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To reflect uncertain data in practical problems, stochastic versions of the mathematical program with complementarity constraints
(MPCC) have drawn much attention in the recent literature. Our concern is the detailed analysis of convergence properties of a
regularization sample average approximation (SAA) method for solving a stochastic mathematical program with complementarity
constraints (SMPCC). The analysis of this regularization method is carried out in three steps: First, the almost sure convergence
of optimal solutions of the regularized SAA problem to that of the true problem is established by the notion of epiconvergence in
variational analysis. Second, under MPCC-MFCQ, which is weaker than MPCC-LICQ, we show that any accumulation point of
Karash-Kuhn-Tucker points of the regularized SAA problem is almost surely a kind of stationary point of SMPCC as the sample
size tends to infinity. Finally, some numerical results are reported to show the efficiency of the method proposed.

1. Introduction

Our concern in this paper is the following stochastic
mathematical program with complementarity constraints
(SMPCC):

min E [𝑓 (𝑧, 𝜉 (𝜔))]

s.t. E [𝑔 (𝑧, 𝜉 (𝜔))] ≤ 0,

E [ℎ (𝑧, 𝜉 (𝜔))] = 0,

0 ≤ E [𝐺 (𝑧, 𝜉 (𝜔))]

⊥ E [𝐻 (𝑧, 𝜉 (𝜔))] ≥ 0,

(1)

where 𝑓 : R𝑛 × R𝑘 → R, 𝑔 : R𝑛 × R𝑘 → R𝑝,
ℎ : R𝑛 × R𝑘 → R𝑞, 𝐻 : R𝑛 × R𝑘 → R𝑚,
and 𝐺 : R𝑛 × R𝑘 → R𝑚 are random mappings; 𝜉 :
Ω → Ξ ⊆ R𝑘 is a random vector defined on a probability
space (Ω,F, 𝑃); E denotes the mathematical expectation; the
notation ⊥ means “perpendicular.” Throughout the paper,
we assume that E[𝑓(𝑧, 𝜉(𝜔))], E[𝑔(𝑧, 𝜉(𝜔))], E[ℎ(𝑧, 𝜉(𝜔))],

E[𝐺(𝑧, 𝜉(𝜔))], and E[𝐻(𝑧, 𝜉(𝜔))] are all well defined and
finite for any 𝑧 ∈ R𝑛. To ease the notation, we write 𝜉(𝜔) as 𝜉
and this should be distinguished from 𝜉 being a deterministic
vector of Ξ in a context.

The SMPCC (1) is a natural extension of deterministic
mathematical program with complementarity constraints
(MPCC) [1, 2], which have many applications in transporta-
tion [3] and communication networks [4], and so forth.There
are many stochastic formulations of MPCC proposed in the
recent years [3, 5–7]. Among these formulations, Birbil et al.
[3] applied sample path method [8] to SMPCC (1).

In this paper, we are concerned with a numerical method
for solving (1). Evidently, if the integral involved in the math-
ematical expectation of problem (1) can be evaluated either
analytically or numerically, then problem (1) can be regarded
as the usualMPCCproblemand consequently it can be solved
by existing numerical methods that are related. However, as
shown in [9], in many situations, exact evaluation of the
expected value in (1) for 𝑥 is either impossible or prohibitively
expensive. Sample average approximation (SAA) method [8,
10] is suggested bymany authors to handle such difficulty; see
the recent works [11–15]. The basic idea of SAA is to generate
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an independent identically distributed (iid) sample 𝜉1, . . . , 𝜉𝑁
of 𝜉 and then approximate the expected value with sample
average. In this context, let 𝜉1, . . . , 𝜉𝑁 be iid sample; then the
SMPCC (1) is approximated by the following SAA problem:

min 𝑓𝑁 (𝑧)

s.t. 𝑔𝑁 (𝑧) ≤ 0, ℎ̂𝑁 (𝑧) = 0,

0 ≤ 𝐺𝑁 (𝑧) ⊥ 𝐻̂𝑁 (𝑧) ≥ 0,

(2)

where 𝑓
𝑁
(𝑧) := (1/𝑁)∑𝑁

𝑖=1
𝑓(𝑧, 𝜉𝑖), 𝑔

𝑁
(𝑧) :=

(1/𝑁)∑𝑁

𝑖=1
𝑔(𝑧, 𝜉𝑖), ℎ̂

𝑁
(𝑧) := (1/𝑁)∑𝑁

𝑖=1
ℎ(𝑧, 𝜉𝑖),

𝐺
𝑁
(𝑧) := (1/𝑁)∑𝑁

𝑖=1
𝐺(𝑧, 𝜉𝑖), 𝐻̂

𝑁
(𝑧) := (1/𝑁)∑𝑁

𝑖=1
𝐻(𝑧, 𝜉𝑖)

is the sample-average function of 𝑓(𝑧, 𝜉𝑖), 𝑔(𝑧, 𝜉𝑖), ℎ(𝑧, 𝜉𝑖),
𝐺(𝑧, 𝜉𝑖) and 𝐻(𝑧, 𝜉𝑖) respectively. We refer to (1) as the true
problem and (2) as the SAA problem to (1). Another critical
problem for solving (1) is how to solve SAA problem (2)
effectively. Since the Mangasarian-Fromovitz constraint
qualification is violated at every feasible point of SAA
problem (2) (see [16]), it is not appropriate to use standard
nonlinear programming software to solve the SAA problem
directly. The well-known regularization scheme [17], is a
effective way to deal with this issue. That is, by replacing the
complementarity constraint with a parameterized system of
inequalities, the SAA problem is reformulated as follows:

min 𝑓𝑁 (𝑧)

s.t. 𝑔𝑁 (𝑧) ≤ 0, ℎ̂𝑁 (𝑧) = 0,

𝐺𝑁 (𝑧) ≥ 0, 𝐻̂𝑁 (𝑧) ≥ 0,

𝐺𝑁 (𝑧) ∘ 𝐻̂𝑁 (𝑧) ≤ 𝑡
𝑁
𝑒,

(3)

where 𝑡
𝑁

> 0 is a parameter, “∘” denotes the Hadamard
product and 𝑒 ∈ R𝑚 is a vector with components 1. Then the
SAA problem can be approximated by a smooth nonlinear
programming (NLP) problem (3) when the parameter is
sufficiently small. Consequently, a solution to true problem
(1) can be obtained by solving a sequence of such regularized
SAA problems.

In this paper, we focus on the detailed analysis of conver-
gence properties of the regularized SAA problem (3) to the
true problem (1) as the sample size tends to infinity.Themain
contributions of this paper can be summarized as follows: by
the notion of epiconvergence in [18], we establish the almost
sure convergence of optimal solutions of smoothed SAA
problem as the sample size tends to infinity. Under MPCC-
MFCQ, we show that any accumulation point of Karash-
Kuhn-Tucker points of the regularized SAA problem is a kind
of stationary point almost surely. The obtained results can be
seen an improvement of [17,Theorem 3.1] for solving SMPCC
under weaker constraint qualification conditions. Moreover,
under the MPCC strong second-order sufficient condition
(MPCC-SSOSC) in [16], we investigate sufficient conditions
under which the smoothed SAA problem possesses a Karash-
Kuhn-Tucker point when the sample size is large enough,

and the sequence of those points converges exponentially to
a kind of stationary point of SMPCC almost surely as the
sample size tends to infinity.

This paper is organized as follows: Section 2 gives prelim-
inaries needed throughout the whole paper. In Sections 3 and
4, we establish the almost sure convergence of optimal solu-
tions and stationary points of the regularized SAA problem
as the sample size tends to infinity respectively. In Section 5,
existence and exponential convergence rate of stationary
points of the regularized SAA problem are investigated. We
also report some preliminary numerical results in Section 6.

2. Preliminaries

Throughout this paper we use the following notations. Let ‖⋅‖
denote the Euclidean norm of a vector or the Frobenius norm
of a matrix. For a 𝑚 × 𝑛 matrix 𝐴, 𝐴

𝑖𝑗
denotes the element

of the 𝑖th row and 𝑗th column of 𝐴. We use 𝐼
𝑛
to denote the

𝑛 × 𝑛 identity matrix, B denotes the closed unite ball, and
B(𝑥, 𝛿) denotes the closed ball around 𝑥 of radius 𝛿 > 0.
For a extended real-valued function 𝜑 : R𝑛 → R ∪ {±∞},
epi𝜑,∇𝜑(𝑥), and∇2𝜑(𝑥) denote their epigraph that is, the set
{(𝑥, 𝛼) | 𝜑(𝑥) ≤ 𝛼}, the gradient of 𝜑 at 𝑥, and the Hessian
matrix of 𝜑 at 𝑥, respectively. For a mapping 𝜙 : R𝑛 → R𝑚,
J𝜙(𝑥) denotes the Jacobian of 𝜙 at 𝑥. R

++
stands for the

positive real numbers.
In the following, we introduce some concepts of the

convergence of set sequences and mapping sequences in [18]
which will be used in the next section. Define

N
∞

:= {𝑁 ⊆ N | N \ 𝑁 finite} ,

N
#
∞

:= {𝑁 ⊆ N | 𝑁 infinite} ,
(4)

where N denotes the set of all positive integer numbers.

Definition 1. For sets 𝐶] and 𝐶 in R𝑛 with 𝐶 closed, the
sequence {𝐶]}]∈N is said to converge to 𝐶 (written 𝐶] → 𝐶)
if

lim sup
]→∞

𝐶] ⊆ 𝐶 ⊆ lim inf
]→∞

𝐶]
(5)

with

lim sup
]→∞

𝐶] := {𝑥 | ∃ 𝑁 ∈ N
#
∞
,

∃ 𝑥] ∈ 𝐶] (] ∈ 𝑁) such that 𝑥] 𝑁

󳨀→ 𝑥} ,

lim inf
]→∞

𝐶] := {𝑥 | ∃ 𝑁 ∈ N
∞
,

∃ 𝑥] ∈ 𝐶] (] ∈ 𝑁) such that 𝑥] 𝑁

󳨀→ 𝑥} .

(6)

The continuous properties of a set-valued mapping 𝑆 can
be developed by the convergence of sets.
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Definition 2. A set-valued mapping 𝑆 : R𝑛 󴁂󴀱 R𝑚 is
continuous at 𝑥, symbolized by lim

𝑥→𝑥
𝑆(𝑥) = 𝑆(𝑥), if

lim sup
𝑥→𝑥

𝑆 (𝑥) ⊆ 𝑆 (𝑥) ⊆ lim inf
𝑥→𝑥

𝑆 (𝑥) . (7)

Definition 3. Consider now a family of functions 𝑓] : R𝑛 →
R, whereR = R ∪ {±∞}. One says that 𝑓] epiconverges to a
function 𝑓 : R𝑛 → R as ] → ∞ and is written as

𝑓 = 𝑒 − lim
]→∞

𝑓], (8)

if the sequence of sets epi 𝑓] converges to epi 𝑓 inR𝑛 ×R as
] → ∞.

Definition 4. Given a clos set Ξ ⊆ R𝑛 and a point 𝑥 ∈ Ξ. The
cone

𝑁̂
Ξ
(𝑥) :=

{
{
{

𝑥∗ ∈ R
𝑛 | lim sup

𝑥

Ξ

󳨀→𝑥

⟨𝑥∗, 𝑥 − 𝑥⟩

‖𝑥 − 𝑥‖
≤ 0

}
}
}

(9)

is called the Fréchet normal cone to Ξ at 𝑥. Then the limiting
normal cone (also known as Mordukhovich normal cone or
basic normal cone) to Ξ at 𝑥 is defined by

𝑁
Ξ
(𝑥) := lim sup

𝑥

Ξ

󳨀→𝑥

𝑁̂
Ξ
(𝑥) . (10)

If Ξ ⊆ R𝑛 is a closed convex set, the limiting normal cone
𝑁

Ξ
(𝑥) is the normal cone in the sense of convex analysis.

Next, we recall some basic concepts that are often
employed in the literature on optimization problems with
complementarity constraints.

Let 𝑧 be a feasible point of problem (1) and for conve-
nience we define the index sets

𝐼
𝑔
= {𝑖 ∈ {1, 2, . . . , 𝑝} : E [𝑔

𝑖
(𝑧, 𝜉)] = 0} ,

𝛼 = {𝑖 ∈ {1, 2, . . . , 𝑚} : E [𝐺
𝑖
(𝑧, 𝜉)] = 0 < E [𝐻

𝑖
(𝑧, 𝜉)]} ,

𝛽 = {𝑖 ∈ {1, 2, . . . , 𝑚} : E [𝐺
𝑖
(𝑧, 𝜉)] = 0 = E [𝐻

𝑖
(𝑧, 𝜉)]} ,

𝛾 = {𝑖 ∈ {1, 2, . . . , 𝑚} : E [𝐺
𝑖
(𝑧, 𝜉)] > 0 = E [𝐻

𝑖
(𝑧, 𝜉)]} .

(11)

The constraint qualifications for SMPCC is as follows.

Definition 5. Assume E[𝑔(⋅, 𝜉)], E[ℎ(⋅, 𝜉)], E[𝐺(⋅, 𝜉)], and
E[𝐻(⋅, 𝜉)] are continuously differentiable at 𝑧. We say
the MPCC Mangasarian-Fromovitz constraint qualification
(MPCC-MFCQ) holds at 𝑧 if the set of vectors

{∇E [𝐻
𝑖
(𝑧, 𝜉)] ∇E [ℎ

𝑖
(𝑧, 𝜉)] , 𝑖 = 1, . . . , 𝑞; ∇E [𝐺

𝑖
(𝑧, 𝜉)] ,

𝑖 ∈ 𝛼 ∪ 𝛽; ∇E [𝐻
𝑖
(𝑧, 𝜉)] , 𝑖 ∈ 𝛽 ∪ 𝛾}

(12)

are linearly independent and there exists a nonzero vector 𝑑 ∈
R𝑛 such that

∇E[ℎ
𝑖
(𝑧, 𝜉)]

𝑇

𝑑 = 0 𝑖 = 1, . . . , 𝑞,

∇E[𝐺
𝑖
(𝑧, 𝜉)]

𝑇

𝑑 = 0 𝑖 ∈ 𝛼 ∪ 𝛽,

∇E[𝐻
𝑖
(𝑧, 𝜉)]

𝑇

𝑑 = 0 𝑖 ∈ 𝛾 ∪ 𝛽,

∇E[𝑔
𝑖
(𝑧, 𝜉)]

𝑇

𝑑 < 0 𝑖 ∈ 𝐼
𝑔
.

(13)

Definition 6. Assume E[𝑔(⋅, 𝜉)], E[ℎ(⋅, 𝜉)], E[𝐺(⋅, 𝜉)], and
E[𝐻(⋅, 𝜉)] are continuously differentiable at 𝑧. We say the
MPCC linear independence constraint qualification (MPCC-
LICQ) holds at 𝑧 if the set of vectors

{∇E [𝑔
𝑖
(𝑧, 𝜉)] , 𝑖 ∈ 𝐼

𝑔
; ∇E [ℎ

𝑖
(𝑧, 𝜉)] , 𝑖 = 1, . . . , 𝑞,

∇E [𝐺
𝑖
(𝑧, 𝜉)] , 𝑖 ∈ 𝛼 ∪ 𝛽; ∇E [𝐻

𝑖
(𝑧, 𝜉)] , 𝑖 ∈ 𝛽 ∪ 𝛾}

(14)

are linearly independent.

As in [16], we use the following two stationarity concepts
for SMPCC.

Definition 7. Assume 𝑧 is a feasible point of SMPCC (1),
E[𝑔(⋅, 𝜉)], E[ℎ(⋅, 𝜉)], E[𝐺(⋅, 𝜉)], and E[𝐻(⋅, 𝜉)] are continu-
ously differentiable at 𝑧. Suppose there exist vectors 𝜆 ∈ R|𝐼𝑔|,
𝜇 ∈ R𝑞, 𝑢 ∈ R|𝛼|+|𝛽|, and V ∈ R|𝛽|+|𝛾| such that 𝑧 satisfies the
following conditions:

0 = ∇E [𝑓 (𝑧, 𝜉 (𝜔))] + ∑
𝑖∈𝐼𝑔

𝜆
𝑖
∇E [𝑔

𝑖
(𝑧, 𝜉)]

+
𝑞

∑
𝑖=1

𝜇
𝑖
∇E [ℎ

𝑖
(𝑧, 𝜉)] − ∑

𝑖∈𝛼∪𝛽

𝑢
𝑖
∇E [𝐺

𝑖
(𝑧, 𝜉)]

− ∑
𝑖∈𝛽∪𝛾

V
𝑖
∇E [𝐻

𝑖
(𝑧, 𝜉)] .

(15)

(i) (𝐶-stationary point) We call 𝑧 a Clarke stationary
point of (1) if 𝑢

𝑖
V
𝑖
≥ 0, 𝑖 ∈ 𝛽.

(ii) (𝑆-stationary point) We call 𝑧 a strongly stationary
point of (1) if 𝑢

𝑖
≥ 0, V

𝑖
≥ 0, 𝑖 ∈ 𝛽.

The following upper level strict complementarity condi-
tion was used in [16] in the context of sensitivity analysis for
MPCC.

Definition 8. We say that the upper level strict complemen-
tarity condition (ULSC) holds at 𝑧 if 𝑢

𝑖
and V

𝑖
, the multipliers

correspondence to E[𝐺
𝑖
(𝑧, 𝜉)], and E[𝐻

𝑖
(𝑧, 𝜉)], respectively,

satisfy 𝑢
𝑖
V
𝑖
̸= 0 for all 𝑖 ∈ 𝛽.

It is well known that a point (𝑥, 𝑦) satisfies the lower
level strict complementarity condition (LLSC) ifE[𝐺

𝑖
(𝑧, 𝜉)]+

E[𝐻
𝑖
(𝑧, 𝜉)] > 0 hold for all 𝑖 ∈ {1, . . . , 𝑚}, we can see from

an example from [16] that ULSC condition is considerably
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weaker than the LLSC condition, and in practice, it maymake
more sense than the latter one.

We use the following second-order condition based on
the MPCC-Lagrangian:

𝐿 (𝑧, 𝜆, 𝜇, 𝑢, V)

= E [𝑓 (𝑧, 𝜉)] + ∑
𝑖∈𝐼𝑔

𝜆
𝑖
E [𝑔

𝑖
(𝑧, 𝜉)]

+
𝑞

∑
𝑖=1

𝜇
𝑖
E [ℎ

𝑖
(𝑧, 𝜉)] − ∑

𝑖∈𝛼∪𝛽

𝑢
𝑖
E [𝐺

𝑖
(𝑧, 𝜉)]

− ∑
𝑖∈𝛽∪𝛾

V
𝑖
E [𝐻

𝑖
(𝑧, 𝜉)]

(16)

of (𝑃).

Definition 9 (see [16]). Let 𝑧 be a 𝑆-stationary point of (1)
and (𝜆, 𝜇, 𝑢, V) is the corresponding multiplier at 𝑧. Suppose
E[𝑔(⋅, 𝜉)], E[ℎ(⋅, 𝜉)], E[𝐺(⋅, 𝜉)], E[𝐻(⋅, 𝜉)], and E[𝑓(⋅, 𝜉)] are
twice continuously differentiable at 𝑧. We say that the MPCC
strong second-order sufficient condition (MPCC-SSOSC)
holds at 𝑧 if

𝑑𝑇∇2

𝑧
𝐿 (𝑧, 𝜆, 𝜇, 𝑢, V) 𝑑 > 0 (17)

for every nonvanishing 𝑑 with

∇E[𝑔
𝑖
(𝑧, 𝜉)]

𝑇

𝑑 = 0, 𝑖 ∈ 𝐼
𝑔
,

∇E[ℎ
𝑖
(𝑧, 𝜉)]

𝑇

𝑑 = 0, 𝑖 = 1, 2, . . . , 𝑞,

∇E[𝐺
𝑖
(𝑧, 𝜉)]

𝑇

𝑑 = 0, 𝑖 ∈ 𝛼,

∇E[𝐻
𝑖
(𝑧, 𝜉)]

𝑇

𝑑 = 0, 𝑖 ∈ 𝛾,

min {∇E[𝐺
𝑖
(𝑧, 𝜉)]

𝑇

𝑑, ∇E[𝐻
𝑖
(𝑧, 𝜉)]

𝑇

𝑑} = 0,

𝑖 ∈ 𝛽.

(18)

Assume 𝑧 is a 𝑆-stationary point of (1) and (𝜆, 𝜇, 𝑢, V) is the
corresponding multiplier. Then we know from [16, Theorem
7] that if MPCC-SSOSC holds at 𝑧, it is a strict local
minimizer of the SMPCC (1).

Throughout the paper, we assume the sample 𝜉1, . . . , 𝜉𝑁 of
the random vector 𝜉 is iid and give the following assumptions
to make (1) more clearly defined and to facilitate the analysis.

Assumption 10. The mapping 𝑓(⋅, 𝜉), 𝐺(⋅, 𝜉), 𝐻(⋅, 𝜉), 𝑔(⋅, 𝜉),
and ℎ(⋅, 𝜉) are twice continuously differentiable on R𝑛 a.e.
𝜉 ∈ Ξ.

Assumption 11. For any 𝑧 ∈ R𝑛, there exists a closed bounded
neighborhood 𝐷 of 𝑧 and a nonnegative measurable func-
tion 𝜅(𝜉) such that E[𝜅(𝜉)] < +∞ and

sup
𝑧∈𝐷

max {󵄩󵄩󵄩󵄩󰜚 (𝑧, 𝜉)
󵄩󵄩󵄩󵄩} ≤ 𝜅 (𝜉) (19)

for all 𝜉 ∈ Ξ, where 󰜚(𝑧, 𝜉) is any element in the collection of
functions {𝑓(𝑧, 𝜉), 𝑔(𝑧, 𝜉), ℎ(𝑧, 𝜉),𝐺(𝑧, 𝜉),𝐻(𝑧, 𝜉),J

𝑧
𝑔(𝑧, 𝜉),

∇
𝑧
𝑓(𝑧, 𝜉),J

𝑧
ℎ(𝑧, 𝜉),J

𝑧
𝐺(𝑧, 𝜉), andJ

𝑧
𝐻(𝑧, 𝜉)}.

Assumption 12. For every 𝑖 ∈ {1, . . . , 𝑛}, the following
properties hold ture.

(A1) For every 𝑧 ∈ R𝑛, the moment generating function

M(𝑡)
𝑖
:= E [𝑒([∇𝑧𝑓(𝑧,𝜉)]

𝑖
−[E(∇𝑧𝑓(𝑧,𝜉))]

𝑖
)] (20)

of random variable [∇
𝑧
𝑓(𝑧, 𝜉)]

𝑖
− [E(∇

𝑧
𝑓(𝑧, 𝜉))]

𝑖
is

finite valued for all 𝑡 in a neighborhood of zero.

(A2) There exists a measurable function 𝜅 : Ξ → R
+
such

that

󵄩󵄩󵄩󵄩󵄩[∇𝑧
𝑓 (𝑧, 𝜉)]

𝑖
− [∇

𝑧
𝑓 (𝑧󸀠, 𝜉)]

𝑖

󵄩󵄩󵄩󵄩󵄩 ≤ 𝜅 (𝜉)
󵄩󵄩󵄩󵄩󵄩𝑧 − 𝑧󸀠

󵄩󵄩󵄩󵄩󵄩 (21)

for all 𝜉 ∈ Ξ and 𝑧, 𝑧󸀠 ∈ R𝑛.

(A3) The moment generating M
𝜅
(𝑡) = E[𝑒𝑡𝜅(𝜉)] of 𝜅(𝜉) is

finite valued for all 𝑡 in a neighborhood of zero.

Assumptions 10–12 are popularly used conditions for
the analysis of SAA method for stochastic programming.
Under Assumptions 10−11, we know from [10, Chapter 7]
that E[𝑓(𝑧, 𝜉(𝜔))] and E[𝐺(𝑧, 𝜉(𝜔))] are twice continuously
differentiable onR𝑛. In particular,

∇E [𝑓 (𝑧, 𝜉 (𝜔))] = E [∇𝑓 (𝑧, 𝜉 (𝜔))] ,

JE [𝐺 (𝑧, 𝜉 (𝜔))] = E [J𝐺 (𝑧, 𝜉 (𝜔))] .
(22)

Assumption 12 is used to ensure exponential convergence rate
of proposed regularization SAA method in Section 5.

The following results are directly from the Uniform Laws
of Large Numbers in [10, Theorem 7.48].

Lemma 13. Let 𝑧 be a feasible point of (1). Suppose that
Assumptions 10−11 are satisfied; then we obtain

sup
𝑧∈𝐷

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝑁

𝑁

∑
𝑖=1

󰜚 (𝑧, 𝜉) − E [󰜚 (𝑧, 𝜉)]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
󳨀→ 0 𝑤.𝑝.1, (23)

where the set 𝐷 is a closed bounded neighborhood of 𝑧
and 󰜚(𝑧, 𝜉) is any element in the collection of functions
{𝑓(𝑧, 𝜉), 𝑔(𝑧, 𝜉), ℎ(𝑧, 𝜉), 𝐺(𝑧, 𝜉),𝐻(𝑧, 𝜉),J

𝑧
𝑔(𝑧, 𝜉), ∇

𝑧
𝑓(𝑧, 𝜉),

J
𝑧
ℎ(𝑧, 𝜉),J

𝑧
𝐺(𝑧, 𝜉), andJ

𝑧
𝐻(𝑧, 𝜉)}.

3. Almost Sure Convergence of
Optimal Solutions

In this section, by the notion of epiconvergence in [18],
we establish the almost convergence of optimal solutions of
regularized SAA problem (3) to those of SMPCC (1) as the
sample size tends to infinity.
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Let us introduce some notions:

Z
0
:= {𝑧 ∈ R

𝑛 : E [𝑔 (𝑧, 𝜉)] ≤ 0,E [ℎ (𝑧, 𝜉)] = 0,

0 ≤ E [𝐺 (𝑧, 𝜉)] ⊥ E [𝐻 (𝑧, 𝜉)] ≥ 0} ,

Z
𝑁
:= {𝑧 ∈ R

𝑛 : 𝑔𝑁 (𝑧, 𝜉) ≤ 0, ℎ̂𝑁 (𝑧, 𝜉) = 0,

𝐺𝑁 (𝑧, 𝜉) ∘ 𝐻̂𝑁 (𝑧, 𝜉) ≤ 𝑡
𝑁
𝑒} ,

𝑓
𝑁

(𝑧) := 𝑓𝑁 (𝑧) + 𝛿Z𝑁 (𝑧) ,

𝑓 (𝑧) := E [𝑓 (𝑧, 𝜉)] + 𝛿Z0 (𝑧) ,

𝜅
0
:= inf {E [𝑓 (𝑧, 𝜉)] : 𝑧 ∈ Z

0
} ,

𝑆
0
= argmin {E [𝑓 (𝑧, 𝜉)] : 𝑧 ∈ Z

0
} ,

𝑆
𝑁
:= argmin {𝑓𝑁 (𝑧) : 𝑧 ∈ Z

𝑁
} .

(24)

Now we give a conclusion about the almost sure conver-
gence of the set Z

𝑁
as 𝑁 tends to infinity in the following

proposition.

Proposition 14. Let 𝑡
𝑁

↘ 0 as 𝑁 → ∞. Suppose
Assumptions 10−11 hold. If MPCC-LICQ (Definition 6) holds
for any 𝑧 ∈ Z

0
, then

lim
𝑁→∞

Z
𝑁
= Z

0
𝑤.𝑝.1. (25)

Proof. We at first show that lim sup
𝑁→∞

Z
𝑁

⊆ Z
0
w.p.1. It

suffices to prove that for a sequence {𝑧
𝑁
} satisfying 𝑧

𝑁
∈ Z

𝑁

for each 𝑁, if 𝑧
𝑁
converges to 𝑧 w.p.1 as 𝑁 → ∞, then 𝑧 ∈

Z
0
w.p.1. Indeed, we know from the definition of Z

𝑁
that 𝑧

𝑁

satisfies

𝑔𝑁

𝑖
(𝑧

𝑁
) ≤ 0, ℎ̂𝑁

𝑗
(𝑧

𝑁
) = 0, 𝐻̂𝑁

𝑘
(𝑧

𝑁
) ≥ 0,

𝐺𝑁

𝑘
(𝑧

𝑁
) ≥ 0, 𝐻̂𝑁

𝑘
(𝑧

𝑁
) 𝐺𝑁

𝑘
(𝑧

𝑁
) ≤ 𝑡

𝑁

(26)

for 𝑖 = 1, 2, . . . , 𝑝; 𝑗 = 1, 2, . . . , 𝑞; and 𝑘 = 1, 2, . . . , 𝑚, which,
by Lemma 13, means that 𝑧 ∈ Z

0
w.p.1.

Let 𝑧 ∈ Z
0
. Next we show that 𝑧 ∈ lim inf

𝑁→∞
Z

𝑁
w.p.1.

Let

Σ (𝑧) = {𝑧 ∈ R
𝑛 : Ψ (𝑧) − 𝑝 = 0} , (27)

where the mapping Ψ : R𝑛 → R2𝑚+𝑝+|𝐼𝑔| is defined by

Ψ (𝑝) = (

E [𝑔
𝑖
(𝑧, 𝜉)] , 𝑖 ∈ 𝐼

𝑔

E [ℎ
𝑖
(𝑧, 𝜉)] , 𝑖 = 1, 2, . . . , 𝑝

E [𝐺
𝑖
(𝑧, 𝜉)] , 𝑖 ∈ 𝛼 ∪ 𝛽

E [𝐻
𝑖
(𝑧, 𝜉)] , 𝑖 ∈ 𝛾 ∪ 𝛽

) . (28)

Then 𝑧 ∈ Σ(0) ∩ 𝑄
0
⊆ Z

0
, where

𝑄
0
=
{
{
{

𝑧 ∈ R
𝑛 :

E [𝐻
𝑖
(𝑧, 𝜉)] > 0, 𝑖 ∈ 𝛼

E [𝐺
𝑖
(𝑧, 𝜉)] > 0, 𝑖 ∈ 𝛾

E [𝑔
𝑖
(𝑧, 𝜉)] > 0, 𝑖 ∉ 𝐼

𝑔

}
}
}

. (29)

Under MPCC-LICQ, Σ(⋅) has Aubin property [18] around
(0, 𝑧), which means that there exist constants 𝑐 > 0, 𝜀 > 0,
and 𝛿 > 0 such that

dist (𝑧, Σ (𝑝)) ≤ 𝑐 dist (𝑝, Σ−1 (𝑧)) (30)

holds for 𝑧 ∈ B(𝑧, 𝜀) and 𝑝 ∈ B(0, 𝛿). Therefore,
for sufficiently small positive numbers 𝜀, 𝛿, there exists a
continuous function 𝑧(⋅) : B(0, 𝛿) → B(𝑧, 𝜀) such that
𝑧(0) = 𝑧 and for any 𝑝 ∈ B(0, 𝛿),

Ψ (𝑧 (𝑝)) − 𝑝 = 0. (31)

Let

𝑝
𝑁
(𝑧) =

(
(

(

E [𝑔
𝑖
(𝑧, 𝜉)] − 𝑔𝑁

𝑖
(𝑧) , 𝑖 ∈ 𝐼

𝑔

E [ℎ (𝑧, 𝜉)] − ℎ̂𝑁 (𝑧)
E [𝐺

𝑖
(𝑧, 𝜉)] − 𝐺𝑁

𝑖
(𝑧) , 𝑖 ∈ 𝛼

E [𝐺
𝑖
(𝑧, 𝜉)] − 𝐺𝑁

𝑖
(𝑧) + √𝑡

𝑁
, 𝑖 ∈ 𝛽

E [𝐻
𝑖
(𝑧, 𝜉)] − 𝐻̂𝑁

𝑖
(𝑧) , 𝑖 ∈ 𝛾

E [𝐻
𝑖
(𝑧, 𝜉)] − 𝐻̂𝑁

𝑖
(𝑧) + √𝑡

𝑁
, 𝑖 ∈ 𝛽

)
)

)

. (32)

Then, by Lemma 13, we have for𝑁 large enough

max
𝑧∈B(𝑧,𝜀)

󵄩󵄩󵄩󵄩𝑝𝑁
(𝑧)󵄩󵄩󵄩󵄩 < 𝛿 w.p.1 (33)

and for any 𝑧 ∈ B(𝑧, 𝜀),
󵄩󵄩󵄩󵄩𝑧 (𝑝𝑁

(𝑧)) − 𝑧󵄩󵄩󵄩󵄩 ≤ 𝜀 w.p.1. (34)

Define a function
𝜑
𝑁
: B (𝑧, 𝜀) 󳨀→ B (𝑧, 𝜀)

𝑧 󳨃󳨀→ 𝑧 (𝑝
𝑁
(𝑧)) .

(35)

This is a continuous mapping from the compact convex set
B(𝑧, 𝜀) to itself. By Brouwer’s fixed theorem, 𝜑

𝑁
has a fixed

point. Hence, there exists a vector 𝑧
𝑁

∈ B(𝑧, 𝜀) w.p.1 such
that 𝑧

𝑁
= 𝜑

𝑁
(𝑧

𝑁
) = 𝑧(𝑝

𝑁
(𝑧

𝑁
)). Therefore, we have from (31)

that

0 = Ψ (𝑧 (𝑝
𝑁
(𝑧

𝑁
))) − 𝑝

𝑁
(𝑧

𝑁
) . (36)

That is, 𝑧
𝑁
∈ P𝑁

0
,w.p.1, where

P
𝑁

0
=

{{{{{{{{
{{{{{{{{
{

𝑧 ∈ R
𝑛 :

𝑔𝑁

𝑖
(𝑧) = 0, 𝑖 ∈ 𝐼

𝑔

ℎ̂𝑁 (𝑧) = 0
𝐺𝑁

𝑖
(𝑧) = 0, 𝑖 ∈ 𝛼

𝐺𝑁

𝑖
(𝑧) = √𝑡

𝑁
, 𝑖 ∈ 𝛽

𝐻̂𝑁

𝑖
(𝑧) = 0, 𝑖 ∈ 𝛾

𝐻̂𝑁

𝑖
(𝑧) = √𝑡

𝑁
, 𝑖 ∈ 𝛽

}}}}}}}}
}}}}}}}}
}

. (37)

By Lemma 13, we obtain for sufficiently large𝑁, 𝑧
𝑁
∈ 𝑄

𝑁
due

to 𝑧 ∈ 𝑄
0
, where

𝑄
𝑁
=
{{
{{
{

𝑧 ∈ R𝑛 :
𝐻̂𝑁

𝑖
(𝑧) > 0, 𝑖 ∈ 𝛼

𝐺𝑁

𝑖
(𝑧) > 0, 𝑖 ∈ 𝛾

𝑔𝑁

𝑖
(𝑧) > 0, 𝑖 ∉ 𝐼

𝑔

}}
}}
}

, (38)

which means that 𝑧
𝑁

∈ 𝑄
𝑁

∩ P𝑁

0
⊆ Z

𝑁
. As a result, 𝑧

belongs to lim inf
𝑁→∞

Z
𝑁
w.p.1 because of the almost sure

convergence of 𝑧
𝑁

to 𝑧 as 𝑁 → ∞. We complete the
proof.
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By Definition 3, similarly to the proof of [15, Lemma 4.3],
we obtain the following lemma.

Lemma 15. Under the conditions of Proposition 14, we have

𝑒 − lim
𝑁→∞

𝑓
𝑁

= 𝑓 𝑤.𝑝.1. (39)

The following result is directly from [18, Theorem 7.31].

Theorem 16. Suppose 𝑧
𝑁

solves (3) for each 𝑁 and 𝑧 is
almost surely an accumulate point of the sequence {𝑧

𝑁
}. If the

conditions in Proposition 14 hold and 𝜅
0
is finite, then 𝑧 is

almost surely an optimal solution of the true problem (1).

4. Almost Sure Convergence of
Stationary Points

In practice, finding a global minimizer might be difficult and
in some caseswemight just find a stationary point. As a result,
we want to knowwhether or not an accumulation point of the
sequence of stationary points of regularized SAA problem (3)
is almost surely a kind of stationary point of SMPCC (1).

Notice that (3) is a standard nonlinear programmingwith
smooth constraints. If 𝑧

𝑁
is a local optimal solution of the

regularized SAA problem (3), then under some constraint
qualifications, 𝑧

𝑁
is a stationary point of (3); namely, there

exists Lagrange multipliers 𝜆
𝑁

∈ R𝑝, 𝜇
𝑁

∈ R𝑞, 𝑎
𝑁

∈
R𝑚, 𝑏

𝑁
∈ R𝑚, and 𝛿

𝑁
∈ R𝑚 such that the vector

(𝑧
𝑁
, 𝜆

𝑁
, 𝜇

𝑁
, 𝑎

𝑁
, 𝑏

𝑁
, 𝛿

𝑁
) satisfies the following Karash-Kuhn-

Tucker (KKT) condition for problem (3):

0 = ∇𝑓𝑁 (𝑧
𝑁
) +J𝑔𝑁(𝑧

𝑁
)
𝑇

𝜆
𝑁
+Jℎ̂𝑁(𝑧

𝑁
)
𝑇

𝜇
𝑁

+J𝐺𝑁(𝑧
𝑁
)
𝑇

𝑎
𝑁
+J𝐻̂𝑁(𝑧

𝑁
)
𝑇

𝑏
𝑁

+JΦ̂𝑁(𝑧
𝑁
)
𝑇

𝛿
𝑁

(40)

with

0 ≤ 𝜆
𝑁
⊥ 𝑔𝑁

𝑖
(𝑧

𝑁
) ≤ 0,

Φ̂𝑁 (𝑧) = 𝐻̂𝑁

𝑖
(𝑧) ∘ 𝐺𝑁

𝑖
(𝑧) − 𝑡

𝑁
𝑒,

0 ≥ Φ̂𝑁 (𝑧
𝑁
) ⊥ 𝛿

𝑁
≥ 0,

0 ≥ 𝑏
𝑁
⊥ 𝐻̂𝑁 (𝑧

𝑁
) ≥ 0,

0 ≥ 𝑎
𝑁
⊥ 𝐺𝑁 (𝑧

𝑁
) ≥ 0.

(41)

We now prove the almost sure convergence of the regu-
larization SAA method for SMPCC (1).

Theorem 17. Suppose Assumptions 10−11 hold. Let 𝑡
𝑁

↘ 0
and let 𝑧

𝑁
be a stationary point of problem (3). If the sequence

{𝑧
𝑁
} converges to 𝑧 w.p.1 as 𝑁 → ∞ and MPCC-MFCQ

(Definition 5) holds at 𝑧, then the following statements hold:

(i) 𝑧 is a 𝐶-stationary point of SMPCC (1) almost surely.
(ii) If, in addition, the multipliers 𝑢

𝑖
= 0 and V

𝑖
= 0 for all

𝑖 ∈ 𝛽 ∩ 𝐽
0
, where

𝐽
0
= {𝑖 ∈ {1, 2, . . . , 𝑚} : 𝐺𝑁

𝑖
(𝑧

𝑁
) 𝐻̂𝑁

𝑖
(𝑧

𝑁
)

= 𝑡
𝑁
𝑓𝑜𝑟 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦 𝑚𝑎𝑛𝑦 𝑁}

𝑢
𝑖
= lim

𝑁→∞

(𝛿
𝑁
)
𝑖
𝐺𝑁

𝑖
(𝑧

𝑁
) ,

V
𝑖
= lim

𝑁→∞

(𝛿
𝑁
)
𝑖
𝐻̂𝑁

𝑖
(𝑧

𝑁
) , 𝑖 ∈ 𝐽

0
,

(42)

then 𝑧 is a 𝑆-stationary point of SMPCC (1) almost
surely.

Proof. Since 𝑧
𝑁

is a stationary point of problem (3), there
exist multipliers 𝜆

𝑁
∈ R𝑝, 𝜇

𝑁
∈ R𝑞, 𝑎

𝑁
∈ R𝑚, 𝑏

𝑁
∈ R𝑚,

and 𝛿
𝑁
∈ R𝑚 such that

0 = ∇𝑓𝑁 (𝑧
𝑁
) +J𝑔𝑁(𝑧

𝑁
)
𝑇

𝜆
𝑁
+Jℎ̂𝑁(𝑧

𝑁
)
𝑇

𝜇
𝑁

+J𝐺𝑁(𝑧
𝑁
)
𝑇

𝑎
𝑁
+J𝐻̂𝑁(𝑧

𝑁
)
𝑇

𝑏
𝑁

+(

(∇𝐺𝑁

1
(𝑧

𝑁
) 𝐻̂𝑁

1
(𝑧

𝑁
) + ∇𝐻̂𝑁

1
(𝑧

𝑁
) 𝐺𝑁

1
(𝑧

𝑁
))

𝑇

...
(∇𝐺𝑁

1
(𝑧

𝑁
) 𝐻̂𝑁

𝑚
(𝑧

𝑁
) + ∇𝐻̂𝑁

1
(𝑧

𝑁
) 𝐺𝑁

𝑚
(𝑧

𝑁
))

𝑇

)

𝑇

𝛿
𝑁

(43)

with

(𝜆
𝑁
)
𝑖
≥ 0, 𝑔𝑁

𝑖
(𝑧

𝑁
) (𝜆

𝑁
)
𝑖
= 0, 𝑖 = 1, . . . , 𝑝,

(𝐻̂𝑁

𝑖
(𝑧

𝑁
) 𝐺𝑁

𝑖
(𝑧

𝑁
) − 𝑡

𝑁
) (𝛿

𝑁
)
𝑖
= 0, 𝑖 = 1, . . . , 𝑚,

(𝑎
𝑁
)
𝑖
≤ 0, (𝑏

𝑁
)
𝑖
≤ 0, 𝐻̂𝑁

𝑖
(𝑧

𝑁
) (𝑏

𝑁
)
𝑖
= 0,

𝐺𝑁

𝑖
(𝑧

𝑁
) (𝑎

𝑁
)
𝑖
= 0, 𝑖 = 1, 2, . . . , 𝑚.

(44)

Then (43) can be reformulated as

− ∇𝑓𝑁 (𝑧
𝑁
)

=

(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

J𝑔𝑁 (𝑧
𝑁
)

Jℎ̂𝑁 (𝑧
𝑁
)

∇𝐺𝑁

𝑖
(𝑧

𝑁
)
𝑇

, 𝑖 ∈ 𝐽𝑐
0

∇𝐺𝑁

𝑖
(𝑧

𝑁
)
𝑇

+
𝐺𝑁

𝑖
(𝑧

𝑁
)

𝐻̂𝑁

𝑖
(𝑧

𝑁
)
∇𝐻̂𝑁

𝑖
(𝑧

𝑁
)
𝑇

, 𝑖 ∈ 𝐽
0
∩ 𝛼

∇𝐺𝑁

𝑖
(𝑧

𝑁
)
𝑇

, 𝑖 ∈ 𝐽
0
∩ 𝛽

∇𝐻̂𝑁

𝑖
(𝑧

𝑁
)
𝑇

, 𝑖 ∈ 𝐽𝑐
0

∇𝐻̂𝑁

𝑖
(𝑧

𝑁
)
𝑇

+
𝐻̂𝑁

𝑖
(𝑧

𝑁
)

𝐺𝑁

𝑖
(𝑧

𝑁
)
∇𝐺𝑁

𝑖
(𝑧

𝑁
)
𝑇

, 𝑖 ∈ 𝐽
0
∩ 𝛾

∇𝐻̂𝑁

𝑖
(𝑧

𝑁
)
𝑇

, 𝑖 ∈ 𝐽
0
∩ 𝛽

)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

𝑇

Ψ
𝑁

(45)
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with

𝜆
𝑁
∈ 𝑁R

𝑝

−

(𝑔𝑁 (𝑧
𝑁
)) ,

𝛿
𝑁
∈ 𝑁R𝑚

−

(𝐻̂𝑁 (𝑧
𝑁
) ∘ 𝐺𝑁 (𝑧

𝑁
) − 𝑡

𝑁
𝑒) ,

𝑎
𝑁
∈ 𝑁R𝑚

+

(𝐺𝑁 (𝑧
𝑁
)) ,

𝑏
𝑁
∈ 𝑁R𝑚

+

(𝐻̂𝑁 (𝑧
𝑁
)) , V𝑁

𝑖
= (𝛿

𝑁
)
𝑖
𝐺𝑁

𝑖
(𝑧

𝑁
) ,

𝑢𝑁

𝑖
= (𝛿

𝑁
)
𝑖
𝐻̂𝑁

𝑖
(𝑧

𝑁
) , 𝑖 = 1, 2, . . . , 𝑚,

Ψ
𝑁
= (𝜆𝑇

𝑁
𝜇𝑇

𝑁
(𝑎

𝑁
)
𝑇

𝐽
𝑐

0

(𝑢
𝑁
)
𝑇

𝐽0∩(𝛼∪𝛽)
(𝑏

𝑁
)
𝑇

𝐽
𝑐

0

(V
𝑁
)
𝑇

𝐽0∩(𝛾∪𝛽)
)
𝑇

.

(46)

Next we show that Ψ
𝑁

is almost surely bounded under
the MPCC-MFCQ. We assume by contradiction that Ψ

𝑁
is

unbounded, then there exists a number sequence {𝜏
𝑁
} ↘ 0

such that 𝜏
𝑁
Ψ

𝑁
→ Ψ ̸= 0, where

Ψ = (𝜆
𝑇

𝜇𝑇 𝑎𝑇

𝐽
𝑐

0

𝑢𝑇

𝐽0∩(𝛼∪𝛽)

𝑏
𝑇

𝐽
𝑐

0

V𝑇
𝐽0∩(𝛾∪𝛽)

)
𝑇

. (47)

Since

𝐻̂𝑁

𝑖
(𝑧

𝑁
)

𝐺𝑁

𝑖
(𝑧

𝑁
)
∇𝐺𝑁

𝑖
(𝑧

𝑁
)
𝑇

󳨀→ 0, 𝑖 ∈ 𝐽
0
∩ 𝛾 w.p.1 as 𝑁 󳨀→ ∞,

𝐺𝑁

𝑖
(𝑧

𝑁
)

𝐻̂𝑁

𝑖
(𝑧

𝑁
)
∇𝐻̂𝑁

𝑖
(𝑧

𝑁
)
𝑇

󳨀→ 0, 𝑖 ∈ 𝐽
0
∩ 𝛼, w.p.1 as 𝑁 󳨀→ ∞

(48)

and by outer semicontinuousness of normal cone

𝑎 ∈ 𝑁R𝑚
+

(E [𝐺 (𝑧, 𝜉)]) ,

𝑏 ∈ 𝑁R𝑚
+

(E [𝐻 (𝑧, 𝜉)]) ,

𝑢 ∈ 𝑁R𝑚
−

(E [𝐺 (𝑧, 𝜉)]E [𝐻 (𝑧, 𝜉)]) ,

V ∈ 𝑁R𝑚
−

(E [𝐺 (𝑧, 𝜉)]E [𝐻 (𝑧, 𝜉)]) .

(49)

Notice that 𝑎
𝑖
= 0, 𝑖 ∈ 𝐽𝑐

0
∩ 𝛾, and 𝑏

𝑖
= 0, 𝑖 ∈ 𝐽𝑐

0
∩ 𝛼; then by

multiplying 𝜏
𝑁
to both sides of (45) and taking limit, we have

0 = (

JE [𝑔 (𝑧, 𝜉)]
JE [ℎ (𝑧, 𝜉)]

JE[𝐺 (𝑧, 𝜉)]
𝛼∪𝛽

JE[𝐻 (𝑧, 𝜉)]
𝛾∪𝛽

)

𝑇

Ψ̂ (50)

with Ψ̂ ̸= 0, where

Ψ̂ = (𝜆
𝑇

𝜇𝑇 𝑎𝑇

𝐽
𝑐

0
∩(𝛼∪𝛽)

𝑢𝑇

𝐽0∩(𝛼∪𝛽)

𝑏
𝑇

𝐽
𝑐

0
∩(𝛾∪𝛽)

V𝑇
𝐽0∩(𝛾∪𝛽)

)
𝑇

.

(51)

However, we know from MPCC-MFCQ that for any 𝐴 ∈
𝜕𝑐 min{E[𝐺(𝑧, 𝜉)] and E[𝐻(𝑧, 𝜉)]}

0 ∈ int
{
{
{

(
E [𝑔 (𝑧, 𝜉)]
E [ℎ (𝑧, 𝜉)]

min {E [𝐺 (𝑧, 𝜉)] ,E [𝐻 (𝑧, 𝜉)]}
)

+(
JE [𝑔 (𝑧, 𝜉)]
JE [ℎ (𝑧, 𝜉)]

𝐴
)R

𝑛 − (
R

𝑝

−

{0}
𝑞

{0}
𝑚

)
}
}
}

,

(52)

which is called the generalized Robinson constraint qualifi-
cation in [19]. Notice that for 𝐴

𝑖
∈ 𝜕𝑐 min{E[𝐺

𝑖
(𝑧, 𝜉)] and

E[𝐻
𝑖
(𝑧, 𝜉)]}, there exists 𝑘 ∈ [0, 1] such that

𝐴
𝑖
=
{{
{{
{

∇E [𝐺
𝑖
(𝑧, 𝜉)] , 𝑖 ∈ 𝛼

∇E [𝐻
𝑖
(𝑧, 𝜉)] , 𝑖 ∈ 𝛾

𝑘∇E [𝐺
𝑖
(𝑧, 𝜉)] + (1 − 𝑘) ∇E [𝐻

𝑖
(𝑧, 𝜉)] , 𝑖 ∈ 𝛽.

(53)

Then by dual form of generalized Robinson constraint quali-
fication in Yen [19], we have for any 𝑘 ∈ [0, 1]

0

=
(

JE [𝑔 (𝑧, 𝜉)]
JE [ℎ (𝑧, 𝜉)]

∇E[𝐺
𝑖
(𝑧, 𝜉)]𝑇, 𝑖 ∈ 𝛼

∇E[𝐻
𝑖
(𝑧, 𝜉)]𝑇, 𝑖 ∈ 𝛾

𝑘∇E[𝐺
𝑖
(𝑧, 𝜉)]𝑇 + (1−𝑘)∇E[𝐻

𝑖
(𝑧, 𝜉)]𝑇, 𝑖 ∈ 𝛽

)

𝑇

𝜆

𝜆 ∈ 𝑁R
𝑝

−
×{0}𝑞×{0}𝑚

(0)

}}}}}}}}
}}}}}}}}
}

󳨐⇒ 𝜆 = 0,
(54)

which means that

0 = (
(

(

JE[𝑔(𝑧, 𝜉)]
JE[ℎ(𝑧, 𝜉)]

∇E[𝐺
𝑖
(𝑧, 𝜉)]𝑇, 𝑖 ∈ 𝛼

∇E[𝐻
𝑖
(𝑧, 𝜉)]𝑇, 𝑖 ∈ 𝛾

∇E[𝐺
𝑖
(𝑧, 𝜉)]𝑇, 𝑖 ∈ 𝛽

∇E[𝐻
𝑖
(𝑧, 𝜉)]𝑇, 𝑖 ∈ 𝛽

)
)

)

𝑇

(

(

𝜇ℎ

𝜇𝑔

𝜇
𝛼

𝜇
𝛾

𝜇𝐺

𝜇𝐻

)

)
𝜇𝐺

𝑖
𝜇𝐻

𝑖
≥ 0, 𝑖 ∈ 𝛽

}}}}}}}}}}
}}}}}}}}}}
}

󳨐⇒ (

(

𝜇ℎ

𝜇𝑔

𝜇
𝛼

𝜇
𝛾

𝜇𝐺

𝜇𝐻

)

)

= 0.

(55)

That is, Ψ̂ in (50) is 0.This contradicts the condition that Ψ̂ ̸= 0
and hence {Ψ

𝑁
} is bounded. Without loss of generality, we

assume Ψ
𝑁

→ Ψ̃ w.p.1 as𝑁 → ∞, where

Ψ̃ = (𝜆̃𝑇 𝜇𝑇 𝑎𝑇

𝐽
𝑐

0

𝑢̃𝑇

𝐽0∩(𝛼∪𝛽)

𝑏̃𝑇
𝐽
𝑐

0

Ṽ𝑇
𝐽0∩(𝛾∪𝛽)

)
𝑇

. (56)
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Notice that

(𝑎
𝑁
)
𝐽
𝑐

0

󳨀→ 𝑎
𝐽
𝑐

0

, (𝑏
𝑁
)
𝐽
𝑐

0

󳨀→ 𝑏̃
𝐽
𝑐

0

w.p.1,

(𝛿
𝑁
)
𝑖
𝐻̂𝑁

𝑖
(𝑧

𝑁
) 󳨀→ 𝑢̃

𝑖
, 𝑖 ∈ 𝐽

0
∩ (𝛼 ∪ 𝛽) ,

(𝛿
𝑁
)
𝑖
𝐺𝑁

𝑖
(𝑧

𝑁
) 󳨀→ Ṽ

𝑖
, 𝑖 ∈ 𝐽

0
∩ (𝛾 ∪ 𝛽) w.p.1.

(57)

Then we know from (46) that for 𝑖 ∈ 𝛽, in the case when
𝑖 ∈ 𝐽𝑐

0
, 𝑎

𝑖
𝑏̃
𝑖
≥ 0 due to (𝑎

𝑁
)
𝑖
≤ 0 and (𝑏

𝑁
)
𝑖
≤ 0 for each𝑁. In

the case when 𝑖 ∈ 𝐽
0
, since

(𝛿
𝑁
)
𝑖
𝐻̂𝑁

𝑖
(𝑧

𝑁
) (𝛿

𝑁
)
𝑖
𝐺𝑁

𝑖
(𝑧

𝑁
) ≥ 0, (58)

we have 𝑢̃
𝑖
Ṽ
𝑖
≥ 0. As a result, by Definition 7, 𝑧 is a 𝐶-

stationary point. If Ψ̃
𝑖
= 0 for 𝑖 ∈ 𝐽

0
∩ 𝛽, then we know

from Definition 7 that 𝑧 is a 𝑆-stationary point. The proof is
completed.

Remark 18. For a deterministic MPCC problem, Scholtes
[17] studied the properties of the limit point of a sequence
of stationary points generated by the same regularization
method under MPCC-LICQ. Notice that MPCC-MFCQ in
Theorem 17 is weaker than MPCC-LICQ. Thus this theorem
canbe seen as an improvement of [17,Theorem3.1] for solving
SMPCC under weaker constraint qualification conditions.

5. Existence and Exponential
Convergence Rate

In this section, we discuss the conditions ensuring existence
and exponential convergence of stationary points of regular-
ized SAA problem satisfying (40) when the sample size is
sufficiently large.

We need the following lemma.

Lemma 19. Let 𝑋 ⊆ R𝑛 be a compact set. Suppose Assump-
tions 10–12 hold. Then for any 𝜀 > 0, there exist positive
constants 𝐶(𝜀) and 𝛽(𝜀), independent of𝑁, such that

Prob{sup
𝑧∈𝑋

󵄩󵄩󵄩󵄩󵄩∇𝑓
𝑁 (𝑧)−∇E [𝑓 (𝑧, 𝜉 (𝜔))]

󵄩󵄩󵄩󵄩󵄩 ≥ 𝜀}≤𝐶 (𝜀) 𝑒−𝑁𝛽(𝜀).

(59)

Proof. Under Assumptions 10–12, we know from [10, Theo-
rem 7.65] that for each 𝑖 ∈ {1, 2, . . . , 𝑛}, there exist positive
constants 𝐶

𝑖
(𝜀) and 𝛽

𝑖
(𝜀), independent of𝑁, such that

Prob{sup
𝑧∈𝑋

󵄩󵄩󵄩󵄩󵄩∇𝑓
𝑁(𝑧)

𝑖
− ∇E[𝑓 (𝑧, 𝜉 (𝜔))]

𝑖

󵄩󵄩󵄩󵄩󵄩 ≥
𝜀

𝑛
}

≤ 𝐶
𝑖
(𝜀) 𝑒−𝑁𝛽𝑖(𝜀),

(60)

where ∇𝑓𝑁(𝑧)
𝑖
and ∇E[𝑓(𝑧, 𝜉(𝜔))]

𝑖
denote the 𝑖th compo-

nent of ∇𝑓𝑁(𝑧) and ∇E[𝑓(𝑧, 𝜉(𝜔))], respectively. Therefore,
we have

Prob{sup
𝑧∈𝑋

󵄩󵄩󵄩󵄩󵄩∇𝑓
𝑁 (𝑧) − ∇E [𝑓 (𝑧, 𝜉 (𝜔))]

󵄩󵄩󵄩󵄩󵄩 ≥ 𝜀}

≤
𝑛

∑
𝑖=1

Prob{sup
𝑧∈𝑋

󵄩󵄩󵄩󵄩󵄩∇𝑓
𝑁(𝑧)

𝑖
−∇E[𝑓 (𝑧, 𝜉 (𝜔))]

𝑖

󵄩󵄩󵄩󵄩󵄩≥
𝜀

𝑛
}

≤
𝑛

∑
𝑖=1

𝐶
𝑖
(𝜀) 𝑒−𝑁𝛽𝑖(𝜀) ≤ 𝐶 (𝜀) 𝑒−𝑁𝛽(𝜀),

(61)

where 𝐶(𝜀) := 𝑛max{𝐶
1
(𝜀), 𝐶

2
(𝜀), . . . , 𝐶

𝑛
(𝜀)}, and 𝛽(𝜀) :=

min{𝛽
1
(𝜀), 𝛽

2
(𝜀), . . . , 𝛽

𝑛
(𝜀)}.

We now state our existence and exponential convergence
results. The proof relies on an application of Robinson’s
standard NLP stability theory in [20].

Theorem 20. Let 𝑧 be a 𝐶-stationary point of SMPCC (1) and
𝜏
𝑁
↘ 0. Suppose

(i) Assumptions 10–12 hold at 𝑧,
(ii) MPCC-LICQ (Definition 6), MPCC-SSOSC

(Definition 9), and ULSC (Definition 8) hold at
𝑧.

Then we have that

(a) there exits 𝑧
𝑁
satisfying stationary condition (40) of (3)

w.p.1 for each𝑁when𝑁 is sufficiently large and 𝑧
𝑁

→
𝑧 w.p.1 as N→ ∞;

(b) the sequence {𝑧
𝑁
} in (a) satisfies that for every 𝜀 > 0,

there exist positive constants 𝐶(𝜀) and 𝛽(𝜀), indepen-
dent of𝑁, such that

𝑃𝑟𝑜𝑏 {󵄩󵄩󵄩󵄩𝑧𝑁 − 𝑧󵄩󵄩󵄩󵄩 ≥ 𝜀} ≤ 𝐶 (𝜀) 𝑒−𝑁𝛽(𝜀) (62)

for𝑁 sufficiently large.

Proof. Since 𝑧 is a 𝐶-stationary point of SMPCC, then there
exist vectors 𝜆 ∈ R|𝐼𝑔|, 𝜇 ∈ R𝑞, 𝑢 ∈ R|𝛼|+|𝛽|, and V ∈ R|𝛽|+|𝛾|

such that

𝐺(𝑧, 𝜆, 𝜇, 𝑢, V) = 0, (63)

𝑢
𝑖
V
𝑖
≥ 0, 𝑖 ∈ 𝛽, (64)

where

𝐺 (𝑧, 𝜆, 𝜇, 𝑢, V) =

[
[
[
[
[
[
[

[

∇
𝑧
𝐿 (𝑧, 𝜆, 𝜇, 𝑢, V)

E [𝑔
𝐼𝑔
(𝑧, 𝜉)]

E [ℎ (𝑧, 𝜉)]

E [𝐺
𝛼∪𝛽

(𝑧, 𝜉)]

E [𝐻
𝛽∪𝛾

(𝑧, 𝜉)]

]
]
]
]
]
]
]

]

(65)
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with

𝐿 (𝑧, 𝜆, 𝜇, 𝑢, V)

= E [𝑓 (𝑧, 𝜉)] + ∑
𝑖∈𝐼𝑔

𝜆
𝑖
E [𝑔

𝑖
(𝑧, 𝜉)]

+
𝑞

∑
𝑖=1

𝜇
𝑖
E [ℎ

𝑖
(𝑧, 𝜉)]

− ∑
𝑖∈𝛼∪𝛽

𝑢
𝑖
E [𝐺

𝑖
(𝑧, 𝜉)] − ∑

𝑖∈𝛽∪𝛾

V
𝑖
E [𝐻

𝑖
(𝑧, 𝜉)] .

(66)

Notice that (63) can be seen as a KKT condition of the
following NLP problem:

min E [𝑓 (𝑧, 𝜉)]

s.t. E [𝑔
𝑖
(𝑧, 𝜉)] = 0, 𝑖 ∈ 𝐼

𝑔
,

E [ℎ (𝑧, 𝜉)] = 0,

E [𝐺
𝑖
(𝑧, 𝜉)] = 0, 𝑖 ∈ 𝛼 ∪ 𝛽,

E [𝐻
𝑖
(𝑧, 𝜉)] = 0, 𝑖 ∈ 𝛽 ∪ 𝛾 .

(67)

The MPCC-SSOSC ensures the strong second-order suffi-
cient condition for NLP problem (67), which, under MPCC-
LICQ, implies the stability of (67) in the sense of Robinson
[20]. Hence, there exist positive numbers 𝜀, 𝛿, and 𝑐 such
that for every 𝑝 ∈ B(0, 𝜀), the mapping Σ(𝑝) = {𝜃 ∈

R𝑛+|𝐼𝑔|+𝑞+|𝛼|+2|𝛽|+|𝛾| | 0 ∈ 𝐺(𝜃) + 𝑝, 𝜃 = (𝑧, 𝜆, 𝜇, 𝑢, V)} has
only one solution 𝜃(𝑝) := (𝑧(𝑝), 𝜆(𝑝), 𝜇(𝑝), 𝑢(𝑝), V(𝑝)) ∈
B(𝜃, 𝛿) with 𝜃 = (𝑧, 𝜆, 𝜇, 𝑢, V) = 𝑧(0) and the mapping
𝜃(⋅) : B(0, 𝜀) → B(𝜃, 𝛿) satisfying

󵄩󵄩󵄩󵄩󵄩𝜃 (𝑝) − 𝜃 (𝑝󸀠)
󵄩󵄩󵄩󵄩󵄩 ≤ 𝑐

󵄩󵄩󵄩󵄩󵄩𝑝 − 𝑝󸀠
󵄩󵄩󵄩󵄩󵄩 for any 𝑝, 𝑝󸀠 ∈ B (0, 𝜀) .

(68)

Since ULSC holds at 𝑧 and 𝑧 is a 𝐶-stationary point, we
have 𝑢

𝑖
V
𝑖
> 0 for 𝑖 ∈ 𝛽, whichmeans that for sufficiently small

𝛿 > 0 and any 𝜃 ∈ B(𝜃, 𝛿), V
𝑖
/𝑢

𝑖
> 0, and 𝑢

𝑖
/V

𝑖
> 0, 𝑖 ∈ 𝛽.

Let

𝑄𝑁 (𝜃) =

[
[
[
[
[
[
[

[

𝑄𝑁

1
(𝜃)

E [ℎ (𝑧, 𝜉)] − ℎ̂𝑁 (𝑧)

E [𝑔
𝐼𝑔
(𝑧, 𝜉)] − 𝑔𝑁

𝐼𝑔

(𝑧)

E [𝐺
𝑖
(𝑧, 𝜉)] − 𝐺𝑁 (𝑧) + 𝑎

𝑁
, 𝑖 ∈ 𝛼 ∪ 𝛽

E [𝐻
𝑖
(𝑧, 𝜉)] − 𝐻̂𝑁 (𝑧) + 𝑏

𝑁
, 𝑖 ∈ 𝛾 ∪ 𝛽

]
]
]
]
]
]
]

]

,

(69)

where

𝑄𝑁

1
(𝜃)

= ∇𝑓
𝑁
(𝑧) − ∇E [𝑓 (𝑧, 𝜉)]

+ ∑
𝑖∈𝐼𝑔

𝜆
𝑖
[∇E [𝑔

𝑖
(𝑧, 𝜉)] − ∇𝑔𝑁

𝑖
(𝑧)]

+
𝑞

∑
𝑖=1

𝜇
𝑖
[∇E [ℎ

𝑖
(𝑧, 𝜉)] − ∇ℎ̂𝑁

𝑖
(𝑧)]

− ∑
𝑖∈𝛼∪𝛾

𝑢
𝑖
[∇E [𝐺

𝑖
(𝑧, 𝜉)] − ∇𝐺𝑁

𝑖
(𝑧)]

− ∑
𝑖∈𝛽∪𝛾

V
𝑖
[∇E [𝐻

𝑖
(𝑧, 𝜉)] − ∇𝐻̂𝑁

𝑖
(𝑧)]

+∑
𝑖∈𝛾

𝑢
𝑖

𝑡
𝑁

(𝐺𝑁

𝑖
(𝑧))

2
∇𝐺𝑁

𝑖
(𝑧) +∑

𝑖∈𝛼

V
𝑖

𝑡
𝑁

(𝐻̂𝑁

𝑖
(𝑧))

2
∇𝐻̂𝑁

𝑖
(𝑧) ,

𝑎
𝑁
= √

V
𝑖

𝑢
𝑖

𝑡
𝑁
, 𝑏

𝑁
= √

𝑢
𝑖

V
𝑖

𝑡
𝑁
.

(70)

For sufficiently small 𝛿 > 0 and sufficiently large𝑁, 𝐻̂𝑁

𝑖
(𝑧) >

0, 𝑖 ∈ 𝛼, and 𝐺𝑁

𝑖
(𝑧) > 0, 𝑖 ∈ 𝛾. Then by Lemma 13, we have

that

sup
𝜃∈B(𝜃,𝛿)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∑
𝑖∈𝛾

𝑢
𝑖

𝑡
𝑁

(𝐺𝑁

𝑖
(𝑧))

2
∇𝐺𝑁

𝑖
(𝑧)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󳨀→ 0,

sup
𝜃∈B(𝜃,𝛿)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∑
𝑖∈𝛼

V
𝑖

𝑡
𝑁

(𝐻̂𝑁

𝑖
(𝑧))

2
∇𝐻̂𝑁

𝑖
(𝑧)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󳨀→ 0

(71)

w.p.1 as 𝑁 → ∞. By the Uniform Laws of Large Numbers,
we have

sup
𝜃∈B(𝜃,𝛿)

󵄩󵄩󵄩󵄩󵄩∇𝑓
𝑁 (𝑧) − ∇E [𝑓 (𝑧, 𝜉)]

󵄩󵄩󵄩󵄩󵄩 󳨀→ 0,

sup
𝜃∈B(𝜃,𝛿)

󵄩󵄩󵄩󵄩󵄩𝜆𝑖
(∇𝑔𝑁

𝑖
(𝑧)−∇E [𝑔

𝑖
(𝑧, 𝜉)])

󵄩󵄩󵄩󵄩󵄩 󳨀→ 0, 𝑖 ∈ 𝐼
𝑔
,

sup
𝜃∈B(𝜃,𝛿)

󵄩󵄩󵄩󵄩󵄩𝜇𝑖
(∇ℎ̂𝑁

𝑖
(𝑧)−∇E [ℎ

𝑖
(𝑧, 𝜉)])

󵄩󵄩󵄩󵄩󵄩 󳨀→ 0, 𝑖 = 1, 2, . . . , 𝑞,

sup
𝜃∈B(𝜃,𝛿)

󵄩󵄩󵄩󵄩󵄩𝑢𝑖
(∇𝐺𝑁

𝑖
(𝑧)−∇E [𝐺

𝑖
(𝑧, 𝜉)])

󵄩󵄩󵄩󵄩󵄩 󳨀→ 0, 𝑖 ∈ 𝛼 ∪ 𝛽,

(72)

sup
𝜃∈B(𝜃,𝛿)

󵄩󵄩󵄩󵄩󵄩V𝑖 (∇𝐻̂
𝑁

𝑖
(𝑧)−∇E [𝐻

𝑖
(𝑧, 𝜉)])

󵄩󵄩󵄩󵄩󵄩 󳨀→ 0, 𝑖 ∈ 𝛽 ∪ 𝛾

(73)

w.p.1 as𝑁 → ∞. As a result, combining (70)–(73), we obtain
that for 𝜀 > 0, when𝑁 is sufficiently large,

󵄩󵄩󵄩󵄩󵄩𝑄
𝑁

1

󵄩󵄩󵄩󵄩󵄩𝛿 = sup
𝜃∈B(𝜃,𝛿)

󵄩󵄩󵄩󵄩󵄩𝑄
𝑁

1
(𝜃)

󵄩󵄩󵄩󵄩󵄩 < 𝜀 w.p.1. (74)
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In addition, we know from Uniform Laws of Large Numbers
that

sup
𝜃∈B(𝜃,𝛿)

󵄩󵄩󵄩󵄩󰜚𝑁 (𝑧) − E [󰜚
𝑁
(𝑧)]󵄩󵄩󵄩󵄩 󳨀→ 0 w.p.1 as 𝑁 󳨀→ ∞,

(75)

which implies that for above 𝜀 > 0, when 𝑁 is sufficiently
large,

sup
𝜃∈B(𝜃,𝛿)

󵄩󵄩󵄩󵄩󰜚𝑁 (𝑧) − E [󰜚
𝑁
(𝑧)]󵄩󵄩󵄩󵄩 < 𝜀 w.p.1, (76)

where 󰜚
𝑁
(𝑧) is any element in {𝑔𝑁

𝑖
(𝑧), 𝑖 ∈ 𝐼

𝑔
, ℎ̂𝑁

𝑖
(𝑧), 𝑖 =

1, 2, . . . , 𝑞, 𝐻̂𝑁

𝑖
(𝑧), 𝑖 ∈ 𝛽∪ 𝛾, 𝐺𝑁

𝑖
(𝑧), and 𝑖 ∈ 𝛽∪𝛼}. Hence, we

know from (69), (74), and (76) that for above 𝜀 > 0 when 𝑁
is sufficiently large,

󵄩󵄩󵄩󵄩󵄩𝑄
𝑁
󵄩󵄩󵄩󵄩󵄩𝛿 = sup

𝜃∈B(𝜃,𝛿)

󵄩󵄩󵄩󵄩󵄩𝑄
𝑁 (𝜃)

󵄩󵄩󵄩󵄩󵄩 < 𝜀 w.p.1. (77)

Applying the Brouwer’s fixed point theorem to the mapping
𝜃(𝑄𝑁(⋅)) : B(𝜃, 𝛿) → B(𝜃, 𝛿), where 𝜃(⋅) is defined as
in (68), we conclude that there is at least one fixed point
𝜃
𝑁

= (𝑧
𝑁
, 𝜆

𝑁
, 𝜇

𝑁
, 𝑢

𝑁
, V

𝑁
) ∈ R𝑛+|𝐼𝑔|+𝑞+|𝛼|+2|𝛽|+|𝛾| such that

𝜃
𝑁
= 𝜃(𝑄𝑁(𝜃

𝑁
))w.p.1.Therefore, when𝑁 is sufficiently large,

there exists 𝜃
𝑁
∈ B(𝜃, 𝛿) w.p.1 such that 0 ∈ 𝐺(𝜃

𝑁
) + 𝑄𝑁(𝜃

𝑁
)

w.p.1, namely,

0 ∈ ∇𝑓𝑁 (𝑧
𝑁
) + ∑

𝑖∈𝐼𝑔

(𝜆
𝑁
)
𝑖
∇𝑔𝑁

𝑖
(𝑧

𝑁
) +

𝑞

∑
𝑖=1

(𝜇
𝑁
)
𝑖
∇ℎ̂𝑁

𝑖
(𝑧

𝑁
)

−∑
𝑖∈𝛼

[(𝑢
𝑁
)
𝑖
∇𝐺𝑁

𝑖
(𝑧

𝑁
) + (𝑢

𝑁
)
𝑖

𝑡
𝑁

(𝐻𝑁

𝑖
(𝑧))

2
∇𝐻̂𝑁

𝑖
(𝑧

𝑁
)]

−∑
𝑖∈𝛾

[

[

(V
𝑁
)
𝑖
∇𝐻̂𝑁

𝑖
(𝑧

𝑁
) + (V

𝑁
)
𝑖

𝑡
𝑁

(𝐺𝑁

𝑖
(𝑧

𝑁
))

2
∇𝐺𝑁

𝑖
(𝑧

𝑁
)]

]

−∑
𝑖∈𝛽

[(𝑢
𝑁
)
𝑖
∇𝐺𝑁

𝑖
(𝑧

𝑁
) + (V

𝑁
)
𝑖
∇𝐻̂𝑁

𝑖
(𝑧

𝑁
)] w.p.1

(78)

with

ℎ̂𝑁 (𝑧
𝑁
) = 0, 𝑔𝑁

𝐼𝑔

(𝑧
𝑁
) = 0,

𝐺𝑁

𝑖
(𝑧

𝑁
) 𝐻̂𝑁

𝑖
(𝑧

𝑁
) = 𝑡

𝑁
, 𝑖 ∈ 𝛼 ∪ 𝛾,

𝐺𝑁

𝑖
(𝑧

𝑁
) = √

(V
𝑁
)
𝑖

(𝑢
𝑁
)
𝑖

𝑡
𝑁
,

𝐻̂𝑁

𝑖
(𝑧

𝑁
) = √

(𝑢
𝑁
)
𝑖

(V
𝑁
)
𝑖

𝑡
𝑁
, 𝑖 ∈ 𝛽.

(79)

Moreover, combining (68) and (77), we obtain

𝜃
𝑁
󳨀→ 𝜃 w.p.1 as 𝑁 󳨀→ ∞. (80)

Let

(𝛿
𝑁
)
𝑖
=

{{{{{{{{{{{
{{{{{{{{{{{
{

(𝑢
𝑁
)
𝑖

𝐻̂𝑁

𝑖
(𝑧

𝑁
)
, 𝑖 ∈ 𝛼,

√
(𝑢

𝑁
)
𝑖
(V

𝑁
)
𝑖

𝑡
𝑁

, 𝑖 ∈ 𝛽,

(V
𝑁
)
𝑖

𝐺𝑁

𝑖
(𝑧

𝑁
)
, 𝑖 ∈ 𝛾,

(81)

then we have from (78) that 𝑧
𝑁
is almost surely a stationary

point of (3) and (𝜆
𝑁
, 𝜇

𝑁
, 𝛿

𝑁
) is the correspondingmultiplier.

Furthermore, by (80), we have 𝑧
𝑁

→ 𝑧 w.p.1 𝑎𝑠 𝑁 → ∞.
The proof of part (a) is completed.

Under condition (ii), we know from (68) and (77) that
there exist 𝜅 > 0 and 𝛿 > 0 such that

󵄩󵄩󵄩󵄩𝑧𝑁 − 𝑧󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩󵄩𝜃𝑁 − 𝜃

󵄩󵄩󵄩󵄩󵄩 ≤ 𝑐
󵄩󵄩󵄩󵄩󵄩𝑄

𝑁 (𝑧
𝑁
)
󵄩󵄩󵄩󵄩󵄩 ≤ 𝑐 max

𝜃∈B(𝜃,𝛿)

󵄩󵄩󵄩󵄩󵄩𝑄
𝑁 (𝜃)

󵄩󵄩󵄩󵄩󵄩 .

(82)

For 𝜀 > 0, combining (70)–(73), we obtain that when 𝑁 is
large enough

max
𝜃∈B(𝜃,𝛿)

󵄩󵄩󵄩󵄩󵄩𝑄
𝑁

1
(𝑧)

󵄩󵄩󵄩󵄩󵄩 ≤ max
𝑧∈B(𝑧,𝛿)

󵄩󵄩󵄩󵄩󵄩∇𝑓𝑁
(𝑧) − ∇E [𝑓 (𝑧, 𝜉)]

󵄩󵄩󵄩󵄩󵄩 +
𝜀

4𝑐
,

(83)

which, by (76), means that when𝑁 is large enough

max
𝜃∈B(𝜃,𝛿)

󵄩󵄩󵄩󵄩󵄩𝑄
𝑁 (𝑧)

󵄩󵄩󵄩󵄩󵄩 ≤ max
𝑧∈B(𝑧,𝛿)

󵄩󵄩󵄩󵄩󵄩∇𝑓𝑁
(𝑧) − ∇E [𝑓 (𝑧, 𝜉)]

󵄩󵄩󵄩󵄩󵄩 +
𝜀

2𝑐
.

(84)

According to Lemma 19, there exist 𝐶(𝜀) > 0 and 𝛽(𝜀) > 0,
independent of𝑁, such that

Prob{ max
𝑧∈B(𝑧,𝛿)

󵄩󵄩󵄩󵄩󵄩∇𝑓𝑁
(𝑧) − ∇E [𝑓 (𝑧, 𝜉 (𝜔))]

󵄩󵄩󵄩󵄩󵄩 ≥ 𝜀}

≤ 𝐶 (𝜀) 𝑒−𝑁𝛽(𝜀),

(85)

when 𝑁 is large enough. As a result, the conclusion of (b)
follows from (82) and (84).

6. Numerical Results

In this section, we present some preliminary numerical
results obtained by the regularization SAA method. Our
numerical experiments are carried out in MATLAB 7.1 run-
ning on a PC with Intel Pentium M of 1.60GHz CPU and
our tests are focused on different values of the regularization
parameter 𝜏 and sample size𝑁.

To see the performance of the regularization SAA
method, we have also carried out tests for the smoothing SAA
method [6] for (6.3) which incorporates a smoothing NCP
scheme based on the following Chen-Harker-Kanzow-Smale
(CHKS) smoothing function:
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Table 1: The computational results for Example 1.

Methods 𝑁 𝜏 𝑧
𝑁

Obj Iter
REG 103 5 × 10−1 (0.8119, 0.8064, 0.8144, 0.3960, 0.3951, 0.3868) 0.5435 5
CHKS 103 5 × 10−1 (0.6503, 0.6444, 0.6542, 0.5947, 0.5868, 0.5784) 1.3664 6
REG 104 5 × 10−2 (0.7963, 0.8029, 0.8029, 0.4081, 0.3974, 0.4004) 0.5921 3
CHKS 104 5 × 10−2 (0.7937, 0.8004, 0.7996, 0.4109, 0.4004, 0.4030) 0.6021 5
REG 105 5 × 10−3 (0.7993, 0.8000, 0.8006, 0.4016, 0.3999, 0.4001) 0.6008 3
CHKS 105 5 × 10−3 (0.7993, 0.8001, 0.8004, 0.4017, 0.4000, 0.4000) 0.6009 4

𝜙
𝜏
(𝑎, 𝑏) =

1

2
(𝑎 + 𝑏 − √(𝑎 − 𝑏)2 + 4𝜏2) (86)

and compare the test results.
In our experiments, we employed the random number

generator unifrnd, exprnd, and normrnd in MATLAB 7.1
to generate independently and identically distributed random
samples {𝜉1, 𝜉2, . . . , 𝜉𝑁}. We solved problem (3) with 𝑁 and
𝜏 by the solver fmincon in MATLAB 7.1 to obtain the
approximated optimal solution 𝑧

𝑁
. Throughout the tests,

we recorded number of iterations of fmincon (Iter) and
the values of the objective function at 𝑧

𝑁
(Obj) and these

quantities are displayed in the tables of test results.
In the tables below, “REG” and “CHKS” denote regular-

ization SAA method and the smoothing SAA method based
on the CHKS smoothing function, respectively.

The examples below varied from examples in Shapiro and
Xu [6].

Example 1. Consider

min 𝑓 (𝑧) = E [(𝑧
1
− 1)

2

+ (𝑧
2
− 1)

2

+ (𝑧
3
− 1)

2

+ 0.5𝑧2

4
𝜉
1

+ 𝑧2

5
+ 𝑧2

6
𝜉
3
+ 2𝜉

2
− 1]

s.t. 0 ≤ E [𝐺 (𝑧, 𝜉)] ⊥ E [𝐻 (𝑧, 𝜉)] ≥ 0,

(87)

where

𝐺 (𝑧, 𝜉) = (𝑧
4
−
1

2
𝑧
1
+ 𝜉

3
− 1, 𝑧

5
− 𝜉

2
𝑧
2
, 𝑧

6
−
1

4
𝜉
1
𝑧
3
)
𝑇

,

𝐻 (𝑧, 𝜉) = (𝑧
4
− 𝑧

1
+ 0.25𝜉

1
, 𝑧

5
− 𝑧

2
+ 𝜉

2
, 𝑧

6
− 𝑧

3
+ 0.5𝜉

3
)
𝑇

,
(88)

𝜉 = (𝜉
1
, 𝜉

2
, 𝜉

3
), 𝜉

1
, 𝜉

2
, 𝜉

3
are independent random variables;

𝜉
1
has an exponential distribution EXP(𝜆 = 0.5); 𝜉

2
has

an uniform distribution on [0, 1]; and 𝜉
3
has a normal

distributionN(𝜇, 𝜎2) with 𝜇 = 1 and 𝜎 = 0.1. The constraint
here, which is a complementarity problem, has a solution
𝑧 = (𝑧

1
, 𝑧

2
, 𝑧

3
, 𝑧

4
, 𝑧

5
, 𝑧

6
), where

𝑧
𝑖+3

−
1

2
𝑧
𝑖
=
{
{
{

1

2
𝑧
𝑖
− 1, if 𝑧

𝑖
≥ 2,

0, otherwise,
(89)

for 𝑖 = 1, 2, 3. Therefore, substituting above (𝑧
3
, 𝑧

4
, 𝑧

5
) into

the objective function, we obtain that (0.8, 0.8, 0.8, 0.4, 0.4,

0.4) is the exact optimal solution and 0.2 is the optimal value.
The test results are presented in Table 1.

Example 2. Consider

min 𝑓 (𝑧) = E [2(𝑧
1
− 2)

2

+ 2𝑧2

2

+ (𝑧
3
− 3)

2

𝜉
2
+ 𝑧2

4
𝜉
2

+ 𝑧2

5
𝜉
1
+ 𝑧2

6
𝜉
3
] ,

s.t. 0 ≤ E [𝐺 (𝑧, 𝜉)] ⊥ E [𝐻 (𝑧, 𝜉)] ≥ 0,

(90)

where 𝐺(𝑧, 𝜉) = (𝑧
4
− 2𝑧

1
𝜉
1
+ 𝜉

2
− 𝜉

1
, 𝑧

5
+ 0.5𝑧2

2
𝜉
2
− 𝜉

3
, 𝑧

6
−

𝑧
3
𝜉
3
+ 𝜉

3
)𝑇 are 𝐻(𝑧, 𝜉) = (𝑧

1
, 𝑧

2
, 𝑧

3
), 𝜉 = (𝜉

1
, 𝜉

2
, 𝜉

3
), 𝜉

1
,

𝜉
2
, 𝜉

3
are independent random variables; 𝜉

1
has a normal

distribution N(𝜇, 𝜎2) with 𝜇 = 0.5 and 𝜎 = 0.1, 𝜉
2
an

exponential distribution EXP(𝜆 = 0.5); and 𝜉
3
has a uniform

distribution on [0, 2]. The constraint has a solution 𝑧 =
(𝑧

1
, 𝑧

2
, 𝑧

3
, 𝑧

4
, 𝑧

5
, 𝑧

6
), where

𝑧
4
= {

𝑧
1
− 1.5, if 𝑧

1
≥ 1.5,

0, otherwise,

𝑧
5
= {

1 − 𝑧2

2
, if − 1 ≤ 𝑥

2
≤ 1,

0, otherwise,

𝑧
6
= {

2𝑧
3
− 2, if 𝑥

3
≥ 1,

0, otherwise.

(91)

Therefore, substituting the above (𝑧
4
, 𝑧

5
, 𝑧

6
) into the objective

function, we obtain that (1.75, 0, 0.5, 0.25, 1, 0) is the exact
optimal solution and 0.75 is the optimal value.The test results
are displayed in Table 2.

Our preliminary numerical results shown in Tables 1
and 2 reveal that our proposed method yields a reasonable
solution of the problems considered. To compare with the
smoothing SAA method, the regularization SAA method
may need fewer iteration numbers.

7. Conclusion

In this paper, we focus on detailed analysis of convergence of a
regularization SAAmethod for SMPCC (1). Almost sure con-
vergence of optimal solutions of the regularized SAAproblem
is established by the notion of epiconvergence in variational
analysis. We improve a convergence result established by



12 Journal of Applied Mathematics

Table 2: The computational results for Example 2.

Methods 𝑁 𝜏 𝑧
𝑁

Obj Iter
REG 103 5 × 10−1 (1.7521, 0.0002, 0.5000, 0.2485, 0.9800, 0.0001) 0.7257 7
CHKS 103 5 × 10−1 (1.6621, 0.0000, 0.4614, 0.5857, 1.1901, 0.3015) 1.7127 10
REG 104 5 × 10−2 (1.7502, 0.0001, 0.4999, 0.2498, 0.9990, 0.0000) 0.7485 8
CHKS 104 5 × 10−2 (1.7500, 0.0000, 0.5000, 0.2593, 1.0015, 0.0050) 0.7609 11
REG 105 5 × 10−3 (1.7498, 0.0000, 0.5000, 0.2504, 0.9999, 0.0000) 0.7503 12
CHKS 105 5 × 10−3 (1.7498, 0.0000, 0.5000, 0.2505, 0.9999, 0.0000) 0.7504 11

Scholtes [17] on a regularization method for a deterministic
MPCC under weaker constraint qualifications. Moreover, the
exponential convergence rate of the sequence of Karash-
Kuhn-Tucker points generated from the regularized SAA
problem is obtained through an application of Robinson’s
stability theory.
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