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By using the mean value theorem and logarithmic convexity, we obtain some new inequalities for gamma and digamma functions.

1. Introduction

Let Γ(𝑥), 𝜓(𝑥), 𝜓𝑛(𝑥), and 𝜁(𝑥) denote the Euler gamma
function, digamma function, polygamma functions, and
Riemann zeta function, respectively, which are defined by

Γ (𝑥) = ∫

∞

0

𝑒
−𝑡

𝑡
𝑥−1

𝑑𝑡, for 𝑥 > 0,

𝜓 (𝑥) =
Γ
󸀠

(𝑥)

Γ (𝑥)
, for 𝑥 > 0,

(1)

𝜓
(𝑛)

(𝑥)

= (−1)
𝑛+1

∫

∞

0

𝑡
𝑛

𝑒
−𝑥𝑡

1 − 𝑒−𝑡
𝑑𝑡, for 𝑥 > 0; 𝑛 = 1, 2, 3, . . . ,

(2)

𝜁 (𝑥) =

∞

∑

𝑛=1

1

𝑛𝑥
, for 𝑥 > 1. (3)

In the past different papers appeared providing inequalities
for the gamma, digamma, and polygamma functions (see [1–
18]).

By using the mean value theorem to the function log Γ(𝑥)
on [𝑢, 𝑢 + 1], with 𝑥 > 0 and 𝑢 > 0, Batir [19] presented the
following inequalities for the gammaanddigamma functions:

𝜓 (𝑥) ⩽ log (𝑥 − 1 + 𝑒−𝛾) , for 𝑥 > 0,

log (𝑥) − 𝜓 (𝑥) < 1
2
𝜓
󸀠

(𝑥) , for 𝑥 > 1,

𝜓
󸀠

(𝑥) ⩾
𝜋
2

6𝑒𝛾
𝑒
−𝜓(𝑥)

, for 𝑥 ⩾ 1.

(4)

In Section 2, by applying the mean value theorem on

(log Γ (𝑥))󸀠 = 𝜓 (𝑥) , for 𝑥 > 0, (5)

we obtain some new inequalities on gamma and digamma
functions.

Section 3 is devoted to some new inequalities on
digamma function, by using convex properties of logarithm
of this function.

Note that in this paper by 𝛾 = lim
𝑛→∞

(∑
𝑛

𝑘=1
(1/𝑘) −

log(𝑛)) = 0.5772156 ⋅ ⋅ ⋅ we mean Euler’s constant [5].

2. Inequalities for Gamma and Digamma
Functions by the Mean Value Theorem

Lemma 1. For 𝑡 > 0, one has

−𝜓
󸀠󸀠

(𝑡)

𝜓󸀠 (𝑡)
2
< 1. (6)

Proof. By [6, Proposition 1], we have

𝜓
󸀠

(𝑡) 𝜓
󸀠󸀠󸀠

(𝑡) − 2 [𝜓
󸀠󸀠

(𝑡)]
2

< 0, for 𝑡 > 0. (7)

Thus the function 𝜓󸀠󸀠(𝑡)/𝜓󸀠(𝑡)2 is strictly decreasing on
(0,∞).
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By using asymptotic expansions [20, pages 253–256 and
364],

𝜓
󸀠

(𝑡) =
1

𝑡
+
1

2𝑡2
+
1

6𝑡3
+
𝜃
󸀠

30𝑡5
, (0 ⩽ 𝜃

󸀠

⩽ 1) , (8)

𝜓
󸀠󸀠

(𝑡) = −
1

𝑡2
−
1

𝑡3
−
1

2𝑡4
+
1

6𝑡6
−
𝜃
󸀠󸀠

6𝑡8
, (0 ⩽ 𝜃

󸀠󸀠

⩽ 1) . (9)

For 𝑡 > 0, we get

lim
𝑡→∞

𝜓
󸀠󸀠

(𝑡)

𝜓󸀠 (𝑡)
2
= −1. (10)

Now, the proof follows from themonotonicity of𝜓󸀠󸀠(𝑡)/𝜓󸀠(𝑡)2
on (0,∞) and

lim
𝑡→∞

𝜓
󸀠󸀠

(𝑡)

𝜓󸀠 (𝑡)
2
= −1. (11)

Theorem 2. One has the following:

(a) 𝑥 − (1/2) < 1/𝜓󸀠(𝑥) ⩽ 𝑥 + (6/𝜋2) − 1 for 𝑥 ⩾ 1;
(b) 1/𝑥2 < 𝜓󸀠(𝑥)𝜓󸀠(𝑥 + 1) < 2/𝑥2 for 𝑥 > 0;
(c) [𝜓󸀠(𝑥)]2/𝜓󸀠󸀠(𝑥) ⩾ −𝜋4/72𝜁(3) for 𝑥 ⩾ 1 and 𝑥2𝜓󸀠(𝑥 +
1)𝜓
󸀠

(𝑥) < 𝜋
4

/72𝜁(3) for 𝑥 > 2;
(d) ([𝜓󸀠(𝑥 + ℎ)]2 − 𝜓󸀠(𝑥)𝜓󸀠(𝑥 + ℎ))/ℎ𝜓󸀠(𝑥) > 𝜓󸀠󸀠(𝑥 + ℎ)

for 𝑥 > 0 and ℎ > 0;
(e) (𝜓󸀠(𝑥 + ℎ)𝜓󸀠(𝑥) − [𝜓󸀠(𝑥)]2)/ℎ𝜓󸀠(𝑥 + ℎ) < 𝜓󸀠󸀠(𝑥) for
𝑥 > 0 and ℎ > 0;

(f) −𝑥2𝜓󸀠󸀠(𝑥) < 𝜓󸀠(𝑥)/𝜓󸀠(𝑥 + 1) and 𝜓󸀠(𝑥 + 1)/𝜓󸀠(𝑥) <
−𝑥
2

𝜓
󸀠󸀠

(𝑥 + 1) for 𝑥 > 0;

(g) ((𝜋2𝑥/6) + 1)(𝑥+(6/𝜋
2
))

𝑒
−𝑥(𝛾+1)

⩽ Γ(𝑥 + 1) < (2𝑥 +

1)
(𝑥+(1/2))

𝑒
−𝑥(1+𝛾) for 𝑥 ⩾ 1;

(h) (1/𝑥) − 𝜓󸀠(𝑥) < (1/2)𝜓󸀠󸀠(𝑥 + (1/2)) for 𝑥 > 0 and
(1/𝑥) − 𝜓

󸀠

(𝑥) > ((𝜓
󸀠

)
−1

(1) − 1)𝜓
󸀠󸀠

(𝑥) for 𝑥 > 1;

(i) 𝜓(𝑥 + 1) > log(𝑥 + (1/2)) + 𝜓((𝜓󸀠)−1(1)) for 𝑥 ⩾ 1/2;

(j) (𝜋4/72𝜁(3)) log(𝑥 − (𝜓󸀠)−1(1) + 2) + 𝜓((𝜓󸀠)−1(1)) ⩾
𝜓(𝑥 + 1) for 𝑥 > (𝜓󸀠)−1(1) − 1.

Proof. Let𝑢 be a positive real number and𝜓(𝑥)defined on the
closed interval [𝑢, 𝑢+1]. By using themean value theorem for
the function 𝜓(𝑥) on [𝑢, 𝑢 + 1] with 𝑢 > 0 and since 𝜓󸀠 is a
decreasing function, there is a unique 𝜃 depending on 𝑢 such
that 0 ⩽ 𝜃 = 𝜃(𝑢) < 1, for all 𝑢 ⩾ 0; then

𝜓 (𝑢 + 1) − 𝜓 (𝑢) = 𝜓
󸀠

(𝑢 + 𝜃 (𝑢)) , (12)

Since 𝜓(𝑥 + 1) − 𝜓(𝑥) = 1/𝑥 and 𝜓󸀠(𝑥 + 1) − 𝜓󸀠(𝑥) = −1/𝑥2,
we have

𝜓
󸀠

(𝑢 + 𝜃 (𝑢)) =
1

𝑢
, for 𝑢 > 0. (13)

We show that the function 𝜃(𝑢) has the following properties:

(1) 𝜃(𝑢) is strictly increasing on (0,∞);
(2) lim

𝑢→∞
𝜃(𝑢) = 1/2;

(3) 𝜃󸀠(𝑢) is strictly decreasing on (0,∞);
(4) lim

𝑢→∞
𝜃
󸀠

(𝑢) = 0.

To prove these four properties, since 𝜓󸀠 is a decreasing
function on (0,∞), we put 𝑢 = 1/𝜓󸀠(𝑡), where 𝑡 > 0; by
formula (13) we have

𝜓
󸀠

(
1

𝜓󸀠 (𝑡)
+ 𝜃 (

1

𝜓󸀠 (𝑡)
)) = 𝜓

󸀠

(𝑡) . (∗)

Since by formula (8) we have 𝜓󸀠󸀠(𝑡) < 0 and 𝜓󸀠(𝑡) > 0, for
all 𝑡 > 0, then the mapping 𝑡 → 𝜓

󸀠

(𝑡) from (0,∞) into
(0,∞) is injective since also 𝜓󸀠(𝑡) → 0 and 𝜓󸀠(𝑡) → ∞

when 𝑡 → ∞ and 𝑡 → 0
+, respectively, then the mapping

𝑡 → 𝜓
󸀠

(𝑡) from (0,∞) into (0,∞) is a bijective map. Clearly,
by injectivity of 𝜓󸀠, we find that

𝜃(
1

𝜓󸀠 (𝑡)
) = 𝑡 −

1

𝜓󸀠 (𝑡)
, for 𝑡 > 0. (14)

Differentiating between both sides of this equation, we get

𝜃
󸀠

(
1

𝜓󸀠 (𝑡)
) =

− [(𝜓
󸀠

(𝑡))
2

+ 𝜓
󸀠󸀠

(𝑡)]

𝜓󸀠󸀠 (𝑡)
.

(15)

Since by formula (8), 𝜓󸀠󸀠(𝑡) < 0, where 𝑡 > 0, hence formula
(15) gives 𝜃󸀠(1/𝜓󸀠(𝑡)) > 0, for all 𝑡 > 0. Since themapping 𝑡 →
1/𝜓
󸀠

(𝑡) from (0,∞) to (0,∞) is also bijective, then 𝜃󸀠(𝑡) > 0
for all 𝑡 > 0, and the proof of (1) is completed.

From (8) we have

lim
𝑢→∞

𝜃 (𝑢)

= lim
𝑡→∞

𝜃(
1

𝜓󸀠 (𝑡)
) = lim
𝑡→∞

(𝑡 −
1

𝜓󸀠 (𝑡)
)

= lim
𝑡→∞

(𝑡 −
1

(1/𝑡) + (1/2𝑡
2) + (1/6𝑡3) + (1/3𝑡5)

)

=
1

2
.

(16)

Differentiating between both sides of (15), we obtain

𝜃
󸀠󸀠

(
1

𝜓󸀠 (𝑡)
)

=

[𝜓
󸀠

(𝑡)]
3

𝜓󸀠󸀠 (𝑡)
[2 (𝜓
󸀠󸀠

(𝑡))
2

− 𝜓
󸀠

(𝑡) 𝜓
󸀠󸀠

(𝑡)] .

(∗∗)

Since 𝜓󸀠(𝑡) > 0 and 𝜓󸀠󸀠(𝑡) < 0, where 𝑡 > 0, then
𝜃
󸀠󸀠

(1/𝜓
󸀠

(𝑡)) < 0 for all 𝑡 > 0. Proceeding as abovewe conclude
that 𝜃󸀠󸀠(𝑡) < 0, for 𝑡 > 0. This proves (3).
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For (4), from (8), (9), we conclude that

lim
𝑢→∞

𝜃
󸀠

(𝑢) = lim
𝑡→∞

𝜃
󸀠

(
1

𝜓󸀠 (𝑡)
) = lim
𝑡→∞

−

[(𝜓
󸀠

(𝑡))
2

+ 𝜓
󸀠󸀠

(𝑡)]

𝜓󸀠󸀠 (𝑡)

= −1 − lim
𝑡→∞

[𝜓
󸀠

(𝑡)]

𝜓󸀠󸀠 (𝑡)

2

= 0.

(17)

Now, we prove the theorem. To prove (a), let 1/𝜓󸀠(1) =
6/𝜋
2

⩽ 𝑡 < ∞; then by (1) and (2) we have

𝜃 (
1

𝜓󸀠 (1)
) ⩽ 𝜃 (𝑡) < lim

𝑡→∞

𝜃 (𝑡) . (18)

Equation (13) and 𝜓󸀠󸀠(𝑡) < 0 for all 𝑡 > 0 give

𝜃 (𝑡) = (𝜓
󸀠

)
−1

(
1

𝑡
) − 𝑡. (19)

By substituting the value of 𝜃(𝑡) into (18), we get

1 −
1

𝜓󸀠 (1)
⩽ (𝜓
󸀠

)
−1

(
1

𝑡
) − 𝑡 < lim

𝑡→∞

𝜃 (𝑡) =
1

2
. (20)

By substituting the value 𝑡 = 1/𝜓󸀠(𝑢) into this inequality, we
get

𝑢 −
1

2
<

1

𝜓󸀠 (𝑢)
⩽ 𝑢 +

6

𝜋2
− 1, (21)

where 𝑢 ⩾ 1.
In order to prove (b), by using themean value theorem on

the interval [1/𝜓󸀠(𝑡), 1/𝜓󸀠(𝑡 + 1)], and since 𝜃 is a decreasing
function, there exists a unique 𝛿 such that

0 < 𝛿 (𝑡) < 1, (22)

for 𝑡 > 0 and

𝜃(
1

𝜓󸀠 (𝑡 + 1)
) − 𝜃(

1

𝜓󸀠 (𝑡)
)

= (
1

𝜓󸀠 (𝑡 + 1)
−
1

𝜓󸀠 (𝑡)
) 𝜃
󸀠

(
1

𝜓󸀠 (𝑡 + 𝛿 (𝑡))
) .

(23)

Now, by (14), we have

1 −
1

𝜓󸀠 (𝑡 + 1)
+
1

𝜓󸀠 (𝑡)

= (
1

𝜓󸀠 (𝑡 + 1)
−
1

𝜓󸀠 (𝑡)
) 𝜃
󸀠

(
1

𝜓󸀠 (𝑡 + 𝛿 (𝑡))
) .

(24)

Since 𝜃 is strictly increasing on (0,∞), by (1), we have

1 +
𝜓
󸀠

(𝑡 + 1) − 𝜓
󸀠

(𝑡)

𝜓󸀠 (𝑡 + 1) 𝜓
󸀠
(𝑡)

= 𝜃 (
1

𝜓󸀠 (𝑡 + 1)
) − 𝜃(

1

𝜓󸀠 (𝑡)
) > 0.

(25)

By using this inequality and the fact that𝜓(𝑥+1)−𝜓(𝑥) = 1/𝑥
and

𝜓
󸀠

(𝑥 + 1) − 𝜓
󸀠

(𝑥) = −
1

𝑥2
, (26)

we obtain

𝜓
󸀠

(𝑡 + 1) 𝜓
󸀠

(𝑡) >
1

𝑡2
, 𝑡 > 0. (27)

Since 𝜃 is strictly increasing on (0,∞), by (1), it is clear that

𝜃(
1

𝜓󸀠 (𝑡 + 1)
) − 𝜃(

1

𝜓󸀠 (𝑡)
)

< lim
𝑡→∞

𝜃 (𝑡) − 𝜃 (0
+

) =
1

2
, 𝑡 > 0.

(28)

and then it is clear that (b) holds.
For (c), since 𝑡 > 2, 𝑡 + 𝛿(𝑡) > 1 + 𝛿(1), and 𝜃󸀠 is strictly

decreasing on (0,∞) by (3), then

𝜃
󸀠

(
1

𝜓󸀠 (𝑡 + 𝛿 (𝑡))
) < 𝜃

󸀠

(
1

𝜓󸀠 (1)
) = −1 −

[𝜓
󸀠

(1)]
2

𝜓󸀠󸀠 (1)
,

∀𝑡 > 2.

(29)

Since 𝜓(𝑥 + 1) − 𝜓(𝑥) = 1/𝑥 and 𝜓󸀠(𝑥 + 1) − 𝜓󸀠(𝑥) = −1/𝑥2,
by using (24), we obtain

𝑡
2

𝜓
󸀠

(𝑡 + 1) 𝜓
󸀠

(𝑡) <
𝜋
4

72𝜁 (3)
, (30)

where 𝑡 > 2.
Since 𝜃󸀠 is strictly decreasing on (0,∞) by (3) and𝜓󸀠󸀠(𝑡) <

0, for all 𝑡 > 0, we have

𝜃
󸀠

(
1

𝜓󸀠 (𝑡)
) ⩽ 𝜃

󸀠

(
1

𝜓󸀠 (1)
) , (31)

where 𝑡 ⩾ 1.
Then it is clear that (c) is true.
Now we prove (d) and (e) by using the mean value

theorem on [1/𝜓󸀠(𝑡), 1/𝜓󸀠(𝑡 + ℎ)] (𝑡 > 0, ℎ > 0), for 𝜃, we
conclude

𝜃(
1

𝜓󸀠 (𝑡 + ℎ)
) − 𝜃(

1

𝜓󸀠 (𝑡)
)

= (
1

𝜓󸀠 (𝑡 + ℎ)
−
1

𝜓󸀠 (𝑡)
) 𝜃
󸀠

(
1

𝜓󸀠 (𝑡 + 𝑎)
) ,

(32)

where 0 < 𝑎 < ℎ.
After brief computation we have

𝜃
󸀠

(
1

𝜓󸀠 (𝑡 + 𝑎)
) =

ℎ𝜓
󸀠

(𝑡 + ℎ) 𝜓
󸀠

(𝑡)

𝜓󸀠 (𝑡) − 𝜓
󸀠
(𝑡 + ℎ)

− 1, 𝑡 > 0. (33)

Since 𝑡 + 𝑎 > 𝑡 for all 𝑎 > 0, 𝑡 > 0, and by the monotonicity of
𝜃
󸀠 and 𝜓󸀠 we have 𝜃󸀠(1/𝜓󸀠(𝑡 + 𝑎)) < 𝜃󸀠(1/𝜓󸀠(𝑡)); then

𝜓
󸀠

(𝑡 + ℎ) 𝜓
󸀠

(𝑡) − [𝜓
󸀠

(𝑡)]
2

ℎ𝜓󸀠 (𝑡 + ℎ)
< 𝜓
󸀠󸀠

(𝑡) , 𝑡 > 0, ℎ > 0. (34)
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By monotonicity of 𝜃󸀠 and 𝜓󸀠, we have

𝜃
󸀠

(
1

𝜓󸀠 (𝑡 + 𝑎)
) > 𝜃

󸀠

(
1

𝜓󸀠 (𝑡 + ℎ)
) . (35)

After some simplification of this inequality (d) is proved.
For (f), we put ℎ = 1 in (e) and (d).
For (g), we integrate (a) on [1, 𝑡] for 𝑡 > 0; then we have

log((𝑡 − 1) 𝜋
2

6
+ 1) − 𝛾

⩽ 𝜓 (𝑡) < log (2𝑡 − 1) − 𝛾, for 𝑡 ⩾ 1;

(36)

the proof is completed when we integrate these inequalities
on [1, 𝑠], for 𝑠 > 0.

By using the mean value theorem for the 𝜓󸀠(𝑡) on [𝑡, 𝑡 +
𝜃(𝑡)], there is a 𝛼(𝑡) depending on 𝑡 such that 0 < 𝛼(𝑡) < 𝜃(𝑡)
for all 𝑡 > 0, and so

𝜓
󸀠

(𝑡 + 𝜃 (𝑡)) = 𝜃 (𝑡) 𝜓
󸀠󸀠

(𝑡 + 𝛼 (𝑡)) + 𝜓
󸀠

(𝑡) . (37)

By formula (13) and (2), since 𝜓󸀠󸀠 is strictly increasing on
(0,∞), we have

𝜓
󸀠󸀠

(𝑡 + 𝛼 (𝑡)) 𝜃 (𝑡)

=
1

𝑡
− 𝜓
󸀠

(𝑡) < lim
𝑡→∞

𝜃 (𝑡) 𝜓
󸀠󸀠

(𝑡 + lim
𝑡→∞

𝜃 (𝑡)) , for 𝑡 > 0,
(38)

or
1

𝑡
− 𝜓
󸀠

(𝑡) <
1

2
𝜓
󸀠󸀠

(𝑡 +
1

2
) , for 𝑡 > 0; (39)

since 𝜓󸀠󸀠 is strictly increasing on (0,∞), by (1), we have

𝜃 (𝑡) 𝜓
󸀠󸀠

(𝑡 + 𝛼 (𝑡)) =
1

𝑡
− 𝜓
󸀠

(𝑡) > 𝜃 (1) 𝜓
󸀠󸀠

(𝑡) ,

for 𝑡 > 1,
(40)

or
1

𝑡
− 𝜓
󸀠

(𝑡) > ((𝜓
󸀠

)
−1

(1) − 1)𝜓
󸀠󸀠

(𝑡) , for 𝑡 > 1. (41)

In order to prove (i) and (j), we integrate both sides of (13)
over 1 ⩽ 𝑢 ⩽ 𝑥 to obtain

∫

𝑥

1

𝜓
󸀠

(𝑢 + 𝜃 (𝑢)) 𝑑𝑢 = ∫

𝑥

1

1

𝑢
𝑑𝑢. (42)

Making the change of variable 𝑢 = 1/𝜓󸀠(𝑡) on the left-hand
side, by (14), we have

∫

𝑥+𝜃(𝑥)

(𝜓
󸀠
)
−1
(1)

𝜓
󸀠

(𝑡)
−𝜓
󸀠󸀠

(𝑡)

𝜓󸀠 (𝑡)
2
𝑑𝑡 = log (𝑥) ; (43)

since 𝜓󸀠(𝑡) > 0 for all 𝑡 > 0 and 𝜓󸀠(𝑥)𝜓󸀠󸀠(𝑥) − 2[𝜓󸀠󸀠(𝑥)]2 < 0,
we find that, for 𝑥 > 1,

log (𝑥) < ∫
𝑥+𝜃(𝑥)

(𝜓
󸀠
)
−1
(1)

𝜓
󸀠

(𝑡) 𝑑𝑡

= 𝜓 (𝑥 + 𝜃 (𝑥)) − 𝜓 ((𝜓
󸀠

)
−1

(1))

(44)

or

log (𝑥) + 𝜓 ((𝜓󸀠)
−1

(1)) < 𝜓 (𝑥 + 𝜃 (𝑥)) . (45)

Again using the monotonicity of 𝜃 and 𝜓, after some simpli-
fications as for 𝑥 ⩾ 1/2, we can rewrite

log(𝑥 + 1
2
) + 𝜓 ((𝜓

󸀠

)
−1

(1)) < 𝜓 (𝑥 + 1) . (46)

This proves (i). By inequality (c) for 𝑥 ⩾ 1, we have

log (𝑥) ⩾ 72𝜁 (3)
𝜋4

∫

𝑥+𝜃(𝑥)

(𝜓
󸀠
)
−1
(1)

𝜓
󸀠

(𝑡) 𝑑𝑡

=
72𝜁 (3)

𝜋4
(𝜓 (𝑥 + 𝜃 (𝑥)) − 𝜓 ((𝜓

󸀠

)
−1

(1))) ;

(47)

since for 𝑥 ⩾ 1, 𝜃(𝑥) ⩾ 𝜃(1) = ((𝜓󸀠)−1(1)−1)) = (𝜓󸀠)−1(1)−1,
from this inequality we find that

𝜋
4

72𝜁 (3)
log (𝑥) + 𝜓 ((𝜓󸀠)

−1

(1))

⩾ 𝜓 (𝑥 + (𝜓
󸀠

)
−1

(1) − 1) ;

(48)

replacing 𝑥 by 𝑥 − (𝜓󸀠)−1(1) + 2, we get for 𝑥 ⩾ (𝜓󸀠)−1(1) − 1

𝜋
4

72𝜁 (3)
log (𝑥 − (𝜓󸀠)

−1

(1) + 2) + 𝜓 ((𝜓
󸀠

)
−1

(1))

⩾ 𝜓 (𝑥 + 1) ,

(49)

which proves (j). Then the proof is completed.

Example 3. Consider the matrix

𝐴
𝑛
=

[
[
[
[

[

3 1 1 ⋅ ⋅ ⋅ 1

1 4 1 ⋅ ⋅ ⋅ 1

.

.

.

1 1 ⋅ ⋅ ⋅ 1 𝑛 + 1

]
]
]
]

]

. (50)

By using inequalities (a), we obtain

𝜋
2

𝜋2𝑥 + 6 − 𝜋2
⩽ 𝜓
󸀠

(𝑥) <
2

2𝑥 − 1
, 𝑥 ⩾ 1. (51)

Now, we integrate on [1, 𝑡] (for 𝑡 > 0) from both sides of (51)
to obtain

log((𝑡 − 1) 𝜋
2

6
+ 1) − 𝛾 ⩽ 𝜓 (𝑡) < log (2𝑡 − 1) − 𝛾; (52)

replacing 𝑡 by 𝑛 + 1 (𝑛 is an integer number) and using the
identity 𝜓(𝑛 + 1) = 𝐻

𝑛
− 𝛾 [6] and det𝐴

𝑛
= 𝑛!𝐻

𝑛
[21], where

𝐻
𝑛
= ∑
𝑛

𝑘=1
(1/𝑘) is the 𝑛th harmonic number, then we have

log(𝑛𝜋
2

6
+ 1)

𝑛!

⩽ 𝑛!𝐻
𝑛
< log (2𝑛 + 1)𝑛! . (53)
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3. New Inequalities for Digamma Function
by Properties of Strictly Logarithmically
Convex Functions

Definition 4. A positive function 𝑓 is said to be logarithmi-
cally convex on an interval 𝐼 if 𝑓 has derivative of order two
on 𝐼 and

(log𝑓 (𝑥))󸀠󸀠 ⩾ 0 (54)

for all 𝑥 ∈ 𝐼.
If inequality (54) is strict, for all 𝑥 ∈ 𝐼, then 𝑓 is said to be

strictly logarithmically convex [22].

Lemma 5. The function Γ is increasing on [𝑐,∞), where 𝑐 =
1/46163 ⋅ ⋅ ⋅ is the only positive zero of 𝜓 [1, 19].

Lemma 6. If 𝑥 ⩾ 𝑐 and 𝑘(𝑥) = 1/𝜓(𝑥), then 𝑘 is strictly
logarithmically convex on [𝑐,∞).

Proof. By differentiation we have

[log 𝑘 (𝑥)]󸀠󸀠 = [
−𝜓
󸀠

(𝑥)

𝜓 (𝑥)
]

󸀠

=

−𝜓
󸀠󸀠

(𝑥) 𝜓 (𝑥) + [𝜓
󸀠

(𝑥)]
2

[𝜓 (𝑥)]
2

;

(55)

by Lemma 5, we obtain 𝜓(𝑥) = Γ󸀠(𝑥)/Γ(𝑥) > 0, for every
𝑥 ∈ [𝑐,∞) and since 𝜓󸀠󸀠(𝑥) < 0 on (0,∞), then we have
(log 𝑘(𝑥))󸀠󸀠 > 0, for 𝑥 ⩾ 𝑐.

This implies that 1/𝜓(𝑥) is strictly logarithmically convex
on [𝑐,∞).

Theorem 7. One has the following:

(a) [𝜓(𝑥 + 3)]𝑎/𝜓(𝑎𝑥 + 3) > ((3/2) − 𝛾)𝑎−1, for 𝑎 > 1 and
𝑥 > −3/𝑎;

(b) [𝜓(𝑥 + 3)]𝑎/𝜓(𝑎𝑥 + 3) < ((11/6) − 𝛾)𝑎/𝜓(3 + 𝑎), for
𝑎 > 1 and 𝑥 ∈ (0, 1);

(c) [𝜓(𝑥 + 3)]𝑎/𝜓(𝑎𝑥 + 3) > ((11/6) − 𝛾)𝑎/𝜓(3 + 𝑎), for
𝑎 > 1 and 𝑥 > 1;

(d) [𝜓(𝑥 + 3)]𝑎/𝜓(𝑎𝑥 + 3) > ((11/6) − 𝛾)𝑎/𝜓(3 + 𝑎), for
𝑎 ∈ (0, 1) and 𝑥 ∈ (0, 1);

(e) [𝜓(𝑥 + 3)]𝑎/𝜓(𝑎𝑥 + 3) < ((11/6) − 𝛾)𝑎/𝜓(3 + 𝑎), for
𝑎 ∈ (0, 1) and 𝑥 > 1.

Proof. By Lemma 6 we have, for 𝑎 > 1,

𝜓[
𝑢

𝑝
+
V
𝑞
] > [𝜓 (𝑢)]

1/𝑝

[𝜓 (V)]1/𝑞 , (56)

where 𝑝 > 1, 𝑞 > 1, (1/𝑝) + (1/𝑞) = 1, 𝑢 ⩾ 𝑐, and V ⩾ 𝑐.
If 𝑝 = 𝑎 and 𝑞 = 𝑎/(𝑎 − 1), then

𝜓[
1

𝑎
𝑢 + (1 −

1

𝑎
) V] > [𝜓 (𝑢)]1/𝑎 [𝜓 (V)]1−(1/𝑎) (57)

for 𝑢 ⩾ 𝑐 and V ⩾ 𝑐.

Let V = 3 and 𝑢 = 𝑎𝑥 + 3. Note that 𝜓(3) = (3/2) − 𝛾 and
(1/𝑎)𝑢 + (1 − (1/𝑎))V = 𝑥 + 3; also we obtain

[𝜓 (𝑥 + 3)]
𝑎

𝜓 (𝑎𝑥 + 3)
> (
3

2
− 𝛾)

𝑎−1

for 𝑥 = 𝑢 − 3
𝑎
> −
3

𝑎
. (58)

In order to prove (b), let

𝑓 (𝑥) = log𝜓 (𝑎𝑥 + 3) − log𝜓 (3 + 𝑎)

− 𝑎 log𝜓 (𝑥 + 3) ;
(59)

since 𝜓(4) = (11/6) − 𝛾, we have 𝑓(1) = log((11/6) − 𝛾)−𝑎.
Also

𝑓
󸀠

(𝑥) = 𝑎 [
𝜓
󸀠

(𝑎𝑥 + 3)

𝜓 (𝑎𝑥 + 3)
−
𝜓
󸀠

(𝑥 + 3)

𝜓 (𝑥 + 3)
] . (60)

By Lemma 6, log(1/𝜓(𝑡)) is strictly convex on [𝑐,∞); then
(log𝜓(𝑡))󸀠󸀠 < 0 and so (𝜓󸀠(𝑡)/𝜓(𝑡))󸀠 < 0; this implies that
(𝜓
󸀠

(𝑡)/𝜓(𝑡)) is strictly decreasing on [𝑐,∞). Since 𝑎 > 1 and
𝑥 ∈ (0, 1), we have 𝑎𝑥 + 3 > 𝑥 + 3. Then

𝜓
󸀠

(𝑎𝑥 + 3)

𝜓 (𝑎𝑥 + 3)
<
𝜓
󸀠

(𝑥 + 3)

𝜓 (𝑥 + 3)
. (61)

And then 𝑓󸀠(𝑥) < 0; also 𝑓(1) = log((11/6) − 𝛾)−𝑎. Then

𝑓 (𝑥) > 𝑓 (1) = log(11
6
− 𝛾)

−𝑎

(62)

for 𝑎 > 1 and 𝑥 ∈ (0, 1) or

[𝜓 (𝑥 + 3)]
𝑎

𝜓 (𝑎𝑥 + 3)
<
((11/6) − 𝛾)

𝑎

𝜓 (3 + 𝑎)
. (63)

So (b) is proved.
By

𝑎𝑥 + 3 > 𝑥 + 3, for 𝑎 > 1, 𝑥 > 1,

𝑎𝑥 + 3 < 𝑥 + 3, for 𝑎 ∈ (0, 1) , 𝑥 ∈ (0, 1) ,

𝑎𝑥 + 3 < 𝑥 + 3, for 𝑎 ∈ (0, 1) , 𝑥 > 1,

(64)

(c), (d), and (e) are clear.

Corollary 8. For all 𝑥 ∈ (0, 1) and all integers 𝑛 > 1, one has

(
3

2
− 𝛾)

𝑛−1

<
[𝜓 (𝑥 + 3)]

𝑛

𝜓 (𝑛𝑥 + 3)
<
((11/6) − 𝛾)

𝑛

𝐻
𝑛+2
− 𝛾

, (65)

where𝐻
𝑛
= ∑
𝑛

𝑘=1
(1/𝑘) is the 𝑛th harmonic number.

Proof. By [6], for all integers 𝑛 ⩾ 1, we have

𝜓 (𝑛 + 1) = 𝐻
𝑛
− 𝛾, (66)

and replacing 𝑎 by 𝑛 in Theorem 7, the proof is completed.
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Theorem 9. Let 𝑓 be a function defined by

𝑓 (𝑥) =
[𝜓 (3 + 𝑏𝑥)]

𝑎

[𝜓 (3 + 𝑎𝑥)]
𝑏

; ∀𝑥 > 0, (67)

where 3 + 𝑎𝑥 ⩾ 𝑐 and 3 + 𝑏𝑥 ⩾ 𝑐; then for all 𝑎 > 𝑏 > 0 or
0 > 𝑎 > 𝑏 (𝑎 > 0 and 𝑏 < 0), 𝑓 is strictly increasing (strictly
decreasing) on (0,∞).

Proof. Let 𝑔 be a function defined by

𝑔 (𝑥) = log𝑓 (𝑥) = 𝑎 log𝜓 (3 + 𝑏𝑥) − 𝑏 log𝜓 (3 + 𝑎𝑥) ; (68)

then

𝑔
󸀠

(𝑥) = 𝑎𝑏 [
𝜓
󸀠

(3 + 𝑏𝑥)

𝜓 (3 + 𝑏𝑥)
−
𝜓
󸀠

(3 + 𝑎𝑥)

𝜓 (3 + 𝑎𝑥)
] . (69)

By proof of Theorem 7, we have

(log𝜓 (𝑥))󸀠󸀠 < 0, for 𝑥 ∈ [𝑐,∞) ; (70)

this implies that𝑔󸀠(𝑥) > 0 if 𝑎 > 𝑏 > 0or 0 > 𝑎 > 𝑏 (𝑔󸀠(𝑥) < 0
if 𝑎 > 0 and 𝑏 < 0); that is, 𝑔 is strictly increasing on (0,∞)
(strictly decreasing on (0,∞)). Hence 𝑓 is strictly increasing
on (0,∞), if 𝑎 > 𝑏 > 0 or 0 > 𝑎 > 𝑏 (strictly decreasing if
𝑎 > 0 and 𝑏 < 0).

Corollary 10. For all 𝑥 ∈ (0, 1) and all 𝑎 > 𝑏 > 0 or 0 > 𝑎 > 𝑏,
one has

(
3

2
− 𝛾)

𝑎−𝑏

<
[𝜓 (3 + 𝑏𝑥)]

𝑎

[𝜓 (3 + 𝑎𝑥)]
𝑏

<
[𝜓 (3 + 𝑏)]

𝑎

[𝜓 (3 + 𝑎)]
𝑏

, (71)

where 3 + 𝑏𝑥 ⩾ 𝑐, 3 + 𝑎𝑥 ⩾ 𝑐, 3 + 𝑏 ⩾ 𝑐, and 3 + 𝑎 ⩾ 𝑐.

Proof. To prove (71), applyingTheorem 9 and taking account
of 𝜓(3) = (3/2) − 𝛾, we get 𝑓(0) < 𝑓(𝑥) < 𝑓(1) for all 𝑥 ∈
(0, 1), and we obtain (71).

Corollary 11. For all 𝑥 ∈ (0, 1) and all 𝑎 > 0 and 𝑏 < 0, one
has

[𝜓 (3 + 𝑏)]
𝑎

[𝜓 (3 + 𝑎)]
𝑏

<
[𝜓 (3 + 𝑏𝑥)]

𝑎

[𝜓 (3 + 𝑎𝑥)]
𝑏

< (
3

2
− 𝛾)

𝑎−𝑏

, (72)

where 3 + 𝑎𝑥 ⩾ 𝑐, 3 + 𝑏𝑥 ⩾ 𝑐, 3 + 𝑏 ⩾ 𝑐, and 3 + 𝑎 ⩾ 𝑐.

Proof. Applying Theorem 9, we get 𝑓(1) < 𝑓(𝑥) < 𝑓(0) for
all 𝑥 ∈ (0, 1), and we obtain (72).

Corollary 12. For all 𝑥 ∈ (0, 1) and all 𝑎 > 𝑏 > 0 or 0 > 𝑎 > 𝑏,
one has

[𝜓 (3 + 𝑏𝑦)]
𝑎

[𝜓 (3 + 𝑎𝑦)]
𝑏

<
[𝜓 (3 + 𝑏𝑥)]

𝑎

[𝜓 (3 + 𝑎𝑥)]
𝑏

, (73)

where 3 + 𝑎𝑥 ⩾ 𝑐, 3 + 𝑏𝑥 ⩾ 𝑐, 3 + 𝑎𝑦 ⩾ 𝑐, 3 + 𝑏𝑦 ⩾ 𝑐, and
0 < 𝑦 < 𝑥 < 1.

Corollary 13. For all 𝑥 ∈ (0, 1) and all 𝑎 > 0 and 𝑏 < 0, one
has

[𝜓 (3 + 𝑏𝑥)]
𝑎

[𝜓 (3 + 𝑎𝑥)]
𝑏

<
[𝜓 (3 + 𝑏𝑦)]

𝑎

[𝜓 (3 + 𝑎𝑦)]
𝑏

, (74)

where 3 + 𝑎𝑥 ⩾ 𝑐, 3 + 𝑏𝑥 ⩾ 𝑐, 3 + 𝑎𝑦 ⩾ 𝑐, 3 + 𝑏𝑦 ⩾ 𝑐, and
0 < 𝑦 < 𝑥 < 1.

Remark 14. Taking 𝑎 = 𝑛 and 𝑏 = 1 in Corollary 10, we obtain
inequalities of Corollary 8.
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