

= −
𝑁

2
ln (2𝜋) − 1

2
ln (󵄨󵄨󵄨󵄨Γ𝐻

󵄨󵄨󵄨󵄨) −
1

2
X𝑡Γ−1
𝐻
X.

(12)

Moreover, let 𝐻̂ be the maximum likelihood estimator of
𝐻. Then, based on Taylor expansion we have

𝐿
󸀠

𝑁
(X; 𝐻̂) = 0 = 𝐿

󸀠

𝑁
(X; 𝐻) + 𝐿󸀠󸀠

𝑁
(X; 𝐻̃) (𝐻̂ − 𝐻) , (13)

where 𝐻̃ is a random point between 𝐻̂ and 𝐻; the single
prime 󸀠 and the double prime 󸀠󸀠 denote the first and the
second derivatives with respect to 𝐻, respectively. From Lai
[14], we have the following result.

Lemma 2. For 𝐻 ∈ (0, 1), the expectation of the first
derivative of the log-likelihood function, 𝐿

𝑁
(𝑋;𝐻), is zero and

the variance is (1/2)Tr([Γ−1
𝐻
Γ
󸀠

𝐻
]
2

).

Below we will establish the asymptotic distribution for𝐻.
First we list some technical conditions.

Assumption 3. Let 𝜆max(𝐴) denote the largest eigenvalue
of the matrix 𝐴. Then one assumes that 𝜆max(Γ𝐻) =

𝑜(𝑁
𝐻+1/4√ln𝑁).

Actually, we should verify the feasibility of Assumption 3.

Proposition 4. Assumption 3 is reasonable when𝐻 ∈ (3/4, 1)

Proof. First, noting that the lower bound for the largest
eigenvalue of Γ

𝐻
can be obtained from the result of Walker

and Mieghem [15], we have

𝜆max (Γ𝐻) ≥
∑
𝑁

𝑖,𝑗=1
𝑎
𝑖𝑗

𝑁
≥ 𝑁𝐶

𝑙
, (14)

where 𝑎
𝑖𝑗
are the coefficients and 𝐶

𝑙
is the minimum element

of the matrix Γ
𝐻
.

On the other hand, we obtain the higher bound for the
largest eigenvalue of Γ

𝐻
by the Gerschgorin Circle Theorem

(see [16]: Theorem 8.1.3, P395)

𝜆max (Γ𝐻) ≤ 𝑁
2𝐻+1

𝐶
𝑟
, (15)

with 𝐶
𝑟
being a positive constant.

Consequently, we obtain

𝜆max (Γ𝐻) ∈ [𝑁𝐶𝑙, 𝑁
2𝐻+1

𝐶
𝑟
] . (16)

From (16), it is obvious that Assumption 3 is practicable
when𝐻 ≥ 3/4.

We are now ready to state the key result, whose proof is
postponed to the appendix.

Theorem 5. Suppose that Assumption 3 is satisfied and 𝐻 ∈

(3/4, 1). Then the maximum likelihood estimator 𝐻̂ of the
parameter𝐻 is approximately normally distributed such that

√
Tr ([Γ−1

𝐻
Γ
󸀠

𝐻
]
2

)

2
(𝐻̂ − 𝐻)

L
󳨀󳨀󳨀→ N (0, 1)

(17)

as 𝑁 tends to infinity, where L
󳨀→ denotes the convergence in

distribution.

3. Simulation Studies

In this section, we conduct Monte Carlo simulations to study
the performance of our estimator and compare our estimator
with existing methods (the simulation in this paper has been
implemented in theMatlab language. Readers should contact
the authors if they are interested in obtaining the code of
this study). Although there aremany approaches available for
estimating the Hurst parameter, here we compare some of
these methods using the simulated time series. In particular,
we consider the R/S, the variations estimators, the wavelet
method, and our estimators. First, for a fixed time-step
ℎ = 1/12, we generate the fBm for different values of the
parameters𝐻 and for different sample sizes:𝑁 = 50 and 100.
Moreover, for each case we consider 𝑠 = 100 independent
realizations. Thus, for a given estimation method we obtain
𝑠 = 100as the estimated values for𝐻. We calculate

𝐻̂ =
1

𝑠

𝑠

∑

𝑖=1

𝐻
𝑖
, (18)
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Table 1: The estimation results of comparative methods for sample size𝑁 = 50.

Estimation method Statistic True values of𝐻
0.5600 0.6200 0.8500 0.9200

R/S method

Mean 0.50506 0.59232 0.82667 0.87692
S.D. 0.62322 0.43601 0.48195 0.51479
√MSE 0.62564 0.43689 0.48251 0.51659

CPU time 13 15 18 20

Variations estimators

Mean 0.59451 0.65676 0.89267 0.92050
S.D. 0.12365 0.23050 0.23739 0.15369
√MSE 0.12838 0.23341 0.24119 0.15369

CPU time 3 5 4 6

Wavelet method

Mean 0.58500 0.63520 0.87150 0.92963
S.D. 0.04265 0.02518 0.06251 0.09654
√MSE 0.04944 0.02941 0.06610 0.09702

CPU time 22 27 28 28

Our method

Mean 0.56667 0.62905 0.85507 0.92102
S.D. 0.03319 0.03092 0.01350 0.01325
√MSE 0.03385 0.03222 0.01442 0.01329

CPU time 3 3 5 5

Table 2: The estimation results of comparative methods for sample size𝑁 = 100.

Estimation method Statistic True values of𝐻
0.5600 0.6200 0.8500 0.9200

R/S method

Mean 0.53625 0.60581 0.83751 0.89032
S.D. 0.37218 0.32670 0.36258 0.36521
√MSE 0.37294 0.32701 0.36280 0.36641

CPU time 50 48 49 50

Variations estimators

Mean 0.58002 0.63370 0.86261 0.93143
S.D. 0.01606 0.01952 0.01910 0.03162
√MSE 0.02567 0.02385 0.02289 0.03362

CPU time 21 18 19 22

Wavelet method

Mean 0.56497 0.62951 0.86232 0.91931
S.D. 0.01268 0.01497 0.05436 0.07484
√MSE 0.01362 0.01774 0.05574 0.07484

CPU time 100 108 112 118

Our method

Mean 0.56003 0.62003 0.85003 0.92007
S.D. 0.00214 0.00967 0.01470 0.00948
√MSE 0.00215 0.00968 0.01472 0.00949

CPU time 15 13 21 24

where𝐻
𝑖
are the estimated values for a single realization. We

calculate the standard deviation (S.D.)

S.D. = √
1

𝑠 − 1

𝑠

∑

𝑖=1

(𝐻
𝑖
− 𝐻)
2

, (19)

where 𝐻 is the mean over all the realizations and the mean-
square error (MSE)

MSE =
1

𝑠

𝑠

∑

𝑖=1

(𝐻
𝑖
− 𝐻)
2
, (20)

where 𝐻 is the value of the parameter that we have used to
generate the model.

Using this way we can obtain approximate values for
the standard deviation and the mean-squares error of the
estimators. These results are important because they are
necessary to investigate the performances of the estimators.
Simulation results are summarized in Tables 1 and 2 with the
mean, the standard deviation (S.D.), and the mean- square
error (MSE) of these estimators.The CPU times (in seconds),
which are the average, are also presented in these tables (all
the procedures were programmed using a PC with 2.4GHz
Intel Duo Core CPU and 2-GB RAM).
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Figure 1: Histograms of the statistic 𝐻̂ for (a)𝐻 = 0.60, (b)𝐻 = 0.70, (c)𝐻 = 0.80, and (d)𝐻 = 0.90.

From these numerical computations, we can conclude
that the simulated mean converges to the true value rapidly
and the bias tends quickly to zero when the sample size
increases. Indeed, by carefully observing Tables 1 and 2, we
can see that the mean values obtained by our method and
wavelet method are closer to the true values than those
obtained based on R/S method and variation approach.
Moreover, both the S.D. and theMSEobtained by ourmethod
and the wavelet method are smaller than those obtained
based on R/S method and variation approach. Furthermore,
it is interesting to see that our approach and wavelet method
have the same accuracy and bias when the number of sample
paths is large enough. Hence both methods are efficient.
However, the most important finding is that the computation
time costed by our approach is lower than that by the wavelet
method. Therefore, our method is effective and efficient. In
summary, theMonte Carlo simulations verify our theory and
indicate that our estimators perform reasonably well in finite
samples.

We next investigate the asymptotic distribution of 𝐻̂ and
when𝑁 is not so large. Here, the chosen parameters are𝐻 =

0.60, 0.70, 0.80, 0.90 and we take 𝑁 = 120 and ℎ = 1/12 (i.e.,
𝑇 = 10). We just perform 100 Monte Carlo simulations of the
sample paths generated by the process of fBm.The results are
presented in Figure 1.

FromFigure 1, we can see that the normal approximations
of the distributions of the Hurst parameter 𝐻 based on 𝐻̂

are reasonable even when 𝑁 is not so large. This confirms
our theoretical analysis: the convergence of the distributions
of these two estimators is fast. In conclusion, our simulation
results show that our estimators perform well since the
estimating results match the chosen parameters exactly.

4. Conclusion

Research on estimating the Hurst parameters of fBm has
been ongoing in the econometric and statistical literatures
for more than two decades. But the subject has received
its greatest attention in the last decade, as researchers in
empirical finance have sought to use fBm to capture the
long-range dependency of the prices of financial assets. This
paper considered the inference problem for fBm based on the
marriage of the autocorrelation approach and the maximum
likelihood approach. The main contribution of this paper
was in the establishment of asymptotic normality when the
Hurst parameter satisfied 𝐻 ∈ (1/2, 1). This paper therefore
extended the Lai [14] seminal contribution, which was done
under strong conditions. Finally, we also showed the perfor-
mance of our method to existing ones and illustrated that the
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proposed approach is effective and efficient. Certainly, for a
future study, to improve the methodology it is required to
use different schemes of estimation with a higher order of
convergence.The field is therefore of growing importance for
both theorists and practitioners.

Appendix

Proof of Theorem 5. Let 𝐷𝐻
𝑁
= √(1/2)Tr([Γ−1

𝐻
Γ
󸀠

𝐻
]
2
). Then we

obtain

Tr ([Γ−1
𝐻
Γ
󸀠

𝐻
]
2

) ≥

Tr ((Γ󸀠
𝐻
)
2

)

𝜆2max (Γ𝐻)
=

󵄩󵄩󵄩󵄩󵄩
Γ
󸀠

𝐻

󵄩󵄩󵄩󵄩󵄩

2

𝐸

𝜆2max (Γ𝐻)
, (A.1)

where ‖ ⋅ ‖
𝐸
denotes the Euclidean norm. The calculation of

‖Γ
󸀠

𝐻
‖
2

𝐸
is shown by the following computation:

󵄩󵄩󵄩󵄩󵄩
Γ
󸀠

𝐻

󵄩󵄩󵄩󵄩󵄩

2

𝐸
=

𝑁

∑

𝑖,𝑗=1

(𝑎
󸀠

𝑖𝑗
)
2

≥
1

𝑁2
(

𝑁

∑

𝑖,𝑗=1

𝑎
󸀠

𝑖𝑗
)

2

=
2

𝑁2

[
[
[

[

𝑁

∑

𝑖,𝑗=1

𝑖>𝑗

𝑖
2𝐻 ln 𝑖 + 𝑗2𝐻 ln 𝑗

− (𝑖 − 𝑗)
2𝐻 ln (𝑖 − 𝑗) +

𝑁

∑

𝑖=1

𝑖
2𝐻 ln 𝑖

]
]
]

]

2

=
2

𝑁2
(

𝑁

∑

𝑖=2

[(𝑖 − 1) 𝑖
2𝐻 ln 𝑖 + 𝑖2𝐻 ln 𝑖])

2

=
2

𝑁2
(

𝑁

∑

𝑖=2

𝑖
2𝐻+1 ln 𝑖)

2

= O (𝑁
4𝐻+2ln2𝑁) ,

(A.2)

where 𝑎
󸀠

𝑖𝑗
are the coordinates of the matrix Γ

󸀠

𝐻
. The last

asymptotic term follows since ∑𝑁
𝑖=1

𝑖
2𝐻+1

⋅ ln 𝑖 = O(𝑁2𝐻+2 ⋅
ln𝑁).

TheGerschgorinCircleTheorem (see [16]:Theorem 8.1.3,
P395), combined with (A.2), implies that

󵄩󵄩󵄩󵄩󵄩
Γ
󸀠

𝐻

󵄩󵄩󵄩󵄩󵄩

2

𝐸

𝜆2max (Γ𝐻)
≥ 𝐶

𝑁
4𝐻+2ln2𝑁
(𝑁2𝐻+1)

2
= 𝐶ln2𝑁, (A.3)

where 𝐶 is a positive constant. Consequently, we have
(𝐷
𝐻

𝑁
)
−1

→ 0 as𝑁 → ∞.

Now let 𝑊𝐻
𝑁

= (𝐷
𝐻

𝑁
)
−2

(−𝐿
󸀠󸀠
(𝑌;𝐻)). Then a simple

computation shows thatE[𝑊𝐻
𝑁
] = 1. To compute the variance

of𝑊𝐻
𝑁

we first calculate the variance of −𝐿󸀠󸀠(𝑌;𝐻):

Var [−𝐿󸀠󸀠 (𝑌;𝐻)]

= 2Tr [(1
2
)

2

(Γ
1/2

𝐻
(Γ
−1

𝐻
)
󸀠󸀠

Γ
1/2

𝐻
)

2

]

=
1

2
Tr (Γ1/2
𝐻
(Γ
−1

𝐻
)
󸀠󸀠

Γ
1/2

𝐻
)

2

=
1

2

󵄩󵄩󵄩󵄩󵄩󵄩
Γ
1/2

𝐻
(Γ
−1

𝐻
)
󸀠󸀠

Γ
1/2

𝐻

󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐸

=
1

2

𝑁

∑

𝑖,𝑗=1

𝑏
2

𝑖𝑗
=
1

2

𝑁

∑

𝑖=1

𝜆
2

𝑖
(Γ
1/2

𝐻
(Γ
−1

𝐻
)
󸀠󸀠

Γ
1/2

𝐻
)

≤
𝑁

2
𝜆
2

max (Γ
1/2

𝐻
(Γ
−1

𝐻
)
󸀠󸀠

Γ
1/2

𝐻
)

=
𝑁

2

󵄩󵄩󵄩󵄩󵄩󵄩
Γ
1/2

𝐻
(Γ
−1

𝐻
)
󸀠󸀠

Γ
1/2

𝐻

󵄩󵄩󵄩󵄩󵄩󵄩𝑆

≤
𝑁

2
(2
󵄩󵄩󵄩󵄩󵄩
Γ
−1/2

𝐻
Γ
󸀠

𝐻
Γ
−1

𝐻
Γ
󸀠

𝐻
Γ
−1/2

𝐻

󵄩󵄩󵄩󵄩󵄩𝑆

+
󵄩󵄩󵄩󵄩󵄩
Γ
−1/2

𝐻
Γ
󸀠󸀠

𝐻
Γ
−1/2

𝐻

󵄩󵄩󵄩󵄩󵄩𝑆
)

=
𝑁

2
(2𝜆max (Γ

−1/2

𝐻
Γ
󸀠

𝐻
Γ
−1

𝐻
Γ
󸀠

𝐻
Γ
−1/2

𝐻
)

+𝜆max (Γ
−1/2

𝐻
Γ
󸀠󸀠

𝐻
Γ
−1/2

𝐻
))

≤
𝑁

2
(2

𝜆
2

max (Γ
󸀠

𝐻
)

𝜆
2

min (Γ𝐻)
+

𝜆max (Γ
󸀠󸀠

𝐻
)

𝜆min (Γ𝐻)
)

= O (𝑁
4𝐻+3ln2𝑁) ,

(A.4)

where 𝑏
𝑖𝑗
are the coefficients, 𝜆

𝑖
(⋅) is the eigenvalues, 𝜆max(⋅)

is the largest eigenvalue, and ‖ ⋅ ‖
𝑆
is the spectral norm. The

last term of the asymptotic relationship follows from the
Gerschgorin Circle Theorem and the positive definiteness of
the matrix Γ

𝐻
.

Indeed, by applying (A.2) and using (A.4), we immedi-
ately obtain that

(𝐷
𝐻

𝑁
)
−4

⋅ Var [−𝐿󸀠󸀠 (𝑌;𝐻)]

=
4

[Tr ([Γ−1
𝐻
Γ
󸀠

𝐻
]
2
)]
2
⋅ Var [−𝐿󸀠󸀠 (𝑌;𝐻)]

≤
4𝜆
4

max (Γ𝐻)

[Tr ([Γ󸀠
𝐻
]
2
)]
2
⋅ Var [−𝐿󸀠󸀠 (𝑌;𝐻)]
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≤ 𝐶
∗
𝜆
4

max (Γ𝐻) ⋅ 𝑁
4𝐻+3

𝑁8𝐻+4 ⋅ ln2𝑁

= 𝐶
∗

𝜆
4

max (Γ𝐻)

𝑁4𝐻+1 ⋅ ln2𝑁
,

(A.5)

where 𝐶
∗ is a positive constant. Consequently, we obtain

(𝐷
𝐻

𝑁
)
−4

⋅ Var[−𝐿󸀠󸀠(𝑌;𝐻)] → 0 as 𝑁 goes to infinity when
𝜆max(Γ𝐻) = 𝑜(𝑁

𝐻+1/4√ln𝑁). Now, we obtain 𝑊
𝐻

𝑁
→ 1,

which is the condition (C1) of Sweeting [17]. Moreover, the
continuity condition (C2) in Sweeting [17] holds trivially
since𝐷𝐻

𝑁
and 𝐿󸀠(𝑌;𝐻) are continuous functions of𝐻.

From Corollary 1 in Sweeting [17], we obtain the desired
result.
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[9] G. Faÿ, E. Moulines, F. Roueff, and M. S. Taqqu, “Estimators
of long-memory: Fourier versus wavelets,” Journal of Economet-
rics, vol. 151, no. 2, pp. 159–177, 2009.

[10] A. Chronopoulou and F. G. Viens, “Hurst index estimation for
self-similar processes with long-memory,” in Recent Develop-
ment in Stochastic Dynamics and Stochastic Analysis, J. Duan, S.
Luo, and C.Wang, Eds., vol. 8 of Interdisciplinary Mathematical
Sciences, pp. 91–117, World Scientific, Singapore, 2010.

[11] M. Taqqu, V. Teverovsky, and W. Willinger, “Estimators for
long-range dependence: an empirical study,” Fractals, vol. 3, no.
4, pp. 785–798, 1995.

[12] P. Abry and D. Veitch, “Wavelet analysis of long-range-
dependent traffic,” IEEE Transactions on Information Theory,
vol. 44, no. 1, pp. 2–15, 1998.

[13] J. R.M.Hosking, “Asymptotic distributions of the samplemean,
autocovariances, and autocorrelations of long-memory time
series,” Journal of Econometrics, vol. 73, no. 1, pp. 261–284, 1996.

[14] D. Lai, “Estimating the Hurst effect and its application in
monitoring clinical trials,” Computational Statistics & Data
Analysis, vol. 45, no. 3, pp. 549–562, 2004.

[15] S. G. Walker and P. Van Mieghem, “On lower bounds for the
largest eigenvalue of a symmetric matrix,” Linear Algebra and
its Applications, vol. 429, no. 2-3, pp. 519–526, 2008.

[16] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns
Hopkins Studies in the Mathematical Sciences, Johns Hopkins
University Press, Baltimore, Md, USA, 3rd edition, 1996.

[17] T. Sweeting, “Uniform asymptotic normality of the maximum
likelihood estimator,” Annals of Statistics, vol. 8, no. 6, pp. 1375–
1381, 1980.


