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Using fixed point theorems in ordered Banach spaces with the lattice structure, we consider the existence of nontrivial solutions
under the condition that the nonlinear term can change sign and study the existence of sign-changing solutions for some second
order three-point boundary value problems. Our results improve and generalize on those in the literatures.

1. Introduction

In this paper, we shall discuss the existence of nontrivial solu-
tions for the following boundary value problem:

−𝑢

󸀠󸀠

(𝑡) = 𝑔 (𝑡, 𝑢 (𝑡)) , 0 ≤ 𝑡 ≤ 1,

𝑢 (0) = 0, 𝑢 (1) = 𝛼𝑢 (𝛽) ,

(1)

where 𝑔 : [0, 1] × (−∞, +∞) → (−∞, +∞) is continuous,
0 < 𝛼 < 1, 0 < 𝛽 < 1.

Many problems of different areas of physics and applied
mathematics can be changed into multipoint boundary value
problems for ordinary differential equations (see [1]). In [2],
Gupta firstly studied three-point boundary value problems
for nonlinear second order ordinary differential equations in
1992. Since then, many authors have been concerned with
second order multipoint boundary value problems (see [3–
20] and references therein). For example, some authors have
studied the existence and multiplicity of positive solutions
for nonlinear multipoint boundary value problems under
the condition that the nonlinear term may be nonnegative
by applying Krasnosel’skii’s fixed point theorem, theory of
fixed point index, and so on (see [3–8]). Meanwhile, some
authors considered the existence of nontrivial solutions when
the nonlinear term can be negative; for example, see [9–
11] and references therein. For instance, in [10], under the

assumption of non-well-ordered upper and lower solutions,
some multiplicity results for solutions of three-point bound-
ary value problems (1) have been obtained using the fixed
point index theory. On the other hand, some authors have
considered the existence of sign-changing solutions to some
boundary value problems (see [12–16, 18] and references
therein). For example, in [13], by using the fixed point index
method, Xu and Sun have considered the existence of sign-
changing solutions for the following three-point boundary
value problem:

𝑦

󸀠󸀠

(𝑡) + 𝑔 (𝑦 (𝑡)) = 0, 0 ≤ 𝑡 ≤ 1,

𝑦 (0) = 0, 𝑦 (1) = 𝛼𝑦 (𝛽) .

(2)

In [18], Rynne has considered the following second order
𝑚-point boundary value problem:

−𝑢

󸀠󸀠
= 𝑓 (𝑢) ,

𝑢 (0) = 0, 𝑢 (1) =

𝑚−2

∑

𝑖=1

𝛼

𝑖
𝑢 (𝜂

𝑖
) ,

(3)

where 𝑓 : (−∞, +∞) → (−∞, +∞) is continuous. The
author has used global bifurcation theorem to obtain sign-
changing solutions of the boundary value problem (3) under
some conditions on the asymptotic behavior of 𝑓.
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Inspired by [9–18, 21–25], we shall use fixed point theo-
rems derived by Liu and Sun [21] to consider the existence of
nontrivial solutions for BVP (1). There are two main features.
Firstly, the used methods are fixed point theorems with
respect to noncone mappings, which are different from those
of [9–18]. Secondly, when we consider the existence of sign-
changing solution to BVP (1), we generalize the nonlinear
term 𝑔(𝑡, 𝜑), which is different from [13–15, 18].

The organization of this paper is as follows. In Section 2,
some preliminaries and lemmas are given including some
properties of the lattice and some lemmas that will be used
to prove the main results. In Section 3, we shall give the main
results. Finally, in Section 4, concrete examples are given to
illustrate applications of obtained main results.

2. Preliminaries and Some Lemmas

Let 𝐸 be an ordered Banach space in which the partial
ordering ≤ is induced by a cone 𝑃 ⊆ 𝐸. 𝑃 is called normal
if there exists𝑁 > 0 such that 𝜃 ≤ 𝑥 ≤ 𝑦 implies ‖𝑥‖ ≤ 𝑁‖𝑦‖
(see [26]).

Definition 1 (see [16, 21–23]). We call 𝐸 a lattice under the
partial ordering≤, if sup{𝑥, 𝑦} and inf{𝑥, 𝑦} exist for arbitrary
𝑥, 𝑦 ∈ 𝐸.

For 𝑥 ∈ 𝐸, let

𝑥

+
= sup {𝑥, 𝜃} , 𝑥

−
= sup {−𝑥, 𝜃} , (4)

𝑥

+ and 𝑥− are called the positive part and the negative part of
𝑥 respectively, and clearly𝑥 = 𝑥+−𝑥−. Take |𝑥| = 𝑥++𝑥−, then
|𝑥| ∈ 𝑃, and |𝑥| is called themodule of 𝑥. For convenience, we
use the notations 𝑥

+
= 𝑥

+
, 𝑥

−
= −𝑥

−, and obviously 𝑥
+
∈ 𝑃,

𝑥

−
∈ (−𝑃), 𝑥 = 𝑥

+
+ 𝑥

−
(see [16, 21–23]).

Definition 2 (see [16, 21–23]). Let 𝐷 ⊂ 𝐸 and 𝐴 : 𝐷 → 𝐸 be
a nonlinear operator. 𝐴 is said to be quasi-additive on lattice,
if there exists V∗ ∈ 𝐸 such that

𝐴𝑥 = 𝐴𝑥

+
+ 𝐴𝑥

−
+ V∗, ∀𝑥 ∈ 𝐷. (5)

Definition 3 (see [21]). Let 𝐸 be a Banach space with a cone 𝑃
and let 𝐴 : 𝐸 → 𝐸 be a nonlinear operator. We say that 𝐴 is
a unilaterally asymptotically linear operator along 𝑃, if there
exists a bounded linear operator 𝐿 such that

lim
𝑥∈𝑃,‖𝑥‖→∞

‖𝐴𝑥 − 𝐿𝑥‖

‖𝑥‖

= 0, (6)

where 𝐿 is said to be the derived operator of 𝐴 along 𝑃 and
will be denoted by 𝐴󸀠

𝑃
.

Remark 4. The operator 𝐴 in Definition 3 is not assumed to
be a cone mapping.

Let𝑃 be a cone of Banach space𝐸. 𝑥 is said to be a positive
fixed point of 𝐴 if 𝑥 ∈ (𝑃 \ {𝜃}) is a fixed point of 𝐴; 𝑥 is said
to be a negative fixed point of 𝐴 if 𝑥 ∈ ((−𝑃) \ {𝜃}) is a fixed
point of 𝐴; 𝑥 is said to be a sign-changing fixed point of 𝐴 if
𝑥 ∉ (𝑃 ∪ (−𝑃)) is a fixed point of 𝐴 (see [21–23]).

Lemma 5 (see [21]). Let 𝐸 be a Banach space with a lattice
structure, let 𝑃 be a normal cone of 𝐸, and let 𝐴 : 𝐸 → 𝐸 be
completely continuous and quasi-additive on lattice. Suppose
that there exist ]

1
, ]
2
∈ 𝑃 and a positive bounded linear

operator 𝐿 : 𝐸 → 𝐸 with 𝑟(𝐿) < 1, such that

𝐴𝑥 ≥ −]
1
, ∀𝑥 ∈ 𝑃;

𝐴𝑥 ≥ 𝐿𝑥 − ]
2
, ∀𝑥 ∈ (−𝑃) .

(7)

In addition, assume that 𝐴𝜃 = 𝜃; the Fréchet derivative 𝐴󸀠
𝜃

of 𝐴 at 𝜃 exists, 1 is not an eigenvalue of 𝐴󸀠
𝜃
, the sum of the

algebraic multiplicities for all eigenvalues of 𝐴󸀠
𝜃
, lying in the

interval (1,∞), is an odd number, and 𝐴󸀠
𝑃
exists, 𝑟(𝐴󸀠

𝑃
) < 1.

Then 𝐴 has at least one nontrivial fixed point.

Lemma 6 (see [21]). Let 𝐸, 𝑃, 𝐴, and 𝐿 be as in Lemma 5.
Suppose that there exist 𝜇

1
, 𝜇

2
∈ 𝑃 such that

𝐴𝑥 ≤ 𝜇

1
, ∀𝑥 ∈ (−𝑃) ;

𝐴𝑥 ≤ 𝐿𝑥 + 𝜇

2
, ∀𝑥 ∈ 𝑃.

(8)

In addition, assume that 𝐴𝜃 = 𝜃; the Fréchet derivative 𝐴󸀠
𝜃
of

𝐴 at 𝜃 exists; 1 is not an eigenvalue of 𝐴󸀠
𝜃
, and 𝐴󸀠

(−𝑃)
exists;

𝑟(𝐴

󸀠

(−𝑃)
) > 1 and 1 is not an eigenvalue of 𝐴󸀠

(−𝑃)
corresponding

a positive eigenvector.
Then 𝐴 has at least one nontrivial fixed point.

Lemma 7 (see [21]). Suppose that 𝐸 is an ordered Banach
space with a lattice structure, 𝑃 is a normal cone of 𝐸, and 𝐴 is
quasi-additive on the lattice. Assume that

(i) 𝐴 is strongly increasing on 𝑃 and −𝑃;
(ii) both 𝐴

󸀠

𝑃
and 𝐴

󸀠

(−𝑃)
exist with 𝑟(𝐴

󸀠

𝑃
) > 1 and

𝑟(𝐴

󸀠

(−𝑃)
) > 1, and 1 is not an eigenvalue of𝐴󸀠

𝑃
or𝐴󸀠
(−𝑃)

corresponding a positive eigenvector;
(iii) 𝐴𝜃 = 𝜃; the Fréchet derivative 𝐴󸀠

𝜃
of 𝐴 at 𝜃 is strongly

positive and 𝑟(𝐴󸀠
𝜃
) < 1;

(iv) the Fréchet derivative 𝐴󸀠
∞

of 𝐴 at∞ exists; 1 is not an
eigenvalue of𝐴󸀠

∞
; the sumof the algebraicmultiplicities

for all eigenvalues of 𝐴󸀠
∞
, lying in the interval (1,∞),

is an even number.

Then𝐴 has at least three nontrivial fixed points containing one
sign-changing fixed point.

Let 𝐸 = 𝐶[0, 1]. Define the norm ‖𝑢‖ = max
0≤𝑡≤1

|𝑢(𝑡)|;
then 𝐸 is an ordered Banach space. It is obvious that 𝑃 = {𝑢 ∈

𝐸 | 𝑢(𝑡) ≥ 0, 𝑡 ∈ [0, 1]} is a normal cone of 𝐸 and that 𝐸 is a
lattice under the partial order ≤ which is induced by 𝑃 (see
[16, 21–23]).

For convenience, we list the following conditions.

(H
1
) The sequence of positive solutions of the equation

sin√𝑥 = 𝛼 sin𝛽√𝑥 (9)

is

0 < 𝜆

1
< 𝜆

2
< ⋅ ⋅ ⋅ < 𝜆

𝑛
< 𝜆

𝑛+1
< ⋅ ⋅ ⋅ . (10)
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(H
2
) lim
𝜑→+∞

(𝑔(𝑡, 𝜑)/𝜑) = 𝜉 uniformly on [0, 1].
(H
3
) lim
𝜑→−∞

(𝑔(𝑡, 𝜑)/𝜑) = 𝜌 uniformly on [0, 1].
(H
4
) 𝑔(𝑡, 0) ≡ 0, lim

𝜑→0
(𝑔(𝑡, 𝜑)/𝜑) = 𝜂 uniformly on

[0, 1].

By [4], it is well known that BVP (1) can be converted to
the following nonlinear Hammerstein equation:

𝑢 (𝑡) = ∫

1

0

𝑍 (𝑡, 𝑠) 𝑔 (𝑠, 𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 1] ,

(11)

where

𝑍 (𝑡, 𝑠) = 𝑘 (𝑡, 𝑠) +

𝛼𝑡

1 − 𝛼𝛽

𝑘 (𝛽, 𝑠) , (12)

𝑘 (𝑡, 𝑠) = {

𝑡 (1 − 𝑠) , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

𝑠 (1 − 𝑡) , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1.

(13)

Define the operators

(Φ𝑢) (𝑡) = ∫

1

0

𝑍 (𝑡, 𝑠) 𝑔 (𝑠, 𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 1] ,

(14)

(𝐿𝑢) (𝑡) = ∫

1

0

𝑍 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 1] ,

(15)

(𝐺𝑢) (𝑡) = 𝑔 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ [0, 1] , (16)

where 𝑍(𝑡, 𝑠) is defined by (12), and obviously Φ = 𝐿𝐺. It is
obvious that fixed points of Φ are solutions of BVP (1) (see
[4]).

Lemma 8 (see [13]). Let 𝛿 be a positive number. The eigenval-
ues of the linear operator 𝛿𝐿 are

𝛿

𝜆

1

,

𝛿

𝜆

2

, . . . ,

𝛿

𝜆

𝑛

, . . . , (17)

and the algebraic multiplicity of each positive eigenvalue 𝛿/𝜆
𝑛

of the linear operator 𝛿𝐿 is equal to 1, where 𝜆
𝑛
is defined by

(10).

Lemma9. LetΦ and𝐿 be defined as (14) and (15), respectively.
Then

(i) Φ, 𝐿 : 𝐸 → 𝐸 are completely continuous;
(ii) Φ is quasi-additive on the lattice;
(iii) 𝑟(𝐿) = 1/𝜆

1
, where 𝑟(𝐿) is the spectral radius of the

operator 𝐿.

Proof. By [4], we know that (i) holds. The proof of (ii) is
similar to that of [16, 21–25], so we omit it. We easily know
that

𝑟 (𝐿) = sup
𝜆∈{1/𝜆

𝑛
,𝑛=1,2,...}

|𝜆| =

1

𝜆

1

. (18)

Lemma 10. Let Φ and 𝐿 be defined as (14) and (15), respec-
tively. Then

(i) if (H
2
) holds, then Φ󸀠

𝑃
= 𝜉𝐿;

(ii) if (H
3
) holds, then Φ󸀠

(−𝑃)
= 𝜌𝐿;

(iii) if (H
4
) holds, then Φ󸀠

𝜃
= 𝜂𝐿.

Proof. (i) By (H
2
), for any 𝜖 > 0, there exists 𝑅 > 0 such that

󵄨

󵄨

󵄨

󵄨

𝑔 (𝑡, 𝜑) − 𝜉𝜑

󵄨

󵄨

󵄨

󵄨

≤ 𝜖𝜑, ∀𝑡 ∈ [0, 1] , 𝜑 > 𝑅. (19)

Let𝑀
𝑅
= max

𝑡∈[0,1],0≤𝜑≤𝑅
|𝑔(𝑡, 𝜑)|. Then

󵄨

󵄨

󵄨

󵄨

(𝐺𝑢) (𝑡) − 𝜉𝑢 (𝑡)

󵄨

󵄨

󵄨

󵄨

=

󵄨

󵄨

󵄨

󵄨

𝑔 (𝑡, 𝑢 (𝑡)) − 𝜉𝑢 (𝑡)

󵄨

󵄨

󵄨

󵄨

≤ 𝑀

𝑅
+ 𝜉𝑅 + 𝜖 ‖𝑢‖ ,

∀𝑢 ∈ 𝑃, ‖𝑢‖ ≥ 𝑅,

(20)

and hence
󵄩

󵄩

󵄩

󵄩

Φ𝑢 − 𝜉𝐿𝑢

󵄩

󵄩

󵄩

󵄩

=

󵄩

󵄩

󵄩

󵄩

𝐿 (𝐺𝑢) − 𝜉𝐿𝑢

󵄩

󵄩

󵄩

󵄩

≤ ‖𝐿‖ (𝑀

𝑅
+ 𝜉𝑅 + 𝜖 ‖𝑢‖) ,

(21)

which means

lim inf
𝑢∈𝑃,‖𝑢‖→∞

󵄩

󵄩

󵄩

󵄩

Φ𝑢 − 𝜉𝐿𝑢

󵄩

󵄩

󵄩

󵄩

‖𝑢‖

≤ 𝜖 ‖𝐿‖ ;

(22)

that is,

lim
𝑢∈𝑃,‖𝑢‖→∞

󵄩

󵄩

󵄩

󵄩

Φ𝑢 − 𝜉𝐿𝑢

󵄩

󵄩

󵄩

󵄩

‖𝑢‖

= 0,

(23)

so by Definition 3, we have Φ󸀠
𝑃
= 𝜉𝐿.

(ii) Similar to the proof of (i), we can prove that conclu-
sion (ii) holds.

(iii) By (H
4
), since 𝑔(𝑡, 0) ≡ 0, ∀𝑡 ∈ [0, 1], Φ𝜃 = 𝜃. And

for any 𝜖 > 0, there exists 𝑟 > 0 such that
󵄨

󵄨

󵄨

󵄨

𝑔 (𝑡, 𝜑) − 𝜂𝜑

󵄨

󵄨

󵄨

󵄨

≤ 𝜖

󵄨

󵄨

󵄨

󵄨

𝜑

󵄨

󵄨

󵄨

󵄨

, ∀𝑡 ∈ [0, 1] ,

󵄨

󵄨

󵄨

󵄨

𝜑

󵄨

󵄨

󵄨

󵄨

≤ 𝑟. (24)

Then
󵄨

󵄨

󵄨

󵄨

(𝐺𝑢) (𝑡) − 𝜂𝑢 (𝑡)

󵄨

󵄨

󵄨

󵄨

=

󵄨

󵄨

󵄨

󵄨

𝑔 (𝑡, 𝑢 (𝑡)) − 𝜂𝑢 (𝑡)

󵄨

󵄨

󵄨

󵄨

≤ 𝜖 ‖𝑢‖ ,

∀ ‖𝑢‖ ≤ 𝑟,

(25)

and hence
󵄩

󵄩

󵄩

󵄩

Φ𝑢 − Φ𝜃 − 𝜂𝐿𝑢

󵄩

󵄩

󵄩

󵄩

=

󵄩

󵄩

󵄩

󵄩

𝐿 (𝐺𝑢) − 𝜂𝐿𝑢

󵄩

󵄩

󵄩

󵄩

≤ ‖𝐿‖ 𝜖 ‖𝑢‖ ,

∀ ‖𝑢‖ ≤ 𝑟;

(26)

that is,

lim
‖𝑢‖→0

󵄩

󵄩

󵄩

󵄩

Φ𝑢 − Φ𝜃 − 𝜂𝐿𝑢

󵄩

󵄩

󵄩

󵄩

‖𝑢‖

= 0,

(27)

which means Φ󸀠
𝜃
= 𝜂𝐿.

3. Main Results

Theorem 11. Assume that (H
1
)–(H
4
) hold. In addition, sup-

pose that
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(i) 0 < 𝜉 < 𝜆
1
, 0 < 𝜌 < 𝜆

1
;

(ii) there exists an odd number 𝑛 > 0 such that

𝜆

𝑛
< 𝜂 < 𝜆

𝑛+1
, (28)

where 𝜆
1
, 𝜆

𝑛
, and 𝜆

𝑛+1
are defined by (10).

Then BVP (1) has at least one nontrivial solution.

Proof. By (H
2
) and 𝜉 > 0, there exists 𝑐 > 0 such that

𝑔 (𝑡, 𝜑) ≥ −𝑐, ∀𝑡 ∈ [0, 1] , 𝜑 ≥ 0, (29)

and hence by (14) and (15), we have

(Φ𝑢) (𝑡) = (𝐿𝐺𝑢) (𝑡) ≥ −𝐿𝑐, ∀𝑡 ∈ [0, 1] , 𝑢 ∈ 𝑃. (30)

And we easily know that 𝐿𝑐 ∈ 𝑃. By 0 < 𝜌 < 𝜆

1
, we know

that there exists 𝑑 > 0 such that

0 < 𝜌 + 𝑑 < 𝜆

1
. (31)

By (H
3
) and (31), there exists 𝐶 > 0 such that

𝑔 (𝑡, 𝜑) ≥ (𝜌 + 𝑑) 𝜑 − 𝐶, ∀𝑡 ∈ [0, 1] , 𝜑 ≤ 0, (32)

and therefore by (14) and (15), we get

(Φ𝑢) (𝑡) ≥ (𝜌 + 𝑑) (𝐿𝑢) (𝑡) − 𝐿𝐶, ∀𝑡 ∈ [0, 1] , 𝑢 ∈ (−𝑃) .

(33)

And we easily know that 𝐿𝐶 ∈ 𝑃. By (30) and (33), we know
that (7) of Lemma 5 is satisfied.

Set ̃𝐿 = (𝜌 + 𝑑)𝐿; by (31) and Lemma 9, we have 𝑟(̃𝐿) =
(𝜌 + 𝑑)𝑟(𝐿) < 𝜆

1
𝑟(𝐿) = 1.

By Lemma 10, we have Φ󸀠
𝑃
= 𝜉𝐿,Φ

󸀠

𝜃
= 𝜂𝐿.

By (H
4
), we easily know that Φ𝜃 = 𝜃. By Lemma 8, we

know that 𝜂/𝜆
1
, 𝜂/𝜆

2
, . . . , 𝜂/𝜆

𝑛
, . . . are the eigenvalues ofΦ󸀠

𝜃
.

Since 𝜆
𝑛
< 𝜂 < 𝜆

𝑛+1
and 𝑛 > 0 is an odd number,

1 is not the eigenvalue of Φ󸀠
𝜃
, and the sum of the algebraic

multiplicities for all eigenvalues of Φ󸀠
𝜃
, lying in the interval

(1,∞), is an odd number.
By 0 < 𝜉 < 𝜆

1
and Lemma 9, 𝑟(Φ󸀠

𝑃
) = 𝜉𝐿 = 𝜉𝑟(𝐿) <

𝜆

1
𝑟(𝐿) = 1.
So the conditions of Lemma 5 are satisfied. Lemma 5

assures that Φ has at least one nontrivial fixed point. So BVP
(1) has at least one nontrivial solution.

Theorem 12. Assume that (H
1
)–(H
4
) hold. In addition, sup-

pose that

(i) 0 < 𝜉 < 𝜆
1
;

(ii) there exist natural numbers 𝑛
1
≥ 1 and 𝑛

2
≥ 1 such

that

𝜆

𝑛
1

< 𝜌 < 𝜆

𝑛
1
+1
, 𝜆

𝑛
2

< 𝜂 < 𝜆

𝑛
2
+1
, (34)

where 𝜆
1
, 𝜆

𝑛
1

, 𝜆

𝑛
1
+1
, 𝜆

𝑛
2

, 𝜆

𝑛
2
+1

are defined by (10).
Then BVP (1) has at least one nontrivial solution.

Proof. By (H
4
), we easily know that Φ𝜃 = 𝜃. By Lemma 10,

we have Φ󸀠
𝑃
= 𝜉𝐿, Φ󸀠

(−𝑃)
= 𝜌𝐿, Φ󸀠

𝜃
= 𝜂𝐿.

FromLemma 8, 𝜂/𝜆
1
, 𝜂/𝜆

2
, . . . , 𝜂/𝜆

𝑛
, . . . are the eigenval-

ues of the linear operatorΦ󸀠
𝜃
. Since𝜆

𝑛
2

< 𝜂 < 𝜆

𝑛
2
+1
, 1 is not an

eigenvalues of Φ󸀠
𝜃
. Since 𝜆

𝑛
1

< 𝜌 < 𝜆

𝑛
1
+1

and (10), we know
that 𝜌 > 𝜆

1
> 0. So 𝑟(Φ󸀠

(−𝑃)
) = 𝜌𝑟(𝐿) = 𝜌/𝜆

1
> 1.

By (H
3
) and 𝜌 > 0, there exists𝑚 > 0 such that

𝑔 (𝑡, 𝜑) ≤ 𝑚, ∀𝑡 ∈ [0, 1] , 𝜑 ≤ 0; (35)

hence by (14) and (15), we have

(Φ𝑢) (𝑡) = (𝐿𝐺𝑢) (𝑡) ≤ 𝐿𝑚, ∀𝑡 ∈ [0, 1] , 𝑢 ∈ (−𝑃) . (36)

Obviously, 𝐿𝑚 ∈ 𝑃. Since 0 < 𝜉 < 𝜆

1
, there exists ℎ > 0

such that

0 < 𝜉 + ℎ < 𝜆

1
. (37)

By (H
2
), there exists𝑀 > 0 such that

𝑔 (𝑡, 𝜑) ≤ (𝜉 + ℎ) 𝜑 +𝑀, ∀𝑡 ∈ [0, 1] , 𝜑 ≥ 0, (38)

so by (14) and (15), we have

(Φ𝑢) (𝑡) = (𝐿𝐺𝑢) (𝑡) ≤ (𝜉 + ℎ) (𝐿𝑢) (𝑡) + 𝐿𝑀,

∀𝑡 ∈ [0, 1] , 𝑢 ∈ 𝑃.

(39)

Set ̃𝐵 = (𝜉 + ℎ)𝐿; by (37) and Lemma 9, we have 𝑟( ̃𝐵) =
(𝜉 + ℎ)𝑟(𝐿) < 𝜆

1
𝑟(𝐿) = 1. Equations (36) and (39) show that

(8)of Lemma 6 are satisfied. Therefore, Lemma 6 guarantees
that Theorem 12 is valid.

Theorem 13. Suppose that (H
1
)–(H
4
) hold and 𝜉 = 𝜌 = 𝛾. In

addition, assume that

(i) 𝑔(𝑡, 𝜑) is strictly increasing on 𝜑;
(ii) there exists an even number 𝑛 ≥ 2 such that

𝜆

𝑛
< 𝛾 < 𝜆

𝑛+1
; (40)

(iii) 0 < 𝜂 < 𝜆
1
,

where 𝜆
1
, 𝜆

𝑛
, and 𝜆

𝑛+1
are defined by (10).

Then BVP (1) has at least three nontrivial solutions, con-
taining a sign-changing solution.

Proof. By (13), we know that

𝑘 (𝛽, 𝑠) ≥ 𝛽 (1 − 𝛽) 𝑠 (1 − 𝑠) , ∀𝑠 ∈ [0, 1] . (41)

Since 𝑘(𝑡, 𝑠) ≥ 0 for any 𝑡, 𝑠 ∈ [0, 1], by (12) and (41), we
have

𝑍 (𝑡, 𝑠) ≥

𝛼𝑡

1 − 𝛼𝛽

𝛽 (1 − 𝛽) 𝑠 (1 − 𝑠) ≥

𝛼𝛽 (1 − 𝛽)

1 + 𝛼 − 𝛼𝛽

𝑡𝑠 (1 − 𝑠) ,

∀𝑡, 𝑠 ∈ [0, 1] .

(42)
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It follows from (12) that 𝑘(𝜏, 𝑠) ≤ 𝑠(1 − 𝑠), ∀𝜏, 𝑠 ∈ [0, 1]; so by
(42) we have

𝑍 (𝑡, 𝑠) ≥

𝛼𝛽 (1 − 𝛽) 𝑡

1 + 𝛼 − 𝛼𝛽

𝑘 (𝜏, 𝑠) , ∀𝜏, 𝑡, 𝑠 ∈ [0, 1] .
(43)

Form (13), we easily know that

𝑍 (𝑡, 𝑠) ≥

𝛼𝑡

1 − 𝛼𝛽

𝑘 (𝛽, 𝑠) ≥

𝛼𝑡𝜏

1 − 𝛼𝛽

𝑘 (𝛽, 𝑠)

≥

𝛼𝛽 (1 − 𝛽) 𝑡

1 + 𝛼 − 𝛼𝛽

𝛼𝜏

1 − 𝛼𝛽

𝑘 (𝛽, 𝑠) , ∀𝑡, 𝜏, 𝑠 ∈ [0, 1] .

(44)

Therefore, by (43) and (44), we get

𝑍 (𝑡, 𝑠) ≥ 𝜁𝑡𝑍 (𝜏, 𝑠) , ∀𝜏, 𝑡, 𝑠 ∈ [0, 1] , (45)

where 𝜁 = 𝛼𝛽(1 − 𝛽)/2(1 + 𝛼 − 𝛼𝛽).
From (45) and (15), for any 𝑢 ∈ 𝑃 \ {𝜃}, we have that

(𝐿𝑢) (𝑡) = ∫

1

0

𝑍 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠 ≥ 𝜁𝑡 ∫

1

0

𝑍 (𝜏, 𝑠) 𝑢 (𝑠) 𝑑𝑠

= 𝜁𝑡 (𝐿𝑢) (𝜏) , ∀𝑡 ∈ [0, 1] ,

(46)

which means

(𝐿𝑢) (𝑡) ≥ 𝜁𝑡 ‖𝐿𝑢‖ ; (47)

namely,

𝐿 (𝑃 \ {𝜃}) ⊆ int𝑃. (48)

By (48) and the condition (i), we know that Φ is strongly
increasing; so condition (i) of Lemma 7 is satisfied.

By Lemma 10 we have

Φ

󸀠

𝑃
= Φ

󸀠

(−𝑃)
= 𝛾𝐿, Φ

󸀠

𝜃
= 𝜂𝐿. (49)

By Lemmas 8, 9, and (49), we know that 𝛾/𝜆
1
, 𝛾/𝜆

2
,

. . . , 𝛾/𝜆

𝑛
, . . . are the eigenvalues of the linear operators Φ󸀠

𝑃
=

Φ

󸀠

(−𝑃)
. Since 𝜆

𝑛
< 𝛾 < 𝜆

𝑛+1
, we know that 1 is not an eigen-

value of Φ󸀠
𝑃
and Φ󸀠

(−𝑃)
, and 𝑟(Φ󸀠

𝑃
) = 𝑟(Φ

󸀠

(−𝑃)
) = 𝛾/𝜆

1
> 1, so

condition (ii) of Lemma 7 is also satisfied.
Since 𝑔(𝑡, 0) ≡ 0, Φ𝜃 = 𝜃. By (48), we know that Φ󸀠

𝜃
is

strongly positive. By (49), Lemma 9, and 0 < 𝜂 < 𝜆
1
, we have

𝑟(Φ

󸀠

𝜃
) = 𝜂/𝜆

1
< 1. So condition (iii) of Lemma 7 is satisfied.

In the following, we prove that Φ󸀠
∞
= 𝛾𝐿.

In fact, by (H
2
) (H
3
) and 𝜉 = 𝜌 = 𝛾, for any 𝜖 > 0, there

exists ̃𝑅 > 0 such that
󵄨

󵄨

󵄨

󵄨

𝑔 (𝑡, 𝜑) − 𝛾𝜑

󵄨

󵄨

󵄨

󵄨

≤ 𝜖

󵄨

󵄨

󵄨

󵄨

𝜑

󵄨

󵄨

󵄨

󵄨

, ∀𝑡 ∈ [0, 1] ,

󵄨

󵄨

󵄨

󵄨

𝜑

󵄨

󵄨

󵄨

󵄨

≥

̃

𝑅.
(50)

Let ̃𝑀 = max
𝑡∈[0,1],−𝑅̃≤𝜑≤𝑅̃

|𝑔(𝑡, 𝜑)|. Then

󵄨

󵄨

󵄨

󵄨

(𝐺𝑢) (𝑡) − 𝛾𝑢 (𝑡)

󵄨

󵄨

󵄨

󵄨

=

󵄨

󵄨

󵄨

󵄨

𝑔 (𝑡, 𝑢 (𝑡)) − 𝛾𝑢 (𝑡)

󵄨

󵄨

󵄨

󵄨

≤

̃

𝑀 + 𝛾

̃

𝑅 + 𝜖 ‖𝑢‖ ,

∀𝑡 ∈ [0, 1] , ‖𝑢‖ ≥

̃

𝑅,

(51)

and hence
󵄩

󵄩

󵄩

󵄩

Φ𝑢 − 𝛾𝐿𝑢

󵄩

󵄩

󵄩

󵄩

=

󵄩

󵄩

󵄩

󵄩

𝐿 (𝐺𝑢) − 𝛾𝐿𝑢

󵄩

󵄩

󵄩

󵄩

≤ ‖𝐿‖ (

̃

𝑀 + 𝛾

̃

𝑅 + 𝜖 ‖𝑢‖) ,

(52)

which means

lim inf
‖𝑢‖→∞

󵄩

󵄩

󵄩

󵄩

Φ𝑢 − 𝛾𝐿𝑢

󵄩

󵄩

󵄩

󵄩

‖𝑢‖

≤ 𝜖 ‖𝐿‖ ;

(53)

that is,

lim
‖𝑢‖→∞

󵄩

󵄩

󵄩

󵄩

Φ𝑢 − 𝛾𝐿𝑢

󵄩

󵄩

󵄩

󵄩

‖𝑢‖

= 0,

(54)

so we have Φ󸀠
∞
= 𝛾𝐿.

By condition (ii) and Lemma 8, we know that 1 is not the
eigenvalue ofΦ󸀠

∞
, and the sum of the algebraic multiplicities

for all eigenvalues of Φ󸀠
∞
, lying in the interval (1,∞), is an

even number 𝑛. So condition (iv) of Lemma 7 is satisfied.
Therefore, Lemma 7 guarantees thatTheorem 13 is valid.

Remark 14. In [13–15], the authors considered the boundary
value problem (2). In this paper, it is obvious that we
generalize and improve the nonlinear term 𝑔, and we also
obtain that BVP (1) has at least a sign-changing solution.The
methods we use are different from those of [13–15]. In [18],
the author has used global bifurcation theorem to obtain sign-
changing solutions of the boundary value problem (3), so the
methods we use are different from those of [18].

4. Applications

In this section, some examples are given to illustrate ourmain
results obtained in Section 3.

Consider the following second order three-point bound-
ary value problem:

−𝑢

󸀠󸀠

(𝑡) = 𝑔 (𝑡, 𝑢 (𝑡)) , 0 ≤ 𝑡 ≤ 1,

𝑢 (0) = 0, 𝑢 (1) =

1

2

𝑢 (

1

2

) .

(55)

By simple calculations, we know that 𝜆
1
≈ 6.9497, 𝜆

2
≈

39.4784, and 𝜆

3
≈ 98.6077 are solutions of the following

equation:

sin√𝑥 = 1

2

sin √𝑥
2

.

(56)

Example 1. Choose

𝑔 (𝑡, 𝜑)

=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

2𝜑 + (𝑡 − 8)

√

𝜑, 𝑡 ∈ [0, 1] , 𝜑 ∈ [9, +∞) ,

−26 + 2𝑡

8

(𝜑 − 1)

+𝑡 + 20, 𝑡 ∈ [0, 1] , 𝜑 ∈ (1, 9) ,

20𝜑 + 𝑡𝜑

7/3
, 𝑡 ∈ [0, 1] , 𝜑 ∈ [−1, 1] ,

𝑡 + 2

7

(𝜑 + 1) − 20 − 𝑡, 𝑡 ∈ [0, 1] , 𝜑 ∈ (−8, −1) ,

3𝜑 + (𝑡 − 1)

3

√

𝜑, 𝑡 ∈ [0, 1] , 𝜑 ∈ (−∞, −8] .

(57)
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Obviously, the nonlinear term 𝑔(𝑡, 𝜑) can be negative
when 𝜑 ≥ 0 and 𝜉 = 2, 𝜌 = 3, 𝜂 = 20. It is easy to know that
the conditions ofTheorem 11 are satisfied. So BVP (55) has at
least one nontrivial solution.

Example 2. Choose

𝑔 (𝑡, 𝜑)

=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

𝜑 + (𝑡 − 21)

√

𝜑, 𝑡 ∈ [0, 1] , 𝜑 ∈ [144, +∞) ,

−13 + 𝑡

11

(𝜑 − 1)

+61 − 𝑡, 𝑡 ∈ [0, 1] , 𝜑 ∈ (1, 144) ,

60𝜑 + (1 − 𝑡) 𝜑

7/3
, 𝑡 ∈ [0, 1] , 𝜑 ∈ [−1, 1] ,

749 + 3𝑡

2
+ 2𝑡

26

× (𝜑 + 1) − 61 + 𝑡, 𝑡 ∈ [0, 1] , 𝜑 ∈ (−27, −1) ,

30𝜑 − 𝑡 + 𝑡

2
3

√

𝜑, 𝑡 ∈ [0, 1] , 𝜑 ∈ (−∞, −27] .

(58)

It is easy to know that 𝜉 = 1, 𝜌 = 30, 𝜂 = 60 and the
nonlinear term 𝑔(𝑡, 𝜑) can be negative when 𝜑 ≥ 0. The
conditions of Theorem 12 are satisfied. So BVP (55) has at
least one nontrivial solution.

Example 3. Choose

𝑔 (𝑡, 𝜑)

=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

60𝜑 + 𝑡

√

𝜑, 𝑡 ∈ [0, 1] , 𝜑 ∈ [4, +∞) ,

236 + 𝑡

3

(𝜑 − 1) + 𝑡 + 4, 𝑡 ∈ [0, 1] , 𝜑 ∈ (1, 4) ,

3𝜑 + (1 + 𝑡) 𝜑

7/3
, 𝑡 ∈ [0, 1] , 𝜑 ∈ [−1, 1] ,

𝑡 + 476

7

(𝜑 + 1) − 4 − 𝑡, 𝑡 ∈ [0, 1] , 𝜑 ∈ (−8, −1) ,

60𝜑 + 𝑡

3

√

𝜑, 𝑡 ∈ [0, 1] , 𝜑 ∈ (−∞, −8] .

(59)

Obviously, 𝜉 = 𝜌 = 𝛾 = 60, 𝜂 = 3. It is easy to know that
the conditions ofTheorem 13 are satisfied.Thus BVP (55) has
at least three nontrivial solutions, containing a sign-changing
solution.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The author wishes to thank the referees for their valuable
suggestions.The project is supported by the National Natural
Science Foundation of China (10971179), Research Award
Fund forOutstanding Young Scientists of Shandong Province
(BS2012SF022), and A Project of Shandong Province Higher
Educational Science and Technology Program (J11LA07).

References

[1] S. P. Timoshenko,Theory of Elastic Stability, McGraw-Hill, New
York, NY, USA, 1961.

[2] C. P. Gupta, “Solvability of a three-point nonlinear boundary
value problem for a second order ordinary differential equa-
tion,” Journal of Mathematical Analysis and Applications, vol.
168, no. 2, pp. 540–551, 1992.

[3] J. R. L. Webb, “Positive solutions of some three point boundary
value problems via fixedpoint index theory,”NonlinearAnalysis:
Theory, Methods & Applications, vol. 47, no. 7, pp. 4319–4332,
2001.

[4] G.W. Zhang and J. X. Sun, “Positive solutions of𝑚-point boun-
dary value problems,” Journal of Mathematical Analysis and
Applications, vol. 291, no. 2, pp. 406–418, 2004.

[5] G.W. Zhang and J. X. Sun, “Multiple positive solutions of singu-
lar second-order𝑚-point boundary value problems,” Journal of
Mathematical Analysis and Applications, vol. 317, no. 2, pp. 442–
447, 2006.

[6] B.M. Liu, L. S. Liu, andY.H.Wu, “Positive solutions for singular
second order three-point boundary value problems,” Nonlinear
Analysis: Theory, Methods & Applications, vol. 66, no. 12, pp.
2756–2766, 2007.

[7] R. Ma and N. Castaneda, “Existence of solutions of nonlinear
𝑚-point boundary-value problems,” Journal of Mathematical
Analysis and Applications, vol. 256, no. 2, pp. 556–567, 2001.

[8] B. M. Liu, “Positive solutions of a nonlinear three-point bound-
ary value problem,”AppliedMathematics and Computation, vol.
132, no. 1, pp. 11–28, 2002.

[9] X. Xu, “Multiplicity results for positive solutions of some semi-
positone three-point boundary value problems,” Journal of
Mathematical Analysis and Applications, vol. 291, no. 2, pp. 673–
689, 2004.

[10] X. Xu, D. O’Regan, and J. X. Sun, “Multiplicity results for three-
point boundary value problems with a non-well-ordered upper
and lower solution condition,” Mathematical and Computer
Modelling, vol. 45, no. 1-2, pp. 189–200, 2007.

[11] Y. P. Guo, W. G. Ge, and S. J. Dong, “Two positive solutions for
second order three point boundary value problems with sign
changing nonlinearities,” Acta Mathematicae Applicatae Sinica,
vol. 27, no. 3, pp. 522–529, 2004.

[12] T. Bartsch and Z. Q. Wang, “On the existence of sign changing
solutions for semilinear Dirichlet problems,” Topological Meth-
ods in Nonlinear Analysis, vol. 7, no. 1, pp. 115–131, 1996.

[13] X. Xu and J. X. Sun, “On sign-changing solution for some three-
point boundary value problems,” Nonlinear Analysis: Theory,
Methods & Applications, vol. 59, no. 4, pp. 491–505, 2004.

[14] K. Zhang and X. J. Xie, “Existence of sign-changing solutions
for some asymptotically linear three-point boundary value
problems,” Nonlinear Analysis: Theory, Methods & Applications,
vol. 70, no. 7, pp. 2796–2805, 2009.

[15] Y. J. Cui, Y. M. Zou, and H. Y. Li, “Existence of sign-changing
solutions for nonlinear operator equations and its applications,”
Journal of Systems Science and Mathematical Sciences, vol. 29,
no. 8, pp. 1094–1101, 2009.

[16] J. X. Sun, Nonlinear Functional Analysis and Applications, Sci-
ence Press, Beijing, China, 2008.

[17] B. P. Rynne, “Second-order, three-point boundary value prob-
lems with jumping non-linearities,” Nonlinear Analysis: Theory,
Methods & Applications, vol. 68, no. 11, pp. 3294–3306, 2008.



Abstract and Applied Analysis 7

[18] B. P. Rynne, “Spectral properties and nodal solutions for sec-
ond-order, 𝑚-point, boundary value problems,” Nonlinear
Analysis: Theory, Methods & Applications, vol. 67, no. 12, pp.
3318–3327, 2007.

[19] D. L. Bai and H. F. Feng, “Eigenvalue for a singular second
order three-point boundary value problem,” Journal of Applied
Mathematics and Computing, vol. 38, no. 1-2, pp. 443–452, 2012.

[20] Y. Z. Lin, J. Niu, and M. G. Cui, “A numerical solution to non-
linear second order three-point boundary value problems
in the reproducing kernel space,” Applied Mathematics and
Computation, vol. 218, no. 14, pp. 7362–7368, 2012.

[21] X. Y. Liu and J. X. Sun, “Computation of topological degree of
unilaterally asymptotically linear operators and its applica-
tions,” Nonlinear Analysis: Theory, Methods & Applications, vol.
71, no. 1-2, pp. 96–106, 2009.

[22] J. X. Sun and X. Y. Liu, “Computation of topological degree
for nonlinear operators and applications,” Nonlinear Analysis:
Theory, Methods & Applications, vol. 69, no. 11, pp. 4121–4130,
2008.

[23] J. X. Sun and X. Y. Liu, “Computation of topological degree in
ordered Banach spaces with lattice structure and its application
to superlinear differential equations,” Journal of Mathematical
Analysis and Applications, vol. 348, no. 2, pp. 927–937, 2008.

[24] H. Y. Li and F. Sun, “Existence of solutions for integral boun-
dary value problems of second-order ordinary differential
equations,” Boundary Value Problems, vol. 2012, article 147, 7
pages, 2012.

[25] H. X. Lu, L. Sun, and J. X. Sun, “Existence of positive solutions
to a non-positive elastic beam equation with both ends fixed,”
Boundary Value Problems, vol. 2012, article 56, 10 pages, 2012.

[26] D. J. Guo,Nonlinear Functional Analysis, Shandong Science and
Technology Press, Jinan, China, 2nd edition, 2001.


