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The packing problem of unit equilateral triangles not only has the theoretical significance but also offers broad prospects inmaterial
processing and network resource optimization. Because this problem is nondeterministic polynomial (NP) hard and has the feature
of continuity, it is necessary to limit the placements of unit equilateral triangles before optimizing and obtaining approximate
solution (e.g., the unit equilateral triangles are not allowed to be rotated). This paper adopts a new quasi-human strategy to
study the packing problem of unit equilateral triangles. Some new concepts are put forward such as side-clinging action, and
an approximation algorithm for solving the addressed problem is designed. Time complexity analysis and the calculation results
indicate that the proposed method is a polynomial time algorithm, which provides the possibility to solve the packing problem of
arbitrary triangles.

1. Introduction

The solution of NP hard problem has both popularity and
intractability, which is of great value in philosophy of science
and real life. Packing problem in two-dimension plane is a
typical NP hard issue, which is about how to use the two-
dimensional space efficiently. To date, research results show
that a complete axiomatic approach is not currently viable.
Packing problem of unit equilateral triangles is actually a
special case of the two-dimension packing problem. There-
fore, researches on the packing problem of unit equilateral
triangles are theoretically significant to look for an efficient
approximate algorithm for a NP hard issue, especially for a
general packing problem. Moreover, researches on the ratio-
nal distribution of a set of unit equilateral triangles, which do
not overlap mutually in a limited region, are extremely useful
in practical application. The packing problem discussed in
this paper is one of the key issues in the field of CAD/CAM,
the task of which is to design a high-performance algo-
rithm to improve the quality of a layout scheme for the

purposes of saving rawmaterials, shortening the construction
period, reducing the costs, increasing productivity, and so
forth.

A classification approach for packing problem has been
brought forward by Dyckhoff in 1990 (see, e.g., [1]), and
an improved classification method has been proposed by
Wäscher et al. in 2007 (see, e.g., [2]). Wäscher et al. have
classified the packing problem into four cases, namely, one-
dimensional (1D), two-dimensional (2D), three-dimensional
(3D), and high-dimensional (𝑛-D) spaces. 1D packing prob-
lem only considers one factor, such as weight, volume, or
length. 2D packing problem always considers two factors.
Some common issues include geographic division of parking
lots, trim of packing materials, and leathers. 3D packing
problem considers three factors, usually the length, width,
and height. For example, three dimensions should not go
beyond the set bounds in ship or car loading process. 𝑛-D
packing problem is always the optimal operation of rectangle
packing problem in space and time dimension. Reference
[3] can be deemed as a world’s earlier result about 𝑛-D
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packing problem, where the layout feature of rods with 𝑛-1
unit sides has been analyzed, but a specific algorithm has not
been described. Subsequently, Fekete et al. have published a
series of articles to discuss the general 𝑛-D packing problem
(see, e.g., [4–6]). According to graph theory, a branch-and-
bound framework and a tree searching algorithm have been
provided based on all kinds of legitimate classifications.
Typical examples regarding 1D and 2D spaces are presented,
but the situations of 4D or more are not discussed. Moreover,
the famousOR-Library andPackLib2 provide only the 2D and
3D packing instances; see [7, 8], respectively.

The most common packing problems in daily life include
cloth cutting and steel processing. Nowadays, the academia
has conducted large number of valuable studies on the 2D
and 3D packing problems; see, for example, [9, 10]. 2D
packing problem mainly includes circles packing problem,
rectangles packing problem, and triangles packing problem.
Based on the population control (PERM) strategy and corner-
occupying approach, a new hybrid algorithm is proposed to
solve the problem of packing equal or unequal circles into a
larger circle container in [11]. In [12], a novel computational
approach is designed to place 𝑛 identical nonoverlapping
disks into a unit square, by which the radii are maximized.
And based on the conjecture, a stochastic search algorithm
that displays excellent numerical performance is developed.
By elaborately simulating themovement of the smooth elastic
disks in the container in the physical world, a heuristic
quasiphysical strategy is provided in [13] for solving disks
packing problem. Subsequently, based on the simulated
annealing, that is, imitating the displacements of the objects
under different temperature, the calculation speed is also
improved. In [14], a coarse-to-fine quasiphysical optimization
method is presented for solving the circle packing problem
with equilibrium constraints, where the dense packing of
𝑛 circular disks satisfying the equilibrium constraints is
considered. 3D packing problem is confined primarily to a
cuboid packing problem, which mainly includes the block
arrangement method [15], spatial representation technique
[16], genetic algorithm [17], dynamic space decomposition
approach [18], and sequence triplet method [19].

In the past decade, the rectangles packing problem has
been widely studied by researchers at home and abroad;
for instance, a population heuristic is proposed in [20]. An
effective deterministic heuristic, namely, the Less Flexibility
First strategy, is studied in [21]. A hybrid heuristic algo-
rithm is provided in [22], which is based on the divide-
and-conquer and greedy strategies. Unfortunately, to the
best of authors’ knowledge, so far, the triangles packing
problem and the convex polygons packing problem have not
yet been discussed well. In [23], a preliminary study has
been conducted on the general triangles packing problem,
but further improvement and some indepth studies are
required.

Therefore, the primary purpose of this paper is to study
the packing problem of unit equilateral triangles according
to the characteristic of the unit equilateral triangles and
in the base of analysis of the general triangles packing
problems. The main contribution of this paper can be listed
as follows.

(i) A mathematical description of the packing problem
of unit equilateral triangles is proposed, and the
characteristic and advantage of which are colloquially
stated.

(ii) A reasonable quasi-human strategy is formed accord-
ing to the natural law of the “like attracts like.”

(iii) A new algorithm for solving the packing problem of
unit equilateral triangles is presented based on the
proposed quasi-human strategy.

2. Problem Formulation

Packing problem of unit equilateral triangles: given one
square container whose side is 𝐿, if 𝑁 unit equilateral
triangles can be put into the given container, then develop
a concrete algorithm accordingly or else provide an opposite
answer. Actually, the problem can be formally described as
follows. For any given positive integer 𝑁 and one square
container with every side of 𝐿, let 𝑆

𝑖𝑗
be the overlap area of the

𝑖th triangle (△
𝑖
) and the 𝑗th triangle (△

𝑗
). Does there exist the
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𝑖2
)
2

= (𝑥
𝑖2
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)
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+ (𝑦
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− 𝑥
𝑖1
)
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− 𝑦
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= 1; 0 ≤ 𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, 𝑦𝑖1, 𝑦𝑖2, 𝑦𝑖3 ≤ 𝐿;

∀𝑖 ∈ 1, 2, . . . , 𝑁,

(ii) ∑

𝑖<𝑗

𝑆
𝑖𝑗
= 0; ∀𝑖, 𝑗 ∈ 1, 2, . . . , 𝑁.

(2)

If there exists one which meets (i) and (ii), then provide the
corresponding solution 𝐴.

Remark 1. It is important to note that if the given 𝐿 is suffi-
ciently large, it is very easy to find the solution constrained
by (i) and (ii) to the packing problem of unit equilateral
triangles. However, it is not an easy task to put the unit
equilateral triangles into the square container quickly, when
the given 𝐿 is relatively small. On the other hand, the packing
problem of unit equilateral triangles can be described as
follows. Given 𝑁 unit equilateral triangles, if these triangles
can be put into a square container without overlap, then how
long should the sides of the square container be at least?

Since figures in a plane can be translated and rotated
continuously, there always is an infinite number of ways of
layout scheme. Therefore, it is always to limit the placements
of the filler when solving the packing problem quickly. The
restriction policy in [1] only allows the polygons to translate
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Figure 1: Tangent triangles.
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Figure 2: Angle region.

but not to rotate; thus, the polygons packing problem can be
converted into a NP complete problem.

Definition 2 (tangency). For two unit equilateral triangles in
a same plane, if they intersect each other, but the overlapping
area is zero, then the two triangles are said to be tangent. As
shown in Figure 1,△

1
and△

2
are tangent to with each other,

and△
3
and△

4
are also tangent.

Definition 3 (angle region). Given two tangent unit equilat-
eral triangles, for any two sides which are taken from the two
triangles, respectively, if all items below are matched:

(1) there is one and only one point of intersection
between the two sides, which is denoted by 𝑂;

(2) the angle (let𝑂 be the vertex) formed by the two sides
is positive, but less than 𝜋;

(3) in the angle of (2), there is on side of the two unit
equilateral triangles, except these in (1),

then the angle in (2) is said to be angle region of the two
tangent triangles. Its size is called the angle of the angle
region. The initial side of the angle in (2) is called the initial
side of the angle region, and the terminal side of the angle in
(2) is the terminal side of the angle region. The intersection
in (1) is called the vertex of the angle region.

As shown in Figure 2,△
𝐴𝐵𝐶

is tangent to△
𝐷𝐸𝐹

at𝐴;∠
𝐵𝐴𝐷

is an angle region of△
𝐴𝐵𝐶

and△
𝐷𝐸𝐹

. Size of the angle region
is denoted by ∠

𝐵𝐴𝐷
. 𝐴𝐵 and 𝐴𝐷 are the initial and terminal

sides of the angle region, respectively.
To judge whether there is an angle region formed by two

tangent unit equilateral triangles, it is just to take out two sides
with public vertex from each unit equilateral triangle and
judge whether the angle formed by the two sides is positive
and less than𝜋 and verify that there is no other side of the two
unit equilateral triangles with the angle. The computational

Figure 3: Zero angle regions.

1 2

Figure 4: One angle region.

procedure can be realized according to vertex coordinate of
the triangle.

3. Classification of an Angle Region and
Side-Clinging Action

When a unit equilateral triangle is tangent to another unit
equilateral triangle, zero, one, or two angle regions may
be formed, which is shown in Figures 3, 4, and 5(a)–5(c),
respectively.

Based on the long-termproduction practice of the human
society, in order to put some fillers into a given container as
much as possible, one always chooses some appropriate fillers
which matches the size of the free space in the container first.
Then, put these fillers into some relatively stable positions.
This so-called stable position cannot be rotated or slide freely.

For a unit equilateral triangle, if it can be rotated clock-
wise or counterclockwise around one of its vertexes, then the
unit equilateral triangle is said to be freely rotated or it is said
to be restrictively rotated. Let one side of the unit equilateral
triangle cling to a side of another; namely, the length of the
overlapping part of the two unit equilateral triangles is greater
than zero. If the triangle can move along the clinging side
in one direction at most, then the unit equilateral triangle is
said to be restrictively sliding or it is said to be freely sliding.
One point should be noted that unit equilateral triangles
cannot intersect others and must always be within the square
container.

If a side of the unit equilateral triangle△
1
clings to a side

of others, then the triangle can only slide along the clinging
side, and the position of △

1
is said to be a slidable position.

If △
1
slides along the clinging side to cling to a third unit

equilateral triangle △
3
, where △

1
still clings to △

2
, then the

position of △
1
is stable. If a unit equilateral triangle can

slide or be rotated freely, then it is said to be impending.
Obviously, the position of this unit equilateral triangle at the
moment is extremely unstable, as △

1
is shown in Figure 6.

If a unit equilateral triangle is restrictively sliding but freely
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Figure 5: Two angle regions.
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Figure 6: Stability of unit equilateral triangles.

rotated, then the position of which is actually unstable, as△
2

is shown in Figure 6. Moreover, if a unit equilateral triangle is
restrictively rotated but freely sliding, the position of which
is still unstable, as △

3
(which can move left and right), △

4
,

and △
5
(which do not overlap with side of any triangle)

are shown in Figure 6. Generally speaking, the placement of
a unit equilateral triangle is stable, only if it is restrictively
rotated and restrictively sliding, as △

6
and △

7
are shown in

Figure 6.
In general, the more stable the position of a unit equilat-

eral triangle is, the closer it will cling to other triangles and
therefore the higher the space utilization will be.

Definition 4 (side-clinging action). If one side of a unit
equilateral triangle clings to an initial or terminal side of
an angle region (the overlapping part is greater than zero)
and another side of the unit equilateral triangle is tangent to
terminal or initial side of the angle region, then the process of
putting the triangle into the angle region is said to be a side-
clinging action.

One can find a side-clinging action in this way. Let the
side 𝑎 of a unit equilateral triangle cling to the initial side
𝐵𝐴 or the terminal side 𝐷𝐴 of the angle region ∠

𝐵𝐴𝐷
and

push the side 𝑎 along 󳨀󳨀→𝐵𝐴 or 󳨀󳨀→𝐷𝐴 until it cannot move (the
triangle is tangent to initial or terminal side of the angle
region). If the side 𝑎 also clings to the initial side 𝐵𝐴 or
terminal side𝐷𝐴 of∠

𝐵𝐴𝐷
, then fix the unit equilateral triangle

to the position where it is. Therefore, the problem of putting

Y

XA

B

O

C

Figure 7: The square container.

a unit equilateral triangle into an angle region formed by two
given tangent unit equilateral triangles is converted into the
positional relationship between a side of the unit equilateral
triangle and a line segment; thus, the search space is limited
to just a few points from continuous Euclidean space.

Definition 5 (side-clinging degree). If one side of a unit
equilateral triangle clings to one side of an angle region
(the length is 𝑎

1
), set the length of overlapping part as 𝑏

1
,

then the side-clinging degree of the side-clinging action
is 𝑏
1
/max (1, 𝑎

1
). Specifically, if the other side of the unit

equilateral triangle clings to another side (the length is 𝑎
2
)

of the angle region, set the length of overlapping part as 𝑏
2
,

then the side-clinging degree of the side-clinging action is
𝑏
1
/max(1, 𝑎

1
) + 𝑏
2
/max(1, 𝑎

2
).

Remark 6. Actually, side-clinging degree can be used to
measure how well a unit equilateral triangle fits the position
which is proposed to be filled. The bigger the side-clinging
degree is, the better the triangle will fit.

4. The Side-Clinging Algorithm

As shown in Figure 7, the square container 𝑂𝐴𝐵𝐶 can be
deemed as a plane figure formed by four equilateral triangles.

Definition 7 (pattern). A pattern refers to a kind of ordered
pair ⟨𝑃, 𝑅⟩ at some points, where 𝑃 is the set of the four tri-
angles constituting the square container and unit equilateral
triangles which has been put in the container (each element
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in the set is denoted by three vertex coordinates of a triangle)
and 𝑅 is the set of angle regions formed by triangles in 𝑃.

At the first moment, let 𝑁 > 0; and there are four
triangles constituting the square container in 𝑃; 𝑅 is the set of
angle regions formed by four triangles constituting the square
container. Then, initial pattern at this moment is denoted by
⟨𝑃
0
, 𝑅
0
⟩. Putting the 𝑘th (0 < 𝑘 ≤ 𝑁) triangle into the square

container after the initial pattern, then the corresponding
pattern is called the 𝑘th pattern, which is denoted by ⟨𝑃

𝑘
, 𝑅
𝑘
⟩.

In the 𝑘th pattern, let a triangle perform a side-clinging
action; if the triangle is still in the square container and does
not intersect any triangle in 𝑃

𝑘
, then the side-clinging action

is considered to be an appropriate side-clinging action.

Side-Clinging Strategy. Set the side-clinging degree of two
appropriate side-clinging actions (𝑎

1
and 𝑎

2
) as 𝑞

1
and 𝑞

2
,

respectively. If 𝑞
1
> 𝑞
2
, then priority of the side-clinging

action 𝑎
1
is higher than 𝑎

2
.

Based on the side-clinging strategy, the quasi-human
algorithm for solving a given packing problem of unit
equilateral triangles can be presented as follows.

Given an initial pattern ⟨𝑃
0
, 𝑅
0
⟩, where 𝑃

0
is the set of

triangles constituting a given square container, 𝑅
0
is the set

of angle regions formed by four triangles constituting a given
square container. Arrange angle regions and appropriate side-
clinging actions in the pattern according to time sequences.

Step 1. Set 𝑡 = 0, 𝑆 = 𝑆
𝑡
, and the number of the unit equilateral

triangles to be put into the container as𝑁 − 𝑡.

Step 2. In the pattern 𝑆
𝑡
, if 𝑁 − 𝑡 = 0, then print the

information indicating that all the triangles have been put
into the square container and stop; if𝑁−𝑡 ̸= 0 and there is no
appropriate side-clinging action to be performed, then print
that it is failure to obtain the solution and stop; if 𝑁 − 𝑡 ̸= 0

and there are some appropriate side-clinging actions to be
performed in 𝑆

𝑡
, then go to Step 3.

Step 3. Perform the highest-priority side-clinging action
according to the side-clinging strategy. If there is only one
appropriate side-clinging action based on the side-clinging
strategy, then put a unit equilateral triangle into the container
according to the side-clinging action or according to the first
corner-occupying action.

Step 4. Set 𝑡 ≤ 𝑡 + 1 and add the three-vertex coordinates of
the triangle in Step 3 to 𝑃

𝑡
. Accordingly, 𝑅

𝑡
represents the set

of angle regions formed by triangles in 𝑃
𝑡
; then, go to Step 2.

5. Time Complexity Analysis of
the Side-Clinging Algorithm

In general, one can assume that there are 𝑛−1 unit equilateral
triangles that have been put into the container at the pattern
⟨𝑃, 𝑅⟩; namely, there are 𝑛 + 3 triangles in 𝑃, and it will
take 𝑓(𝑛) time units to find and perform the highest-priority
side-clinging action with respect to the 𝑛th unit equilateral
triangle. Sequence of the implementation is as follows.

(1) Time Complexity of Forming Angle Regions by 𝑛 + 3

Triangles in 𝑃. Given triangles, if it will take 𝑎 time units to
judge whether the two sides taken from each triangle can
form an angle region, then it will take𝐶(3, 1)×𝐶(3, 1)×𝑎 = 9𝑎
time units at most to find the angle region formed by the
two triangles. Besides, it is easy to know that it will take
𝐶(𝑛 + 3, 2) × 9𝑎 time units at most to find all the possible
angle regions formed by 𝑛+3 triangles in 𝑃. According to the
definition of angle region, two triangles can form two angle
regions at most. Therefore, there will be up to 2 × 𝐶(𝑛 + 3, 2)
angle regions in 𝑅.

Remark 8. In fact, it is impossible that a unit equilateral
triangle is tangent to each triangle in the square container.
Generally speaking, the number of angle regions formed by
𝑛+3 triangles is far less than 2×𝐶(𝑛+3, 2). And this is exactly
the essential reason for the fast property of the proposed
algorithm.

(2) Time Complexity of All the Side-Clinging Actions for
Putting the 𝑛th Unit Equilateral Triangle into All the Angle
Regions in 𝑅. Assume that it will take 𝑏 time units to put a
unit equilateral triangle into an angle region, with one side of
the unit equilateral triangle clinging to one side of the angle
region. Because there are only two different side-clinging
actions to be performed while putting a unit equilateral
triangle into a given angle region, it will take 2𝑏 time units at
most. One can easily find that it will take up to𝐶(𝑛+3, 2)×4𝑏
time units to put a unit equilateral triangle into all angle
regions in 𝑅.

(3) Time Complexity of Judging Whether Every Side-Clinging
Action Is an Appropriate Side-Clinging Action. If it will take 𝑐

1

time units to judge whether two triangles can intersect each
other and 𝑐

2
time units to judge whether a unit equilateral

triangle is in the square container, then it will take𝐶(𝑛+3, 2)×
4((𝑛−1)×𝑐

1
+𝑐
2
) timeunits to find all appropriate side-clinging

actions.

(4) Time Complexity of Finding the Highest-Priority Side-
Clinging Action from All the Appropriate Side-Clinging
Actions. If it will take 𝑑 time units to compare the priority
of two side-clinging actions, then it will take a maximum of
𝐶(𝑛 + 3, 2) × 4𝑑 time units to find the highest-priority side-
clinging action.

Based on the above analysis, one can know that the
maximum time units to put the 𝑛th unit equilateral triangle
into a square container should be 𝐶(𝑛 + 3, 2) × 9𝑎 + 𝐶(𝑛 +
3, 2) × 4𝑏+𝐶(𝑛+3, 2) × 4((𝑛− 1)× 𝑐

1
+ 𝑐
2
) +𝐶(𝑛+3, 2) × 4𝑑 =

𝐶(𝑛 + 3, 2)(9𝑎 + 4𝑏 + 4((𝑛 − 1) × 𝑐
1
+ 𝑐
2
) + 4𝑑), where 𝑎,

𝑏, 𝑐
1
, 𝑐
2
, and 𝑑 are constants. Thus, the time complexity of

putting the 𝑛th triangle is 𝑂(𝑛3), and the time complexity of
putting 𝑛 triangles will be no more than 1 + 23 + 33 + ⋅ ⋅ ⋅ +
𝑛
3
= (𝑛(𝑛 + 1)/2)

2, which implies that the time complexity
of the designed algorithm is 𝑂(𝑛4). If there is no reasonable
side-clinging action to perform, then stop. Thus, the order
of magnitude of the total computing time is not more than
𝑂(𝑛
4
).
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1

Length of side of the square container: 1
Computing time: less than 0.01 s

(a)

1

2

Length of side of the square container: 1.268
Computing time: less than 0.01 s

(b)

1

2

3

Length of side of the square container: 1.577
Computing time:  0.01 s

(c)

1

2

3

4

Length of side of the square container: 1.577
Computing time: 0.02 s

(d)

1

2

3

4 5

Length of side of the square container: 2
Computing time: 0.03 s

(e)

1

2

3

4 5

6

Length of side of the square container: 2
Computing time: 0.04 s

(f)

Figure 8: Outputs of simulation examples.

In the process of solving the packing problem of unit
equilateral triangles, we find that some similar packing
problems can be solved by experience accumulated in long-
term practice. For example, the triangles packing problem is
the same as with bricklayers: how to place irregular stones to
make themost of the limited space? Based on past experience,
they always occupy corners first, then sides and centers.

In fact, this idea just provides an arrangement sequence.
Inspired by which, we only consider the properties of side-
clinging actions for unit equilateral triangles, which can
guarantee the compactness of placement method. According
to the proposed side-clinging algorithm, an approximation
algorithm for solving packing problemof general polygon can
be developed in the future.
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6. Illustrative Examples

This program is developed by using Visual C++6.0. The
simulation example is tested on a computer with Pentium
2.8GHz processor and 1G of RAM.

Inputs:

Length of the side of the square container (±0.1);
Number of unit equilateral triangles to be put
(±0.000001).

Outputs:

Utilization (0.1%);
Computing time (±0.01 sec);
Sequence of putting unit equilateral triangles into a
square container.

The simulation results are shown in Figure 8, from which
we can know that the computing speed of the suggested quasi-
human algorithm is polynomial time.However, the size of the
square container for placing three unit equilateral triangles
is the same as the case of four in some individual examples,
indicating that space utilization of the container has yet to be
improved. In future research, we will explore how to adjust
and improve the quasi-human algorithm to increase the space
utilization.

7. Conclusions and Future Work

In this note, a novel quasi-human algorithm for solving
the packing problem of unit equilateral triangles has been
proposed. We have categorized angle regions of two tangent
triangles based on their position relations. Some concepts and
terms have been defined, such as tangency, angle region, and
side-clinging action, and the position stability of triangles
has been analyzed. According to the side-clinging strategy,
an effective quasi-human algorithm has been developed to
solve the packing problem of unit equilateral triangles. On
the basis of the simulation results, we can find that there is
always only one angle region between two successive unit
equilateral triangles, and the mount of angle regions can be
relatively stable. Thus, search scope of available space for
the subsequent triangles can be reduced, which is the root
cause of the lower complexity of the suggested quasi-human
algorithm.

Although the computational results are already very
satisfactory, there are still many possible ways that may
further improve the proposed quasi-human algorithm, such
as the sound fuzzy method; see [24, 25] and references
therein. As is well known, networked systems (NSs), complex
networks, sensor networks, and multiagent systems are some
important systems in daily life, and researches on which have
become increasingly active in recent years, primarily due to
their wide applications in many fields; see, for example, [26–
30]. Naturally, how to apply our quasi-human algorithm to
optimize resources in different systems is still a thoughtful
issue. For another, disturbance (such as white noise and

periodic narrowband noise) and incomplete information
(such as data-packet dropouts and missing measurements)
inevitably exist in many kinds of systems and networks; see,
for example, [31–35], which will undoubtedly influence the
feasibility of the suggested algorithm.Therefore, accuracy and
robustness of the designed quasi-human algorithm in com-
plicated background are a promising and valuable research
direction in the future.
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